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In a Laughlin fractional quantum Hall state, one- and two-quasihole states can be obtained by diagonalizing the
many-body Hamiltonian with a trapping potential or, for larger systems, from the linear combination of the edge
Jack polynomials. The quasihole states live entirely in the subspace of the lowest-energy branch in the energy
spectrum with a fixed number of orbits, or a hard-wall confinement. The reduction in the Hilbert space dimension
facilitates the study of time evolution of the quasihole states after, say, the removal of the trapping potential. We
explore the quench dynamics under a harmonic external potential, which rotates the quasiholes in the droplet,
and discuss the effect of long-range interaction and more realistic confinement. Accurate evaluation of the mutual
statistics phase of anyons for a wide range of anyon separation can be achieved from the Berry-phase calculation.
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I. INTRODUCTION

A remarkable feature of the fractional quantum Hall (FQH)
effect [1] is the emergence of fractionally charged excitations
with exotic statistics, dubbed anyons [2–6]. The presence of
these collective excitations is a manifestation of the under-
lying topological phases [7]. Abelian anyons are so named
because their interchanges lead to an Abelian phase factor eiθ ,
where θ can be neither an integral multiple of 2π for bosons
nor an odd multiple of π for fermions. Non-Abelian anyons,
on the other hand, live in a degenerate ground-state manifold
of topological origin. When they braid around each other,
their wave function undergoes a unitary transformation in the
degenerate space [8]. Their potential application as resources
in topological quantum computation has aroused great interest
in recent years [9,10].

In theory, the property of fractional charge manifests in the
Aharonov-Bohm phase acquired by a single anyon along a
closed path that enclosed no anyons. The fractional exchange
properties, however, arise in the mutual statistical part of
the Berry phase, when additional anyons are present in the
loop [5]. So far, experimental evidence mounts for fractional
charge of both Abelian (i.e., e/3 in a ν = 1/3 Laughlin-
like state) and, presumably, non-Abelian anyons (i.e., e/4
in a ν = 5/2 Moore-Read–like state) [11–16]. However, an
unambiguous experimental demonstration of fractional statis-
tics has been under intense debate. Inconsistencies between
the experimental results and theoretical predictions exist in
Fabry-Pérot interferometers [17–20] or Mach-Zehnder inter-
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ferometers [21,22]. The obstacles in observing the fractional
statistics include the Coulomb blockade effect in a small in-
terferometer [23] and the decoherence due to neutral modes in
a large interferometer [24].

In novel devices with screening layers conductance oscilla-
tions have been observed with abrupt jumps in the interference
patterns consistent with the theoretically expected anyonic
statistics [25–28]. Moreover, the fractional statistics of FQH
quasiholes has also been observed in the current correla-
tion resulting from the collisions among anyons at a beam
splitter [29]. The achievements heighten the need to study
controllable anyon braiding toward the implementation of
topological quantum computation. In general, anyons can
be created and trapped in the bulk, but dragging them with
scanning tunneling microscope (STM) tips is far from real-
ity. On the other hand, in a Fabry-Pérot or Mach-Zehnder
interferometer, anyons propagate along sample edges with
a finite velocity given by the dispersion of gapless edge
modes [30–33]. However, one cannot ignore the details of the
edge potential profile in time evolution.

In this work, we construct one- and two-quasihole wave
functions in a Laughlin FQH system by introducing an ap-
propriate trapping potential in the interacting Hamiltonian or
through linear combinations of Jack polynomials for edge
modes. We realize anyonic braiding in the bulk in the quench
dynamics after we suddenly remove the tip potential. The
projection of the quasihole states to edge wave functions
helps us reduce the Hilbert space tremendously in the time
evolution. We can introduce an external harmonic potential to
confine the anyon excitations and to tune the braiding period,
or explore the smear-out of the anyons and their revival in
the presence of long-range interaction. We also verify the
fractional statistics by calculating the Berry phase in a period,
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which can be related to the mean angular momentum of the
states with various number of quasiholes.

The rest of the paper is organized as follows. In Sec. II
we describe how to construct quasihole states with model
Hamiltonian or with edge Jack polynomials. We demonstrate
in Sec. III the fractional statistics by calculating the mean
angular momentum, or equivalently, the Berry phase in the
wave-function evolution. In Sec. IV we present a quench pro-
tocol to realize the quasihole braiding and discuss the effect
of long-range interaction and edge confinement. We conclude
in Sec. V and present additional details on constructing quasi-
hole states with Jack polynomials in Appendix.

II. PREPARING QUASIHOLE STATES

Consider a ν = 1/3 Laughlin FQH droplet with a quasi-
hole state at w in a complex plane with model wave
function [2]

�
1QH
L =

∏
i

(zi − w)�L, (1)

where

�L =
∏
i< j

(zi − z j )
3e− ∑

i |zi|2/4l2
B (2)

is the Laughlin wave function with a total angular momentum
M0 = 3Ne(Ne − 1)/2 and zk = xk + iyk is the complex coor-
dinate for the kth electron. And lB is the magnetic length. A
two-quasihole wave function can be written as

�
2QH
L =

∏
i

(zi − w1)
∏

i

(zi − w2)�L (3)

with w1 and w2 being the positions of the quasiholes. In the
pseudopotential formalism [34], �L is the densest zero en-
ergy eigenstate for the V1-only Hamiltonian. In the interacting
Hamiltonian, a trapping potential, which models the effects
of an STM tip or a localized impurity, can be introduced to
confine a quasihole in the bulk. A previous study [35] showed
that a repulsive Gaussian potential

V (z) = U√
2πs

exp[−|z − w|2/(2s2)] (4)

can be used to trap a quasihole at w = wr + iwi. Here, U
and s are the strength and width of the trapping potential.
In the lowest Landau level with the symmetric gauge, the
rotationally invariant basis is

|m〉 = 1√
2π lB

1√
2mm!

zme−|z|2/4l2
B (5)

and the corresponding matrix elements are Vmn = 〈m|V (z)|n〉.
Nondiagonal terms appear when the rotational symmetry is
broken by w �= 0. Without loss of generality, we assume q ≡
n − m > 0 and obtain the integral form of the potential matrix
elements as

Vmn = Us

(2π )1/2
√

2qm!

√
n!

q!

∫ ∞

0
dk e−k2s2/2kq+1

× 1F1

[
n + 1, q + 1,−k2

2

]
Jq(k|w|)

(
w

|w|
)−q

,

where 1F1 and Jn−m are the confluent hypergeometric function
and Bessel function, respectively. In the limit of zero width
s → 0, the Gaussian can be replaced by a δ function V (	r) =
Uδδ(z − w), and the matrix elements are simplified to

Vmn = Uδ

2q/2

√
m!

n!

∫ ∞

0
dk e−k2/2kq+1Lq

m

(
k2

2

)

× Jq(k|w|)
(

w

|w|
)−q

. (6)

In practice, we use the Gaussian potential with width s 
 2lB
for the full Coulomb interaction and the δ potential for the
V1-only interaction to create a quasihole [35].

To simulate the braiding of two quasiholes, we must have a
sufficiently large system to avoid quasihole overlap. However,
large systems are difficult to solve by exact diagonalization
due to the absence of rotational symmetry. We, therefore,
introduce a truncated subspace for finite systems in disk ge-
ometry with the help of Jack polynomials, such that we can
calculate up to 12 electrons at 1/3 filling.

Jack polynomials, or Jacks, are homogeneous symmet-
ric polynomials specified by a rational parameter α and
a root configuration μ. Up to the Gaussian factor, FQH
model wave functions can often be expressed exactly as
Jacks [36,37]. The Jack parameter α = − k+1

r−1 corresponds
to a FQH state with filling fraction ν = k

k+r in a fermionic
case. The parameters (k, r) describe the admissibility that
there can be at most k particles in k + r consecutive orbitals
in the so-called root configuration. For a Laughlin state at
ν = 1/3, we have k = 1, r = 2 and the root configuration
for four-electron is |1001001001〉. After inserting a magnetic
flux quanta which creates a quasihole, the root configu-
rations are |01001001001〉, |10001001001〉, |10010001001〉,
|10010010001〉, and |10010010010〉, which we used in our
calculation. We denote the Jack with the root configuration μ

by |μ〉 in the following, while we have a fixed α = −2 for
the ν = 1/3 Laughlin state and its quasihole and edge exci-
tations. The extra polynomial corresponding to the quasihole
excitation can be expanded to be

∏
i

(zi − w) =
∏

i

zi − w
∑

j

∏
i �= j

zi + w2
∑

j,k

∏
i �= j,k

zi

+ · · · + (−1)NewNe , (7)

where Ne is the number of electrons. The nth term on the
right-hand side is a symmetric polynomial of zi’s of order
Ne − n + 1. In general, �L multiplied by a symmetric poly-
nomial can be interpreted as an edge excitation [38,39]. For
example,

∑
i j ziz j and

∑
i z2

i span the edge space with angular
momentum �Mtot = M0 + 2. In fact, each term in the above
expansion is the unique (zero-energy) ground state of the V1

Hamiltonian in their own momentum subspace for Ne elec-
trons in 3Ne − 1 orbitals, which corresponds to a single Jack.
So we can rewrite the one-quasihole state as

�
1QH
L = |01001001 · · · 1001〉 − w|10001001 · · · 1001〉

+w2|10010001 · · · 1001〉 + · · ·
+ (−1)NewNe |1001 · · · 10010〉, (8)

195311-2



ANYONIC BRAIDING VIA QUENCH DYNAMICS IN … PHYSICAL REVIEW B 105, 195311 (2022)

FIG. 1. (a) The one-quasihole density profile for ten electrons
with a quasihole at w = 3lB. (b) The low-lying energy spectrum for
the 10 electrons in 29 orbitals. The color illustrates the overlap of
these edge states with the one-quasihole model wave function. Here
we used the same color bar in (a) and (b).

where the notation |1001 · · · 〉 represents an unnormalized
Jack polynomial and we neglect the Gaussian factor for con-
venience. In Fig. 1(a), we plot the density profile for a Ne = 10
state with one quasihole at w = 3lB on the real axis. The wave
functions obtained from diagonalizing the V1-only Hamilto-
nian with the δ potential at w and from the construction
by Jacks are identical. To illustrate how this quasihole state
can be decomposed into a series of edge states, we plot the
low-energy spectrum for the V1 only Hamiltonian with 10
electrons in 29 orbitals in Fig. 1(b), and use a color map for the
zero-energy edge states to indicate the corresponding weight
in the one-quasihole state.

To further understand the decomposition of the quasihole
state into edge states, we plot the overlap, as defined in
Fig. 1(b), as we change the quasihole location w = R in a
three-dimensional bar chart in Fig. 2. Here, the momentum
of the edge states is defined as �M = Mtot − M0. One can
see that the edge states with significant weight evolve from
having large �M = Ne to zero, when R increases from the
center to the edge of the disk. From Eq. (8), we know the
weight distribution in the edge space is only determined by
the quasihole position w. When w = 0 or w → ∞, which
corresponds to the rotational invariant state, the expansion has
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FIG. 2. The overlap between the one-quasihole model wave
function and the zero-energy edge states as the distance of the quasi-
hole from the center R = |w| varies for ten electrons. The relevant
states evolve from large �M = Ne to zero while the quasihole moves
from the center to the edge of the droplet.

FIG. 3. (a) The two-quasihole density profile for ten electrons
and two quasiholes at w1 = 0 and w2 = 4lB in case A. (b) The
low-lying energy spectrum for 10 electrons in 30 orbitals with a tip
potential at the center. The color illustrates the overlap of these edge
states with the corresponding two-quasihole model wave function.

only one component. Because of the competition among the
polynomial of w, the number of terms in the sum of Eq. (7),
and the normalization factor, when w is neither at the center
nor at the edge, the quasihole state incorporates more edge
states.

For a two-quasihole state, we consider the following two
configurations: (A) with one quasihole at the center w1 =
0 and another at w2 = w �= 0, and (B) with two quasi-
holes symmetrically at w1 = −w2 = w �= 0. Case A can be
straightforwardly derived from the one-quasihole state with
an additional zero inserted to the innermost orbital, i.e.,

�
2QHA
L = |001001001 · · · 1001〉 − w|010001001 · · · 1001〉

+w2|010010001 · · · 1001〉 + · · ·
+ (−1)NewNe |01001 · · · 10010〉. (9)

Therefore, �
2QHA
L can also be decomposed into a linear

combination of the zero-energy eigenstates of the V1-only
Hamiltonian with 3Ne orbitals and one quasihole fixed at the
center of the disk. The density profile of the two-quasihole
state with Ne = 10, w1 = 0, and w2 = 4lB and its overlap with
the zero-energy states are shown in Fig. 3. The zero-energy
states with nonzero weight in Fig. 3(b) can be regarded as
the edge states of the one-quasihole state with the quasihole
fixed at the center. The distance between two quasiholes is
limited by the radius of the disk. As shown in Fig. 3(a), the
second quasihole at w2 = 4lB can be seen separated from the
quasihole at the center and the edge of the droplet.

For the same system size, the distance of the quasiholes
can be further separated in case B as shown in Fig. 4(a).
However, the construction of the two-quasihole state via Jacks
is more complicated. The model wave function with the two
quasiholes at ±w is

�
2QHB
L =

∏
i

(zi − w)
∏

i

(zi + w)�L =
∏

i

(
z2

i − w2)�L,

(10)

the polynomial factor of which can be expanded to be
∏

i

(
z2

i − w2
) =

∏
i

z2
i − w2

∑
j

∏
i �= j

z2
i + w4

∑
j,k

∏
i �= j,k

z2
i

+ · · · + (−1)New2Ne . (11)

195311-3



LI, YE, JIANG, JIANG, WAN, AND HU PHYSICAL REVIEW B 105, 195311 (2022)

FIG. 4. (a) The two-quasihole density profile for ten electrons
and two quasiholes at w1 = −3lB and w2 = 3lB in case B. (b) The
low-lying energy spectrum for a mixed Hamiltonian (artificially set
V1 = 10 in the Coulomb pseudopotentials) in 30 orbitals. The color
illustrates the overlap of these edge states with the corresponding
two-quasihole model wave function. For the pure V1 interaction, they
are all zero-energy edge states. In lifting the degeneracy of the zero-
energy manifold, we also include in the Hamiltonian a potential from
neutralizing background charge at d = lB [35].

Following the same procedure in the one-quasihole case, we
find that the involved edge states are all zero-energy states for
the system with 3Ne orbitals and a total angular momentum
Mtot ∈ [M0, M0 + 2Ne]. The symmetrical arrangement of the
quasiholes further rules out the contribution from the states
with odd �M. As in the one-quasihole case, the increase
of |w| leads to increasing weight in the small-momentum
subspace. However, each zero-energy momentum subspace
can now be degenerate. The degeneracy prevents us from
constructing the wave function �

2QHB
L by a single Jack in

each subspace. For ten electrons, e.g., the degeneracies are
1,1,2,2,3,3,4,4,5,5,6,5,5,4,4,3,3,2,2,1,1 for Mtot ∈ [135, 155],
as shown in Fig. 4. Those degeneracies could be obtained
by counting the number of root configurations of the Jacks
for 10 electrons in 30 orbitals. In particular, the degeneracy
is the largest at �M = Ne and is the same for �M = m
and 2Ne − m. In order to expand �

2QHB
L by edge states in a

large system, we need to know how to map the polynomials
in Eq. (11) to linear combinations of edge Jacks, which we
elaborate in Appendix.

III. FRACTIONAL STATISTICS

With the exact one-quasihole and two-quasihole wave
functions, we can verify the fractional statistics via the Berry
phase calculation when the system is adiabatically rotated by a
full circle. In Eqs. (8)–(10), the rotation is achieved by letting
w → weiθ and varying θ in the wave functions �(θ ), such
that the Berry phase is defined as

φB(θ ) = i
∮

θ

〈�(θ )|∂θ |�(θ )〉. (12)

The rotation could alternatively be generated by the angular
momentum component L̂z as

|�(θ + δθ )〉 = exp(−iL̂zδθ/h̄)|�(θ )〉

 (1 − iL̂zδθ/h̄)|�(θ )〉. (13)

Therefore, we have

φB(θ ) = 1

h̄

∮
θ

〈�(θ )|L̂z|�(θ )〉 = 2π

h̄
〈L̂z〉. (14)

In our setup, therefore, the mean angular momentum 〈L̂z〉 can
be related to the fractional statistics of the quasihole which
were recently related to the fractional spin [40]. Equivalently,
one can calculate the mean square radius 〈r2〉 for the density
distribution, because the radius of the mth Landau orbital
(with angular momentum mh̄) is simply r = √

2mlB in the
disk geometry [41–43].

As a result, the mutual braiding statistical phase of two
quasiholes can be expressed by the Berry phase of the two-
quasihole state subtracting the Berry phases for the two
single-quasihole states,

φst = π

h̄

(〈L̂z〉2QH − 〈L̂z〉1QH
1 − 〈L̂z〉1QH

2 + M0
)
, (15)

where 〈L̂z〉1QH
1 and 〈L̂z〉1QH

2 are the mean angular momentum
for the one-quasihole states with a quasihole at w and 0 for
case A, or ±w for case B. The total angular momentum M0

of the Laughlin state is included in Eq. (15) to compensate
for the contributions from the constituent electrons. In Fig. 5,
we plot the statistical phase as a function of the distance of
quasiholes for the two cases. The results are obtained from
numerical diagonalization of the model Hamiltonian with δ-
function impurity potential for 6–10 electrons and from the
Jack polynomial construction for Ne > 10 electrons. The ex-
pected value of φst = π/3 for a Laughlin quasihole can be
anticipated when (1) the two quasiholes are not too close to
each other, and (2) neither quasihole is close to the edge of
the droplet. The plateau of φst = π/3 is well developed in
case B, in which the distance between quasiholes doubles that
in case A, while the influence of the edge is the same. The
plateau starts from a quasihole distance of about 5.0lB, which
is approximately the diameter of a Laughlin quasihole [44].
This implies that quasiholes can be thought of as independent
of each other, as long as they are not overlapping with each
other. Figure 5 further suggests that when the two quasiholes
overlap with each other, their interaction, as reflected in the
correction to φst , is independent of the system size, hence
local.

IV. THE QUENCH EVOLUTION OF THE
TWO-QUASIHOLE STATE

In previous sections we have demonstrated that one- and
two-quasihole states of a Laughlin droplet can be constructed
by Jack polynomials, which allows us to set up larger systems
with two anyons that are sufficiently far from each other
and from the edge, such that their mutual fractional statistics
can be computed. In this section we explore the dynamical
evolution of the quasihole states after a quantum quench. The
exploration of such a quench protocol is motivated by the im-
plementation of topological quantum computing, which needs
the braiding of anyons. In our setup the system starts with
quasiholes localized in a properly designed trapping potential,
which is removed or altered at a certain time, say, t = 0. In
the ideal case one quasihole can move around another while
still maintaining their local density profile. This scheme may
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FIG. 5. The statistical phase of the Laughlin quasiholes as a
function of their distance in both case A (upper panel, w1 = 0 and
w2 = R) and case B (lower panel, w1 = −R and w2 = R). The re-
sults for the larger systems with 11–12 electrons are obtained from
the combination of Jack polynomials. A well developed value of
φst = π/3 appears when the distance between quasiholes is larger
than 5.0lB and when the quasiholes are not too close to the edge.

be advantageous in realizing braiding, e.g., in GaAs-based
systems, in which the two-dimensional electron gas is far
from the surface gates. It might also be the preferred protocol
once fractional quantum Hall systems are realized in cold
atomic [45–50] or photonic [51–53] systems in a synthetic
gauge field.

In the first realization we show that the rotation of a quasi-
hole around the other can be realized by a quench protocol, in
which a harmonic potential can introduce an angular velocity.
The harmonic potential, in the form of V (r) = βr2/2 in real
space, realizes a linear potential in the momentum space,
which introduces a linear dispersion for the edge states. We
start, in the protocol, with a V1 Hamiltonian for the ν = 1/3
Laughlin liquid and two tip potentials that trap two quasi-
holes at ±w. In the edge Jack polynomial expansion of the
quasihole state as in Eq. (11), each term has a fixed angular
momentum, which is inversely linear in the power of w. At
t = 0, we turn off the tip potentials and, instead, turn on
the harmonic potential with β = 1.0. After the quench, the
system evolves as |�(t )〉 = e−iĤt/h̄|�(0)〉, in which the re-

FIG. 6. Time evolution of the wave-function overlap
|〈�2QHB

L (t = 0)|�2QHB
L (t )〉|2 for the two-quasihole state in case

B with 10 electrons in 30 orbitals. The rotation is driven by an
external potential V (r) = βr2/2 with β = 1.0.

duced Hamiltonian contains the potential only. Therefore, the
dynamical phase difference of these terms can be absorbed
by the corresponding polynomials of w, leading to a pure
rotation. Figure 6 shows the evolution of the density pro-
file of �

2QHB
L (t ) and the overlap of the wave function with

�
2QHB
L (t = 0) for 10 electrons in 30 orbitals. We find that

the overlap shows regular oscillations, and the density profile
is stable in time. The period of the oscillations is π , which
corresponds to the exchange of two quasiholes, for which the
wave function picks up a negative sign only.

The minima in the time-dependent overlap is wider than
the maxima in Fig. 6. This has an interesting origin and can be
used to estimate the size of quasiholes. As we have discussed,
the time evolution of the wave function is known analytically:

�
2QHB
L (θ ) =

∏
i

(
z2

i − w2e2iθ
)
�L, (16)

where θ = βt . In Fig. 7(a) we plot the overlap in a period
θ ∈ [0, π ] with different w for a system with 12 electrons in
36 orbitals. For a small w, the oscillation is sinusoidal, and
a nonzero minimum appears at θ = π/2 (indicated by the
vertical arrow), when the quasiholes are rotated to ±iw. As
w increases, the overlap at θ = π/2 decreases and vanishes

FIG. 7. (a) The two-quasihole wave function overlap
|〈�2QHB

L (θ = 0)|�2QHB
L (θ )〉|2 in a period for 12 electrons in 36

orbitals for different w’s. (b) The overlap at θ = π/2 as the
quasihole location w varies. The inset illustrates the characteristic
angle at which the overlap of the quasiholes with those at t = 0
vanishes.
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at w � 3lB, whose value is close to the radius of a quasihole
r ≈ 2.5lB, which indicates that the nonzero value of the min-
imum may come from the spatial overlap of the quasiholes.
Further, the overlap deviates from zero, again, at w = 8lB,
presumably when the quasiholes touch the rim of the droplet.
The continuous dependence of the overlap at θ = π/2 on w

is shown in Fig. 7(b). To understand the curves in Fig. 7 and
their connection to the quasihole size, we model quasiholes by
a rigid disk of radius r. As illustrated in the inset of Fig. 7(b),
if the wave-function overlap vanishes when quasiholes no
longer overlap with each other (for sufficiently large w), there
exists a characteristic angle of rotation

θc = 2 sin−1 r

w
. (17)

In Fig. 7(a) we mark the angles for w = 4, 5, 6, 7 by red dots
on the corresponding curves and find that they explain well
the flat bottom of the overlap curves.

A more realistic situation can involve some long-range
interaction and a neutralizing confining potential. We consider
the following mixed Hamiltonian:

H = λ1V1 + λ2HC, (18)

where V1 is the model Hamiltonian and HC is the Coulomb
Hamiltonian

HC =
∑

m1m2m3m4

V1234C
†
m1

C†
m2

Cm3Cm4 +
∑

m

UmC†
mCm. (19)

which contains the Coulomb interaction among electrons and
between electrons and background charges [32]. Here λ1,2

are parameters that we tune to adjust the bandwidth of the
low-energy edge-state manifold and its gap to the higher-
energy states. As in Fig. 4, we choose λ1 = 10 and λ2 = 1.
In general, the direct calculation of the matrix exponential
in |�(t )〉 = e−iĤt/h̄|�(0)〉 is time- and memory-consuming
for large systems. For example, the two-quasihole state for
12-electron has a full dimension of 1 251 677 700 in 36 or-
bitals. The situation is significantly simpler when we assume
that the quasiholes are prepared in the model wave function
in Eq. (10), which can be written as the linear combination
of a few edge states, as demonstrated in Fig. 4. These edge
states are protected by an energy gap, which originates from a
hard-wall edge potential due to the choice of the fixed number
of orbitals. With Coulomb interaction, if we assume that the
quasihole state still lives in the low-energy sector, namely,
the mixing with higher energy states is neglected, the time
evolution can be calculated only in the truncated edge space.
For the 12-electron two-quasihole state, the dimension of the
reduced Hamiltonian is merely 49 and we have

|�(t )〉 =
∑

i

cie
−iEit/h̄|φi〉, (20)

where Ei and |φi〉 are the energy and wave function of the rel-
evant edge states, and we have ci = 〈φi|�(0)〉. However, due
to the presence of Coulomb interaction, the dispersion of the
edge modes is no longer linear, as is evident in Fig. 4. In Fig. 8
we plot the wave-function overlap |〈�2QHB

L (t = 0)|�(t )〉|2 as
a function of time. The curve oscillates with multiple periods.
In particular, we can identify a period of T ≈ 940, at the
integral multiple of which the overlap is about 0.75 or more.

FIG. 8. Time evolution of the wave-function overlap
|〈�2QHB

L (t = 0)|�2QHB
L (t )〉|2 for the two-quasihole system in

case B with long-range interaction and confinement potential, which
drive the quasihole rotation and blurring.

A smaller period, which is about T/7, is also visible in the
overlap. Meanwhile, the plots of density profiles indicate that
the nonlinear dispersion of the edge mode deforms the shape
of the quasihole in a long-time evolution. The smear-out of
the quasiholes is significant when the overlap is small.

The oscillations in the overlap can be understood as
follows. According to Fig. 4, the expansion of the time-
dependent wave function in Eq. (20) is dominated by a few
edge states (only six states have a weight larger than 0.01).
We can calculate the overlap to be

|〈�(0)|�(t )〉|2 =
∣∣∣∣∣
∑

i

|ci|2e−iEit/h̄

∣∣∣∣∣
2

=
∑

i

|ci|4 +
∑
i< j

2|ci|2|c j |2 cos
(Ei − Ej )t

h̄
.

(21)

Therefore, the time-dependent overlap is dominated by the
energy differences of two edge states, both with significant
probability amplitudes. To show this, we calculate the Fourier
transformation of the data in Fig. 8 and plot the spectral
weight in Fig. 9. In the inset we copy the part of the low-
energy spectrum in Fig. 4(b) that includes the edge states with
appreciable weight. In particular, we label the six most impor-
tant components by E1, E2, . . . , E6, according to the order of
their weights. The peaks in the Fourier spectrum are in good
agreement with the energy differences among them, as listed
in Table I. Specifically, we have h̄
12 = E1 − E2 = 0.006 55,
which corresponds to a period 2π/
12 ≈ 959; this explains
the period of the major revivals of the overlap. The subleading
peak corresponds to h̄
31 = E3 − E1 = 0.047 17, which is
7.2 times larger than h̄
12; this explains the shorter period that
appears in Fig. 8. The third leading peak is located at h̄
41 =
E4 − E1 = 0.020 16; the corresponding period is not easy to
detect by visual examination of Fig. 8 as it is close to h̄
31/2
and roughly 3h̄
12. The leading seven contributions, resulting
in the highest peaks in Fig. 9 (notice E3 − E4 ≈ E4 − E2), are
underlined in Table I.
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FIG. 9. The Fourier frequency spectrum of the wave-function
overlap in Fig. 8. The inset shows the relevant part of the energy
spectrum in Fig. 4(b). The edge states labeled by E1, E2, . . . , E6

are those that have appreciable overlap with the two-quasihole wave
function.

V. DISCUSSIONS AND CONCLUSIONS

In summary, we construct one-quasihole and two-
quasihole wave functions for a Laughlin quantum Hall state
via numerically diagonalizing the model Hamiltonian with
an impurity potential or the combination of the edge Jacks.
In the Jack polynomial construction, we identify a universal
mapping between the edge Jacks and the Jastrow term of
the Laughlin wave function multiplied by symmetric poly-
nomials, which allows us to approach systems with up to 12
electrons. These quasihole states live entirely in the degener-
ate zero-energy Hilbert space with a hard-wall confinement;
this fact tremendously reduces the dimension of the Hilbert
space in the time evolution.

The fractional statistics of the quasiholes can be computed
through the Berry phase or, effectively, the mean angular
momentum of those states, as long as the quasiholes are
not overlapping with each other and with the edge of the
FQH droplet. The technique with Jack polynomials provides
us a reasonably wide range of quasihole location, in which
we can observe a plateau of the expected anyon statistics.
Based on a quench protocol, we demonstrate that quasiholes
in the bulk can be driven by a harmonic potential or, in the
more realistic case, by Coulomb interaction and background
charge confinement to braid around each other. This reveals

TABLE I. The table of absolute value of the energy difference
|Ei − Ej | for the edge states marked in the inset of Fig. 9. The
underlined energy differences are consistent to the frequency peaks
in the Fourier spectrum of the overlap |〈�(0)|�(t )〉|2 in Fig. 8.

E1 E2 E3 E4 E5 E6

E1 0
E2 0.00655 0
E3 0.04717 0.05373 0
E4 0.02016 0.02672 0.02701 0
E5 0.00387 0.01042 0.04330 0.01629 0
E6 0.01860 0.02516 0.02857 0.00156 0.01473 0

interesting possibilities of manipulating anyons by dynami-
cal quench in numerical simulations and, possibly, in future
experiments toward the realization of topological quantum
computation with anyons in FQH liquids. We note that while
the identification of fractional statistics by measuring angular
momentum also works in the case of non-Abelian anyons [54],
the quench dynamics for the e/4 quasiholes in the Moore-
Read state can be more interesting but complex. In principle,
the quasihole state can still be written as the combination of
edge states, though the edge spectrum of the Moore-Read state
contains both bosonic and fermionic modes, as well as their
mixed modes. In particular, the e/4 quasihole wave function
involves fermionic modes, whose energies are significantly
smaller than the gap [55]. Meanwhile, the effectiveness of
diagonalizing in the truncated edge space spanned by relevant
Jack polynomials has been demonstrated earlier [38], which
confirmed a clear separation in fermionic and bosonic energy
scales. In the subsequent study, therefore, we plan to explore
the non-Abelian statistics and the quench dynamics of non-
Abelian anyons, paying attention to the interplay and mixing
of the two types of edge modes in realistic situations.
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APPENDIX: MAPPING TWO-QUASIHOLE STATES
TO JACK POLYNOMIALS

In Sec. II we discussed the principles and difficulties of
constructing a two-quasihole state with a symmetric configu-
ration as in case B. The apparent difficulty is that each term
in Eq. (11), the polynomial expansion of the model wave
function, involves multiple zero-energy Jacks in the same mo-
mentum subspace. We need to find a series of matrices in these
subspaces that can map the polynomials to the corresponding
Jacks.

For simplicity, let us take a four-electron Laughlin state
as a concrete example. Multiplied by the Jastrow term∏

i< j (zi − z j )3, the first term on the right-hand side of
Eq. (11) corresponds uniquely to the Jack |001001001001〉,
which lies in the momentum subspace with �M = 2Ne =
8. The second term

∑
j

∏
i �= j z2

i , however, corresponds to
the Jack |100001001001〉 and its descendant from the
squeeze rule |010010001001〉. They both have �M = 6 and
span a two-dimensional degenerate subspace. In the same
manner, the third term in Eq. (11) can be expanded by
|100100001001〉 and its two descendants |100010010001〉
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and |010010010010〉, which result in a threefold degeneracy
in the �M = 4 subspace. Now the question is how to com-
bine degenerate Jacks to construct all the terms in Eq. (11)
multiplied by the Jastrow factor. In other words, we need to
calculate the coefficient cμ in the expression

m�M

∏
i< j

(zi − z j )
3 =

∑
μ

(�M )

cμJμ, (A1)

where m�M is the polynomial in Eq. (11) with degree �M.
The summation of Jμ contains all the Jacks whose root con-
figurations descend from 
(�M ), which we denote for the
Jack |1001 · · · 100100001001 · · · 〉 with �M/2 electrons (or
1’s) to the right of the two inserted quasiholes (or 0’s, labeled
in red). The coefficients {cμ} need to be determined with the
nonorthogonality among J
(�M ) and its descendants in mind.
The details resemble the monomial expansion of an arbitrary
monomial multiplied by the Laughlin state, which we need
in the construction of edge excitations; in the latter case,
however, the summation is taken without restricting the orbital
number [38]. Therefore, we have here a simpler situation in
which the two-quasihole state lives in fixed 3Ne orbitals, so
the degeneracy is smaller. Taking the four-electron system as
an example, we determine {cμ} for �M = 2 by solving the
following identity:(

Sym[ziz j]

Sym
[
z2

i

]
)

J
(0) = A2

(|100100010010〉
|100100100001〉

)
,

where J
(0) ≡ |1001001001〉 = ∏
i< j (zi − z j )3 is the Laugh-

lin state and A2 is a 2 × 2 lower triangular matrix in the
following form:

A2 =
(

1 0

− 6
5 1

)
. (A2)

For �M = 4, we need to solve⎛
⎜⎝

Sym[ziz jzkzl ]

Sym
[
z2

i z jzk
]

Sym
[
z2

i z2
j

]
⎞
⎟⎠J
(0) = A3

⎛
⎝|010010010010〉

|100010010001〉
|100100001001〉

⎞
⎠,

which yields a 3 × 3 lower triangle matrix

A3 =

⎛
⎜⎝

1 0 0
−36
11 1 0
27
22

−6
5 1

⎞
⎟⎠. (A3)

For �M = 6, we need, again, a 2 × 2 matrix, which turns out
to be identical to A2 and satisfies(

Sym
[
z2

i z2
j zkzl

]
Sym

[
z2

i z2
j z

2
k

]
)

J
(0) = A2

(|010010001001〉
|100001001001〉

)
.

These are the matrices needed for the four-electron system
with 12 orbitals, whose degeneracies in the zero-energy sub-

space for Mtot ∈ [18, 26] are 1,1,2,2,3,2,2,1,1, respectively.
But in a system with more than five electrons, the degeneracy
for �M = 6 becomes 4, and the corresponding matrix is

A4 =

⎛
⎜⎜⎜⎝

1 0 0 0
−90
17 1 0 0

810
119

−36
11 1 0

−1620
1309

27
22

−6
5 1

⎞
⎟⎟⎟⎠. (A4)

Interestingly, the n-dimensional matrix An is embedded as
the lower right submatrix of the (n + 1)-dimensional matrix
An+1. We find these matrices are independent of the system
size and, as shown in the four-electron case, the same for
�M = m and 2Ne − m. Since the largest system we calculate
in this work contains 12 electrons, all we need to present is
the following 7 × 7 matrix for the �M = 12 subspace:

A7 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0 0

− 396
35 1 0 0 0 0 0

2673
56 − 270

29 1 0 0 0 0

− 2673
29

11 340
377 − 168

23 1 0 0 0
120 285

1508 − 340 200
8671

378
23 − 90

17 1 0 0

− 216 513
8671

153 090
8671 − 4536

391
810
119 − 36

11 1 0
216 513
173 420 − 183 708

147 407
486
391 − 1620

1309
27
22 − 6

5 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(A5)
When two quasiholes are arranged in an asymmetric con-

figuration, i.e., w1 �= w2, the odd �M subspaces are also
involved. The matrices Bn for these momentum spaces are,
again, symmetric around Mtot = M0 + Ne. It still holds that
Bn is embedded as the lower right submatrix in Bn+1. So, we
only need to present the largest matrix B6 for �M = 11 and
Ne = 12:

B6 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0

− 165
16 1 0 0 0 0

4455
116 − 108

13 1 0 0 0

− 93 555
1508

6804
299 − 63

10 1 0 0
340 200

8671 − 6804
299

189
17 − 30

7 1 0

− 505 197
69368

30 618
5083 − 81

17
270
77 − 9

4 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (A6)

Finally, we emphasize that the lowest row in each matrix
corresponds to the coefficients {cμ} in Eq. (A1). Therefore,
we can construct the product of each term in Eq. (11) and
the Jastrow term by a linear combination of Jack polynomials.
This concludes our construction of the two-quasihole wave
function �

2QHB
L with only A matrix, or in the more general

asymmetric case with both A and B matrices.
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