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Two-photon coherent states are one of the main building pillars of nonlinear and quantum optics. They are
the basis for the generation of minimum-uncertainty quantum states and entangled photon pairs, applications not
obtainable from standard coherent states or one-photon lasers. Here, we describe a fully resonant optomechanical
parametric amplifier involving a polariton condensate in a trap lattice quadratically coupled to mechanical modes.
The quadratic coupling derives from nonresonant virtual transitions to extended discrete excited states induced
by the optomechanical coupling. Nonresonant continuous-wave laser excitation leads to striking experimen-
tal consequences, including the emergence of optomechanically induced intersite parametric oscillations and
intersite tunneling of polaritons at discrete intertrap detunings corresponding to sums of energies of the two
involved mechanical oscillations (20- and 60-GHz confined vibrations). We show that the coherent mechanical
oscillations correspond to parametric resonances with a threshold condition different from that of standard linear
optomechanical self-oscillation. The associated Arnold tongues display a complex scenario of states within the
instability region. The observed phenomena can have applications for the generation of entangled phonon pairs
and squeezed mechanical states relevant in sensing and quantum computation and for the bidirectional frequency
conversion of signals in a technologically relevant range.
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I. INTRODUCTION

The concept of two-photon coherent states has been a
revolutionary development in quantum optics [1]. Such states
can be obtained from normal coherent states through unitary
operators associated with quadratic Hamiltonians [2,3]. They
correspond to the radiation states of ideal two-photon lasers
operating far above threshold. In real devices, this is accom-
plished by using parametric processes in materials with large
second-order susceptibilities [4,5]. To enhance such high-
order processes, particularly in continuous-wave operation,
optical parametric oscillators (OPOs) exploit a resonator so
that the laser pump and either one or both parametrically
generated photons (signal and idler) are confined, leading
to feedback in multiwavelength cavities [6,7]. The emission
of coherent entangled pairs of photons from such OPOs is
at the base of different approaches for second-order correla-
tion (g(2)) measurements, Bell test experiments, and quantum
key distribution protocols in quantum communications [8].
The mean-square quantum noise behavior of these states,
which is basically the same as that of minimum-uncertainty
states, leads to applications in sensing not obtainable from
one-photon lasers [9–11]. Moreover, such quantum many-
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photon squeezed vacuum states are involved in the most recent
and promising approaches to large-scale photonic quantum
computing, as an alternative to implementations using single
photons [12,13].

Phonons, the quanta of mechanical vibrations, can also
be used to define and manipulate coherent states. Compared
with cavity photons, acoustic phonons have a longer lifetime
and a much smaller wavelength (which scales with the re-
lation of sound to light velocity), two features relevant for
device integration. These properties are exploited, for exam-
ple, not only in microwave-to-sound conversion and filter
components based on acoustic waves, as extensively used in
cell phones [14], but also with interesting prospects in quan-
tum technologies [15]. Vacuum squeezing of the mechanical
motion of solids has been reported by driving with femtosec-
ond laser pulses materials characterized by large two-phonon
Raman scattering susceptibilities [16,17]. More recently, the
search for quadratic mechanical Hamiltonians (i.e., displaying
a coupling quadratic in the displacement, x2) has gained re-
newed interest within the framework of the rapidly developing
field of cavity optomechanics [18]. A number of cavity-
optomechanical systems have been explored [19], not only
with the membrane-in-the-middle approach, which is proba-
bly the most paradigmatic platform [20], but also with other
realizations including systems of cold atoms and levitated
nanoparticles [21,22]. The x2 coupling has been proposed
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as a means for realizing quantum nondemolition measure-
ments of phonon number [23,24], measurement of phonon
shot noise [25], and the cooling and squeezing of mechanical
motion [26–29].

Here, we describe a concept for the generation of two-
phonon coherent states based on an optomechanical crystal
of exciton-polaritons (strongly coupled light-matter parti-
cles). Exciton-polaritons behave as a quantum light fluid
(LF) [30], showing Bose-Einstein condensation [31] with pe-
culiar features stemming from their composite boson nature,
effective photon-photon interactions, and the intrinsically
driven-dissipative non-Hermitian character of their dynamics.
Besides this, polariton condensates are interesting in the do-
main of cavity optomechanics due to their long coherence
times and huge electrostrictive (exciton-mediated) optome-
chanical interactions [32–35].

We present both experimental and theoretical results
for an array of micrometer-sized exciton-polariton traps on
which recently polariton-driven phonon lasing has been re-
ported [36]. We show that upon nonresonant cw excitation
such a LF optomechanical lattice evolves into a stationary
coexistence of condensed phases populating both the strongly
localized ground state of neighbor traps and a shared delo-
calized excited state. The energy detuning between neighbor
traps depends on the exciton reservoir because of the in-
volved Coulomb interactions. When this detuning becomes
resonant with the combined energy of pairs of phonons
confined in the resonators, an optomechanical instability aris-
ing from a quadratic coupling involving the excited state
sets in. The observed instability corresponds to a parametric
resonance with properties fundamentally different from self-
oscillation typically observed in linear-coupling resonantly
driven optomechanical systems. The physics is rather that
of a parametric resonator and of two-phonon coherent states
conceptually equivalent to two-photon resonant OPOs well
above laser threshold. Concomitant with what we define as
an optomechanical parametric oscillation state, a locking of
the polariton trap energies and an enhanced excited-state-
mediated optomechanically induced tunneling are observed.

II. RESULTS

The light-fluid lattice. The studied system consists of cav-
ity polaritons in micrometer-sized intracavity traps patterned
by means of a shallow etch-and-overgrowth technique on a
(Al, Ga)As microcavity [37]. The lateral modulation of the
spacer of the microcavities creates an array of intracavity
traps, each consisting of a nonetched area surrounded by
etched barriers (a detailed description of the device is pre-
sented in Appendix A). These layered cavity structures also
confine breathinglike vibrations polarized along the growth
direction (z), with a fundamental frequency around ν0

m ∼
20 GHz and overtones at νn

m = (1 + 2n)ν0
m, n = 0, 1, 2, . . .

(the first one being at ν1
m = 3ν0

m ∼ 60 GHz) [38]. The lateral
patterning adds an additional trapping potential for acoustic
phonons in a way fully equivalent to the confinement of
photons. Thus, similar to polaritons, acoustic phonons can
be described as confined modes of in-plane (s, p, d, . . .)-like
symmetry [39]. We will concentrate here on experiments per-
formed on an array of square traps of 1.6 μm lateral size

separated by 3.2-μm-wide etched barriers [a scheme is shown
in Fig. 1(a)].

A typical spatially resolved photoluminescence (PL) im-
age obtained below and above the polariton condensation
threshold is presented in Figs. 1(c) and 1(d), respectively. The
roughly 3-μm-wide Gaussian-like laser spot mainly excites
a single trap. Neighboring traps are, however, also weakly
excited through the tails of the laser spot as well as via
lateral propagation of the excitons in the reservoir. A small
unintentional misalignment of the laser spot on the addressed
microstructure typically leads to one of the neighbor traps
being more strongly excited than the others (the one on the
left for the shown example). The fundamental and first excited
states of the pumped trap, as well as weaker contributions
from neighbor traps, can be identified in Figs. 1(c) and 1(d).
The transition to a LF condensed state is signaled both by the
narrowing of the lines and the increase of the emitted intensity
from the lower confined levels [37]. Above threshold, narrow
coherent emission can be identified mainly from the ground
state, but also from the first excited state.

The spatial and pump power dependence of the strongly
coupled polariton states in the traps can be described by a
phenomenological Gross-Pitaevskii equation (GP). Since all
the energy scales involved are of the same order of magnitude
(exciton-photon detuning, Rabi splitting, and correlation-
induced blueshift), our GP model allows for a change in the
exciton-photon content as a function of the excitation power
and includes the spatial modulation of the photon cavity mode
energy introduced by the microstructuring of the cavity spacer
(see Appendix B) [40]. From this model we can obtain the
effective potential affecting the polaritons in the traps, as
well as the energies and spatial distribution of the trap states.
Figures 1(c) and 1(d) show, together with the experimental
data, the calculated polariton effective potential, confined trap
energies, and polariton modes. In the latter a significant detun-
ing between neighbor trap states develops due to the spatially
dependent blueshift induced mainly by the interaction with
the reservoir. The agreement with the experiments is notably
good. Importantly, intertrap overlaps between the different
states, at different applied powers, can be derived from the
effective potentials. For the overlap integral between ground
states of neighbor traps we obtain a very small value, ∼10−4,
highlighting a very strong localization of the ground polari-
ton state in individual traps. This contrasts with the overlap
integral between excited states, for which we obtain ∼0.4,
evidencing that both at low and high powers the first excited
state corresponds to a mode spread out in both traps.

The optomechanical sidebands. The arrays studied here
display, with increasing nonresonant cw excitation power, rich
optomechanical phenomena including strong phonon-assisted
PL and, upon stronger excitation, very efficient mechani-
cal coherent oscillation (phonon lasing) [36]. The latter is
evidenced by the appearance of well-resolved symmetri-
cal sidebands, separated by the energy of the fundamental
mechanical breathing mode of the resonators, for both the
ground- and excited-state emission [shown in Fig. 1(e)]. Quite
notably, the mentioned mechanical sidebands, signaling the
passage to a coherent phonon state, appear when one of the
neighbor traps is red detuned with respect to the pumped
trap by an integer multiple of the fundamental breathing
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FIG. 1. Polariton effective potentials and optomechanical sidebands. (a) is a scheme of the lattice consisting of a pumped central polariton
trap and neighbor traps in a square array. DBR, distributed Bragg reflector; QW, quantum well. (b) presents the involved polariton levels
corresponding to the strongly confined ground states of the pumped trap (|1〉) and one of its neighbor traps (|2〉), as well as a delocalized
excited state (|3〉). g0 is the linear optomechanical interaction coupling the s-symmetric ground states with the p-symmetric excited state with
the concomitant emission of a p-like confined phonon. (c) [(d)] displays the spectral and spatial image corresponding to the low-pump-power
(high-pump-power) condition. The effective trap potentials (shaded light red), lateral distribution of the exciton energy (top dashed Gaussian
curve), and corresponding confined polariton wave functions (thin colored curves) derived from a Gross-Pitaevskii modeling of the quantum
light fluid are also shown. The detuning between the pumped and neighbor trap ground states (δE ) can be tuned through the excitonic-related
repulsive interaction with the reservoir by varying the nonresonant incoherent pump power as shown in (e) (note that this detuning is given
in units of the phonon energy h̄�0 in the top scale). The emission from ground states |1〉 and |2〉 and the excited state |3〉 can be identified.
Note that clear and symmetrical spectral sidebands appear for both the ground and excited state precisely when one of the neighbor traps is red
detuned with respect to the pumped trap by integer multiples 2 and 4 of the fundamental breathing mechanical cavity mode ν0

m ∼ 19 GHz.

mechanical cavity mode energy hν0
m [36]. More precisely,

they occur at δE4 = −4hν0
m (∼75 GHz) and δE2 = −2hν0

m
(∼37 GHz)—experimental spectra for these detunings are
shown in Figs. 2(a) and 2(b), respectively. These observations
clearly point to a resonant two-mode optomechanical system,
involving the polariton ground states of the pumped and a
neighbor trap, and the mechanical breathing oscillation of the
optical cavities. We note that a strong modification of both the
ground- and excited-state spectra in Fig. 1(e) can also be ob-
served for detunings δE ∼ 50–60 GHz (∼3h̄�0). The states in
this case, however, do not display symmetrical well-resolved
sidebands, but an asymmetric distortion of a different nature.

The standard approach for optomechanical linear cou-
pling (cavity-phonon coupling proportional to x) based on a
two-mode cavity system leads to the optomechanically mod-
ified phonon effective linewidth �eff = �m(1 − C), where
�m is the original phonon linewidth and C is the so-called
optomechanical cooperativity [18]. This result holds when
the two polariton modes of energy h̄ωi are detuned by the
phonon energy h̄�0 ≡ hν0

m, that is, for ω1 − ω2 = �0. We
use here the trap index {1, 2}, where 1 (2) refers to the
pumped (neighbor) trap. To derive �eff , a strong coherent
driving tuned to the blue-shifted polariton mode 1 is also
assumed while cavity losses are included through the opti-
cal linewidths κi = κ of the polariton traps. It follows that
for such two-mode resonant linear optomechanical systems,
the threshold for self-oscillation is reached provided that
1 < C = 4 n1|g|2

κ�m
, where g is the optomechanical single po-

lariton coupling rate and n1 is the occupation of the driven
mode.

The optomechanical factor coupling polariton levels of
the same trap can be estimated to be in the range g/2π ∼
0.05–5 MHz [35,38,41], depending on the degree of radiation
pressure or resonant electrostrictive contribution to the cou-
pling (see Appendix C)—hereinafter we refer to this value
as g0 to emphasize its on-site character. For the two-mode
situation described by our experiments, however, the optome-
chanical coupling g connecting ground states of separate traps
should be much smaller because of the mentioned overlap
integrals being of the order of 10−4. Confined LFs act as an
intracavity coherent source. It turns out, however, that because
of the mentioned strongly isolated character of the polariton
ground states, and being that C ∝ |g|2, the optomechanical
cooperativity based on these calculations is several orders
of magnitude smaller that the one required to account for
the observed threshold to mechanical self-oscillation, even
considering the upper limit of resonant electrostrictive con-
tribution. Moreover, we note that the phonon sidebands are
observed when the detuning between traps is not h̄�0, but an
even multiple (n = 2, 4) of it.

Mechanical mode softening, intertrap frequency locking,
and enhanced tunneling. We now address additional features
that arise in connection with the resonant intercavity detun-
ings δE4 and δE2. Figures 2(a) and 2(b) present the emission
spectra corresponding to these two resonance conditions in
which symmetric evenly spaced mechanical sidebands are
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FIG. 2. Mechanical mode softening, intertrap frequency locking,
and enhanced polariton transfer. Examples of PL emission pre-
cisely at the resonant detuning conditions δE4 ∼ 75 GHz and δE2 ∼
37 GHz are shown in (a) and (b), respectively. Asterisks indicate PL
from neighbor traps. The symmetric evenly spaced mechanical side-
bands can be clearly observed at detunings corresponding to integer
numbers n = 2 and n = 4 of the fundamental mechanical frequency
h̄�0. Fits to the spectra [indicated with continuous orange curves
in (a) and (b)] allow for the derivation of the applied incoherent
nonresonant cw pump power dependence of the involved mechanical
frequencies, the trap energy detuning, and their occupation [shown in
(c)–(e), respectively]. The vertical yellow bands indicate the regions
where the intertrap resonances are attained, leading to the observa-
tion of the mechanical sidebands.

observed. The asterisks in these panels indicate peaks re-
lated to PL coming from neighbor traps (also highlighted
with a darker shading). Phenomenological Lorentzian fits to
the main lines and phonon-related sidebands in the polariton
emission spectra allow for the determination of the phonon
frequency, the intertrap detuning, and the relative ground-state
occupation of the neighbor traps when the power of the non-
resonant pump is varied. These three features are displayed
in Figs. 2(c)–2(e). Vertical orange bands identify the pow-
ers at which mechanical sidebands are observed. There is a
softening of the phonon frequency as the power is increased
[Fig. 2(c)], amounting to about 1–2% over the whole scanned
power range. Such softening resembles the so-called optical
spring effect typical of back action in cavity optomechanical
phenomena [18]. The intertrap detuning shown in Fig. 2(d) is
in principle determined by the distinct blueshift of the pumped
and the neighbor trap ground states induced by interactions
between confined LFs and the excitonic reservoir. Quite no-
tably, close to the first mechanical instability regime at δE4 ∼
75 GHz, the rapidly evolving detuning changes its slope, par-
tially locking around this value for a range of applied powers.
After a further increase of the applied power, the reappearance
of a mechanical coherent state coincides with the final locking
of the detuning at δE2 ∼ 37 GHz. This behavior, indicative
of a locking of the intertrap energy detuning at an energy
scale defined by the optomechanics, is highlighted in Fig. 2(d)
with a guide-to-the-eye continuous curve superimposed on the
data.

The information concerning the intertrap polariton transfer,
on the other hand, is reflected in the intensity of the lines in the

emission spectra as a function of increasing power (i.e., as a
function of trap detuning), as displayed in Fig. 2(e), where the
relative occupancy n2/n1 is shown (note the log scale). Here,
n1 and n2 are the occupancy of polariton mode 1 and mode
2, respectively. Note that maxima of n2/n1 are observed when
the instability to a mechanical coherent state occurs, bringing
evidence of an enhanced polariton tunneling from the pumped
to the neighbor trap when the peculiar resonant conditions
are met. The origin of such resonant mechanical instability
at detunings corresponding to multiples of the phonon fre-
quency, the mechanical mode softening, the intertrap locking,
and the optomechanically induced polariton tunneling will be
addressed next.

Model Hamiltonian for a trap array with optomechani-
cal coupling mediated by an excited state. To describe the
appearance of optomechanical induced sidebands on the PL
spectrum of the nonresonantly pumped trap array, we intro-
duce here a simplified model that captures the main physical
ingredients. The model takes into account the two fundamen-
tal polaritonic modes of two neighboring cavities, a single
polariton excited state shared by both traps and an on-site
phonon-mediated coupling between ground and excited states.
The Hamiltonian then has two contributions, H = H0 + HOM.
Here,

H0 =
3∑

j=1

h̄ω j â†
j â j +

∑
n

h̄�n b̂†
nb̂n (1)

describes the decoupled polariton and phonon modes: (i) â†
j

(â j) creates (annihilates) a polariton in the j mode with energy
h̄ω j , where j = 3 refers to the excited mode; and (ii) b̂†

n (b̂n)
creates (annihilates) a p phonon in the n mode with energy
h̄�n. The index n labels the fundamental and the overtone
mechanical modes so that, for example, �1 = 3�0 ∼ 2π ×
60 GHz (for simplicity, we take �0 = 2π × 20 GHz). The
linear optomechanical coupling reads

HOM =
2∑

j=1

∑
n

h̄g jn(â†
j â3 + â†

3â j )(b̂
†
n + b̂n). (2)

Note that there is no direct coupling between â1 and â2; this
occurs only with the excited mode. This is so because tunnel-
ing between the fundamental modes is negligible, and so is
the direct optomechanical coupling constant. Because of the
fully symmetric s character of the traps’ ground state and the p
symmetry of the polariton excited state, only acoustic phonons
of p symmetry need to be considered—s modes couple to the
number operator â†

j â j , and their role will be discussed below
(see also the discussion in Appendix D). In addition, we note
that while the s-like mechanical vibrations turn out to be fully
confined, the p phonon modes are extended and so shared
between traps (as the excited polariton state).

It is straightforward to derive from the above Hamiltonian
the equations of motion for â j and for the dimensionless
phonon displacement operator, x̂n = b̂†

n + b̂n. Here, we re-
strict ourselves to the semiclassical approximation, where the
bosonic operators are replaced by complex functions, which
implies that the solution of interest contains a large number of
both polaritons and phonons and so quantum fluctuation can
be ignored. The dynamics of the system is then given by the
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FIG. 3. Optomechanical instability and Arnold tongues of the effective parametric resonator. (a) shows the calculated PL spectra for the
Hamiltonian H0 + HOM, as a function of the bare detuning δE between traps 1 and 2. Here we set ω1 = 0, ω2 = δE/h̄, ω3 = 24�0, and the
threshold power as indicated in the main text. Optomechanical instabilities are observed at δE = −4h̄�0 and δE = −2h̄�0, corresponding to
resonances involving the fundamental and first overtone of the mechanical vibrations (�1 ± �0), or two fundamental mechanical vibrations
(2�0), respectively. The resolved additional peaks appear around both the ground and excited states and are separated by the frequency of the
fundamental mode (�0). As a function of trap detuning, and depending on the occupancy of the involved levels n1 and n2, instability (stability)
regions can be defined characterized by the presence (absence) of coherent mechanical oscillations. The instability regions correspond to
so-called Arnold tongues of a parametric resonator, with characteristic stationary values of

√〈x2
0〉, which is proportional to the square root

of the phonon number (b), the dressed cavity detuning 	ω (c), and the traps’ level occupation, as displayed in (d)–(f). Note in (d) and (e)
the strong optomechanically enhanced transfer of polaritons from trap 1 to trap 2 and in (c) the locking of their relative detuning within the
instability region to the resonant value given by the sum of the two involved vibrations. Dotted lines in the color maps indicate the boundary
of the Arnold tongue as estimated from Eq. (9).

set of coupled nonlinear equations detailed in Appendix D.
In order to describe the effective non-Hermitian dynam-
ics, we added a phenomenological term in the equations to
account for the incoherent driving of the polariton modes
induced by the excitons in the reservoir having decay rate γR

[see Eq. (D2)]. Such a stimulated driving leads to an effec-
tive decay rate for the polaritons κ̃ j = κ j[1 − (Pj/Pth, j )/(1 +
|aj |2R̄/γR)], which describes the condensation of each mode
when the rate Pj (proportional to the creation rate of excitons
in the reservoir and hence to the laser power) is larger than
the threshold Pth, j ≡ κ jγR/R̄. Here, R̄ is the rate of stimulated
scattering from the reservoir to the polariton modes. In the
absence of optomechanical effects, each mode would con-
dense (κ̃ j = 0) to an occupation n0

j = (Pj/Pth, j − 1)n0 with
n0 = γR/R̄. Additionally, we also include in the equations for
xn a dissipative term proportional to �n (frequency linewidth)
to account for the decay of the phonon modes. The de-
rived nonlinear coupled equations were solved numerically

for different values of the parameters using the Runge-Kutta
method choosing initial conditions with low phonon number.
In this way we obtain steady-state solutions that are accessible
when the system evolves from the low-phonon-occupation
undriven condition. Attractors and multistabilities arising at
a higher number of phonons [42] are not within the scope
of the this paper. We used the following realistic parameters:
g j0 = 3 g j1 = 2 × 10−4, κ j = 0.2, � = 5 × 10−4, in units of
�0, and n0 = 106.

Figure 3 summarizes the most important results derived
from this minimal model. Figure 3(a) presents the polariton
spectrum above the threshold for optomechanical instability
(to be discussed below) as a function of the detuning δE/h̄ =
ω2 − ω1 between the pumped and neighbor traps. Quite no-
tably, sidebands separated by the fundamental mechanical
frequency �0 occur at δE4 ∼ −4h̄�0 and δE2 ∼ −2h̄�0,
signaling the emergence of mechanical oscillations coher-
ently modulating the polariton states. The instability regions,
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characterized by the presence of a coherent mechanical state,
can be mapped by monitoring the polariton and the mechan-
ical mode occupations, as shown around the δE2 resonance
in Figs. 3(b)–3(f)—similar features occur at δE4. These color
maps present the stationary occupations as a function of both
δE and the ratio P/Pth with P1 = P, P2 = 0.65P, P3 = 0.75P,
and Pth, j = Pth. Figure 3(c) presents the detuning between
the polariton traps dressed by the optomechanical interaction
as a function of the same external parameters. Several inter-
esting features can be highlighted from Fig. 3: (i) So-called
Arnold tongues characterize the maps, separating the insta-
bility (inside) from the stability (outside) regions, the former
characterized by the onset of a macroscopic occupation of
the mechanical modes. (ii) Within these instability regions a
transfer of polaritons from the ground state of the pumped
trap to that of the neighbor trap is mechanically induced,
even when the direct tunneling between these states is nearly
zero. Note that these effects are particularly strong at the tip
of the Arnold tongue, corresponding to the onset of polari-
ton condensation. (iii) A small redshift of the mechanical
vibrations with increasing optical driving is evidenced by
the off-centered shape of the tongues (polaritonic dressing of
the mechanical states). (iv) A locking of the polariton trap
energies (main peak in the PL spectrum) at a fixed detuning
that matches an integer multiple of the phonon frequency is
observed within the instability regions (mechanically dressed
polariton states). This locking can be connected with the
universal phenomena of synchronization of nonlinear dynam-
ical systems [43], also studied in the domain of quantum
LF [44,45]. We note, however, that in our model it is purely
of optomechanical nature. In fact, nonlinearities of thermal or
electronic origin have not been included in the model.

Two-mode resonant cavity optomechanical system with
effective quadratic coupling. To bring some light to the un-
derstanding of the described physics, and to extract the more
relevant solutions of what emerges as a complex dynamics, we
now discuss a further simplified model. As discussed above,
the optomechanical features in the PL spectrum appear when
the modes â1 and â2 are tuned to a particular energy difference
(related to the phonon frequencies). This calls for a descrip-
tion where these two modes play the more important role.
Since the excited mode is well separated from the fundamental
modes in comparison with the phonon energy, 	 j = ω3 −
ω j � �n, it is thus reasonable to assume that one can describe
the dynamics with an effective reduced Hamiltonian. This
can be done by means of a suitable canonical transformation.
Let us define H ′ = e−SHeS , with S being an anti-Hermitian
operator defined by the condition HOM = [S, H0]. It can be
readily seen that, to leading order in g jn/	 j and �n/	 j , and
retaining only those terms involving the phonon operators,

H ′ =
3∑

j=1

h̄ω j â†
j â j +

∑
n

h̄�n b̂†
nb̂n

+
2∑

j=1

∑
n,m

h̄g jng jm

	
(â†

3â3 − â†
j â j )(b̂

†
n + b̂n)(b̂†

m + b̂m)

−
∑
n,m

h̄g1ng2m

	
(â†

1â2 + â†
2â1)(b̂†

n + b̂n)(b̂†
m + b̂m). (3)

Here, for simplicity, we took 	 j ± �n ∼ 	 j ≡ 	. The sec-
ond line in H ′ reflects a coupling between the phonon
displacement and the polariton mode occupations. This leads
to a renormalization of the phonon energies induced by the
polaritons in both the ground and excited states. When a
mechanical coherent state sets in, it also leads to a modi-
fication of the polariton energies depending on the phonon
occupation. The last line in H ′, in turn, makes explicit that
there is an effective quadratic phonon coupling between the
two fundamental polariton modes of the neighboring traps, of
order G2 = g1ng2n/	 ∼ g2

0/	, since g jn are of the order of
the abovementioned on-site linear coupling constant g0. As
we show below, this leads to a parametric instability of the
phonon state, conceptually different from the self-oscillation
observed in linear optomechanical systems, whenever the de-
tuning δ equals the sum of energies of two mechanical modes
of the system.

Parametric resonance. One can readily derive from H ′ the
equations of motion in a fashion similar to that used for the
full model (described in Appendix D). Here, we only write
down the one corresponding to x̂n (in the same semiclassical
limit as before):

ẍn = −�nẋn − �2
nxn − 4�n

2∑
j=1

∑
m

gjng jm

	
(a∗

3a3 − a∗
j a j ) xm

+ 4�n

∑
m

g1ng2m

	
(a∗

1a2 + a∗
2a1) xm, (4)

which corresponds to a set of coupled harmonic oscilla-
tors with parametric driving. The latter becomes evident
when noticing that the last two terms, for m = n, correspond
to a time-dependent modulation of the phonon frequency.
Moreover, the last term can become resonant at appropriate
intertrap detunings. It is important to keep in mind that this
modulation provided by the polariton modes is not given
but rather obtained self-consistently by solving all the equa-
tions of motion simultaneously.

To better grasp the origin of the parametric instability and
derive analytical expressions for the threshold condition, we
look at the simpler situation where only one p phonon mode
exists (sufficient to describe the resonance at δE2). In that
case, Eq. (4) reduces to

ẍn + �n ẋn + �̃2
n xn = 0, (5)

where

�̃2
n = �2

n+ 4�n
g2

0

	

(
2n0

3−
2∑

j=1

n0
j + 2

√
n0

1n0
2 cos (ω1− ω2)t

)
.

(6)

Here, we took g1n = g2n = g0 for simplicity and also assumed
the zero-order solution (no phonon) for the polariton modes—
that is, a0

j (t ) =
√

n0
j e−iω j t . Equation (4) can be cast in the

form of the damped Mathieu equation [46]

q̈ + �q̇ + (
�2 + �2

p cos ωpt
)
q = 0, (7)
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with q(t ) = xn(t ),

�2 = �2
n + 4�ng2

0

	

(
2n0

3 −
2∑

j=1

n0
j

)
, �2

p = 8�ng2
0

	

√
n0

1n0
2,

(8)

and ωp = δ = ω1 − ω2. This equation shows unstable solu-
tions (parametric resonances) when |ωp| ∼ 2�/l , with l being
an integer number. The case l = 1 is the standard (and most
intense) double-frequency parametric resonance of an oscil-
lator, while l > 1 describes the corresponding subharmonic
driving conditions. Taking �n as the fundamental confined
mode at �0/2π = 20 GHz, this explains the experimental
observation of mechanical sidebands at δE2 = −2h̄�0. The
generalization of this result to a system with more than one
phonon mode leads to resonances also at the sums of two of
them (see Appendix D). The resonance at δE4 = −4h̄�0 can
thus be understood as being due to a combination �0 + �1.
Note also that the first line of Eq. (8) describes the variation
of the mechanical frequency induced by the polaritons and
explains the small shift of the center of the Arnold tongues
shown in Fig. 3.

A standard stability analysis of the damped Mathieu equa-
tion [46] allows us to find the values of the detuning where
the instability sets in. Assuming that the threshold condition
is met, that � � � and ω1 − ω2 > 0, we get∣∣∣∣∣δ + 2�n + 4g2

0

	

(
2n0

3 −
2∑

j=1

n0
j

)∣∣∣∣∣ � 4g2
0

	

√
n0

1n0
2. (9)

This defines the limits of the Arnold tongues shown with
dotted lines in Fig. 3, which coincide very well with the nu-
merical solutions of the full nonlinear model. We stress that in
this regime the phonon amplitude grows and the amplitudes of
all fields have to be obtained self-consistently. Indeed, it turns
out that the nonlinear back-action terms limit the amplitude of
the phonon, thus avoiding the divergence of an ideal paramet-
ric oscillator. This occurs because the renormalization of the
polariton energies induced by the mechanical coherent oscilla-
tion detunes the system from the exact parametric resonance.
It is also worth mentioning that the same analytical condition
can be derived directly from the original model described by
H using a perturbative approach [47].

For optimal detuning, |δ| = 2� ∼ 2�n, the threshold con-
dition becomes

4g2
0

	�

√
n0

1n0
2 > 1. (10)

Note that this expression retains some similarities with the
threshold condition for self-oscillation in a two-mode lin-
ear optomechanical system, C = 4 n1|g|2

κ�m
> 1. Firstly, it now

depends on both occupations, that of the pumped and the
neighbor trap. This is because what plays the role of the
parametric driving in Eq. (4) is the frequency beating induced
by polaritons shuttling between states 1 and 2. Secondly, it
does not depend on the cavity photon (or polariton) decay
rate κ . This stems from the fact that, in the studied driven-
dissipative LF, the effective κ̃ becomes zero when stimulated
condensation sets in. Thirdly, the second-order character of

the optomechanical coupling, which is mediated through vir-
tual transitions to a delocalized excited polariton state, leads
to an effective quadratic coupling of magnitude G2 = g2

0/	.
Consequently, the threshold for a parametric resonance in-
stability is changed with respect to the linear expression by
a factor of order 	/κ . If we take for κ the inverse of the
cavity photon lifetime (∼10 ps), this number is rather small,
of the order of ∼6. The implication is that the described
mechanical instability threshold power is similar to that for
an equivalent linear system, despite the fact that the direct
linear coupling between isolated traps is hugely decreased due
to the very small overlap integrals (the threshold power for
self-oscillations in the linear optomechanical regime in our
device is estimated to be several orders of magnitude larger
due to this effect).

As mentioned before, we have neglected the s-phonon
modes in our analysis. This is essentially correct for the sake
of understanding the origin of the mechanical instability as it
turns out that only the p phonon modes are responsible for
the emergence of a coherent mechanical state. Nevertheless,
it is important to point out that we have observed that, once
the p modes become unstable, they trigger the oscillation of
the s modes through the modulation of the population of the
polaritonic modes at the proper frequency. When this occurs,
all phonon modes can become macroscopically populated and
lead to enhanced sidebands.

III. DISCUSSION AND OUTLOOK

The phenomena we have reported and termed an op-
tomechanical parametric oscillation are different from other
realizations of quadratic Hamiltonians in cavity optome-
chanics in several relevant aspects, as follows. (i) The
term “optomechanical parametric oscillation” applies to op-
tomechanical crystals that are driven, or populated, by an
exciton-polariton light fluid. (ii) Concomitant with that, no
resonant driving is performed: The self-oscillations arise from
the intrinsic dynamics of a nonresonantly excited driven-
dissipative system. (iii) The optomechanical coupling is
essentially purely quadratic, with linear terms negligible for
all practical purposes. (iv) It is a fully resonant two-mode
light-fluid system, in which these two involved modes self-
tune to the parametric resonance at double frequencies. (v)
Because of the superhigh mechanical frequencies involved
(20 GHz ∼1 K, and 60 GHz ∼3 K), the mechanical system is
very close to the quantum ground state at the working standard
cryogenic temperatures (∼4 K). These peculiarities lead to
some consequences that we discuss next.

Self-oscillation vs parametric resonance. A parametric
resonance as described here is similar to but conceptually
different from the phenomena of self-oscillation [48] present
in cavity systems with linear optomechanical coupling [18].
The phenomena of self-oscillation are properties of dynamical
systems characterized by a driving force that is controlled
by the oscillation, acting in phase with the velocity. These
phenomena can be linked also to retarded restoring forces. No
explicit time dependence of the force is, however, required.
In cavity optomechanical systems it leads to an additional
contribution determined by the optical force to the term in the
oscillator equation that is proportional to q̇. Above a certain
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threshold this causes a negative damping, leading to an am-
plitude of the oscillation that grows exponentially with time,
being ultimately limited by other nonlinear effects. Parametric
resonance resembles self-oscillation in that the growth of the
amplitude is also exponential in time but, in this case, the
equation of motion has an explicit time dependence [48].
In fact, it requires a perturbation affecting the oscillator
frequency with a harmonic time dependence tuned to |ωp| ∼
2�/l . In our case, this harmonic driving is intrinsically gener-
ated by the beating of a light fluid between two detuned modes
belonging to neighboring traps. In this way an optomechani-
cal parametric oscillator (OMPO) is realized, which mimics
quite precisely its equivalent in optics, the optical parametric
oscillator (OPO).

Limit cycles and chaos. The experimental observation
of symmetrical mechanical sidebands is a manifestation of
the emergence of a periodic limit cycle with the paramet-
ric oscillation characteristics just discussed. The numerical
modeling of the system also evidences a more complex
dynamics when the multivariable parameter space is inves-
tigated in a broader range of attainable conditions. Different
phases emerge within the optomechanical instability (Arnold
tongues). Notably, besides the periodic limit cycles stable
within part of the parameter space, we have observed at larger
excitation powers and within the Arnold tongues that there are
regions characterized by chaotic-like regimes. Such chaotic
phases have indeed been identified in other optomechanical
systems [49–51], including resonantly driven systems with
quadratic coupling [52]. The numerical simulations show that
while the polariton decay rate κ does not affect the threshold
for parametric oscillation (as discussed above), it does deter-
mine the peculiar geography of the different phases within the
Arnold tongues.

Optomechanically induced tunneling. The reported op-
tomechanically induced tunneling mechanism, mediated by
a nonresonant excited extended state, is different from other
relevant tunneling processes identified in trapped interacting
bosonic condensates. The latter typically require a direct cou-
pling between the involved initial and final states [53–58].
Based on the described optomechanically induced tunnel-
ing, phonons could be used for the control of operations
in quantum simulators based on light fluids [59–62]. The
optomechanical coupling, largely unexplored in the domain
of exciton-polariton light fluids, can be tailored to display a
rich variety of physical phenomena that could be relevant for
quantum technologies.

Squeezing and two-phonon coherent states. The physics
we described here is conceptually quite similar to optical
parametric oscillation in photonics by which pairs of photons
are generated at frequency �0 through nonlinear processes
induced by driving at 2�0 in appropriate crystals lacking
inversion symmetry. Indeed, the Hamiltonian for such sys-
tems takes the form HOPO = λ(b̂2â† + b̂†2â), with bosonic
operators â (b̂) standing for photons of frequency 2�0 (�0).
The photonic driving field a is typically assumed to be large
and thus taken as a complex number a → i r

2 e−i2�0t . With
this, the time evolution operator of a driven OPO system,
in the appropriate reference frame, essentially becomes the
squeezing unitary operator S(z) = exp[ z

2 (b̂2 − b̂†2)], where
z = λr/h̄ here is taken as a real number. A similar proce-

dure can be followed for our polariton system with effective
quadratic optomechanical interactions when operating at the
resonance δE2 ∼ −2h̄�0, corresponding to the coupling with
pairs of identical h̄�0 phonons. To make a full parallel with
the OPO Hamiltonian, one simply has to identify the pa-
rameters r

2 =
√

n0
1n0

2 and λ = h̄g2

	
in Eq. (3). Under these

assumptions, the mechanical wave function resulting from
this polariton driving on the phonon vacuum |0〉 (the 20-GHz
mode is very close to its quantum ground state at our working
temperature of 4 K, with an initial thermal occupation around
4) can be expressed as a squeezed vacuum, S(z)|0〉, a two-
phonon coherent state resulting from a coherent superposition
of even-number states. In this sense, our system behaves as
a fully resonant optomechanical parametric oscillator. In the
actual device the coherent phonon population is limited both
by nonlinearities of the full Hamiltonian describing the system
and by the residual dephasing of the polariton condensates.
The coherence time of the polariton condensates has been
experimentally determined to be around 600 ps. Preliminary
numerical simulations including this decoherence show that
it does not modify substantially the dynamics of the system,
which thus seems to be mostly limited by the intrinsic non-
linearities of the light-fluid optomechanics. We thus envision
that properly designed systems might take advantage of this
effective quadratic optomechanical coupling to produce en-
tangled phonon pairs and well-defined squeezed phonon states
on demand.
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APPENDIX A: DEVICE FABRICATION

The studied device consists of a microstructured polari-
tonic microcavity with arrays of micrometer-sized intracavity
traps able to confine polaritons in three dimensions. The
microcavity is created by patterning (Al, Ga)As in be-
tween growth steps by molecular beam epitaxy (MBE).
The fabrication process is as follows: First a 4.43-μm-
thick lower distributed Bragg reflector (DBR) consisting
of thirty-six λ/4 (λ is the optical wavelength) pairs of
Al0.15Ga0.85As/AlxGa1−xAs was grown on 350-μm GaAs
substrate. The Al composition x of the lower DBR is con-
tinuously reduced from 0.80 in the first stack to 0.45 in the
last stack. Then, the first 120 nm of the Al0.30Ga0.70As micro-
cavity spacer were deposited including six 15-nm-thick GaAs
quantum wells (QWs) placed at the antinode positions of the
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microcavity optical mode. The structure was subsequently
capped by a 170-nm-wide Al0.15Ga0.85As layer spacer. This
last layer protects the QWs for the next step, when the
unfinished sample is removed from the MBE chamber and
patterned by means of photolithography and wet chemical
etching. Here, mesas with a nominal height of 12 nm of differ-
ent shapes in the exposed spacer layer were created inducing a
lateral modulation of the cavity thickness and, therefore, of the
cavity energy in the final structure. Following this, the sample
was reinserted into the MBE system, cleaned by exposure to
atomic hydrogen, and overgrown with a λ/4 Al0.15Ga0.85As
layer. Finally, the upper DBR was grown by twenty λ/4 pairs
of Al0.15Ga0.85As/Al0.75Ga0.25As.

The etched regions result in a blueshift of the optical cavity
mode in the etched areas by 9 meV (4.5 nm) with respect to
the nonetched regions. The upper surface of the etched layer
spacer corresponds to a node of the optical cavity mode of the
whole structure. In this way, the potential impact of roughness
or impurities introduced by the ex situ patterning on optical
properties of the structure was minimized. Furthermore, the
shallow patterned layer is located more than 140 nm above
the QWs, so that they remain unaffected by the processing.

The sample was designed to be in the strong-coupling
regime at low temperature (∼5 K) both in the etched
and nonetched regions, leading to microcavity polaritons
in these two regions with different energies and photon-
exciton contents. The lateral modulation was used to create
three-dimensional (square or dot potential) confinement in
nonetched areas surrounded by etched barriers. A detailed
characterization of the reflection and photoluminescence and
the characterization of the potential profile of the polaritonic
traps in this sample are presented in Ref. [37].

APPENDIX B: POLARITON MODES
AND THE GROSS-PITAEVSKII EQUATION

The effective confinement potential for the polaritons and
the corresponding modes shown in Figs. 1(c) and 1(d) were
obtained using an effective Gross-Pitaevskii equation that
takes into account both the blueshift induced by the repulsive
interactions with the exciton reservoir and the saturation of the
Rabi splitting [40]. Namely,

ih̄
∂ψ

∂t
=

[
− h̄2

2mLP
∇2 + VLP(r) + i

(
R P(r)

γR + R|ψ |2 − κ

)]
ψ,

(B1)

where ψ (r, t ) is the complex field describing the lower po-
laritons (LPs) and we have used the adiabatic approximation
for the exciton reservoir [30]. Equation (B1) is a very good
approximation when describing the confined polaritonic levels
s and p. In addition, in our particular case, and for the purposes
of describing only the energy of the polaritonic modes (not
their occupation) and the effective potential, Eq. (B1) can be
further simplified by ignoring the last term [40]. The effective
potential is defined as

VLP(r, nR) = 1
2 [EC + EX −

√
�2 + 	2], (B2)

with EC (r) = 	0 + VC (r) being the photonic potential of the
trap, 	0 being the bare detuning, EX (r, nR) = gX nR(r) be-

ing the exciton energy (gX ≈ 6 μeV μm2), and 	(r, nR) =
EC (r) − EX (r, nR) being the effective detuning. Here, we have
ignored the contribution to EX from the repulsive interaction
among the lower polaritons. This is fine in this case as the pa-
rameters are such that they have a large photonic component.

The saturation of the Rabi splitting with increasing popu-
lation of the reservoir is described as

�(r, nR) = �0√
1 + nR (r)

nSat

, (B3)

where �0 is the Rabi splitting at zero carrier density and
nSat ≈ 3 × 103 μm−2. The LP effective mass is approximated
as

1

mLP
= |X (r0, nR)|2

mX
+ |C(r0, nR)|2

mC
, (B4)

where r0 corresponds to the center of the pumped trap and the
spatially dependent Hopfield coefficients are

|X (r, nR)|2 = 1

2

(
1 + 	(r, nR)√

�(r, nR)2 + 	(r, nR)2

)
,

|C(r, nR)|2 = 1 − |X (r, nR)|2. (B5)

Note that we have explicitly taken into account the depen-
dence of the parameters on the density of the carrier in the
reservoir. The density of excitons in the reservoir as a function
of the external pump power is estimated as

nR(r) = P(r)τRα

h̄ωL 2NQW
, (B6)

where P(r) is the pump power per unit area, τR is the effective
lifetime of the exciton in the reservoir, α is the total effective
absorption coefficient of the QWs, h̄ωL is the energy of the
nonresonant pumping laser, NQW is the number of quantum
wells, and the factor 2 accounts for the dominant role of the
triplet interactions. We assume a Gaussian shape for the pump
given by

P(r) = P0

2πσ 2
p

exp

[
− (r − rp)2

2σ 2
p

]
. (B7)

In the simulations we use an effective value for the standard
deviation σp ≈ 3 μm and change the position of the spot
(rp) to reproduce the particular experimental situation. The
values for �0, 	0, and the cavity parameters mC and VC (r)
were obtained by fitting. The photonic cavity potential VC (r)
was simulated following Refs. [37,40]. The optimal results
were obtained using �0 = 6.0 meV and using EC = 	0 =
−10.5 meV and EC = 	0 + U = 5.5 meV for the nonetched
and etched regions, respectively. Here, U = 16 meV is
the potential barrier for photons, generated by the differ-
ence in the thickness of the cavity spacer between the two
regions.

APPENDIX C: OPTOMECHANICAL
COUPLING CONSTANT

To estimate the linear on-site optomechanical coupling
factor g0, corresponding to processes that couple polariton
levels within the same trap, we begin by considering the
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effective exciton-mediated optomechanical coupling reported
in Ref. [35] for similar individual polariton traps to those
investigated in this paper. This coupling results mainly from a
deformation-potential interaction modulated by intense elec-
trically generated surface acoustic waves (SAWs). A value
of geff

om/2π ∼ 50 THz/nm was obtained, which accounts for
the change in polariton energy per unit of acoustic displace-
ment [35]. This latter parameter is related to the actual on-site
optomechanical coupling constant by geff

0 = geff
om xzpf [18],

where xzpf corresponds to the displacement induced by the
zero-point fluctuations. For a similar structure of ∼2 μm
lateral size, this value has been estimated to be roughly
xzpf ∼ 0.5 fm [41]. Consequently, geff

0 /2π ∼ 50 MHz for
this system, which represents a very large value compared
with other reported optomechanical systems that only ac-
count for an optical radiation back-action mechanism based
on radiation pressure interaction [18]. The Hopfield coeffi-
cient for this cavity polariton trap system was of the order of
|X |2 ∼ 0.7, and the reported structure had only one embedded
QW [35].

The structure investigated in this paper has six cavity-
embedded QWs instead of one, proportionally increasing the
corresponding interaction of the involved fields. For the high
excitation powers used for exciting the traps analyzed here,
the excitonic Hopfield coefficient is estimated to be around
|X |2 ∼ 0.05 [40]; that is, the involved polariton states have a
large photonic component. Considering these two differences,
the g0 would be roughly a factor of 6 times larger and a
factor 0.05/0.7 smaller with respect to the above-obtained
geff

0 . Therefore the on-site optomechanical coupling factor
for the present work, resulting from a deformation-potential
interaction, can be estimated to be g0/2π ∼ 20 MHz.

APPENDIX D: SIMPLIFIED POLARITON-PHONON
MODEL

We present here the effective model used to describe the
polaritons’ optomechanical coupling, but now explicitly in-
cluding the s phonon modes that were ignored in the main text
for the sake of simplicity. The full Hamiltonian then reads

H =
3∑

j=1

h̄ω j â†
j â j +

∑
n

h̄�n

(
2∑

j=1

d̂†
jnd̂ jn + b̂†

nb̂n

)

+
2∑

j=1

∑
n

h̄g jn(â†
j â3 + â†

3â j )(b̂
†
n + b̂n)

+
∑

n

2∑
j=1

(h̄ḡn â†
j â j + h̄ḡ jn â†

3â3)(d̂†
jn + d̂ jn),

(D1)

where (i) â†
j (â j) creates (annihilates) a polariton in the j

mode with energy h̄ω j , where j = 3 refers to the excited
mode; and (ii) d̂†

jn and b̂†
n (d̂ jn and b̂n) create (annihilate)

a phonon in the n mode with s-like and p-like symmetry,
respectively, and energy h̄�n—here we ignored the very small
energy difference between the s and p modes. The index n
labels the fundamental and the overtone mechanical modes
so that, for example, �1 = 3�0 = 60 GHz. We assume the

s phonon modes to be localized on each cavity (hence the
additional index j) and the p modes to be extended and so
shared between cavities. Note that HOM does not include a
direct coupling between â1 and â2; this occurs only with the
excited mode.

From the above Hamiltonian it is straightforward to derive
the equations of motion for â j and for the dimensionless
phonon position operators, x̂n = b̂†

n + b̂n and ŷ jn = d̂†
jn + d̂ jn.

In the semiclassical approximation where the bosonic op-
erators are replaced by complex functions we obtain the
following set of equations:

iȧ j =
(

ω j +
∑

n

ḡny jn

)
a j +

∑
n

g jn xna3 + Fj (a j ), j �= 3,

iȧ3 =
(

ω3 +
2∑

j=1

∑
n

ḡ jny jn

)
a3 +

2∑
j=1

∑
n

g jn xna j + F3(a3),

ẍn = −�2
nxn − �nẋn − 2�n

2∑
j=1

g jn(a ja
∗
3 + a3a∗

j ),

ÿ jn = −�2
ny jn − �̄nẏ jn − 2�n (ḡn|a j |2 + ḡ jn|a3|2). (D2)

Here, we added a phenomenological term Fj (a j ) to account
for the incoherent driving of the polariton modes induced by
the exciton reservoir. Based on the GP, and for the purpose of
introducing a stationary population of the polaritonic modes,
we use the following simplified expression for it: Fj (a j ) =
i(R̄Pj/(γR + R̄|a j |2) − κ )a j/2, which immediately leads to
the effective decay rate κ̃ j introduced in the main text. This
allows us to describe the condensation of each mode, when
the incident power from the reservoir to mode j, Pj , is larger
than the threshold power Pth = κγR/R̄. In the absence of the
optomechanical effects, each mode would condense to an oc-
cupation n0

j = (Pj/Pth − 1)n0 with n0 = γR/R̄. Additionally,
we also included a dissipative term proportional to �n and
�̄n (frequency linewidth) in the equations for xn and y jn,
respectively, to account for the decay of the phonon modes.

The full model can be solved numerically. As mentioned
in the main text, while the instability is caused by the p
phonon that couples a1 and a2 through the excited states, once
this occurs the s phonons are also excited. This leads to a
renormalization of the Arnold tongues and a rich interplay
between phonons, whose analysis is beyond the scope of the
present work.

The description presented above, though conceptually sim-
ple and relatively easy to solve numerically, is still too
complex to easily grasp the more relevant solutions. Since
the excited polariton mode is well separated from the funda-
mental modes in comparison with the phonon energy, 	 j =
ω3 − ω j � �n, one can describe the dynamics with an ef-
fective reduced Hamiltonian. This can be done by means of
a suitable canonical transformation. Defining H ′ = e−SHeS

with S given by

S =
2∑

j=1

∑
n

â†
j â3

(
g jn

ω3 − ω j + �n
b̂n + g jn

ω3 − ω j − �n
b̂†

n

)

− H.c., (D3)
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one gets, to leading order in g jn/	 j and �n/	 j and retaining
only those terms involving the phonon operator,

H ′ =
3∑

j=1

h̄ω j â†
j â j +

∑
n

h̄�n

(
2∑

j=1

d̂†
jnd̂ jn + b̂†

nb̂n

)

+
2∑

j=1

∑
n

(h̄ḡn â†
j â j + h̄ḡ jn â†

3â3)(d̂†
jn + d̂ jn)

+
2∑

j=1

∑
n,m

h̄g jng jm

	
(â†

3â3 − â†
j â j )(b̂

†
n + b̂n)(b̂†

m + b̂m)

−
∑
n,m

h̄g1ng2m

	
(â†

1â2+ â†
2â1)(b̂†

n+ b̂n)(b̂†
m+ b̂m), (D4)

where we used that 	 j ± �n ∼ 	 j ≡ 	. Equation (4) in the
main text is derived from H ′, which can be cast in the form of a
Mathieu equation [cf. Eq. (7)]. This equation shows an unsta-
ble solution when |ωp| ∼ 2�. The stability analysis is rather
standard (see, for instance, Refs. [46,47]): The condition for
finding an unstable solution is given by

�2
p >

√
�2ω2

p + 4

(
�2 − ω2

p

4

)2

, (D5)

from which Eqs. (9) and (10) can be obtained.
So far we considered a single �0 phonon mode, which is

enough to account for the resonance observed at δE2—for that
resonance, adding the �1 (=3�0) phonon leads to a complex
interplay when the gn couplings are similar. In contrast, to

describe the effects observed at δE4, one must consider the
�1 phonon. That is, one has to fully consider the two coupled
oscillators that are associated with two p phonons as described
in Eq. (4). As before, taking the zero-order solution for the
polariton modes, one can map the equations to the ones of two
damped oscillators driven by a crossed parametric excitation
of frequency ωp,

q̈1 + �1q̇1 + �2q1 + �2
p cos(ωpt )q3 = 0,

q̈3 + �3q̇3 + 9�2q1 + 3�2
p cos(ωpt )q1 = 0, (D6)

where the coordinates q1 and q3 describe the oscillator having
natural frequency � and 3�, respectively, ωp = ω1 − ω2, and
the amplitude of the drive is given by �2

p = 8�
g1ng2m

	

√
n0

1n0
2,

with n and m labeling the p phonon modes with frequency 20
and 60 GHz, respectively. The frequency � can be assumed
shifted as in the δE2 case. By applying the two-variable ex-
pansion method [46] for ωp = 4�, i.e., the frequency sum of
the two coupled oscillators, we obtain the following condition
for phonon instability at optimal detuning:

4
g1ng2m

	
√

�1�2

√
n0

1n0
2 > 1. (D7)

This is essentially the same condition as was found for a single
oscillator. We also obtain an expression as a function of the
detuning near ωp = 4�,

�2
p >

√
�2

1ω
2
p

4
+ 16

(
�2 − ω2

p

16

)2

, (D8)

where we have assumed for simplicity that �1 = �3.
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