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Double local and double nonlocal Andreev reflections in nodal-line
semimetal-superconducting heterostructures
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Double local and double nonlocal Andreev reflections in a nodal-line semimetal-superconductor-nodal-line
semimetal junction were investigated. We find that double Andreev reflections (the specular Andreev reflection
and the retro-Andreev reflection), double normal reflections (the specular normal reflection and the retronormal
reflection), double electron transmissions (the specular electron transmission and the normal electron transmis-
sion), and double crossed Andreev reflections (the specular crossed Andreev reflection and the crossed Andreev
reflection) exist simultaneously when an electron incidents from the semimetal side. The transport properties of
the scattering process depend on the incident angle, incident energy, and barrier height. It is found that a finite
incident angle and a finite barrier height are necessary conditions for the appearance of these local and nonlocal
Andreev reflections. By adjusting these parameters, the reflections and transmissions can be controlled.
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I. INTRODUCTION

In recent years, a large number of new materials with
massless linear excitations or nontrivial topological properties
have been predicted and used to prepare structures between an
ordinary conductor and a superconducting material [1–9]. In
an ordinary normal metal-superconductor (NS) junction, the
presence of the interface barrier provides normal electron re-
flection, also called specular normal reflection (SNR). For an
ideal interface without barriers, only retro-Andreev reflection
(RAR) takes place, where the Andreev reflection is along the
original path, i.e., the hole is reflected back almost along the
path of the incident electron and a Cooper pair forms in the
superconductor (SC) [10]. RAR is caused by electron-hole in-
traband conversion, where the electron and the hole are in the
same conduction or valence band. In contrast to RAR, there
exists a specular Andreev reflection (SAR), which has been
found in a graphene-superconductor junction, in which the
hole is reflected along the specular path of the incident elec-
tron, and it is the result of electron-hole interband conversion
[1,11,12]. In both structures only single Andreev reflection
(SAR or RAR) occurs. In fact, the exotic phenomenon of
double reflections or multiple reflections can occur in the
structure based on some particular materials. For example,
based on the type-II Weyl semimetal-superconductor junction,
there will be double Andreev reflections (SAR and RAR) for
an electron incidents from the semimetal side [13]. Particu-
larly, in a recent study, quadruple reflections, which are the
double Andreev reflections (SAR and RAR) and the double
normal reflections [SNR and retronormal reflection (RNR)]
[14], were found in a nodal-line semimetal-superconductor
(NLSM-SC) junction.

*Corresponding author: yxli@mail.hebtu.edu.cn

Nodal-line semimetals (NLSMs) as a kind of three-
dimensional topological material have become a hot spot
in condensed matter physics [15–18]. The projection of the
NLSMs on the surface of some materials will form a closed
circle, which shows the tympanic topological surface states
protected by topology; the Fermi level on the surface has a
very high density of electronic states, so it has unique physical
properties [19–29]. For example, the orbital susceptibility of
NLSMs shows a stronger δ-function singularity compared
to Dirac and Weyl semimetals with point nodes [30]. The
quantum oscillations of NLSMs show different phase shifts
from those of Weyl fermions [31]. Furthermore, NLSMs with
a ring-shaped nodal line also show distinct characteristics
in the transport aspects [32–36]. The unexpected nonuni-
versal conductance fluctuation appears in NLSMs, whose
amplitude increases with the increase in spin-orbit coupling
strength [37].

Most of the transport studies described above have been
carried out in two-terminal systems. Actually, some three-
terminal systems have a greater possibility of peculiar
transport properties. In the NSN junction, four transport pro-
cesses have been found to coexist simultaneously, namely,
SNR, normal electron transmission (NT), RAR, and crossed
Andreev reflection (CAR) [38–43]. CAR means that the inci-
dent electron enters the SC accompanied by a hole reflected
from the metal on the other side. However, a study indicates
that the SNR and CAR are forbidden in the type-II Weyl
semimetal-SC-type-II Weyl semimetal junction, replaced by
the coexistence of the double Andreev reflections (SAR and
RAR) and double electron transmissions [NT and specular
electron transmission (ST)] [44]. In the case of small bias, the
conductance of the normal metal-superconductor junction is
mainly determined by the Andreev reflection [5,45,46]. Due
to the Andreev reflection results contributed by the NLSM,
it is more likely that novel transport behaviors will appear
based on a NLSM-SC-NLSM heterostructure. However, the
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FIG. 1. (a) Schematic illustration of the NLSM-SC-NLSM junc-
tion with the nodal line perpendicular to the interface. (b) The
toruslike isoenergetic surface in the NLSM. The SC plane is always
parallel to the kx-ky plane. (c) and (e) The projection of the scattering
processes on the kx-ky plane when μN < |Ez|. The solid arrows de-
note the group velocity of ELQs (solid circles), and the dashed ones
denote the group velocity of HLQs (open circles). The isoenergetic
circles for ELQs (solid lines) and HLQs (dashed lines) coincide with
each other for μN = 0, but the scattering possesses similar processes.
(d) and (f) The projection of the scattering processes on the kx-ky

plane for μN > |Ez|. The retro-Andreev and crossed Andreev re-
flected HLQs occupy the big isoenergetic circle, while the specular
Andreev and specular crossed Andreev reflected HLQs occupy the
small circle, which are different from the situation with μN < |Ez| in
(c) and (e). (g) The projection of the eight scattering processes on the
x-y plane in real space. The orange solid lines denote the NLSM-SC
interface.

research on NLSMs is still lacking in the three-terminal
system connected to SC, which may provide specific
signatures for the research of the ring-shaped nodal line.

In this paper, we study the transport properties in the
NLSM-SC-NLSM heterostructure. We find the eight scat-
terings coexist; that is, SAR, RAR, SNR, RNR, NT, ST,
CAR, and specular crossed Andreev reflection (SCAR) can
occur simultaneously. The reflection probabilities under dif-
ferent parameters are systematically studied. By changing
the incident quasiparticle energy, incident angle, and inter-
facial barrier height, these eight scattering processes can be
controlled.

The rest of this paper is organized as follows. In Sec. II,
the Hamiltonians for NLSM and SC are given, and the ex-
pressions for wave functions and reflection probabilities for
the three regions are derived. Their dependence on parameters
is discussed in detail. In Sec. III, the numerical results for the
amplitudes and probabilities of the eight transport processes
are presented and analyzed systematically. In Sec. IV, we give
a brief conclusion.

II. MODEL AND METHODS

The NLSM-SC-NLSM heterostructure we consider is
shown in Fig. 1(a), which consists of two semi-infinite
NLSMs and a SC of length L. The upper and lower surfaces
of the SC are parallel to the x-y plane. The two interfaces are
located at x = 0 and x = L, respectively, which are parallel
to the y-z plane. The interfacial barrier is defined by the δ

function V (x) = V δ(x). Let us think about the transport along
the x direction.

We consider the two-orbit effective Hamiltonian for
NLSM, which is given by [47,48]

ĤN (k) = εk σ̂z − h̄vkzσ̂y − μN σ̂0, (1)

with εk = h̄2

2m (k2
x + k2

y + k2
z ) − E0. E0 = 200�, which de-

scribes the size of the nodal line. The identity matrix σ̂0

and the Pauli matrices σ̂y and σ̂z are defined in orbit space.
The wave vector is k = (kx, ky, kz ), the group velocity is v =
(vx, vy, vz ), and μN is the chemical potential. For μN = 0, the
Hamiltonian describes the NLSM with a ring-shaped nodal
line in the plane kz = 0, while the nodal line will evolve into a
torus-shaped Fermi surface for μN �= 0, as shown in Fig. 1(b).
Here we consider the transport along the x direction with the
nodal line perpendicular to the NLSM-SC interfaces at x = 0
and x = L, as shown in Fig. 1(a).

In the orbit and particle-hole coupling space, the
Bogoliubov–de Gennes (BdG) Hamiltonian for the NLSM can
be written as

ĤN (k) =
(

ĤN (k) 0

0 −Ĥ∗
N (−k)

)
. (2)

By solving the BdG equation ĤNψN = EψN with the sub-
stitution of −i∇r for k in ĤN (k) and −Ĥ∗

N (−k), the energy
dispersions for the electronlike quasiparticles (ELQs) and the
holelike quasiparticles (HLQs) can be obtained:

E±
e = ±

√
ε2

k + E2
z − μN (3)

and

E±
h = ±

√
ε2

k + E2
z + μN , (4)

where Ez = h̄vkz is the orbital coupling strength. Obviously,
the gap 2|Ez| at the nodal line is opened in the quasiparticle
spectrum.

When μN = 0, the gaps for ELQs and HLQs are
symmetric with respect to zero energy, from −|Ez| to |Ez|.
The conduction band E+

e and valence band E+
h participate in

the scattering processes when the incident energy E is larger
than |Ez|, where the wave vectors ky and kz are conserved.
The occupancy of the isoenergetic circles is the situation when
the big (small) solid circle and the big (small) dashed circle
coincide with each other in Fig. 1(c).

The wave function generated in the incident part of the
NLSM on the left can be expressed as

ψIN (x < 0) =

⎛
⎜⎝

iα
1
0
0

⎞
⎟⎠eike+

x x + rn1

⎛
⎜⎝

iα
1
0
0

⎞
⎟⎠e−ike+

x x

+ rn2

⎛
⎜⎝

iβ
1
0
0

⎞
⎟⎠eike−

x x + ra1

⎛
⎜⎝

0
0

−iβ
1

⎞
⎟⎠e−ikh+

x x

+ ra2

⎛
⎜⎝

0
0

−iα
1

⎞
⎟⎠eikh−

x x, (5)
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with α = (E + √
E2 − E2

z )/Ez, β = (E − √
E2 − E2

z )/Ez

and ke(h)±
x =

√
2m
h̄2 (E0 ±

√
E2 − h̄2v2k2

z ) − k2
y − k2

z . The
coefficients rn1, rn2, ra1, and ra2 represent reflection
amplitudes for SNR, RNR, SAR, and RAR, respectively.

When μN �= 0, the two gaps are not symmetrical about
E = 0, and the discussion is divided into two cases. The first
case is μN < |Ez|, and the scattering processes are shown in
Fig. 1(c). The wave function generated in the incident part of
the left NLSM at μN < |Ez| is expressed as

ψIN (x < 0) =

⎛
⎜⎝

iλ11

1
0
0

⎞
⎟⎠eike+

x x + rn1

⎛
⎜⎝

iλ11

1
0
0

⎞
⎟⎠e−ike+

x x

+ rn2

⎛
⎜⎝

iλ12

1
0
0

⎞
⎟⎠eike−

x x + ra1

⎛
⎜⎝

0
0

−iλ22

1

⎞
⎟⎠e−ikh+

x x

+ ra2

⎛
⎜⎝

0
0

−iλ21

1

⎞
⎟⎠eikh−

x x, (6)

with λ11(12) = [E + μN + (−)N+]/Ez, λ21(22) = [E − μN +
(−)N−]/Ez, ke±

x =
√

2m
h̄2 (E0 ± N+) − k2

y − k2
z , kh±

x =√
2m
h̄2 (E0 ± N−) − k2

y − k2
z , and N± = √

(E ± μN )2 − E2
z .

The coefficients rn1, rn2, ra1, and ra2 are the same as those in
Eq. (5). As μN → 0, the wave function in Eq. (6) degenerates
into that in Eq. (5).

The second case is μN > |Ez|. Since the gap in HLQs
ranges from −|Ez| + μN > 0 to |Ez| + μN > 0, there are
two more situations. The one is 0 < E < −|Ez| + μN . The
conduction bands E+

e and E−
h participate in the scattering

processes at this time, and they are shown in Fig. 1(d). The
wave function in the incident part of the NLSM is

ψIN (x < 0) =

⎛
⎜⎝

iλ11

1
0
0

⎞
⎟⎠eike+

x x + rn1

⎛
⎜⎝

iλ11

1
0
0

⎞
⎟⎠e−ike+

x x

+ rn2

⎛
⎜⎝

iλ12

1
0
0

⎞
⎟⎠eike−

x x + ra1

⎛
⎜⎝

0
0

−iλ21

1

⎞
⎟⎠e−ikh−

x x

+ ra2

⎛
⎜⎝

0
0

−iλ22

1

⎞
⎟⎠eikh+

x x, (7)

where λ11, λ12, λ21, λ22, ke±
x , and kh±

x have the same mean-
ings as in Eq. (6). The other situation is E > |Ez| + μN ; then
the energy bands participating in the scattering processes be-
come the conduction band E+

e and valence band E+
h . The wave

function reverts to Eq. (6).
In this paper, we consider the s-wave pairing superconduc-

tivity. The Hamiltonian for the SC part is

ĤS (k) =
(

ĤS (k) �̂

�̂ −Ĥ∗
S (−k)

)
, (8)

in which ĤS (k) = εk σ̂z − h̄vkzσ̂y − μSσ̂0 and �̂ = �σ̂0. � is
the superconducting gap magnitude, and μS is the chemical
potential in the SC.

The wave function of the SC is

ψIIS (0 < x < L) = A1

⎛
⎜⎝

iuη11

u
iη11

1

⎞
⎟⎠eip+

x x + A2

⎛
⎜⎝

iuη11

u
iη11

1

⎞
⎟⎠e−ip+

x x

+ A3

⎛
⎜⎝

iuη12

u
iη12

1

⎞
⎟⎠eip−

x x + A4

⎛
⎜⎝

iuη12

u
iη12

1

⎞
⎟⎠e−ip−

x x

+ A5

⎛
⎜⎝

ivη21

v

iη21

1

⎞
⎟⎠eiq+

x x + A6

⎛
⎜⎝

ivη21

v

iη21

1

⎞
⎟⎠e−iq+

x x

+ A7

⎛
⎜⎝

ivη22

v

iη22

1

⎞
⎟⎠eiq−

x x + A8

⎛
⎜⎝

ivη22

v

iη22

1

⎞
⎟⎠e−iq−

x x,

(9)

where u = (E + S)/�, v = (E − S)/�, η11(12) =
[μS + S + (−)S+]/Ez, and η21(22) = [μS − S + (−)S−]/Ez,
with S = √

E2 − �2 and S± = √
(S ± μS )2 − E2

z . The

wave vectors p±
x =

√
2m
h̄2 (E0 ± S+) − k2

y − k2
z , and q±

x =√
2m
h̄2 (E0 ± S−) − k2

y − k2
z . The symbols A1, A2, A3, A4, A5,

A6, A7, and A8 are coefficients of the quasiparticle modes in
the SC region.

Similarly, the wave function generated in the NLSM on the
right side of the SC, when μN = 0, is expressed as

ψIIIN (x > L) = t1

⎛
⎜⎝

iα
1
0
0

⎞
⎟⎠eike+

x x + t2

⎛
⎜⎝

iβ
1
0
0

⎞
⎟⎠e−ike−

x x

+ t3

⎛
⎜⎝

0
0

−iβ
1

⎞
⎟⎠eikh+

x x + t4

⎛
⎜⎝

0
0

−iα
1

⎞
⎟⎠e−ikh−

x x . (10)

The wave function for μN < |Ez| or μN > |Ez| and E >

|Ez| + μN can be defined as

ψIIIN (x > L) = t1

⎛
⎜⎝

iλ11

1
0
0

⎞
⎟⎠eike+

x x + t2

⎛
⎜⎝

iλ12

1
0
0

⎞
⎟⎠e−ike−

x x

+ t3

⎛
⎜⎝

0
0

−iλ22

1

⎞
⎟⎠eikh+

x x + t4

⎛
⎜⎝

0
0

−iλ21

1

⎞
⎟⎠e−ikh−

x x,

(11)
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and for μN > |Ez| and 0 < E < −|Ez| + μN , it can be written
as

ψIIIN (x > L) = t1

⎛
⎜⎝

iλ11

1
0
0

⎞
⎟⎠eike+

x x + t2

⎛
⎜⎝

iλ12

1
0
0

⎞
⎟⎠e−ike−

x x

+ t3

⎛
⎜⎝

0
0

−iλ21

1

⎞
⎟⎠eikh−

x x + t4

⎛
⎜⎝

0
0

−iλ22

1

⎞
⎟⎠e−ikh+

x x,

(12)

where α and β are the same as those in Eq. (5) and
λ11, λ12, λ21, and λ22 are the same as those in Eq. (6). The
coefficients t1, t2, t3, and t4 are the amplitudes of NT, ST,
SCAR, and CAR, respectively. For μN = 0, the isoenergetic
circles of ELQs (solid lines) and HLQs (dashed lines) coin-
cide, and the scattering processes are the same as in the case
when the isoenergetic circles of Fig. 1(e) coincide. The scat-
tering is shown in Fig. 1(e) for μN < |Ez| or μN > |Ez| and
E > |Ez| + μN . As for μN > |Ez| and 0 < E < −|Ez| + μN ,
the scattering is shown in Fig. 1(f).

There are two types of incident ELQs from the NLSM; one
is an incident wave with a wave vector k = (ke+

x , ky, kz ), and
the other is an incident wave with k = (−ke−

x , ky, kz ). More-
over, no matter which incident wave (ke+

x or −ke−
x ) is used,

there are always eight scattering processes: the double An-
dreev reflections (SAR and RAR) with the wave vectors k =
(−kh+

x , ky, kz ) and (kh−
x , ky, kz ), the double normal reflections

(SNR and RNR) with k = (−ke+
x , ky, kz ) and (ke−

x , ky, kz ), the
double crossed Andreev reflections (SCAR and CAR) with
k = (kh+

x , ky, kz ) and (−kh−
x , ky, kz ), and the double elec-

tron transmissions (NT and ST) with k = (ke+
x , ky, kz ) and

(−ke−
x , ky, kz ), as shown in Figs. 1(c)–1(f).

The reflection and transmission amplitudes can be obtained
with the following boundary conditions:

ψIN (x = 0−) = ψIIS (x = 0+),

ψ ′
IIS (x = 0+) − ψ ′

IN (x = 0−) = 2mV

h̄2 M̂ψIN (x = 0),

ψIIS (x = L−) = ψIIIN (x = L+),

ψ ′
IIIN (x = L+) − ψ ′

IIS (x = L−) = 2mV

h̄2 M̂ψIIIN (x = L),

(13)

where M̂ is a 4 × 4 diagonal matrix with diagonal elements
(1,−1, 1,−1). We define the wave vector k0 =

√
2m�/h̄2,

and the effective barrier height is given by V0 = 2mV
h̄2k0

.
The probabilities of SNR, RNR, NT, and ST are

SNR = |rn1|2,

RNR = Re

[
ke−

x

ke+
x

]
|rn2|2

∣∣∣∣λ
2
12 − 1

λ2
11 − 1

∣∣∣∣, (14)

TeR = |t1|2,

TeS = Re

[
ke−

x

ke+
x

]
|t2|2

∣∣∣∣λ
2
12 − 1

λ2
11 − 1

∣∣∣∣. (15)

For μN < |Ez| or μN > |Ez| and E > |Ez| + μN , the prob-
abilities of SAR, RAR, SCAR, and CAR are

SAR = Re

[
kh+

x

ke+
x

]
|ra1|2

∣∣∣∣λ
2
22 − 1

λ2
11 − 1

∣∣∣∣,

RAR = Re

[
kh−

x

ke+
x

]
|ra2|2

∣∣∣∣λ
2
21 − 1

λ2
11 − 1

∣∣∣∣, (16)

ThR = Re

[
kh+

x

ke+
x

]
|t3|2

∣∣∣∣λ
2
22 − 1

λ2
11 − 1

∣∣∣∣,

ThS = Re

[
kh−

x

ke+
x

]
|t4|2

∣∣∣∣λ
2
21 − 1

λ2
11 − 1

∣∣∣∣. (17)

For μN > |Ez| and 0 < E < −|Ez| + μN , the probabilities
of SAR, RAR, SCAR, and CAR are

SAR = Re

[
kh−

x

ke+
x

]
|ra1|2

∣∣∣∣λ
2
21 − 1

λ2
11 − 1

∣∣∣∣,

RAR = Re

[
kh+

x

ke+
x

]
|ra2|2

∣∣∣∣λ
2
22 − 1

λ2
11 − 1

∣∣∣∣, (18)

ThR = Re

[
kh−

x

ke+
x

]
|t3|2

∣∣∣∣λ
2
21 − 1

λ2
11 − 1

∣∣∣∣,

ThS = Re

[
kh+

x

ke+
x

]
|t4|2

∣∣∣∣λ
2
22 − 1

λ2
11 − 1

∣∣∣∣. (19)

The reflection amplitudes
∼
rn1,

∼
rn2,

∼
ra1,

∼
ra2,

∼
t 3,

and
∼
t 4 and the corresponding probabilities

∼
SNR,

∼
RNR,

∼
SAR,

∼
RAR,

∼
T hR, and

∼
T hS , as well as the

transmission amplitudes
∼
t 1 and

∼
t 2 and the corresponding

probabilities
∼
T eR and

∼
T eS of an incident ELQ with wave vector

−ke−
x , can be calculated in the same way. The probabilities

satisfy the conservation conditions,

SNR + RNR + SAR + RAR+T eR + TeS + ThR+T hS = 1,

∼
SNR + ∼

RNR + ∼
SAR + ∼

RAR + ∼
T eR + ∼

T eS + ∼
T hR + ∼

T hS = 1.

(20)

III. RESULTS AND DISCUSSION

Here only the numerical results and analysis of the incident
ELQs with wave vector ke+

x are given in detail. We take
μN = μS to eliminate the wave vector mismatch caused by the
difference in chemical potential between the NLSM and SC.
In this paper, the unit of length is ξ = hv/�, and the energy
unit is �.

The reflection probabilities for electrons and holes as a
function of incident angle θ with different incident energies
E are shown in Fig. 2. From Fig. 2, we can see that the co-
efficients are always symmetric about θ = 0. In this case, the
band gap of ELQs ranges from −0.8� to −0.2�, while that
of HLQs ranges from 0.2� to 0.8�. When 0 < E < 0.2�,
only the ELQs located on the conduction band E+

e and the
HLQs located on the conduction band E−

h can participate
in the scattering processes, as shown in Fig. 1(d). Double
Andreev reflections and double normal reflections exist si-
multaneously. When E = 0.1�, ELQs and HLQs meet this
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FIG. 2. The reflection probabilities for electrons and holes as
functions of the incident angle θ with different incident energies
E . μN = μS = 0.5�, Ez = 0.3�,V0 = 10, and L = 1.5ξ . (a) E =
0.1�, (b) E = 0.4�, (c) E = 0.9�, and (d) E = 1.3�.

requirement; the four reflection probabilities are all nonzero,
as shown in Fig. 2(a). As θ increases from zero to π/2, the
probability of SNR gradually increases, while for RNR, SAR,
and RAR, both increase first and then decrease. The double
Andreev reflections are almost zero near θ = 0, then exhibit
oscillations and reach a maximal peak at θ = 0.4π . Therefore,
a finite incident angle is necessary for the Andreev reflections.

When 0.2� < E < 0.8�, only ELQs located on the con-
duction band E+

e can participate in the scattering processes.
The incident energy is within the band gap of HLQs when
E = 0.4�, resulting in the disappearance of the double An-
dreev reflections and SAR = RAR = 0, as shown in Fig. 2(b).
When E > 0.8�, the HLQs located on the valence band E+

h
are activated and participate in the scattering processes, as
shown in Fig. 1(c). The four reflections appear simultane-
ously, as shown in Figs. 2(c) and 2(d). This case is different
from those in Fig. 2(a), where the maximal peak positions of
the double Andreev reflections move to a larger angle; that is,
the maximal peak positions become θ = 0.45π . It can be seen
that in this energy range, a larger incident angle is favorable
to the Andreev reflections. However, when we continue to
increase the incident energy E ; it is found that the double
Andreev reflection probabilities are weakened by comparing
Fig. 2(c) with Fig. 2(d). This is because when E > �, the tun-
neling of quasiparticles is enhanced; as a result, the reflection
probabilities will decrease.

The transmission probabilities for electrons and holes as a
function of incident angle θ with different incident energies
E are shown in Fig. 3. The band gaps of ELQs and HLQs
are the same as those in Fig. 2. When 0 < E < 0.2�, the
ELQs on the conduction band E+

e and the HLQs on the con-
duction band E−

h participate in the scattering processes, and
the scattering processes in the NLSM on the right end are
shown in Fig. 1(f). The double crossed Andreev reflections
and double electron transmissions exist simultaneously. As
shown in Fig. 3(a), the four probabilities are all nonzero for

FIG. 3. The transmission probabilities as a function of incident
angles for μN = μS = 0.5�, Ez = 0.3�, V0 = 10, and L = 1.5ξ .
(a) E = 0.1�, (b) E = 0.4�, (c) E = 0.9�, and (d) E = 1.3�.

E = 0.1�. As θ increases from zero to π/2, the probability
of NT decreases, the probabilities of ST, SCAR, and CAR
show oscillations and increase first and then decrease. The
probabilities of SCAR and CAR are almost zero near θ = 0.
Therefore, a finite incident angle is a necessary condition for
the crossed Andreev reflections to occur.

When E = 0.4�, the incident energy is located in the gap
of HLQs; as a result, the crossed Andreev reflections disap-
pear, as shown in Fig. 3(b). When E > 0.8�, the ELQs on
the conduction band E+

e and the reactivated HLQs on the
valence band E+

h participate in the scattering processes, as
shown in Fig. 1(e). At this point, four transmissions reappear
simultaneously, as shown in Figs. 3(c) and 3(d). It is obvious
that the variation is similar to the reflection probabilities; that
is, the larger E is, the smaller the probabilities of the double
crossed Andreev reflections are.

Now, we focus on the Andreev reflections and crossed
Andreev reflections. Figure 4 shows the probabilities of SAR,
RAR, SCAR, and CAR as a function of θ with different
interfacial barriers. According to the above parameters, the
conduction band E+

e and the valence band E+
h in the scattering

processes can be obtained. In principle, the four probabilities
should be nonzero. Nevertheless, when V0 = 0, none of the
four probabilities appear, as shown in Figs. 4(a)–4(d). For
a finite barrier height V0, even at very small V0 = 2, the
double Andreev reflections and the double crossed Andreev
reflections immediately appear. Consequently, a finite barrier
height is one of the necessary conditions for the occurrence of
the double Andreev reflections and double crossed Andreev
reflections.

The four Andreev reflections have the same properties:
the reflection coefficients reach their maximal peaks near the
larger incident angle θ = 0.45π with a smaller V0 = 2. How-
ever, when we continue to increase V0, their maximal peaks
are around θ = 0.4π . So for a smaller V0, a larger incident
angle is more conducive to the double crossed Andreev re-
flections and double Andreev reflections.
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FIG. 4. The double Andreev reflection probabilities and double
crossed Andreev reflection probabilities as a function of incident
angle for E = 0.7�, μN = μS = 0.2�, Ez = 0.4�, and L = 1.5ξ

with different V0.

Figure 5 shows the variation of the reflection and trans-
mission probabilities vs incident energy for different incident
angles. Because the Andreev reflections are not obvious for
small incident angles, only the larger incident angles (θ �
0.4π ) are shown in Fig. 5. When the incident angle θ is too
small, only NT and SNR can occur; the other six scattering
processes are suppressed almost completely. This is because
the incident angle is too small to meet the conditions for the
Andreev reflections to occur. Thus, a finite incident angle is
one of the necessary conditions for the occurrence of Andreev
reflections, which is consistent with the previous conclusions
in Figs. 2 and 3.

From the parameters shown in Fig. 5, it can be calculated
that the band gap of ELQs ranges from −0.9� to −0.5�,
while that of HLQs ranges from 0.5� to 0.9�. Therefore,

FIG. 5. (a) and (b) The reflection probabilities and (c) and (d) the
transmission probabilities as a function of incident energy with dif-
ferent incident angles. μN = μS = 0.7�, Ez = 0.2�,V0 = 10, and
L = ξ . (a) and (c) θ = 0.4π and (b) and (d) θ = 0.45π .

FIG. 6. The local conductance as a function of eVb with different
V0 and L for μN = μS = 5�.

when the incident energy is within the band gap range of
HLQs, 0.5� < E < 0.9�, neither Andreev reflections (SAR
and RAR) nor crossed Andreev reflections (SCAR and CAR)
can appear, as shown in Figs. 5(a)–5(d). Once the incident
energy exceeds this range, E < 0.5� or E > 0.9�, both the
Andreev reflections and the crossed Andreev reflections ap-
pear immediately. The Andreev reflections occur from the
conduction band E−

h involved in scattering for E < 0.5�,
while the Andreev reflections occur from the valence band E+

h
involved in scattering for E > 0.9�. When the incident en-
ergy E > �, the reflection probabilities of SAR, RAR, SCAR,
and CAR decrease due to the enhancement of quasiparticle
tunneling, and the probability of NT will increase as expected,
as shown in Figs. 5(a) and 5(c). Especially, if the incident
angle is too large, the probability of NT will decrease at E >

�, while that for SNR will increase, as shown in Figs. 5(b)
and 5(d). Therefore, a large incident angle (θ � 0.45π ) will
facilitate SNR and weaken NT at E > �.

Next, let us investigate the differential conductance. Ac-
cording to the Blonder-Tinkham-Klapwijk (BTK) formula
[49], the local conductance GL can be written as

GL = 2e2

h

S

(2π )2

√
2mE0

h̄2v

∫ π
2

− π
2

∫ eVb

−eVb

(g1 + g2) cos θdθdEz,

(21)

where g1(eVb) = 1 − SNR − RNR + SAR + RAR and g2(eVb) =
1 − ∼

SNR − ∼
RNR + ∼

SAR + ∼
RAR. eVb is the bias on the junction,

S is the cross-sectional area, and θ is the incident angle for
ELQs.

The normalized local conductance GL/G0 is plotted in
Fig. 6 with different barrier heights V0 and lengths of the
superconducting region L. G0 is the conductance of the
NLSM-NLSM junction. It can obviously be seen in Fig. 6
that the local conductance decreases with the potential barrier
increasing. For L = 10ξ , the long-junction limit, the ampli-
tude of the oscillation for local conductance becomes large.
The interface barriers weaken the conductance. If the bias is
larger than the energy gap, the local conductance decreases
gradually with oscillation because of the coherent tunneling.
In the SC energy gap regime eVb < �, Andreev reflection and
electron reflection coexist. The large bias (eVb > �) will in-
duce weaker local Andreev reflection and electron reflection;
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at the same time, the normal electron transmission process
becomes dominant.

From Fig. 6 we can see that beyond the Friedel oscillations
which are caused by opposite wave vectors of equal magni-
tude interfering, there are fast fluctuations superimposed on
the slow oscillations. These are the well-known McMillan-
Rowell oscillations [50], which result from the interference
of the different parallel wave vectors for electrons and holes.
When the size of the junction changes, the McMillan-Rowell
oscillations are different.

IV. CONCLUSIONS

We studied the double local and double nonlocal Andreev
reflections in a NLSM-SC-NLSM heterostructure. We found
a phenomenon of eight scatterings coexisting; that is, the
double Andreev reflections, the double normal reflections,
the double electron transmissions, and the double crossed
Andreev reflections exist simultaneously. The probabilities
of these scattering processes for different parameters were

systematically studied. By changing the incident quasiparti-
cle energy, incident angle, and interfacial barrier height, the
amplitude of the Andreev reflections can be controlled. The
probabilities of the four Andreev reflections are almost zero
near θ = 0 and V0 = 0. That is, a finite incident angle and a
finite barrier height are necessary conditions for Andreev re-
flections to happen. These results enrich the understanding of
Andreev reflections in nodal-line semimetal-superconducting
heterostructures. In experiment, the double local and dou-
ble nonlocal Andreev reflections can be probed by local
and nonlocal scanning tunneling spectroscopy; the differen-
tial conductance exhibits a spatially resolved ridge structure,
in which the signature of the different Andreev reflections
appears.
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