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Anomalous screening in narrow-gap carbon nanotubes
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The screening of Coulomb interaction controls many-body physics in carbon nanotubes, as it tunes the range
and strength of the force that acts on charge carriers and binds electron-hole pairs into excitons. In doped
tubes, the effective Coulomb interaction drives the competition between Luttinger liquid and Wigner crystal,
whereas in undoped narrow-gap tubes it dictates the Mott or excitonic nature of the correlated insulator observed
at low temperature. Here, by computing the dielectric function of selected narrow- and zero-gap tubes from
first principles, we show that the standard effective-mass model of screening systematically underestimates the
interaction strength at long wavelength, hence missing the binding of low-energy excitons. The reason is that
the model critically lacks the full three-dimensional topology of the tube, being adapted from graphene theory.
As ab inito calculations are limited to small tubes, we develop a two-band model dielectric function based on
the plane-wave expansion of Bloch states and the exact truncated Coulomb cutoff technique. We demonstrate
that our—computationally cheap—approach provides the correct screening for narrow-gap tubes of any size
and chirality. A striking result is that the screened interaction remains long-ranged even in gapless tubes, as
an effect of the microscopic local fields generated by the electrons moving on the curved tube surface. As
an application, we show that the effective electron-electron force that is felt at distances relevant to quantum
transport experiments is super Coulombic.
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I. INTRODUCTION

Carbon nanotubes (NTs) are ideal materials to study
strongly interacting electrons in one dimension [1–4]. Due
to the reduced dimensionality, Coulomb interaction remains
unscreened at long wavelength whereas its strength reaches
extreme values in suspended, undoped tubes, as the electric
field lines spill over into the vacuum. Excitons—electron-hole
pairs bound by Coulomb attraction—exhibit huge binding
energies [5–9] that remain finite even in metallic NTs [10,11],
ultraclean, narrow-gap NTs may be charged in a controlled
and reversible way by means of Coulomb blockade, hosting
fascinating many-body states of matter. These include the
Luttinger liquid [12–19], the Wigner crystal [19–25], and a
correlated insulator understood as either a Mott [26] or an
excitonic phase [27] (but Peierls insulators [28–30], topolog-
ical phases [31], and hybrid scenarios [32–34] were proposed
as well).

The focus of this paper is the quantitative assessment of
the screened Coulomb interaction in narrow-gap NTs, as the
effective range and strength of the electron-electron force
rule the nature of the correlated phases observed in quantum
transport experiments. In slightly doped tubes, the long range
part of Coulomb interaction stabilizes the Wigner localization
of electrons (or holes), its strength tuning the charge modula-
tion associated with crystal-like order [35–38]. As screening
controls the force range, one may melt the crystal, e.g., by
increasing doping or changing the dielectric environment,
leaving room to Luttinger liquid. The elementary excitations

of the liquid are plasmons, whose velocities depend on the
residual, short-range interaction [12].

Undoped NTs are always insulating [3,4,19,26,39,40], in-
cluding the armchair kind, which band theory predicts to
be metallic and protected against gap-opening perturbations
[2]. The contribution to the gap that is not accounted for by
independent-electron models is thought to have a many-body
origin, whose features—again—critically depend on the range
of electron-electron interaction. One possible conventional
scenario is the Mott insulator [26], whose gap originates from
the short-range part of Coulomb interaction. Its theory—a
strong-coupling version of the Luttinger liquid—assumes the
long-wavelength Coulomb force to be cutoff by nearby elec-
trostatic gates in the experimental setup [12–14,16,41]. A
second possibility, recently proposed by some of us [27], is
that the residual gap is due to the long-range part of Coulomb
interaction, which binds electrons and holes into excitons. If
the Bohr radius is smaller than the cutoff length, then excitons
condense at thermodynamic equilibrium—in the absence of
optical excitation—giving rise to the ”excitonic insulator”
phase predicted in the sixties [42]. Pivotal to this prediction
is the result that the screened Coulomb interaction in momen-
tum space W (q) exhibits a seemingly singular-like profile for
q → 0 in gapless tubes, as found from first principles—see
inset of Fig. 2(c) of Ref. [27] and Fig. 14 for (3,3) and (5,5)
armchair tubes, respectively. This finding, which motivates
the present work, is surprising, as the simple Thomas-Fermi
model of a one-dimensional metal predicts W (q) to be almost
constant for q ≈ 0.
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Screening in NTs shows a complex behavior due to its
nonlocal character, the interband electronic polarization being
effective at intermediate ranges only [43]. As a result, in un-
doped NTs the electron-hole interaction, once projected onto
the lowest conduction and highest valence band, is enhanced
with respect to the bare force, for carrier separation larger
than the NT radius [44]. Whereas the precise assessment of
the dressed interaction requires the accurate calculation of
the dielectric matrix, the computation from first principles
is limited to NTs having a small unit cell, due to the heavy
computational load. Therefore, a model dielectric function
based on the effective-mass (EM) approximation is widely
used, either in its original form by Ando [5,45] or in simpler
versions [44,46]. These models are able to reproduce the main
nonlocal features of screening but rule out the excitonic insta-
bility [5].

Here we show from first principles that the EM model
underestimates the strength of Coulomb interaction at long
wavelength in both narrow- and zero-gap NTs—hence
missing the binding of low-energy excitons. Crucially, the EM
theory neglects the actual topology of the orbitals involved
in the calculation of the polarization, as it takes Bloch states
from graphene. To overcome this problem, we introduce a
two-band, computationally cheap model of the polarization
that copes with the tube-like topology of Bloch states by ex-
panding them over a three-dimensional plane-wave basis set.
Furthermore, we apply an exact cutoff technique to Coulomb
potential [47,48], in order to avoid spurious interactions
among replicas in our supercell calculation. We eventually
validate our model through comparison with first-principles
results for zigzag and armchair NTs of different radii. As
a generic outcome, we find that the change of overlap inte-
grals between conduction and valence Bloch states induced
by tube curvature leads to a significant enhancement of the
dressed Coulomb interaction at long wavelength, W (q ∼ 0).
This effect is the signature of microscopic local fields, which
are strong as electrons actually move on a cylindrical surface
and not on a line. As a consequence, the effective attraction
between electrons and holes remains long-ranged even in
gapless tubes.

Our findings support our previous claim of excitonic in-
stability [27], suggesting that the long-range part of Coulomb
interaction rules many-body physics of NTs. As an application
of the proposed model dielectric function, and motivated by a
recent experiment by Shapir and coworkers at the Weizmann
Institute of Science [49], we compute the real-space effective
Coulomb force between two electrons populating the lowest
conduction band. This observable has been measured, for
various electron-electron separations, in ultraclean suspended
NTs in a noninvasive manner [49]. The agreement between
numerical and experimental results will be shown elsewhere.
Our results confirm that the effective electron-electron inter-
action in NTs is of super Coulombic nature.

The paper is organized as follows: We explain the method-
ology in the first three sections and discuss the results in
the remainder of the manuscript. In detail, we first illustrate
the first-principles methodology (Sec. II), then review the
effective-mass approximation (Sec. III), and eventually de-
tail the proposed two-band model of screening (Sec. IV).
We report results starting from the bare electron-hole in-

teraction, projected onto conduction and valence bands, in
Sec. V A. The most important findings concern the inverse
dielectric function (Sec. V B) and the dressed electron-hole
interaction (Sec. V C). We dedicate a whole subsection to the
electron-hole interaction in gapless tubes (Sec. V D), which
has profound implications for the instability of the many-body
ground state towards exciton condensation. In Sec. V E we
validate the three-dimensional structural model used through-
out the work by using refined results for zigzag and armchair
tubes as a benchmark. We finally present the calculation of the
electron-electron force in real space (Sec. V F), projected onto
the lowest conduction band, as an experimentally relevant
application. We draw our conclusions in Sec. VI.

II. CALCULATIONS FROM FIRST PRINCIPLES

Calculations from first principles proved to be very reliable
to study electronic properties of physical systems [50,51].
In this paper, we use ab initio results as a benchmark to
investigate screening properties of selected carbon NTs. The
systems considered are the (3,3) and (5,5) armchair NTs as
well as the (9,0) and the (12,0) zigzag NTs. Our calcula-
tions from first principles are performed in two steps. In
first instance, we perform density functional theory (DFT)
computations of the NTs. On top of the DFT computation,
we then compute the dielectric function and the screened
potential. The real-space screened potential is reconstructed
by performing an expansion over the reciprocal lattice basis:

W (r, r′) =
∑

q

∑
G

∑
G′

ei(G+q)·re−i(G′+q)·r′
ε−1

G,G′ (q, 0)

× v(q + G′), (1)

where ε−1
G,G′ (q, ω) is the momentum- and frequency-dependent

inverse dielectric matrix, v(q) = 4πe2�−1/q2 is the bare
Coulomb potential, G is the reciprocal lattice vector, and � is
the system volume. We treat the screening within the random
phase approximation (RPA):

ε−1
G,G′ (q, ω) = [δG,G′ − �G,G′ (q, ω) v(q + G)]−1, (2)

with �G,G′ (q, ω) being the irreducible polarization:

�G,G′ (q, ω) =2
∑
n,n′

∑
k

f (En,k) − f (En′,k+q)

ω + En,k − En′,k+q + iη

× ρ∗
n,n′ (k, q, G′) ρn,n′ (k, q, G). (3)

The f (E ) are the occupation factors, the overlap integrals are
defined as ρn,n′ (k, q, G) = 〈nk|ei(G+q)·r|n′k + q〉, and η is a
positive infinitesimal. The indexes n, n′ run over the electronic
bands. The energies, En,k, and wave functions, |nk〉, we em-
ploy in Eq. (3) are those determined by the DFT computations.
As we mainly look at the long-range potential of carbon NTs,
only the static polarization �G,G′ (q, 0) is necessary in our
paper.

Density functional theory calculations were performed
using the QUANTUM ESPRESSO package [52,53], where
wave functions are expanded in plane waves and pseudopo-
tentials are used to account for the electron-ion interaction.
We used the local density approximation (LDA) for the
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exchange-correlation potential, according to the Perdew-
Zunger parametrization [54], and norm conserving pseudopo-
tentials. The kinetic energy cutoff to represent the Kohn-Sham
wave function was set to 70 Ry and an amount of vacuum of
38 Bohr in the direction perpendicular to the nanotube axis
was considered to avoid replica interactions. The screened
potential and the dielectric function were calculated using
the Yambo code [55,56], where we considered 80, 120, 300,
and 600 bands in the summation of Eq. (3) for the (3,3),
(5,5), (9,0), and (12,0) NTs, respectively. A cutoff of 4 Ry
in the ε−1

G,G′ matrix dimension was considered for all NTs.
The Brillouin zone was sampled using a one dimensional
grid of respectively 1973 and 205 k points for armchair and
zigzag NTs.

III. EFFECTIVE-MASS THEORY

A. Envelope function

Within the effective mass (EM) and envelope function ap-
proximations, a single-wall carbon NT is treated as a rolled
graphene sheet [1,2,5,57], as illustrated in Fig. 1. In the limit
of large radius, the Bloch states ψτ (r) that multiply the en-
velopes coincide with the π tight-binding states of graphene
located at τ = K, K′ corners of the hexagonal Brillouin zone,
the charge neutrality points where Dirac cones touch. For each
valley τ , the NT orbital wave functions are

�ατk (r) = F τA
αk (r) ψτA(r) + F τB

αk (r) ψτB(r), (4)

where A and B label the two inequivalent sublattices span-
ning the graphene honeycomb lattice. The envelope function
sublattice components, F τA(r) and F τB(r), are just plane
waves, provided the projection of the wave vector onto
the direction perpendicular to the NT axis ϕ is properly
quantized (Fig. 1). This procedure, which corresponds to
extract from the two-dimensional bands of graphene many
one-dimensional subbands α, leads to a graphene-like Dirac
equation for the two-component envelope vector, Fτ

αk ,(
0 γ kτ − iτγ k

γ kτ + iτγ k 0

)
Fτ

αk = Eατ (k) Fτ
αk, (5)

where kτ is the quantized, transverse wave vector component,
k is the wave vector along the NT axis, and τ = 1 for K,
τ = −1 for K′ valleys. As we are interested in the long-range
screening properties of narrow-gap NTs, out of all subbands α

we consider only the top valence (α = c) and bottom conduc-
tion (α = v) bands closest to Dirac apexes. As shown below,
this choice is validated a posteriori by comparing the dielec-
tric function obtained from first principles with that obtained
within the EM approximation as well as within the model of
Sec. IV. The dispersion of bands c and v is Dirac-like:

Eατ (k) = sαγ

√
k2
τ + k2. (6)

Here γ is graphene band parameter, sα = 1 and sα = −1 for
c and v bands, respectively.

The solution of Dirac equation (5) provides the phase rela-
tion between the two plane wave components of the envelope:

Fτ
αk (r) =

(
F A

ταk

F B
ταk

)
eik·r = 1√

2

(
kτ −iτk√

k2
τ +k2

sα

)
eikyeikτ Rϕ, (7)

FIG. 1. Pictorial illustration of the folding of a graphene sheet.
Here ϕ and y are, respectively, the direction of folding and of the
nanotube axis, whereas a and b are the basis vectors of the graphene
lattice. The chiral angle θ spans the region between ϕ and a.

where R is the NT radius, ϕ the azimuthal angle, and y is the
coordinate parallel to the NT axis, as shown in Fig. 2.

The gap 2γ kτ we consider here is narrow [2,58], usually
ranging between 0 and 100 meV and hence smaller than the
typical value characteristic of semiconducting NTs, of the
order of 1 eV. This narrow gap originates from the curvature of
the nanotube [58] and may be tuned by an axial magnetic field
through the Aharonov-Bohm effect [57], the two contributions
to the gap adding in one valley and canceling out in the other
one. At zero field, the quantized wave vector kτ is estimated
as [2,58]

kτ = τ
0.625 eV

γ R2
cos(3θ ), (8)

with γ = 0.658 eV nm. Here θ is the chiral angle identi-
fying the direction along which the graphene is rolled, the
zigzag and armchair orientations corresponding to θ = 0 and
θ = π/6, respectively (see Fig. 1).

FIG. 2. Pictorial representation of a nanotube with an armchair
chirality. Here y, ϕ, and ρ are the directions of the nanotube axis,
the direction on the circumference along which the folding has been
performed, and the radial direction, respectively. The tube surface
has radial coordinate ρ = R.
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B. Dielectric function

The EM dielectric function is built starting from the form
that Coulomb interaction takes on a cylindrical surface [5]:

Vcyl(r, r′) = e2√
4R2 sin2

(
ϕ−ϕ′

2

) + (y − y′)2
. (9)

This potential may be expanded over azimuthal quantum
number m, and axial wave vector q, components as

Vcyl(r, r′) = 2e2

A

∑
q

∞∑
m=−∞

I|m|(qR) K|m|(qR)

× eim(ϕ−ϕ′ ) eiq(y−y′ ). (10)

Here A is the nanotube length, while Im(x) and Km(x) are the
modified Bessel functions of first and second kind, respec-
tively. The RPA dielectric function, whose generic expression
is given by Eq. (2), may then be recasted in terms of angular
momenta m rather than G vectors:

εEM(m, q) = 1 − 2e2

A
I|m|(qR) K|m|(qR)

×�EM(m, q). (11)

The polarization �EM, which provides the independent-
particle response, is written in terms of the wave functions
of Eq. (4):

�EM(m, q) = 2
∑
α,α′

∑
τ,τ ′

∑
k∈BZ

〈ατk|e−iqye−imϕ |α′τ ′k + q〉

× 〈α′τ ′k + q|eiqy′
eimϕ′ |ατk〉

× f (Eα′τ ′ (k + q)) − f (Eατ (k))

Eα′τ ′ (k + q) − Eατ (k)
, (12)

where the ket |ατk〉 is the NT orbital state �ατk in Dirac
notation [5].

A few simplifications are now in order. At zero temper-
ature the difference between the Fermi-Dirac factors, f (E ),
selects virtual electron-hole excitations from filled valence to
empty conduction band states only, hence the only relevant
overlap integrals are (α = c, α′ = v) and (α = v, α′ = c). We
ignore intervalley scatterings terms (τ �= τ ′), as they require
large momentum transfer and are therefore negligible within
the EM approximation. Whereas in principle the sum over
k extends through the whole Brillouin zone, we truncate it
through a cutoff ko, as done in Ref. [5]. We choose the cutoff
to include only those k points providing the bands with a
Dirac-like shape, consistently with our previous paper [27].
Eventually, by converting the sum over k into an integral, one
obtains

εEM(m, q) = 1 − 4e2

π
I|m|(qR) K|m|(qR)

∑
α,α′

∑
τ

∫ ko

−ko

dk

× 〈ατk|e−iqye−imϕ |α′τk + q〉〈α′τk + q|eiqy′

× eimϕ′ |ατk〉 f (Eα′k+q) − f (Eαk )

Eα′τ ′ (k + q) − Eατ (k)
. (13)

Importantly, the overlap integrals have the same form as
those of graphene, the curved topology of the nanotube enter-
ing only through the quantized wave vector kτ :

〈αk|e−iqye−imϕ |α′k + q〉

= 1

2

(
k(k + q) + k2

τ − iqkτ√
k2 + k2

τ

√
(k + q)2 + k2

τ

+ (2δα,α′ − 1)

)
δm,0.

(14)

Since only the m = 0 angular momentum component is
relevant within the two-band approximation, the dielectric
function reduces to

εEM(q) = 1 + 2e2

πγ
I0(qR)K0(qR)

∑
τ

[√
(ko + q)2 + k2

τ − √
(ko − q)2 + k2

τ

q
+ 2k2

τ

q
√

q2 + 4k2
τ

× log

( √
q2 + 4k2

τ

√
k2

o + k2
τ + 2k2

τ − koq√
q2 + 4k2

τ

√
(ko + q)2 + k2

τ + 2k2
τ + q(ko + q)

√
q2 + 4k2

τ

√
(ko − q)2 + k2

τ + 2k2
τ + q(q − ko)√

q2 + 4k2
τ

√
k2

o + k2
τ + 2k2

τ + koq

)]
, (15)

which, in the limit of large cutoff ko, simplifies to

εEM(q) =1 + 4e2

πγ
I0(qR)K0(qR)

∑
τ

[
1 + 2k2

τ

q
√

q2 + 4k2
τ

log

(√
q2 + 4k2

τ − q√
q2 + 4k2

τ + q

)]
. (16)

IV. TWO-BAND MODEL OF SCREENING

In this section we improve the EM dielectric function
by fully taking into account the three-dimensional topology
of Bloch states ψτA/B(r) that occur in the expression (4)
for NT wave functions, while keeping the envelopes F un-
changed. The three-dimensional modelization of the Bloch
states is illustrated in Sec. IV A. We introduce (Sec. IV B)
a large cylindrical supercell that contains the NT and then

expand the states ψ over the vectors G of the supercell
three-dimensional reciprocal lattice. Here we avoid spuri-
ous interactions among supercell replicas by using the exact
Coulomb cutoff technique of Refs. [47,48]. The expressions
for the dielectric function and dressed Coulomb interaction
we obtain in Sec. IV C exhibit an explicit dependence on
reciprocal lattice vectors perpendicular to the NT axis, which
accounts for the effect of tube curvature on wave functions.
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FIG. 3. Pictorial illustration of the method used to build the ho-
mogeneous charge rings. C and y are, respectively, the chiral vector
and the nanotube axis. The dashed line on the right-hand side signals
where the cut of the graphene sheet is performed. We divide the
nanotube surface into equally spaced stripes. Each stripe contains
a unique closed chain of atoms (indicated in red in the highlighted
stripe). The chains of atoms are replaced with two homogeneous
charge rings, one for each sublattice. The rings are placed at the
center of the stripe.

A. Three-dimensional Bloch states

The ψτA/B(r) tight-binding Bloch states of Eq. (4) are lo-
calized on the atomic sites of the curved NT surface, whereas
the EM model treats the lattice as two-dimensional. The posi-
tion of these atoms depends in turn on the NT chirality, which
may lead to a complex structure. For the sake of simplicity,
we consider the exact atom location in two exemplar cases
only, i.e., armchair and zigzag NTs, which are detailed, re-
spectively, in Appendices B and C. Importantly, the forms
of dielectric function and screened Coulomb potential that
we obtain turn out to be identical to those derived from a
simpler structural three-dimensional model [44] that applies
to all NT chiralities. Therefore, in this section we present only
the model, which is validated in Sec. V E through comparison
with the results for the true lattice.

The model treats the NT structure as a series of N rings
over which the charge is spread homogeneously. As illustrated
in Fig. 3, the rings are perpendicular to the NT axis and their
radius is equal to the tube radius, R. There are two species
of rings, one for each sublattice. The ring positions along the
y axis, RA

l = RA
l ŷ or RB

l = RB
l ŷ, are given by

RA
l = λl + yA

0

RB
l = λl + yB

0

with l = 1, ..., N. (17)

Here, λ = a cos(π/6 − θ ) is the supercell length where a =
0.246 nm is graphene lattice constant. The rings are localized
and equally spaced along the NT axis, hence their y coor-
dinate may be thought of as an average over the positions
of all atoms within a stripe of width λ (shadowed area in
Fig. 3). Therefore, as the simplest possible approximation,
we take the ring location at the origin to be the same for the
two sublattices, i.e., yA

0 = yB
0 = 0. The corresponding Bloch

FIG. 4. Sketch of the supercell structure in the nonperiodic direc-
tions. Cylindrical supercells of radius R are replicated and arranged
on a square lattice. Each supercell contains a tube section, modeled
as a ring of homogeneous charge, of radius R.

states are

ψτA(r) = 1√
2N

eiφτA

√
2πR

N∑
l=1

[
eiKτ ·RA

l g
(
r − RA

l

)]
,

ψτB(r) = 1√
2N

eiφτB

√
2πR

N∑
l=1

[
eiKτ ·RB

l g
(
r − RB

l

)]
, (18)

where Kτ is either K or K′, and φKA = 0, φK ′A = θ , φKB =
−π

3 + θ , φK ′B = 0 [see Ref. ([36])]. The g are functions local-
ized on the tube surface, modeled as a homogeneous cylinder,
whose square moduli behave as Dirac functions and which are
defined as follows:

g∗(r − Rη

l

)
g
(
r − Rη′

l ′
) = δη,η′δl,l ′ δ(ρ − R) δ

(
y − Rη

l

)
, (19)

with ρ being the radial coordinate. As the states of
Eq. (18) are achiral, NT orbitals �ατk (r) depend on chirality
solely through the curvature wave vector kτ that enters the
envelopes Fτ

αk .

B. Supercell calculation

In this subsection we mimic the approach from first prin-
ciples by building replicas of the tube along the directions
perpendicular to the axis, as illustrated in Fig. 4. As the whole
system is now periodic, we may compute the polarization
�CNT

G,G′ (q) as in Eq. (3) through the three-dimensional plane-
wave expansion, the reciprocal lattice vectors G depending on
the size of the supercell containing a tube replica. Throughout
we use the acronym CNT to discriminate relevant quantities
obtained in this section from the corresponding first-principles
and EM results.

Here we use a cylindrical supercell to contain the single
NT unit (Fig. 4). As the tube model structure is a sequence of
rings along the axis, we identify a single ring as the building
unit of the tube and hence allocate each ring of given axial
coordinate y in a different supercell. Thus, the length of the
supercell λ along the axis is equal to the distance between
two subsequent rings, and the total length of the nanotube A
just amounts to A = Nλ, where N is the number of repetitions
of the supercell along the axis. We work with a discretized
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set of axial wave vectors q → q j , where q j = 2π j/A with
j = −N/2, ..., N/2. In the directions perpendicular to the nan-
otube axis we arrange the cylindrical supercells in a square
superlattice with side equal to twice the radius of the supercell,
R. We take R to be much larger than R to avoid quantum
mechanical interactions among replicas. Since the quantities
of interest are obtained by sums over reciprocal lattice vectors,
it is convenient to derive both axial and trasverse components,
respectively G‖ and G⊥, in Cartesian form, from the periodic
boundary conditions for the square superlattice:

G⊥ = π

R
(n1x̂ + n3ẑ), G‖ = 2π

λ
n2ŷ, (20)

where ni = 0,±1,±2, . . ., and i = 1, 2, 3. The set of vectors
over which we sum is determined through both a radial and an
axial cutoff of the vector modulus, respectively |G⊥| � G⊥max

and G‖ � G‖max, the error with respect to the usage of cylin-
drical coordinates being small in the limit of a dense set.

In order to describe an isolated tube and hence avoid
spurious Coulomb interactions among replicas of the system,
which are due to the long range of the potential, we follow
Ref. [47] and employ a form of the interaction that is truncated
along the transverse directions:

v(q + G) = vfull(q + G)[1+
+ RG⊥ J1(RG⊥) K0(R|q + G‖|) +
− R |q + G‖| J0(RG⊥) K1(R|q + G‖|)]. (21)

Here vfull is the standard, bare three-dimensional Coulomb
potential,

vfull(q + G) = 4e2

AR2(q + G)2
, (22)

J0(x), J1(x) are Bessel functions of first kind, K0(x), K1(x)
are modified Bessel functions of second kind, and q = qŷ. In
the case of armchair tubes only, which are gapless, we use
vfull instead of v as the full dressed interaction is cutoff in
reciprocal space, and hence harmless.

The truncated potential v oscillates in reciprocal space
and is less divergent than vfull at long wavelength, as Bessel
functions J0(x), J1(x) occurring in Eq. (21) vanish with the
argument x. As v decreases quadratically with the magnitude
of reciprocal lattice vectors, it is sufficient to include a limited
number of G to reconstruct the Coulomb potential, either in
real space [Eq. (1) for the dressed potential W ] or projected
onto NT orbitals. Since the smallest G‖’s have magnitudes
much larger than the first G⊥’s, the most relevant Fourier
components are those with G‖ = 0 and G⊥ finite and small.
In order to achieve convergence, both the supercell radius R

and the cutoffs G⊥max and G‖max must be carefully chosen,
differing for the bare and screened Coulomb potential. The
reconstruction of the bare potential requires large supercells
and many G vectors, whereas the screened potential converges
faster. For the dressed potential W , we take R = 7R and
−15 � n1, n3 � 15, including only the smallest finite axial
vector G‖.

C. Dielectric function and dressed Coulomb potential

The derivation of the polarization �CNT
G,G′ (q) requires the

knowledge of the overlap integrals ρcv between c and v states
that occur in Eq. (3). We compute these integrals by expanding
the Bloch states Eq. (18) over the basis of three-dimensional
plane waves with wave vector G + q, as detailed in
Appendix A. Explicitly, one has:

εCNT
G,G′ (q) = δG,G′ − 2A

π
v(q + G)

∑
α,α′

∑
τ

∫ ko

−ko

dk

〈ατk|e−i(G+q)·r|α′τk + q〉〈α′τk + q|ei(G′+q)·r′ |ατk〉

× f (Eα′τ ′ (k + q)) − f (Eατ (k))

Eα′τ ′ (k + q) − Eατ (k)
, (23)

with the overlap integrals being given by

〈αk|e−i(G+q)·r|α′k + q〉
= [(

F A
ταk

)∗
F A

τα′k+q + (
F B

ταk

)∗
F B

τα′k+q

]
J0(RG⊥)

= 1

2

(
k(k + q) + k2

τ − iqkτ√
k2 + k2

τ

√
(k + q)2 + k2

τ

+ (2δα,α′ − 1)

)
J0(RG⊥).

(24)

Note that the overlap integral is similar to its EM counterpart
Eq. (14) except for the presence of the Bessel function J0

of argument RG⊥. This factor, absent in the EM expression,
provides εCNT with the explicit dependence on tube curvature.
After integration over k and in the limit ko → ∞, the dielectric
function reads

εCNT
G,G′ (q) = δG,G′ + 2A

πγ
v(q + G) J0(RG⊥) J0(RG′

⊥)

×
∑

τ

[
1 + 2k2

τ

q
√

q2 + 4k2
τ

log

(√
q2 + 4k2

τ − q√
q2 + 4k2

τ + q

)]
.

(25)

In this paper we focus on the matrix elements of the
screened Coulomb interaction that bind electrons and holes
together, mainly at small momentum transfer q. Due to sym-
metry, electron-hole and electron-electron interaction have the
same magnitude. The interaction matrix element W τ (k, k +
q) is obtained by projecting the screened potential (1) over the
electron-hole pair states (c, τ, k)(v, τ, k + q) and (c, τ, k +
q)(v, τ, k) within the same valley τ :

W τ (k, k + q) =
∑

G

∑
G′

〈cτk|e−i(G′+q)·r′ |cτk + q〉

〈vτk + q|ei(G+q)·r|vτk〉 (εG,G′ (q))−1v(q + G′).

(26)

Since the corresponding first-principles quantity is evalu-
ated on the grid (k j, k j + ql ), it is convenient to integrate
W τ (k, k + q) over the reciprocal-space mesh 2π/A. After
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FIG. 5. Bare electron-hole interaction V τ (q) vs q computed from
effective-mass theory (EM) and two-band model (CNT) for three
zigzag tubes of different radii R. The selected zigzag tubes are with
increasing radii (9,0), (51,0), and (99,0).

inserting expressions (25) and (24) into (26), one obtains

W τ
CNT(k j, k j + ql ) = A

4π

∫ ql +π/A

ql −π/A
dq

∑
G

∑
G′

J0(RG′
⊥) J0(RG⊥)

[
εCNT

G,G′ (q)
]−1

v(q + G′)

×
⎛
⎝1 + k j (k j + q) + k2

τ√
k2

j + k2
τ

√
(k j + q)2 + k2

τ

⎞
⎠.

(27)

Note that integration regularizes the logarithmic singularity of
Coulomb potential of Eq. (21) for q → 0, as v(q + G⊥) �
− log(R|q|) for all allowed G⊥’s. For reference, the corre-
sponding EM matrix element is

W τ
EM(k j, k j + ql ) = e2

2π

∫ ql +π/A

ql −π/A
dq ε−1

EM(q) I0(qR) K0(qR)

×
⎛
⎝1 + k j (k j + q) + k2

τ√
k2

j + k2
τ

√
(k j + q)2 + k2

τ

⎞
⎠.

(28)

V. RESULTS

A. Bare electron-hole interaction

The key improvement of the two-band model of Sec. IV
with respect to the effective-mass theory of Sec. III shows
up even in the absence of screening, when projecting the
bare electron-hole interaction onto c and v Bloch states.
This quantity,V (q) is the matrix element W τ (k j, k j + ql ) of
equations (27) and (28) evaluated for vanishing electronic
polarization, � = 0, that is V τ (ql ) = [W τ (0, ql )]�=0.

We compare in Fig. 5 the two-band-model and EM matrix
elements, respectively V τ

CNT(ql ) and V τ
EM(ql ), for different NT

radii R. Recall that the numerical discretization of momen-
tum space regularizes the logarithmic singularity expected for
q → 0. The two-band-model bare electron-hole interaction
systematically exceeds its EM counterpart, as only the former
is sensitive to the curved tube topology. The enhancement

of the interaction originates from the the form factors of the
kind J0(RG⊥) that modify graphene overlap integrals. The
mismatch between VCNT and VEM is stronger for smaller R and
softens as the tube curvature becomes negligible.

Note that VCNT and VEM build on different expression of the
full, nonprojected Coulomb potential, depending respectively
on G vectors and azimuthal quantum numbers m. However,
the two potential forms, once evaluated on the same cylindri-
cal surface of radius R, are identical at long wavelength in the
macroscopic limit, v ∼ 2e2/A log(A/R), as we show explicitly
in Appendix D.

B. Dielectric function

Large-gap semiconducting carbon nanotubes are known to
poorly screen charge carriers at electron-electron separations
that are either large or small with respect to the NT radius, as
an effect of the low dimensionality [43,44]. Our calculations
from first principles for narrow-gap NTs show a qualitatively
similar behavior, provided one replaces the crossover length R
with |kτ |−1.

Figure 6(a) reports the dependence of the inverse “macro-
scopic” dielectric function ε−1

0,0(q) on the wave vector q for
the (9,0) zigzag NT (red curve), whose calculated gap is
110 meV. For both small and large q the inverse dielectric
constant is close to one, the crossover occurring close to q ≈
|kτ | = 6 × 10−3 2π/a. The trend of ε−1 of is qualitatively
similar to that of large-gap NTs, like the (8,0) tube shown
in Fig. 1(a) of Deslippe et al. [44], except for the different
crossover location. The rationale is that, for large-gap semi-
conducting NTs, the “secondary” contribution to the gap, due
to curvature and proportional to |kτ | as defined in Eq. (8), is
negligible with respect to the “primary gap” proportional to
1/R, whereas in narrow-gap NTs the primary gap is absent
[2]. The gapless limit of armchair tubes is regained for kτ →
0, which allows for metallic screening at long wavelength,
i.e., ε−1

0,0(q = 0) = 0. This is shown for the (3,3) tube by the
red curve of Fig. 6(b), which exactly reproduces Fig. 2 of
Spataru et al. [59]. This result, which builds on the full bare
potential vfull, is cell independent and hence may be used a
benchmark for model approaches, whereas ε−1

0,0(q) of panel
(a) depends on the supercell size.

The two-band model calculation of ε−1
0,0 (blue curves in

Fig. 6, CNT) reproduces quantitatively the inverse dielectric
constant of the armchair tube from first principles, the differ-
ence between ab initio and CNT curves remaining small in
the whole q range. On the other hand, a direct comparison
with the zigzag tube is not possible, due to the size mismatch
between first-principles and model supercells, which affects
the magnitude of the macroscopic bare truncated potential
v and hence ε−1

0,0. The systematic enhancement of the model
result with respect to first-principles data is likely due to
the neglect of higher-energy virtual electron-hole excitations,
which are responsible for the screening effect.

Contrary to the model prediction, the EM calculation of the
inverse dielectric constant performs poorly for the armchair
tube [dashed curve in Fig. 6(b)], even failing to reproduce the
correct curvature of ε−1

0,0(q) at q ≈ 0 and grossly missing its
magnitude. Regardless of chirality, the EM theory overesti-
mates substantially the electronic polarization with respect to
the two-band model.
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FIG. 6. Macroscopic dielectric function ε−1
0,0(q) vs q computed from first principles (ab initio), effective-mass theory (EM), and two-band

model (CNT). Panels (a) and (b) show data for zigzag (9,0) and armchair (3,3) nanotubes, respectively.

We have checked that the nonlocal terms of the inverse
dielectric matrix ε−1

G,G′ (q) that have finite transverse vectors
G⊥ strongly affect the dressed electron-hole interaction W .
The most relevant terms turn out to be the diagonal matrix
elements of kind ε−1

G⊥,G⊥ (q) and the “wing” terms of type
ε−1

G⊥,0(q) [or ε−1
0,G⊥ (q)]. For the sake of illustration, Fig. 7 shows

the dependence of the first diagonal and wing matrix elements
of ε−1 on momentum q for selected tubes. The shown trend
is generic for all vectors G⊥, the model and first-principles
results being almost identical. The diagonal elements are close
to unity and thus enhance the dressed interaction, whereas
the wing terms are small and negative, thus increasing the
screening effect. As clear from Eq. (27), as the magnitude of
G⊥ increases the weight of its contribution to W decreases
approximately as |G⊥|−2.

At long wavelength, gapped and gapless tubes behave dif-
ferently. As shown for the gapped zigzag (9,0) tube in panel
(a), both diagonal and wing terms of the inverse dielectric
constant exhibit a minimum close to q ≈ |kτ |, like the macro-
scopic term ε−1

0,0 of Fig. 6(a), corresponding to a maximum
of the polarization �. For q → 0 the polarization vanishes
quadratically, as apparent from the analytical behavior of the
model polarization (only valid in the presence of the gap),

�CNT
G,G′ (q � 0) = − 2A

3πγ k2
τ

q2J0(RG⊥)J0(RG′
⊥). (29)

Therefore, the diagonal (wing) term tends to unity (zero).
For gapless tubes, like the (3,3) armchair tube of Fig. 7(b),
the maximum of � moves to q = 0 together with the min-

imum of wing terms, whereas the diagonal terms weakly
depend on q.

C. Screened electron-hole interaction

The key quantity we focus on is the screened, momentum-
dependent electron-hole interaction W (q) projected on c and
v bands. This matrix element provides the Bethe-Salpeter
equation of motion for excitons with the nontrivial infor-
mation about screening. Furthermore, the dressed interaction
obtained from the two-band and EM approaches, W (q) =
W τ (0, ql ) as defined in equations (27) and (28), may be di-
rectly compared with the matrix element obtained from first
principles, for given sampling of momentum space. In this
subsection we discuss gapped NTs and postpone the gapless
case to Sec. V D, as the latter case requires special handling in
view of its singular behavior in the limit q → 0, kτ → 0.

As illustrated by Fig. 8, the two-band-model calculation of
WCNT (blue curve) agrees very well with first-principles data
(red curve) for the zigzag (9,0) tube. On the contrary, EM
theory (dashed curve) substantially overestimates screening
at small momentum transfer, and hence invariably under-
estimates exciton binding energies. The key to the perfect
matching of first-principles and model approaches is the full
inclusion of local-field effects, as illustrated by the model
calculation of Fig. 9. Here we separate the “macroscopic”
and “microscopic” contributions to W (q) of equation (27)
in the sum over terms proportional to ε−1

G⊥,G′⊥
(q), where the

former is term (G⊥, G′⊥) = (0, 0) and the latter is the remain-
der of the sum. The macroscopic term provides W with the

FIG. 7. Diagonal, ε−1
G⊥,G⊥ (q), and wing term, ε−1

0,G⊥ (q), of the inverse dielectric matrix vs momentum q for the smallest vector G⊥ with
n1 = 1, n2 = n3 = 0. (a) Two-band-model results for the (9,0) zigzag nanotube. (b) First-principles (ab initio) and two-band-model (CNT)
results for the (3,3) armchair nanotube.
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FIG. 8. Screened electron-hole interaction W (q) vs q for the
zigzag (9,0) nanotube derived from first-principles (ab initio), effec-
tive mass (EM) and and two-band model (CNT) approaches.

gross contribution, but local-field terms are essential to regain
the actual potential. Whereas diagonal terms (G⊥, G⊥) in-
crease the interaction strength and are most effective at q ≈ 0,
the wing terms (G⊥, 0) enhance screening and are most rele-
vant for q > |kτ |, where the microscopic contribution (labeled
WCNT − Wmacro) becomes negative.

The model calculation allows to derive the screened
electron-hole interaction for tubes of any radius R and gap size
Eg, the latter being fixed by the combination of R and θ given
in Eq. (8). This is illustrated for selected sets of (R, Eg) values
by Figs. 10 and 11 (here we treat R, Eg, and θ as continuous
parameters). We fix either the radius (R = 1 nm in Fig. 10)
or the gap size (Eg = 20 meV in Fig. 11) and plot the dressed
interaction W (q) as a function of the renormalized momentum
q/|kτ |. All plots of W exhibit an almost identical dependence
on q/|kτ |, which demonstrates that the most relevant length
scale is |kτ |−1, whereas the absolute magnitude of W at long
wavelength W (q = 0) depends in a nontrivial way on both R
and |kτ |−1. In particular, W (q = 0) decreases weakly with R

FIG. 9. Macroscopic and microscopic contribution to the model
dressed electron-hole interaction, W (q) vs q, for the zigzag (9,0)
nanotube. In the sum over terms depending on ε−1

G⊥,G′⊥
(q), the

macroscopic term (Wmacro) corresponds to (G⊥, G′⊥) = (0, 0) and the
microscopic term (WCNT − Wmacro) is the remainder.

FIG. 10. Screened electron-hole interaction potential W (q) vs
renormalized momentum q/|kτ | from model and effective-mass cal-
culations, for different gap values Eg. The nanotube radius is fixed,
R = 1 nm, and the vertical dashed line corresponds to q = |kτ |.

for given energy gap (Fig. 11), whereas the bare interaction
V (q = 0) substantially depends on R (Fig. 5). Thus, screening
tends to weaken the dependence of the dressed potential on R
and to enhance that on |kτ |−1. A key result is that, for q < |kτ |,
EM and two-band-model predictions systematically depart,
the EM approximation substantially overestimating screening.

D. Armchair tubes and excitonic instability

As the gap vanishes, as in armchair NTs, screening ac-
quires a metallic character, becoming effective even at long
wavelength. As a consequence, the electronic polarization �

exhibits a nonanalytic behavior in the limit q → 0, kτ → 0.
This is illustrated by the quadratic expansion of � [Eq. (29)]
for small q values, which tends to zero or infinity depending
on the order of the limits limq→0 and limkτ →0.

FIG. 11. Screened electron-hole interaction potential W (q) vs
renormalized momentum q/|kτ | from model and effective-mass cal-
culations, for different nanotube radii R. The nanotube gap is fixed,
Eg = 20 meV, and the vertical dashed line corresponds to q = |kτ |.
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FIG. 12. Macroscopic and microscopic contribution to the model
dressed electron-hole interaction, W (q) vs q, for the armchair (5,5)
nanotube. In the sum over terms depending on ε−1

G⊥,G′⊥
(q), the

macroscopic term (Wmacro) corresponds to (G⊥, G′⊥) = (0, 0) and the
microscopic term (WCNT − Wmacro) is the remainder.

A counterpart to the singularity of � is the enhanced role
of microscopic local fields in the building of the dressed
electron-hole interaction, as shown in Fig. 12 for the arm-
chair (5,5) tube. Here the microscopic contribution (WCNT −
Wmacro) to W is large and negative for q → 0, due to dom-
inance of wing terms (G⊥, 0) in the sum over (G⊥, G′⊥),
sensitive to the magnitude of �. This enhancement leads to
a major cancellation of the macroscopic term (G⊥, G′⊥) =
(0, 0), which has opposite sign and comparable magnitude
(Wmacro in Fig. 12), and hence requires careful numerical
handling.

In order to achieve high numerical accuracy, we correct the
model polarization � through a multiplicative factor, q- and θ

dependent, which very slightly differs from unity. We derive
this factor by fitting the macroscopic, first diagonal, and first
wing terms of � to first-principles data, according to

�correct
G,G′ (q) = �CNT

G,G′ (q){5 cos [2.7(π/6 − θ )]Rq

× +3.806 [R/(1˜nm)]1.46}. (30)

Here the numerical coefficients fit the first-principles matrix
elements of armchair tubes (3,3), (4,4), (5,5), and zigzag
tubes (9,0), (12,0). As this correction is immaterial for zigzag
tubes, we employ the corrected form �correct throughout the
paper. For the sake of illustration, we compare the corrected
and uncorrected terms of ε−1 for the (3,3) armchair tube in
Fig. 13, the discrepancies being small and only relevant at
short wavelength. The correction of � allows for an excellent
matching between model and first-principles predictions of
the dressed electron-hole interaction in armchair tubes, as
shown in Fig. 14.

Figure 14 illustrates the key findings of this paper. The EM
theory (orange curve) predicts that the dressed electron-hole
attraction depends weakly on the transferred momentum q
in gapless tubes, hence corresponding to a short-range force.
The force range is given by the expression (15) of �EM

for kτ → 0, i.e., �EM(q) = −4A/πγ , with 4A/πγ being the
density of states. This is just the Thomas-Fermi result for
an effectively one-dimensional metal. On the contrary, both

FIG. 13. Corrected vs original matrix elements of the model di-
electric function for the armchair (3,3) nanotube. Head term ε−1

0,0(q),
diagonal term ε−1

G⊥,G⊥ (q), and wing term ε−1
0,G⊥ (q), vs q for the small-

est vector G⊥ with n1 = 1, n2 = n3 = 0.

first-principles (red dots) and two-band-model calculations
(blue curve) predict that W has a singular-like profile at
long wavelength—roughly logarithmic [27]—signaling that
the force binding electrons and holes is actually long ranged.
This is a substantial effect of microscopic local fields, which
emerges as electrons effectively move on a cylindrical surface
and not on a line. As a consequence, gapless tubes are un-
stable against the spontaneous condensation of excitons [27],
whereas the EM theory [5] predicts the exciton binding energy
to vanish with the gap.

We will use the results of the present paper to treat ex-
citonic effects in narrow-gap NTs elsewhere. In order to
complete our discussion of gapless tubes, here we reconsider
the calculation of exciton properties from first principles re-
ported in Ref. [27]. In the calculation by Varsano et al. [27]
for the (3,3) armchair tube, the system was actually gapped
by a tiny quantity, 1.08 meV, arising from the numerical
discretization of the reciprocal space. In the following we
show that this artefact does not harm the claim of excitonic
instability.

FIG. 14. Screened electron-hole interaction W (q) vs q for the
armchair (5,5) nanotube derived from first-principles (ab initio),
effective mass (EM) and and two-band model (CNT) approaches.
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TABLE I. Excitation energy of the lowest lying triplet and singlet
exciton in the (3,3) armchair carbon nanotube from first-principles
(ab intio) and two-band-model (CNT) approaches.

Triplet Singlet

Ab initio (Ref. [27]) –7.91 meV –6.10 meV
CNT correct –7.07 meV –5.22 meV
CNT, tiny gap –5.79 meV –4.87 meV
CNT, gapless –2.00 meV –1.13 meV

First, the tiny gap does not affect the calculation of ε−1

reported in Figs. 6(b) and 7(b) in any way, since: (i) the
reciprocal-space mesh in energy units, γ dq = 1.5 meV, is
obviously larger than the gap (ii) the computed macroscopic
inverse dielectric constant ε−1

0,0(q) already vanishes at small
momenta q > dq, as apparent from Fig. 6(b).

Furthermore, we checked the effect of the artificial gap on
the exciton energy, by numerically solving the Bethe-Salpeter
equation within the two-band model for the screened interac-
tion presented in this paper. The resulting excitation energies
of the lowest singlet and triplet excitons are reported in Table I
(CNT correct) for the gap being exactly zero, and compared
with the first-principles results (ab initio). The discrepancies
are minor, smaller than 1 meV and of the order of magni-
tude of the artificial gap. One might also wonder whether the
two-band-model calculation performed without applying the
corrective factor to �, which fits first-principles data, were
still able to predict the excitonic instability. The results of such
calculation, respectively in the presence of the tiny gap (CNT,
tiny gap) and in the gapless case (CNT, gapless), are reported
in the last two rows of Table I. In all events the excitation
energy of the exciton remains negative, which points to the
tendency of excitons to spontaneously form.

E. Validation of the structural model through comparison with
results for armchair and zigzag lattices

Throughout this paper we model the carbon nanotube
structure as a cylindrical surface over which the electrons oc-
cupying the Bloch states ψ (r), which multiply the envelopes
in Eq. (4), are spread homogeneously according to the ansatz
of Eq. (18) (see Sec. IV A). In this subsection we validate
this model by comparing both the dielectric function and the
screened electron-hole interaction with those computed by
considering the actual location of atoms in the curved honey-
comb lattice. To this aim, we replace the “jellium” of Eq. (18)
with orbitals localized on either the zigzag or the armchair
lattice, as detailed in Appendices B and C, respectively. This
change affects the overlap integrals that enter the expressions
of the dielectric function [Eq. (23)] and screened electron-hole
interaction [Eq. (26)]. As we show below, the discrepancies
are minor.

1. Zigzag lattice

Zigzag carbon nanotubes (n, 0) have a chiral vector C = na
stretching over n units cells of graphene (the vectors a and b
are shown in Fig. 1). Whereas in the simpler structural model
the n units cells are represented as two rings and the electron
charges are spread into a “jellium”, here we consider all n cells

and all 2n atom positions per sublattice. The overlap integrals,
derived in Appendix B, are:

〈αk|e−i(G+q)·r|α′k + q〉

= 1

2

[
k(k + q) + k2

τ − iqkτ√
k2 + k2

τ

√
(k + q)2 + k2

τ

+ (2δα,α′ − 1)

]

× [J0(RG⊥) + 2(−1)nJ2n(RG⊥)], (31)

with J2n being the Bessel function of first kind of order 2n.
This overlap integral is similar to the “jellium” expression
(24) except for the correction due to the higher order Bessel
function, the order being linked to the number of atoms in
the cell.

Similarly, the dielectric function is

ε
zigzag
G,G′ (q) = δG,G′ + 2A

πγ
v(q + G)

× [J0(RG⊥) + 2(−1)nJ2n(RG⊥)]

× [J0(RG′
⊥) + 2(−1)nJ2n(RG′

⊥)]

×
∑

τ

[
1 + 2k2

τ

q
√

q2 + 4k2
τ

log

(√
q2 + 4k2

τ − q√
q2 + 4k2

τ + q

)]
.

(32)
The inverse macroscopic dielectric function derived above,

[εzigzag
0,0 ]−1(q), as well as the screened electron-hole interac-

tion, W zigzag(q), are reported for selected zigzag tubes in
Figs. 15(a) and 15(b), respectively (triangles, CNT lattice).
The results are essentially identical to those derived from
the simpler structural model used throughout the paper (solid
curves, CNT).

2. Armchair lattice

Armchair carbon nanotubes (n, n) have a chiral vector
C = 2na + nb corresponding to the chiral angle θ = π/6. The
vector C extends over 2n units cells of graphene. The over-
lap integrals of armchair nanotubes, derived in Appendix C,
take into account the locations of the atoms occupying these
2n units cells:

〈αk|e−i(G+q)·r|α′k + q〉

= 1

2
{sign[k(k + q)] + (2δα,α′ − 1)}J0(RG⊥)

+ (−1)n

2
[2 sign[k(k + q)] − (2δα,α′ − 1)]J2n(RG⊥).

(33)

This overlap integral differs from the “jellium” expression
(24) in the addition of an extra term, originating by the Bessel
function of order equal to the number of unit cells. This in turn
changes the dielectric function, through the occurrence of an
extra, cutoff dependent term:

εarmchair
G,G′ (q) = δG,G′ + A

πγ
v(q + G)

[(
2 J0(RG⊥) + (−1)n

× J2n(RG⊥))(2J0(RG′
⊥) + (−1)nJ2n(RG′

⊥))

+ 9

2
J2n(RG⊥)J2n(RG′

⊥) log

(
4k2

o

q2
− 1

)]
.

(34)
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FIG. 15. Macroscopic inverse dielectric function, ε−1
0,0(q) [panel (a) and (c)], and screened electron-hole interaction, W (q) [panel (b) and

(d)], vs momentum q, computed from different model approaches for selected zigzag [(a) and (b)] and armchair [(c) and (d)] nanotubes,
respectively. Data are derived by considering either the lattice structure (triangles) or by spreading homogeneously the electronic charge (solid
curves) over the cylindrical tube surface. The selected zigzag tubes in panel a and b have chiral indices (6,0), (9,0), and (12,0). The armchair
tubes, in panel c and d, have chiral indices (3,3), (5,5), and (8,8).

The extra term ensures that the dielectric function diverges for
q → 0, the expected behavior in gapless tubes.

The inverse macroscopic dielectric function derived above,
[εarmchair

0,0 ]−1(q) [triangles, CNT lattice in Fig. 15(c)] differs
only slightly from that derived from the simpler structural
model (solid curves, CNT), and only for q > 0.01(2π )/a
and small radii. Importantly, these small discrepancies are
irrelevant for the computation of the screened electron-hole
interaction, as apparent from Fig. 15(d).

F. Super Coulombic interaction

Direct measurements of electron-electron interaction in
materials are generally hard to perform, due to the interference
between the measured system and the probe. Recently, the
group of S. Ilani at Weizmann Institute of Science developed
a new sensing technique to minimize such interference [23],
by means of using a suspended carbon nanotube as a scanning
tool to probe, with minimal invasiveness, few-electron states
within another nanotube. A new experiment, which focused
on the case of just two electrons populating the c band of
a narrow-gap nanotube, was able to directly measure the
Coulomb force repelling the two charges in real space [49].

Therefore, we have computed the screened electron-
electron interaction, projected onto the c band and Fourier-
transformed in real space. Figures 16 and 17 show the
force dependence on the electron separation in the range
of hundreds of nm, which is relevant to the experiment of
Ref. [49], and compare it to the standard, three-dimensional
bare Coulomb force (red curve). Both effective-mass (EM)

and two-band-model (CNT) calculations predict that the
effective force is stronger than the bare Coulomb force, re-
gardless of the gap (Fig. 16) or radius (Fig. 17) size, as a
consequence of the nonlocal character of screening in nan-
otubes [44]. However, only the inclusion into the model of
microscopic local fields, induced by the motion of electrons
on the curved tube surface, leads to a major enhancement of

FIG. 16. Effective electron-electron force along the nanotube
axis vs electron separation, x, in tubes having different energy gaps,
Eg. The tube radius is R = 1 nm. The solid and dashed curves
are respectively the two-band-model calculation (CNT) and the
effective-mass (EM) prediction. The red curve is the standard three-
dimensional Coulomb force.
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FIG. 17. Effective electron-electron force along the nanotube
axis vs electron separation x, in tubes of different radii R. The energy
gap is Eg = 20 meV. The solid and dashed curves are respectively
the two-band-model calculation (CNT) and the effective-mass (EM)
prediction. The red curve is the standard three-dimensional Coulomb
force.

the effective force, as seen by contrasting CNT and EM curves
for given tube.

VI. CONCLUSIONS

In this paper we have developed a simplified approach
to compute the dielectric function of narrow-gap carbon
nanotubes of any size and chirality, which has the same ac-
curacy of first-principles calculations but is computationally
cheaper. A detailed analysis shows a giant enhancement of
the screened Coulomb interaction at long wavelength with
respect to the one expected for an effectively one-dimensional
system. We find that this is caused by the strong, microscopic
local fields generated by the electron motion on the curved
tube surface. The paradoxical consequence is that the screened
electron-hole interaction, once projected onto the lowest con-
duction and highest valence band, remains long-ranged even
in the presence of Fermi points (armchair tubes).

Our findings provide a deeper insight into our previous
claim [27] that undoped narrow-gap carbon nanotubes are
excitonic and not Mott insulators. Furthermore, the calcu-
lated electron-electron interaction in real space shows that
the force is super Coulombic beyond expectations. We antic-
ipate our theory lays the quantitative basis for future studies
of many-body physics in carbon nanotubes, where the long-
range character of interaction leads to novel phenomena.
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APPENDIX A: OVERLAP INTEGRALS WITHIN THE
MODEL OF THE NANOTUBE AS A SERIES OF RINGS

In this Appendix we compute the overlap integrals ρcv

between conduction and valence band states, by modeling the
carbon nanotube as a series of rings over which the electronic
charge is spread homogeneously.

We recall that the orbital wave function of NT states is

�ατk (r) = F τA
αk (r) ψτA(r) + F τB

αk (r) ψτB(r). (A1)

Here the envelope functions, F , take the form (7), and the
Bloch states, ψτη(r), are spread homogeneously over rings
placed along the y axis:

ψτA(r) = 1√
N

eiφτA

√
2πR

N∑
l=1

[
eiKτ ·RA

l g
(
r − RA

l

)]
, (A2)

ψτB(r) = 1√
N

eiφτB

√
2πR

N∑
l=1

[
eiKτ ·RB

l g
(
r − RB

l

)]
, (A3)

the phases being φKA = 0, φK ′A = θ , φKB = −π
3 + θ and

φKB = 0. The functions g are localised along the y axis and
orthogonal, according to

g∗(r−Rη

l ) g(r−Rη′
l ′ )= δη,η′δl,l ′δ(ρ−R) δ

(
y−Rη

l

)
. (A4)

There are N charge rings for given sublattice and the rings
within the sublattice are uniformly spaced along the NT axis,
at distance λ = a cos( π

6 − θ ):

RA
l = (

lλ + yA
0

)
ŷ

RB
l = (

lλ + yB
0

)
ŷ

with l = 0, ..., N − 1, (A5)

with yA
0 = yB

0 = 0.
The overlap integrals of interest within each valley τ ,

ρcv , are:

ραα′ (kŷ, qŷ, G) = 〈ατk|e−i(G+q)·r|α′τk + q〉, (A6)

where the ket |ατk〉 indicates the NT orbital wave function
�ατk . To proceed we make the expression (A1) explicit and
insert it into the definition of ραα′ , using cylindrical coordi-
nates as well as the orthogonality of g’s :

ραα′ = 〈ατk|e−i(G+q)·r|α′τk + q〉 (A7)

= 1

2πRN

B∑
η=A

(
F η

ταk

)∗
F η

τα′k+q

∫ ∞

0
dρ

∫
dy

∫ 2π

0
dϕ

×
N−1∑
l=0

ρ δ(ρ − R)δ(y − lλ)e−i(G‖y+ρG⊥ cos ϕ). (A8)
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The delta function of ρ argument constrains integration over
the nanotube surface:

ραα′ = 1

2πN

B∑
η=A

(
F η

ταk

)∗
F η

τα′k+q

∫
dy

∫ 2π

0
dϕ

×
N−1∑
l=0

δ(y − lλ)e−i(G‖y+RG⊥ cos ϕ). (A9)

We then integrate over y and recall the expression (20) of G‖,
obtaining:

ραα′ = 1

2πN

B∑
η=A

(F η

ταk )∗F η

τα′k+q (A10)

×
N−1∑
l=0

e−i2πn2l
∫ 2π

0
dϕ e−iRG⊥ cos(ϕ). (A11)

The indices n2 and l are both integers, then the exponential is
always equal to 1. Furthermore, the integral over ϕ is equal to
2πJ0(RG⊥). In conclusion, the overlap integral is:

〈αk|e−i(G+q)·r|α′k + q〉
= [(

F A
ταk

)∗
F A

τα′k+q + (
F B

ταk

)∗
F B

τα′k+q )
]
J0(RG⊥). (A12)

The possible combinations of α and α′ are as follows. The
intraband overlap integrals have either α = c and α′ = c or
α = v and α′ = v:

〈ck|e−i(G+q)·r|ck + q〉 = 〈vk|e−i(G+q)·r|vk + q〉

= 1

2

(
k(k + q) + k2

τ − iqkτ√
k2 + k2

τ

√
(k + q)2 + k2

τ

+ 1

)

× J0(RG⊥). (A13)

The interband overlap integrals, with α = c and α′ = v or
viceversa, exhibit a negative sign instead:

〈ck|e−i(G+q)·r|vk + q〉

= 1

2

(
k(k + q) + k2

τ − iqkτ√
k2 + k2

τ

√
(k + q)2 + k2

τ

− 1

)
J0(RG⊥). (A14)

APPENDIX B: OVERLAP INTEGRALS OF ZIGZAG
CARBON NANOTUBES

In this Appendix and in the next one we compute the over-
lap integrals ρcv for zigzag and armchair carbon nanotubes,
respectively, by accounting for the actual location of atoms
on the curved honeycomb lattice. To this aim, we replace the
Bloch states (18) with orbitals localised along the tube cir-
cumference, whose positions depend on the azimuthal angle
ϕ. The derivation of ρcv proceeds analogously to what done
in Appendix A until one performs the integration over ϕ. As
n atoms per sublattice are now localised along ϕ, one has to
sum over their positions, the overlap integrals being:

ραα′ = 1

2n

B∑
η=A

(F η

ταk )∗(F η

τα′k+q)

×
∫ 2π

0
dϕ

n−1∑
j=0

δ
(
ϕ − ϕ

η
j

)
e−iRG⊥ cos(ϕ), (B1)

where the ϕ
η
j are the angular coordinates of the atoms. We

specialise to zigzag nanotubes in the following.
Zigzag nanotubes (n, 0) may be thought of as built by

rolling the graphene sheet along the chiral vector C = na,
which stretches over n units cells of graphene. There are 2n
atoms per sublattice, whose positions on the tube surface are:

RA
l, j =

{
R 2π j

n ϕ̂ + lλŷ + +Rρ̂

R π (2 j+1)
n ϕ̂ + (

lλ +
√

3
2 a

)
ŷ + Rρ̂

with j = 0, n − 1,

RB
l, j =

{
R π (2 j+1)

n ϕ̂ + (
lλ + 1

2
√

3
a
)
ŷ + Rρ̂

R 2π j
n ϕ̂ + (

lλ + 2√
3
a
)
ŷ + Rρ̂

(B2)

with j = 0, n − 1.

The distance between two unit cells along the axial direction
is λ = √

3a. We insert coordinates (B2) into (B1), obtaining

ραα′ = 1

2n

B∑
η=A

(F η

ταk )∗F η

τα′k+q

×
n−1∑
j=0

[
e−iRG⊥ cos( 2π j

n ) + e−iRG⊥ cos( π (2 j+1)
n )

]
. (B3)

We rewrite the two exponentials as a sum of Bessel functions
by using the Jacobi-Anger identity:

eix cos ζ = J0(x) + 2
∞∑

m=1

imJm(x) cos(mζ ). (B4)

Then (B3) becomes:

ραα′ = 1

2n

B∑
η=A

(F η

ταk )∗F η

τα′k+q

n−1∑
j=0

{
2J0(x)

+ 2
∞∑

m=1

[
imJm(x) cos

(πm j

n

)
(B5)

+ imJm(x) cos

(
πm(2 j + 1)

n

)]}
. (B6)

We now sum over j. The first term is obvious. In the second
one, we exchange the order of the sums over j and m, and use
the identities

n−1∑
j=0

imJm(x) cos
(πm j

n

)

=
{

n imJm(x) if m is a multiple of n
0 otherwise , (B7)

n−1∑
j=0

imJm(x) cos

(
πm(2 j + 1)

n

)
=

{
(−1)

m
n n imJm(x) if m is a multiple of n

0 otherwise
. (B8)
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Putting everything together, the overlap integral becomes:

〈αk|e−i(G+q)·r|α′k + q〉
= ((

F A
ταk

)∗
F A

τα′k+q + (
F B

ταk

)∗
F B

τα′k+q

)
[

J0(RG⊥) + 2
∞∑

m=1

(−1)mJ2mn(RG⊥)

]
. (B9)

As the Bessel functions of large multiples of n decay very
rapidly, we only consider the first term in the sum over m. The
intraband and interband overlap integrals are

〈ck|e−i(G+q)·r|ck + q〉

= 1

2

(
k(k + q) + k2

τ − iqkτ√
k2 + k2

τ

√
(k + q)2 + k2

τ

+ 1

)

× (J0(RG⊥) + 2(−1)nJ2n(RG⊥)) (B10)

and

〈ck|e−i(G+q)·r|vk + q〉

= 1

2

(
k(k + q) + k2

τ − iqkτ√
k2 + k2

τ

√
(k + q)2 + k2

τ

− 1

)

× (J0(RG⊥) + 2(−1)nJ2n(RG⊥)), (B11)

respectively.

APPENDIX C: OVERLAP INTEGRALS OF ARMCHAIR
CARBON NANOTUBES

Armchair nanotubes (n, n) may be thought of as built by
rolling the graphene sheet along the chiral vector C = 2na +
nb, which covers 2n units cell of graphene. There are n atoms
per sublattice, with positions:

RA
l, j = R

π j

n
ϕ̂ +

(
lλ − (−1) j a

4

)
ŷ + Rρ̂

with j = 0, 2n − 1,

RB
l, j = R

(π j

n
ϕ̂ + π

3n

)
ϕ̂ +

(
lλ−(−1) j a

4

)
ŷ + Rρ̂

with j = 0, 2n − 1.

(C1)

The distance between two subsequent unit cells along the
axial direction is λ = a. To compute the overlap integrals ραα′ ,
we follow the same procedure used for zigzag tubes in the
previous Appendix. After integrating over ϕ, we obtain

ραα′ = 1

2n

2n−1∑
j=0

[(
F A

ταk

)∗
F A

τα′k+qe−iRG⊥ cos ( π j
n )

+ (
F B

ταk

)∗
F B

τα′k+qe−iRG⊥ cos ( π j
n + π

3n )
]
. (C2)

Again, using the Jacobi-Anger identity (B4), we rewrite the
exponentials as a sum of Bessel functions of different orders,
Jm. We then obtain two sums over indexes j and m, and

evaluate the sums over j for given m, according to

2n−1∑
j=0

imJm(x) cos
(πm j

n

)

=
{

2n imJm(x) if m is a multiple of 2n
0 otherwise (C3)

and
2n−1∑
j=0

imJm(x) cos

(
πm(3 j + 1)

3n

)

=
{

2n cos
(

mπ
3

)
imJm(x) if m is a multiple of 2n

0 otherwise
. (C4)

The resulting overlap integral is

〈αk|e−i(G+q)·r|α′k + q〉

= 1

2

{
(F A

ταk )∗F A
τα′k+q

[
J0(RG⊥) + 2

∞∑
m=1

(−1)mJ2mn(RG⊥)

]

+ (F B
ταk )∗F B

τα′k+q

[
J0(RG⊥) + 2

∞∑
m=1

cos

(
2mπ

3

)

× (−1)mJ2mn(RG⊥)

]}
. (C5)

As before, it is sufficient to retain the first addendum of the
sum over m. The intraband and interband overlap integrals of
armchair nanotubes are

〈ck|e−i(G+q)·r|ck + q〉

= 1

2

[
k(k + q) + k2

τ − iqkτ√
k2
τ + k2

√
k2
τ + (k + q)2

+ 1

]
J0(RG⊥)

+ (−1)n

2

[
2

k(k + q) + k2
τ − iqkτ√

k2
τ + k2

√
k2
τ + (k + q)2

− 1

]
J2n(RG⊥)

(C6)

and

〈ck|e−i(G+q)·r|vk + q〉

= 1

2

[
k(k + q) + k2

τ − iqkτ√
k2
τ + k2

√
k2
τ + (k + q)2

− 1

]
J0(RG⊥)

+ (−1)n

2

[
2

k(k + q) + k2
τ − iqkτ√

k2
τ + k2

√
k2
τ + (k + q)2

+ 1

]
J2n(RG⊥),

(C7)

respectively.

APPENDIX D: LIMITING FORM OF THE COULOMB
POTENTIAL AT LONG WAVELENGTH

In the main text, we have expanded the Coulomb potential
through two different Fourier decompositions. The first one
is the Fourier transform (10) of the Coulomb potential on
a uniform cylindrical surface Vcyl(m, q). The second one is
the three-dimensional Fourier transform (21) of the truncated
Coulomb potential v(q + G). Independently from the Fourier
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decomposition of choice, the long-range, macroscopic behav-
ior of v(q + G) and Vcyl(m, q) in the limit q → 0 must be the
same, as both forms derive from the same real-space potential
e2/r (r is the radial distance in spherical coordinates). To
show this, we constrain the Fourier transformation to a finite
nanotube length A (we use the symbols ṽ and Ṽcyl to identify
the quantities obtained in this way). For ṽ one has:

ṽ(q, G⊥) = e2

AπR2

∫ A/2

−A/2
dy

∫ 2π

0
dϕ

∫ R

0
d�

�√
�2 + y2

× eiqyei�G⊥ cos ϕ. (D1)

We now take the limit q → 0:

ṽ(0, G⊥) = e2

AπR2

∫ A/2

−A/2
dy

∫ 2π

0
dϕ

∫ R

0
d�

�√
�2 + y2

× ei�G⊥ cos ϕ, (D2)

which gives

ṽ(0, G⊥) = 4e2

A(G⊥R)2

[
1 − J0(G⊥R) + G⊥R

J1(G⊥R) log

(
A

R

)]
. (D3)

The long-wavelength, macroscopic limit is

ṽ(0, 0) = e2

A

[
1 + 2 log

(
A

R

)]
. (D4)

For Ṽcyl one has:

Ṽcyl(m, q) = e2

2AπR

∫ A/2

−A/2
dy

∫ 2π

0
dϕ

eimϕ eiqy√
4R2 sin2

(
ϕ

2

) + y2
,

(D5)

and in the limit q → 0:

Ṽcyl(m, 0) = e2

2AπR

∫ A/2

−A/2
dy

∫ 2π

0
dϕ

eimϕ√
4R2 sin2

(
ϕ

2

) + y2
,

(D6)

that is

Ṽcyl(m, 0) =
{

e2

Am if m �= 0
2e2

A log
(

A
R

)
if m = 0

. (D7)

The macroscopic term amounts to

Ṽcyl(0, 0) = 2e2

A
log

(A

R

)
. (D8)

We recall that the nanotube length A is linked to the sampling
of the Brillouin zone A = 2π/dq. As a consequence both
macroscopic potentials (D4) and (D8) exhibit an analogous
logarithmic divergence of the kind ∼ − log(R dq), leading to
the same long-range behavior.
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