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Nuclear-spin polaron formation: Anisotropy effects and quantum phase transition
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We study theoretically the formation of the nuclear-spin polaron state in semiconductor nanosystems within
the Lindblad equation approach. To this end, we derive a general Lindblad equation for the density operator
that complies with the symmetry of the system Hamiltonian and address the nuclear-spin polaron formation for
localized charge carriers subject to an arbitrarily anisotropic hyperfine interaction when optically cooling the
nuclei. The steady-state solution of the density matrix for an anisotropic central spin model is presented as a
function of the electron and nuclear spin bath temperature. Results for the electron-nuclear spin correlator as
well as data for the nuclear spin distribution function serve as a measure of spin-entanglement. The features in
both of them clearly indicate the formation of the nuclear polaron state at low temperatures where the crossover
regime coincides with an enhancement of quantum fluctuations and agrees with the mean-field prediction of the
critical temperature line. We can identify two distinct polaron states dependent upon the hyperfine anisotropy,
which are separated by a quantum phase transition at the isotropic point. These states are reflected in the temporal
spin autocorrelation functions accessible in experiment via spin-noise measurements.
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I. INTRODUCTION

The investigation of the electron spin dynamics in semi-
conductor quantum dots (QDs) has caused a very large interest
in the last two decades [1–4] due to the magnificent fun-
damental physics and the possible applications in quantum
technologies. The entanglement in interacting spin systems
is of high relevance nowadays [5–8]. In particular, the entan-
glement between the electron and nuclear spins is mediated
by the hyperfine interaction between the locally bound charge
carrier spin and the surrounding nuclear spins that limits the
electron spin coherence time [9] in QDs with disordered nu-
clear spins. While the fluctuating Overhauser field acting on
the electron spin from the disordered nuclear spins is only of
the order of 10 mT, polarized nuclei can generate an effective
magnetic field of several Tesla in GaAs-type semiconductors
[2,3,10].

The electron spin affects the nuclei via the Knight field
induced by the hyperfine interaction and can be efficiently
oriented optically [2,3,11]. As a result, optical excitation is re-
sponsible for the dynamic nuclear polarization in InAs/GaAs
QDs [12] as well as mode locking [13] and nuclei-induced
frequency focusing effects [14,15] enabling efficient control
of the nuclear spin degrees of freedom by nonmagnetic means.

When lowering the temperature, the correlated ground state
of the system becomes dominant: electron and nuclear spins
corroborate and form a correlated or entangled nuclear-spin
polaron state that minimizes the hyperfine energy. Such a state
has been predicted by Merkulov [10] in a framework of the
mean-field quasi-equilibrium model, assigning the electron
and nuclear spins different effective temperatures. The two
temperatures, Te and Tn, were used in mean-field theory [10] to

predict a critical temperature line on which the transition from
an uncorrelated system to a nuclear-polaronic state occurs.
The key idea is based on the observation that the electron
remains coupled to the lattice, whereas the very long lifetime
of the nuclear spin polarization up to several hours [16,17]
indicates a strong decoupling of the nuclear spins from the en-
vironment. While the electronic degrees of freedom maintain
their base temperature Te (typically, on the order of several
Kelvin), the spin temperature Tn of optically cooled nuclei
can be much lower than Te [2,3,11,18–20]. In particular, re-
cently Ref. [20] reported a nuclear spin temperature as low as
0.54 μK.

Progress in the cooling of the nuclear spin systems mo-
tivates theoretical studies of the entangled electron-nuclear
spin states. The analysis of the nuclear-spin polaron formation
beyond the mean-field approach was presented in Ref. [21].
In Ref. [22], in addition to the nuclear spin polaron, a novel
state termed a dynamically induced nuclear ferromagnet was
predicted. In a recent paper [23], we explored the nuclear po-
laron formation beyond the mean-field theory by employing a
master equation for the distribution function of the interacting
electron-nuclear spin system. The analysis in Ref. [23] was
restricted to the Ising limit of the hyperfine interaction, where
the eigenstates of the system can be conveniently expressed
as products of the electron and nuclear spin states and the
spin-flip transition rates between those states mediated by the
coupling with external reservoirs can be explicitly written.
The solution of the corresponding master equation has made
it possible to obtain not only the transition temperature to the
nuclear-spin polaron state, but also the distribution functions
of the spins, the fluctuations of electron and nuclear spins as
well as the dynamics of the polaron formation. In this paper,
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we substantially extend the theory to investigate the pola-
ronic state for an arbitrary anisotropic hyperfine interaction.
In semiconductor QDs, electrons interact isotropically with
the surrounding nuclear spins while localized holes require an
anisotropic hyperfine interaction [24,25]: an Ising-like inter-
action for the heavy holes, and generic anisotropic interaction
for the localized hole state comprising light holes and heavy-
light hole orbitals [3].

We derive a generalized Lindblad approach incorporating
two spin reservoirs that impose the two temperatures, Te and
Tn, as boundary conditions. Our approach is suitable for all
temperature regimes, and the Lindblad rates are fixed in such
a way that the steady-state solution of the Lindblad equation is
given by the Boltzmann form of the density matrix in thermal
equilibrium. In order to address the nuclear polaron formation
in a system with a very large number of nuclear spins up
to N = 1000 in a semianalytical fashion, we resort to the
box model approximation [26–28] of the central spin model
(CSM). We investigate the nuclear polaron formation as a
function of the anisotropy parameter λ [24,29] where the limit
λ = 0 corresponds to the Ising limit [23] relevant for a purely
heavy-hole bound QD state, λ = 1 to the isotropic case of a
negatively-charged QD, and λ > 1 to the regime of a mixture
of heavy and light holes. This allows to study all relevant
regimes of positively and negatively-charged InGaAs QDs.

We show that the polaron state is not destroyed by the
quantum fluctuations present when reducing the nuclear bath
temperature. The crossover regime is very narrow and follows
the mean-field approach to the anisotropic CSM [3,10,30,31].
In the absence of a symmetry breaking field, however, the
nuclear polaronic state still contains the full degeneracy of the
ground state in contrary to the mean-field theory.

The paper is organized as follows. Section II is devoted to
the presentation of our Lindblad approach where the included
Lindblad operators mediate spin excitations caused by the
coupling to the thermal reservoirs. A general Hamiltonian for
the hyperfine interaction is introduced in Sec. II A and the
related Lindblad equation is presented in Sec. II B. The rate
equations for the density matrix in the energy eigenbasis are
deduced in Sec. II C. We adopt the general approach to the
anisotropic CSM in Sec. III. After the model is defined in
Sec. III A and the box model eigenstates [28] are presented,
the question of the determination of the Lindblad decay rates
is addressed in Sec. III B. Section IV is devoted to the emerg-
ing nuclear-spin polaron state. We begin with a statement
concerning the numerical methods in Sec. IV A, present the
electron-nuclear spin correlators as a function of tempera-
ture for different anisotropy parameters λ in Sec. IV B and
compare our stationary Lindblad solution with a simplifying
mean-field approach in Sec. IV C. The crossover temperature
of the polaron formation and the quantum fluctuations close to
the very narrow crossover region are discussed in Sec. IV D.
We address the nuclear spin distribution in Sec. IV E by trac-
ing out the electronic spin configuration. Our results are linked
to a quantum phase transition that occurs at the isotropy point
λ = 1. We discuss the change of the ground state at the quan-
tum critical point in Sec. IV F and comment on the effects of a
distribution of the hyperfine coupling constants in Sec. IV G.
In Sec. V, we present calculations for the spin autocorrelation
function of the open quantum system. Section V A is devoted

to the real time dynamics of the electron spin and Sec. V B
extends the discussion to the fluctuations of the nuclear spins.
We finish the paper with a short conclusion.

II. MODEL

In this paper we investigate the formation of a polaronic
state and its properties in a system with one localized elec-
tronic charge. We explicitly treat the interaction between the
nuclear spins and the localized charge carrier spin via the cen-
tral spin model (CSM) and include energy and spin exchange
with reservoirs within a set of Markovian transition rates. We
start with a presentation of the basic formalism.

A. Hyperfine interaction

The hyperfine interaction between the localized charge car-
rier spin S and the surrounding nuclear spins Ik is described
by the Hamiltonian [2,3]

H =
N∑

k=1

∑
α,β

Aα,β

k SαIβ

k . (1)

Here we label the individual nuclear spins with an index
k ∈ {1, . . . , N} and include all nuclear spins within the charge
carrier localization volume. The matrix Aα,β

k defines the gen-
erally anisotropic hyperfine coupling strength of an individual
nuclear spin; its matrix elements incorporate the electron wave
function at the position of the respective nucleus, where α and
β ∈ {x, y, z} refer to the Cartesian axes.

The Hamiltonian, Eq. (1), accounts for a system with an
anisotropic hyperfine coupling as well as the isotropic case,
where Aα,β

k ∝ δα,β and δα,β is the Kronecker δ symbol [3]. The
Hamiltonian (1) is applicable to the description of a variety
of semiconductor nanostructures such as singly-charged QDs
[9,32] or donor-bound electrons [33,34]. Generally, the charge
carrier spin S can portray an electron spin or a light/heavy
hole spin involving a proper adjustment of the spin length and
the hyperfine coupling constants Aα,β

k [25,32,35].

B. Lindblad formalism for thermal reservoirs

To account for the effect of the optical cooling of the
nuclear spin bath, we introduce a two-temperature concept
[2,11,19] with distinct effective inverse temperatures for the
electron spin βe = 1/kBTe, and the nuclear spins βn = 1/kBTn

[3,10,21,23]. Under optical cooling of the nuclear spin bath,
the electron spin mostly retains the lattice temperature while
the nuclear spins are cooled below, βn > βe.

Consequently, we treat the system as an open quantum
system whose dynamics is driven by a unitary time evolution
provided by the Hamiltonian H , Eq. (1), and some Markovian
transition rates between the eigenstates of H that account for
the reservoir inducted energy and spin exchange. Formally,
this can be done by introducing fluctuating effective magnetic
fields induced by reservoirs, which act on the electron and
nuclear spins [23]. Corresponding coherent and incoherent
dynamics of the system is most conveniently described by
the density matrix. Its evolution is governed by the Lindblad
master equation [36].

195309-2



NUCLEAR-SPIN POLARON FORMATION: ANISOTROPY … PHYSICAL REVIEW B 105, 195309 (2022)

To that end, it is useful to introduce the complete eigenba-
sis of H in Eq. (1), as H |ψn〉 = εn |ψn〉, with eigenenergies εn

and eigenvectors |ψn〉; the subscript n enumerates all basic
states of the system. The eigenbasis is used to define the
complete operator basis Xmn = |ψm〉 〈ψn| of the Hilbert space.
Taking into account likely degeneracies of the eigenstates, the
most general Lindblad operators Lk,α

m,n in the form

Lk,α
m,n =

√
�k,α

m,n

∑
a,b

δεa,εmδεb,εn

〈
ψa

∣∣sα
k

∣∣ψb
〉
Xab, (2)

describe transitions between the eigenstates |ψn〉 and |ψm〉 that
are mediated by the reservoirs with the rate �k,α

m,n (presented
below) via the spin operator sα

k . For convenience, the index k
refers to either the electron spin (k = 0), sα

0 = Sα , or one of
the nuclear spins (k ∈ {1, . . . , N}), sα

k = Iα
k , from now on.

The sum over all states a, b accounts for all combinations
of initial and final states sharing the same initial and final
energy as well as the same transition energy difference

	mn = εm − εn, (3)

to account for the energy degeneracy of the initial and finial
state. The Lindblad operators and their Hermitian conjugates,
(Lk,α

m,n)†, enter the Lindblad master equation,

ρ̇ = Lρ = −i[H, ρ] −
N∑

k=0

∑
α

∑
m,n

{(
Lk,α

m,n

)†
Lk,α

m,nρ

+ ρ
(
Lk,α

m,n

)†
Lk,α

m,n − 2Lk,α
m,nρ

(
Lk,α

m,n

)†}
, (4)

governing the temporal evolution of the system’s density op-
erator ρ.

Generally, the transition rates must be constructed in such
a way that the steady-state solution of the density operator in
thermal equilibrium acquires the Boltzmann form which com-
mutes with H . Accordingly, the rate of a respective transition
is given by

�k,α
m,n = W α

k hα
k (	mn)

g(εm)g(εn)
, (5)

where g(εm) denotes the degeneracy of the eigenenergy εm and
W α

k some phenomenological rate that typically is assumed to
be several orders of magnitude larger for the electron spin than
for the nuclear spins due to the electron’s stronger coupling to
the environment. The usefulness of the separation between the
rate W α

k and the degeneracy factor g(εm) becomes clear below
in Sec. II C.

The dimensionless function hα
k (	mn) takes into account

an enhancement or suppression of transitions depending on
the energy difference between the initial and final states,
Eq. (3). Demanding the relaxation of ρ to the Boltz-
mann form in thermodynamic equilibrium requires the ratio
hα

k (	mn)/hα
k (−	mn) = exp(−	mnβk ), where βk = β. In this

paper, we allow for two different effective inverse spin reser-
voir temperatures βk = βe for k = 0 and βk = βn otherwise
as it takes place in the experiments on the optical cooling of
lattice nuclei [3,11,19].

The above formulation, Eqs. (2) and (4), of the two-
reservoir concept for the electron-nuclear spin system consti-
tutes an extension of the rate-equation formalism introduced

in Ref. [23]. The Lindblad equation incorporates off-diagonal
elements of the density operator ρ and thereby allows for the
description of the hyperfine interaction beyond the Ising limit.
For the Ising limit of the hyperfine coupling constants Aα,β

k , it
reproduces the results in Ref. [23] as a special case. However,
the inclusion of the off-diagonal elements of ρ facilitates the
treatment of observables where the corresponding quantum
mechanical operator does not commute with the Hamiltonian.
Therefore, this approach goes well beyond the previously con-
sidered Ising limit and pushes the theory into experimentally
relevant realms.

C. Dynamics of the density matrix

In the definition of the Lindblad operator, Eq. (2), the pair
of sums over the energy eigenstates a and b in combination
with the Kronecker δ symbols allows for contributions only
from the eigenstates |ψa〉 (|ψb〉 respectively) that belong to
the same energetically degenerate subspace as the state m
(n), i.e., the states for which εa = εm (εb = εm). In case of
nondegenerate eigenenergies, these sums reduce to a single
contribution. For degenerate eigenenergies however this con-
struction ensures a free choice of the orthonormal eigenbasis
within the energetically degenerate subspaces without altering
the dynamics. To avoid a double counting of the transitions,
we include the degree of degeneracies g(εm), g(εn) as a pref-
actor in Eq. (5). The details of the analysis are presented in
Appendix A.

To obtain the coupled differential equations for the den-
sity matrix, we convert Eq. (4), see also Eqs. (A1), (A3), to
a matrix representation using the energy eigenstates of H ,
ρmn = 〈ψm|ρ|ψn〉, and arrive at

ρ̇mn = −i	mnρmn

−
∑
k,α

W α
k

∑
a,b

{
δεm,εbh

α
k (	am)

(
sα

k

)∗
a,m

(
sα

k

)
a,bρbn

+ δεn,εbh
α
k (	an)

(
sα

k

)∗
a,b

(
sα

k

)
a,nρmb

− 2δεm,εnδεa,εbh
α
k (	ma)

(
sα

k

)
m,a

(
sα

k

)∗
n,bρab

}
. (6)

This equation can be conveniently used for numerical calcu-
lations.

III. MODELS OF HYPERFINE COUPLING
AND TRANSITION RATES

Here, the general description for an arbitrary hyperfine
coupling Hamiltonian, Eq. (1), is customized to a more spe-
cific system where the hyperfine interaction anisotropy is
uniaxial and described by a single parameter λ. The corre-
sponding master equation taking into account the coupling to
thermal reservoirs is derived from general Eqs. (4) and (6).

A. Anistropic central spin model

In systems such as singly-charged self-assembled GaAs-
type QDs grown on the (xy) ‖ (001) crystallographic plane,
the matrix Aα,β

k describing the hyperfine interaction, Eq. (1),
is diagonal and the coupling is, as a rule, isotropic in the (xy)
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plane [3]. The resulting Hamiltonian

H =
∑

k

Ak
[
λ
(
SxIx

k + SyIy
k

) + SzIz
k

]
, (7)

includes a uniaxial anisotropy parameter λ with respect to
the z ‖ [001] direction. The Hamiltonian Eq. (7) allows for
the description of a variety of semiconductor nanostructures,
although the physical origin of the coupling Ak might differ.
The analysis of the situation with biaxial anisotropy or non-
collinear hyperfine interaction [3,37,38] can be performed in
the same way and goes beyond the scope of the present paper.

We recall that for the conduction band electron in an s-type
orbital at an atomic site, the main contribution to the hyperfine
coupling stems from the Fermi contact interaction [39]. In
contrast, for a hole spin coupling to the surrounding nuclear
spins, the Fermi contact coupling is strongly suppressed due
to the p-type wave function, and the dipole-dipole interaction
is predominant [25]. The coupling strength of the respective
scenario is adjusted by the constants Ak and the anisotropy
is respected by the parameter λ [24,25,35]. For λ = 1, the
isotropic limit relevant for an electron spin is restored whereas
λ = −2 is a typical parameter for the spin of a light hole. Note
that the sign of λ does not enter the dynamics as pointed out
in Ref. [25]. The Ising limit, λ = 0, captures the heavy hole
in a self-assembled InAs/GaAs QD with the sample’s growth
direction matching the z axis. In QDs the hole state often is a
mixture of the heavy and light hole contribution depending on
the geometry of the dot. In such a case, the hyperfine coupling
can be described by the Hamiltonian (7) with the parameter λ

varying, typically, between −2 and 0.
To enable analytic access to the eigenenergies and eigen-

states of the hyperfine Hamiltonian with a relatively large
number of nuclear spins, N ≈ 1000, we set the hyperfine
coupling constant Ak = A0 for all nuclear spins, which is
referred to as the box model approximation. In this case the
Hamiltonian can be written in terms of the total nuclear spin
J = ∑

k Ik ,

H = A0[λ(SxJx + SyJy) + SzJz]

= A0

[
λ

2
(S+J− + S−J+) + SzJz

]
(8)

with the ladder operators of the electron spin S± = Sx ± iSy

and total nuclear spin J± = Jx ± iJy. As a characteristic fre-
quency scale of the system we introduce ωh = (

∑
k A2

k )1/2 ≡√
NA0 based on the dephasing rate of the electron spin in the

nuclear spin bath for λ = 1. We employ ωh as a reference
scale, e.g., for indicating energies and temperatures, in the
following.

Since only the total nuclear spin J and the quantum number
Jz enter the determination of the eigenstates, we distinguish
between the different degenerate multiples for spin with the
same J [28] arising from the spin addition theorem by the
index γ . The eigenenergies εσ

J,Jz and eigenstates |ψσ,γ
J,Jz 〉 for a

system, in which the central spin S and the individual nuclear
spins Ik have a length 1/2 respectively, have been calculated
by Kozlov [28] and read

ε+
J,−J = A0J

2
, ε+

J,J+1 = A0J

2
, (9a)

|ψ+,γ
J,−J〉 = |↓〉 |J,−J, γ 〉 , |ψ+,γ

J,J+1〉=|↑〉 |J, J, γ 〉 , (9b)

with J ∈ {0, . . . , N/2} and

ε±
J,Jz = −A0

4
± A0

2

{(
Jz − 1

2

)2

+ λ2[J (J + 1) − Jz(Jz − 1)]

}1/2

, (10a)

|ψσ,γ
J,Jz 〉 = cσ

J,Jz |↓〉 |J, Jz, γ 〉 + dσ
J,Jz |↑〉 |J, Jz − 1, γ 〉 , (10b)

where J ∈ {0, . . . , N/2}, Jz ∈ {−J + 1, . . . , J} and σ ∈
{+,−}. The eigenstates are given in terms of the electron
spin and the total nuclear spin z product basis with |↑ / ↓〉
referring to the electron spin state and |J, Jz, γ 〉 determining
the nuclear spin state with the quantum numbers for total
nuclear spin length J and the z quantum number Jz.

The coefficients cσ
J,Jz and dσ

J,Jz of the eigenstates, Eq. (10b),
are obtained from analytical diagonalization of the 2 × 2 di-
mensional subblocks of the Hamilton matrix spanned by the
states |↓〉 |J, Jz, γ 〉 and |↑〉 |J, Jz − 1, γ 〉,

H2×2
J,Jz =

(−A0Jz/2 TJ,Jz

TJ,Jz A0(Jz − 1)/2

)
, (11)

with TJ,Jz = λA0
√

J (J + 1) − Jz(Jz − 1). Note that the label
Jz = J + 1 in the Eqs. (9a) and (9b) does not correspond to
the actual quantum number of the state, but is chosen in com-
pliance with the labeling in Eqs. (10a) and (10b), and allows
for a general notation of eigenenergies εσ

J,Jz and eigenstates
|ψσ,γ

J,Jz 〉 where Jz ∈ {−J, . . . , J + 1}.
As mentioned above, the quantity γ accounts for the de-

generacy in the system since the Hamilton matrix is block
diagonal and can be split into subblocks with fixed quantum
number J whereby for each value of J a number gN (J ) of
identical blocks exist. Assuming an even number N of nuclear
spins, this degree of degeneracy is given by

gN (J ) = 2J + 1

N/2 + J + 1

(
N

N/2 + J

)
, (12)

where
(a

b

) = a!/[b!(a − b)!] is the binomial coefficient.

B. Reduced rate equations

With the aid of the eigenstate decomposition, Eqs. (9) and
(10), we specify the final master equation in the box model
limit: Each sum over the eigenstates in the original master
equation, Eq. (6), is split into sums over the box model quan-
tum numbers, J , Jz, σ , and γ . Furthermore, we can assume
the density operator to be diagonal in the quantum numbers J
and γ as the Hamiltonian and thereby reduce the number of
sums. Next, we replace the operator sα

k in Eq. (6) by a ladder
operator sτ

k ,

sτ
k =

⎧⎪⎨
⎪⎩

s−
k /

√
2, τ = −1,

sz
k, τ = 0,

s+
k /

√
2, τ = +1,

(13)

with the factor 1/
√

2 stemming from normalization.
Taking into account that a spin-flip element

〈ψσ ′,γ ′

J ′,Jz ′ |sτ
k |ψσ,γ

J,Jz 〉 only yields a contribution when Jz ′ = Jz + τ ,
independent on the fact which spin k is flipped, one obtains
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the master equation for the density matrix elements

∂t
〈
ψ

σm,γ
J,Jz

m

∣∣ρ|ψσn,γ
J,Jz

n

〉
= −i	σm,J,Jz

m
σn,J,Jz

n

〈
ψ

σm,γ
J,Jz

m

∣∣ρ∣∣ψσn,γ
J,Jz

n

〉
−

∑
k,τ

W τ
k

∑
J ′,γ ′

∑
σ,σ ′

{
δε

σm
J,Jz

m
,εσ ′

J,Jz
m

hτ
k

(
	

σ,J ′,Jz
m+τ

σm,J,Jz
m

)

× 〈
ψ

σm,γ

J,Jz
m

∣∣(sτ
k

)†∣∣ψσ,γ ′
J ′,Jz

m+τ

〉 〈
ψ

σ,γ ′
J ′,Jz

m+τ

∣∣sτ
k

∣∣ψσ ′,γ
J,Jz

m

〉
× 〈

ψ
σ ′,γ
J,Jz

m

∣∣ρ∣∣ψσn,γ

J,Jz
n

〉 + δε
σn
J,Jz

n
,εσ ′

J,Jz
n

hτ
k

(
	

σ,J ′,Jz
n+τ

σn,J,Jz
n

)
× 〈

ψ
σ ′,γ
J,Jz

n

∣∣(sτ
k

)†∣∣ψσ,γ ′
J ′,Jz

n+τ

〉 〈
ψ

σ,γ ′
J ′,Jz

n+τ

∣∣sτ
k

∣∣ψσn,γ

J,Jz
n

〉
× 〈

ψ
σm,γ
J,Jz

m

∣∣ρ∣∣ψσ ′,γ
J,Jz

n

〉 − 2δε
σm
J,Jz

m
,ε

σn
J,Jz

n
δεσ

J′ ,Jz
m−τ

,εσ ′
J′ ,Jz

n−τ

× hτ
k

(
	

σm,J,Jz
m

σ,J ′,Jz
m−τ

) 〈
ψ

σm,γ
J,Jz

m

∣∣sτ
k

∣∣ψσ,γ ′
J ′,Jz

m−τ

〉
× 〈

ψ
σ ′,γ ′
J ′,Jz

n−τ

∣∣(sτ
k

)†∣∣ψσn,γ
J,Jz

n

〉 〈
ψ

σ,γ ′
J ′,Jz

m−τ

∣∣ρ∣∣ψσ ′,γ ′
J ′,Jz

n−τ

〉 }
(14)

with the energy difference 	σ,J,Jz

σ ′,J ′,Jz ′ = εσ
J,Jz − εσ ′

J ′,Jz ′ . Since the
eigenenergy of the eigenstate is independent of the label γ ,
we combine these matrix elements into a γ -independent prob-
ability distribution pJ

Jz
m,σm;Jz

n ,σn
using the degree of degeneracy,

Eq. (12),

pJ
Jz

m,σm;Jz
n ,σn

=
∑

γ

〈
ψ

σm,γ
J,Jz

m

∣∣ρ∣∣ψσn,γ
J,Jz

n

〉
= gN (J )

〈
ψ

σm,γ

J,Jz
m

∣∣ρ∣∣ψσn,γ

J,Jz
n

〉
. (15)

Note that the matrix element 〈ψσm,γ
J,Jz

m
|ρ|ψσn,γ

J,Jz
n
〉 is independent

of the degeneracy index γ .
Finally, using Eq. (14), we arrive at the rate equation,

∂t pJ
Jz

m,σm;Jz
n ,σn

= −i	σm,J,Jz
m

σn,J,Jz
n

pJ
Jz

m,σm;Jz
n ,σn

−
{∑

τ

∑
J ′,σ ′

[
�τ

J ′,J
(
Jz

m + τ, Jz
m + τ ; σ ′, σ ′, σm, σm

)

+�τ
J ′,J

(
Jz

n + τ, Jz
n + τ ; σ ′, σ ′, σn, σn

)]}
pJ

Jz
m,σm;Jz

n ,σn

+
∑

τ

∑
J ′,σ,σ ′

2�τ
J,J ′

(
Jz

m, Jz
n ; σm, σn, σ, σ ′)pJ ′

Jz
m−τ,σ ;Jz

n−τ,σ ′ ,

(16)

for pJ
Jz

m,σm;Jz
n ,σn

. The prefactors for the three terms inducing
transitions between the elements are combined into the total
transition rate

�τ
J,J ′

(
Jz

a, Jz
b ; σa, σb, σc, σd

)
= δε

σa
J,Jz

a
,ε

σb
J,Jz

b

δε
σc
J′,Jz

a+τ
,ε

σd
J′ ,Jz

b+τ

× 1

gN (J ′)

∑
k

W τ
k hτ

k

(
	

σa,J,Jz
a

σc,J ′,Jz
a−τ

)

×
∑
γ ,γ ′

〈
ψ

σa,γ
J,Jz

a

∣∣sτ
k

∣∣ψσc,γ
′

J ′,Jz
a−τ

〉 〈
ψ

σd ,γ ′
J ′,Jz

b−τ

∣∣(sτ
k

)†∣∣ψσb,γ

J,Jz
b

〉
. (17)

The occurring matrix elements 〈ψσ,γ
J,Jz |sτ

k |ψσ ′,γ ′
J ′,Jz−τ 〉 for the

spin operator sτ
k , Eq. (13), are evaluated separately for the

electron spin operator Sτ and the nuclear spin operator Iτ
k .

Substitution of the explicit form of the eigenstates, Eq. (10b),
yields〈

ψ
σ,γ

J,Jz

∣∣Sτ
∣∣ψσ ′,γ ′

J ′,Jz−τ

〉

= δJ,J ′δγ ,γ ′

⎧⎪⎨
⎪⎩

cσ
J,Jz dσ ′

J ′,Jz−τ /
√

2, τ = −1,

(dσ
J,Jz dσ ′

J ′,Jz−τ − cσ
J,Jz cσ ′

J ′,Jz−τ )/2, τ = 0,

dσ
J,Jz cσ ′

J ′,Jz−τ /
√

2, τ = +1,

(18)

for the electron spin operator due to the orthonormality of the
nuclear spin states. For the nuclear spin operator we obtain the
matrix elements〈

ψ
σ,γ
J,Jz

∣∣Iτ
k

∣∣ψσ ′,γ ′
J ′,Jz−τ

〉
= cσ

J,Jz cσ ′
J ′,Jz−τ 〈J, Jz, γ |Iτ

k |J ′, Jz − τ, γ ′〉
+ dσ

J,Jz dσ ′
J ′,Jz−τ 〈J, Jz − 1, γ |Iτ

k |J ′, Jz − τ − 1, γ ′〉
(19)

as a result of the orthonormality of the electron spin states.
For the calculation of the remaining matrix elements of the

type 〈J ′, Jz + τ, γ ′|Iτ
k |J, Jz, γ 〉, we make use of the assump-

tion that the nuclear spins in the box model approximation
are indistinguishable and, in compliance, omit any potential
dependence of W τ

k and hτ
k on the individual nuclear spin

k ∈ {1, . . . , N}, i.e. we set W τ
k = W τ

n and hτ
k = hτ

n for all
nuclear spins. The electron spin contribution of these quan-
tities, W τ

0 = W τ
e and hτ

0 = hτ
e , however differs from that of

the nuclear spins. As a consequence of the assumption, the
result of the evaluation for an individual nuclear spin k can
be adopted for the other nuclear spins as well, such that the
nuclear contribution in the sum over k in Eq. (17) solely
produces a prefactor N . The actual evaluation of the elements
〈J ′, Jz + τ, γ ′|Iτ

k |J, Jz, γ 〉 can be performed by virtue of the
Clebsch-Gordan coefficients. The results are presented in Ap-
pendix B.

With the above considerations, the transition rate, Eq. (17),
can be transformed into

�τ
J,J ′

(
Jz

a, Jz
b ; σa, σb, σc, σd

)
= δε

σa
J,Jz

a
,ε

σb
J,Jz

b

δε
σc
J′,Jz

a−τ
,ε

σd
J′ ,Jz

b−τ

{
W 0

e he
(
	

σa,J,Jz
a

σc,J ′,Jz
a−τ

)
× 〈

ψ
σa,γ

J,Jz
a

∣∣Sτ
∣∣ψσc,γ

′
J ′,Jz

a−τ

〉 〈
ψ

σd ,γ ′
J ′,Jz

b−τ

∣∣(Sτ )†
∣∣ψσb,γ

J,Jz
b

〉
+ NW 0

n

∑
j=J±1/2

∑
j′=J ′±1/2

gN−1( j′)
gN (J ′)

hn
(
	

σa,J,Jz
a

σc,J ′,Jz
a−τ

)

× 〈
ψ

σa,γ
J,Jz

a

∣∣Iτ
k

∣∣ψσc,γ
′

J ′,Jz
a−τ

〉 〈
ψ

σd ,γ ′
J ′,Jz

b−τ

∣∣(Iτ
k )†

∣∣ψσb,γ

J,Jz
b

〉 }
(20)

where the first term of the sum in the brace accounts for the
electron spin flips and the second incorporates spin flips in the
nuclear spin bath. For the electron contribution, the flip rate
W 0

e is assumed to be independent on the sign of τ , and the
degree of degeneracy, gN (J ′), cancels out by the summation
over γ ′. For the nuclear spin flips, we also introduced an
isotropic rate W 0

n identical for all nuclei. The sums over γ ,
γ ′ were treated as described in the Appendix B and yield
sums over the quantum number j, j′ of the total nuclear spin’s
length in the reduced nuclear spin bath excluding the spin k
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as well as the degree of degeneracy gN−1( j′) as a prefactor.
The quantum numbers j, j′ are restricted to the values j =
J ± 1/2, and j′ = J ′ ± 1/2 respectively, which enter in the
evaluation of the spin flip elements in the last line of Eq. (20),
see Appendix B for details.

The temperature-dependent function he,n(ε) entering the
transition rates, Eq. (20), is chosen as

he,n(ε) =
{

e−βe,nε, ε > 0,

1, ε � 0,
(21)

in accordance with Ref. [23]. Any transition reducing the
system’s energy, ε < 0, or leaving the energy unchanged,
ε = 0, occurs with maximum rate W 0

e,n, whereas transitions
increasing the hyperfine energy are exponentially suppressed
with increasing inverse spin temperature βe,n. Since the above
choice fulfills the relation he,n(ε)/he,n(−ε) = e−βe,nε it prop-
erly describes coupling with the thermal reservoirs with
particular temperature. Such a choice also ensures the correct
Boltzmann weighted distribution of the steady-state density
matrix in thermal equilibrium, βe = βn.

IV. NUCLEAR-SPIN POLARON STATE

The Lindblad approach providing the steady-state density
operator of the system for a broad temperature range, Te and
Tn, forms the basis for the study of the crossover from the
disordered high-temperature state to the correlated nuclear-
spin polaron states in the low temperature regime.

A. Determining the steady-state density matrix

The Lindblad master equation Eq. (6) can be casted into
two matrix equations: one for the diagonal density matrix el-
ements and one for the off-diagonal matrix elements. Finding
the steady-state solution is equivalent to finding the eigenvec-
tors to the eigenvalue zero of this nonsymmetric matrix. The
steady state is unique if the eigenvalue zero is nondegenerate.
It has been pointed out in the literature that this is the generic
case leading to a unique steady state [40,41] based on the
work of Spohn [42]. More than one zero eigenvalue is usually
caused by a special symmetry in the problem, which would
restrict the type of transition matrix elements in Eq. (6). In this
highly special case the Liouvillian superoperator extracted
from the master equation belongs to a dynamical semigroup
[40] that would be not relaxing.

We allow all transitions that alter the total spin of a state
by one and determine the solution by applying an Arnoldi
approach [43] using the identity matrix as initial vector in the
super operator space. For our generic case, we always found a
unique steady state that complies with the full symmetry of the
Hamiltonian. The steady state coincides with the thermody-
namics density operator for the case βe = βn as a consequence
of the detailed balance condition Eq. (21). It continuously
evolves with temperature, and we do not observe a symmetry
breaking.

B. Electron-nuclear spin correlation functions:
Anisotropy effects

For the investigation of the nuclear-spin polaron formation,
it is instructive to study the correlation of the charge carrier
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FIG. 1. Electron-nuclear spin correlation as a function of the
inverse nuclear spin temperature βn for various anisotropy factors λ

of the hyperfine interaction. The inverse electron spin temperature is
fixed at βeωh = 0.5. The dashed vertical-red lines correspond to the
transition temperatures according to the analytical Eq. (30). Mean-
field results are added as turquoise dotted lines. Note that from the
definition below Eq. (8), A0 = ωh/

√
N .

spin and the nuclear spins as shown in Ref. [23] by comparing
different criteria of nuclear-spin polaron formation for the
case of an Ising coupling. Indeed, the hyperfine energy of the
system is minimized when the electron spin and the nuclear
spins align in opposite directions and produce an anticorre-
lation of the electron and nuclear spins at a positive sign of
the hyperfine coupling constants and the anisotropy parame-
ter, i.e., at A0 > 0 and λ > 0. In this case, the value of the
electron-nuclear spin correlator will be negative. If A0 < 0, a
positive correlation between the electron and nuclear spins is
expected to form, i.e., the central spin and nuclear spin bath
will be co-polarized.

However, the examination of the system at low tem-
peratures reveals a profound dependence of the forming
nuclear-spin polaron state on the anisotropy factor λ of the
hyperfine interaction, Eq. (8). We illustrate the nature of the
polaron state by the expectation value of the electron-nuclear
spin correlation as a function of the inverse nuclear spin
temperature βn at a fixed inverse electron spin temperature,
βeωh = 0.5. For the density operator entering the calculation
of the expectation value of an observable O, 〈O〉 = Tr[Oρ],
we insert the steady-state solution ρ0 of Eq. (16).

The data presented in Fig. 1 is obtained for a system with
N = 1000 nuclear spins in the box model approximation.
By varying the value of the hyperfine anisotropy λ, we se-
lected the three physically particularly relevant cases: (a) the
Ising case at λ = 0 previously addressed in Ref. [23], (b) the
isotropic case at λ = 1, and (c) the case of the strong in-plane
hyperfine coupling at λ = 2. Note that due to Ak > 0, the
electron spin and the nuclear spins are preferably antialigned,
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and the correlator is typically negative. For each case, we
study the spacial components of the electron-nuclear spin
correlator, |〈SxJx〉| (green lines) and |〈SzJz〉|/N (orange lines),
separately as well as the total correlation |〈SJ〉|/N (blue lines).
The component |〈SyJy〉|/N is not displayed since it is identical
to |〈SxJx〉|/N due to the axial rotation (U (1)) symmetry of
the Hamiltonian, Eq. (8). For the same reason, correlators of
different spin components, |〈SαJβ〉| with α �= β, vanish. The
flip rates for the electron spin and the nuclear spins are set
to W 0

e = 10−3ωh and W 0
n = 10−6ωh providing a three orders

of magnitude faster flipping of the electron spin compared to
the nuclear spins. This choice of the rates and the number N
is kept throughout the whole paper. Since the correlators are
extensive quantities they scale linearly with N . Therefore, we
eliminate the N dependency by plotting the three components
of the electron-nuclear spin correlator normalized to 1/N .

The overall behavior of the correlators as a function of
the inverse nuclear spin temperature is similar for all three
hyperfine anisotropy cases: At high nuclear spin temperatures
(small βn) all correlators are negligible. With a reduction of
the nuclear spin temperature (increase in βn) at least one
correlator |〈SαJα〉| and the total spin correlator |〈SJ〉| become
significant. They increase with increasing βn and at Tn → 0
(βn → ∞) saturate. The anisotropy parameter λ leads to a
different behavior in the different components |〈SαJα〉|.

In the limit of λ = 0 depicted in Fig. 1(a), the hyperfine
interaction consists solely of the Ising contribution along
the z axis. The spin flip terms, i.e., the transversal hyper-
fine contributions, are absent. Therefore, the anticorrelation
of the electron spin and the nuclear spins only builds up in
z direction, whereas the correlation functions of transversal
components 〈SxJx〉 = 〈SyJy〉 remain zero. At low tempera-
tures (large βe and βn) the modulus of the anticorrelation per
nuclear spin reaches the maximum value 1/4 determined by
the product of the electron spin length and the spin length
of an individual nuclear spin [23]. Since the coupling of
the transversal components is absent in the Ising limit, the
full correlator 〈SJ〉 is solely made up by the z contribution.
Interestingly, a similar behavior is displayed by any system
with an anisotropy factor in the range 0 � λ < 1, for which
the hyperfine interaction in z direction is stronger than the x
and y components. Our calculations show that for λ ∈ [0, 1)
the results coincide with those shown in Fig. 1(a) within the
numerical accuracy.

In the isotropic case, λ = 1, see Fig. 1(b), the nuclear-spin
polaron state, that forms at large βn, has different charac-
teristics. Due to the lack of spatial preference, the polaron
state is isotropic: The correlators 〈SxJx〉 = 〈SyJy〉 = 〈SzJz〉
build up equally with decreasing temperature. As a result,
the full correlator 〈SJ〉 is made up by equal contributions for
the three spatial directions. At low nuclear spin temperatures
(βn → ∞) it reaches 〈SJ〉/N = −1/4, whereas each spatial
component contributes with the value −1/12.

An anisotropy factor |λ| > 1 is relevant, e.g., for light holes
in QDs, where λ = −2 [25,35]. Since the sign of λ does not
change the overall behavior of the system but affects the sign
of the transversal electron-nuclear spin correlator only, i.e.,
it determines whether the electron spin and the nuclear spins
align parallel or antiparallel within the (xy) plane, we restrict
ourselves to positive values of λ. The results for λ = 2 are

depicted in Fig. 1(c). Here the transversal contributions of the
hyperfine interaction dominate over the z contribution. Thus,
an anticorrelation of the electron and nuclear spins builds
within the (xy) plane while no (anti)correlation in z direction
arises. Consequently, the total anticorrelation, −〈SJ〉, is split
between the x and y component, which have a maximum value
of 1/8 per nuclear spin. Note that for |λ| > 1 the crossover
regime, where the nuclear-spin polaron state starts to form
(indicated by the dashed vertical lines in Fig. 1) is shifted to
higher temperatures. This effect is discussed in more detail in
Sec. IV D below.

C. Mean-field approach to the anisotropic system

For a deeper understanding of the nuclear-spin polaron
state that forms in a spin system with anisotropic hyperfine
coupling, we refer to a mean-field approach, which previously
was developed by Merkulov for the isotropic system [10]. In
the mean-field approximation we assume the electron spin to
experience the average effective field generated by the nuclear
spins, i.e., the average Overhauser field 〈BN〉, caused by the
nuclear spin polarization. In their turn, the nuclear spins are
subject to the average effective field of the electron spin, the
average Knight field 〈BK〉. These effective fields result in the
polarization of the respective spin systems in the form

〈S〉 = − 〈BN〉
2|〈BN〉| tanh

(
βe|〈BN〉|

2

)
, (22a)

〈J〉 = − N〈BK〉
2|〈BK〉| tanh

(
βn|〈BK〉|

2

)
, (22b)

where the definitions of the Overhauser field and the Knight
field include the anisotropy parameter λ of the hyperfine in-
teraction

〈BN〉 = A0(λ〈Jx〉, λ〈Jy〉, 〈Jz〉)T
, (23a)

〈BK〉 = A0(λ〈Sx〉, λ〈Sy〉, 〈Sz〉)T
, (23b)

and the fields are measured in the energy units.
To obtain the self-consistency equation for the total nuclear

spin 〈J〉, Eq. (22a) is inserted into Eq. (22b) taking into ac-
count the definitions of 〈BN〉 and 〈BK〉,

〈J〉 = N

2L2
tanh

[
βnA0

4

L2

L1
tanh

(
βeA0

2
L1

)]

× (λ2〈Jx〉, λ2〈Jy〉, 〈Jz〉)T (24)

where we introduced L1 =
√

λ2(〈Jx〉2 + 〈Jy〉2) + 〈Jz〉2 and
L2 =

√
λ4(〈Jx〉2 + 〈Jy〉2) + 〈Jz〉2 for brevity.

In order to obtain the critical temperature of the polaron
formation let us denote the angle between the vector 〈J〉 and
the z axis by θ ∈ [0, π ]. Since the system is isotropic in the
(xy) plane the polar angle of 〈J〉 is unimportant. As a first
step we solve Eq. (24) for the absolute value |〈J〉| and obtain
that the polaron can be formed in the mean-field approach
provided that the following condition

NA2
0βeβn

16

√
λ4 sin2 θ + cos2 θ > 1 (25)

is fulfilled. Thus, the parameter λ induces a modification of
the critical temperatures especially for angles θ close to π/2.
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As a next step we determine the orientation of the spins in
the polaron by solving the self-consistency equation for the
angle θ . It can be derived from Eq. (24) using the relation
tan2 θ = (〈Jx〉2 + 〈Jy〉2)/〈Jz〉2 and taking into account that
the left and right hand sides of Eq. (24) should be parallel:

tan2 θ = λ4 tan2 θ. (26)

Equation (26) reveals the potential orientations of the polaron
state with respect to λ. We find that in the isotropic case,
|λ| = 1, the relation holds for arbitrary θ . Otherwise Eq. (26)
is only consistent with three solutions for the angle θ : θ = 0,
θ = π , or θ = π/2. A stability analysis, see Appendix C,
demonstrates that for |λ| < 1 the states with θ = 0 and θ = π

are stable and θ = π/2 is an unstable solution, whereas for
|λ| > 1 the categorization is switched, i.e., θ = π/2 is stable
and θ = 0, θ = π are not. Thus, the mean-field calculations
predict that the nuclear-spin polaron forms along the z axis
for |λ| < 1 (easy-axis situation) and within the (xy) plane
for |λ| > 1 (easy-plane situation). As a result, the polaron
formation condition within the mean-field approach can be
summarized as:

NA2
0βeβn

16
>

{
1, |λ| � 1,

λ−2, |λ| > 1.
(27)

Naturally, the symmetry breaks in such a way that polariza-
tions build up to maximize the absolute value of the hyperfine
coupling. This analysis is consistent with the results obtained
above, in Sec. IV B.

The mean-field solutions for the electron-nuclear spin
correlation |〈SαJα〉|/N (with α ∈ {x, y, z}) for those spatial
components α, in which the anticorrelation builds in the low-
temperature regime, are added in Fig. 1 (dotted turquoise
lines) alongside the data obtained by our approach as a com-
parison. We find that within the presented temperature range,
the two approaches nearly coincide. The mean-field solution,
however, exhibits a sharper transition to the polaron state at
the critical temperature consistent with a phase transition even
in equilibrium, while a smooth crossover is observed in the
finite system, see Ref. [23] for more details.

D. Crossover temperature for the polaron formation

The mean-field approach, Eq. (27), predicts the formation
of a nuclear-spin polaron state below the critical temperatures
given by

βe,cβn,c = 16

NÃ2
0

. (28)

The equation combines the criteria for the polaron state along
the z direction (θ = 0/θ = π ) and for the polaron oriented
within the (xy) plane (θ = π/2) by introducing a rescaled
hyperfine coupling constant

Ã0 =
{

A0, |λ| � 1,

λA0, |λ| > 1.
(29)

In Ref. [23] we derived a more complex temperature
criterion for the polaron-state formation based on the rate-
equation formalism taking into account the finite number of
nuclear spins. We substitute the coupling constant Ã0 into

FIG. 2. Fluctuations σ 2
SJ of the electron-nuclear spin correlator,

Eq. (31), as a function of the effective inverse nuclear spin temper-
ature βn and the effective inverse electron spin temperature βe for
different values of the hyperfine anisotropy parameter, (a) λ = 1 and
(b) λ = 2, and (c) at a fixed electron spin temperature, βeωh = 0.4.

Eq. (31) of Ref. [23] and obtain the temperature criterion

βn,p = 4

Ã0
artanh

(
4

(N + 2)βe,pÃ0

)
(30)

for the onset of polaron formation (“p” for polaron) general-
ized to an arbitrary anisotropy. This defines a (βn,p, βe,p)-line
in the (βn, βe) plane. In the derivation of the criterion, we
replaced the mean-field argument by the onset of the splitting
of the nuclear spin distribution function g(Jz ) as depicted
below in Fig. 4. In the disordered phase, the maximum is
found for g(0). The onset of the nuclear polaron formation can
be defined when the value of distribution function g(Jz = ±1)
is equal to g(0). Exploring this criterion yields Eq. (30) where
the anisotropy factor enters via Ã0 defined in Eq. (29).

As a common indicator for the crossover to the nuclear-
spin polaron state for all values of the hyperfine parameter λ,
we focus on the total electron-nuclear spin correlation since
we found that 〈SJ〉 is maximized consistently in the polaron
state, cf. Fig. 1. The crossover temperature line extracted from
the master equation approach is then indicated by the rise of
the fluctuations [44] of 〈SJ〉,

σ 2
SJ = 〈(SJ)2〉 − 〈SJ〉2, (31)

which we plotted as a color contour plot in the (βn, βe) plane
for λ = 1 in Fig. 2(a) and for λ = 2 in Fig. 2(b). The tem-
perature line defined in Eq. (30) (depicted as a red-dotted
line) matches the line formed by the maximum of σ 2

SJ . For
comparison, the mean-field critical temperature, Eq. (28), is
added as well (white line). Our results obtained by the Lind-
blad approach agree very well with the analytic prediction for
the the crossover temperature scale stated in Eq. (30). The
deviation between the mean-field critical temperature and the
crossover temperature is clearly visible for βeωh < 1. Here,
the high electronic temperature entails strong electron spin
fluctuations, which inhibit the polaron formation but are dis-
regarded in the mean-field treatment.
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FIG. 3. Fluctuations σ 2
SJ of the electron-nuclear spin correlator

in the isotropic system (λ = 1) as a function of the effective inverse
nuclear spin temperature βn for a fixed inverse electron spin temper-
ature, (a) βeωh = 0.4 and (b) βeωh = 0.4

√
1000/N . For panel (b) we

scaled βe to follow the shift of the maximum fluctuations to smaller
inverse electron temperatures with increasing the nuclear bath size N
[see legend in panel (b)].

For the physical interpretation of the fluctuations σ 2
SJ we

refer to case of equal temperatures βe = βn: At low tempera-
tures, the spins are aligned either within the (xy) plane or in
z direction (depending on λ), and the hyperfine energy is pro-
portional to the spin correlator 〈SJ〉. Therefore the fluctuations
of the correlator in thermal equilibrium are proportional to the
heat capacity of the system, which is expected to display a
discontinuity at the critical temperature in the Landau theory
of phase transitions [45]. Since we consider a finite system
with N = 1000 nuclear spins here, the system does not ex-
hibit a genuine phase transition but a crossover behavior that
becomes sharper with increasing N . In particular in thermo-
dynamic equilibrium, i.e. βe = βn, the transition is relatively
broad such that it might be a finite crossover to the ground
state even for N → ∞.

The peak in the fluctuations σ 2
SJ as a function of βn, see

Fig. 2(c), is relatively sharp, and its rising edge is positioned
at the crossover temperature according to Eq. (30) (red dashed
vertical line for |λ| � 1, red dotted vertical line for λ = 2).
Since the fluctuations σ 2

SJ are extensive and scale as σ 2
SJ ∝ N ,

we plotted the results as σ 2
SJ/N to eliminate the N dependency.

It is noteworthy that for λ = 2 the peak of the fluctuations
σ 2

SJ at a fixed electron temperature, βeωh = 0.4, is less pro-
nounced than for |λ| � 1 due to the shift of the polaron regime
to higher temperatures when |λ| > 1.

To shed some light into the crossover regime of the nuclear
polaron formation we investigate the N dependency of the
fluctuations σ 2

SJ/N as a function of βn for a fixed electron
spin temperature βeωh = 0.4 in the isotropic case λ = 1 [46].
σ 2

SJ/N displays a peak at the crossover temperature deter-
mined by Eq. (30) that becomes independent of N for N → ∞
depicted in Fig. 3(a). For small N , the peak is absent and we
observe a rather a smooth increase of σ 2

SJ/N since the electron
spin temperature does not allow for the formation of a nuclear

polaronic state according to Eq. (30). Furthermore the width
of σ 2

SJ/N remains independent of N for N → ∞. As the fluc-
tuations of the electron-nuclear spin correlation are connected
to the heat capacity in case of a single temperature situation
and scale with N , the constant maximum of the fluctuations
indicates a crossover rather than an actual phase transition.

According to the prediction of Eq. (30), the polaron forma-
tion is shifted to lower βe with increasing N . The minimum
inverse electron spin temperature, that allows for polaron
formation, scales with βeωh ∝ 1/

√
N . We display σ 2

SJ/N as
a function of βn in Fig. 3(b) and adjust the inverse electron
spin temperature βe with N to correspond to that chosen for
N = 1000, i.e., βeωh = 0.4

√
1000/N . We track the maximum

of the σ 2
SJ/N in the (βe, βn) plane and find that the peak of the

fluctuations per nuclear spin increases with growing system
size.

E. Nuclear distribution functions

Aiming at a comprehensive investigation of the polaron
formation beyond the mean-field approach, we focus on the
distribution functions of the nuclear spin quantum numbers,
which provide an ideal tool to study the reorientation of the
nuclear spins related to the formation of a nuclear-spin po-
laron state in the cooled system. To this end, we consider again
the steady-state density operator of Eq. (16) at a given electron
and nuclear spin temperature and define the distribution func-
tion,

g(Jz ) =
∑
J,σ

(
cσ

J,Jz

)2
pJ

Jz,σ ;Jz,σ

+
∑
J,σ

(
dσ

J,Jz+1

)2
pJ

Jz+1,σ ;Jz+1,σ (32)

by transforming from the energy eigenbasis into the spin z
basis and summing all contributions with a fixed nuclear spin
quantum number Jz. In addition, we introduce the quantum
number of the perpendicular component of the total nuclear
spin,

J p2 = J (J + 1) − Jz2
, (33)

that is deduced from the quantum numbers J and Jz and is
restricted to J p2 ∈ {0, . . . , N/2(N/2 + 1)}. The related distri-
bution function,

g(J p2) =
∑

J,Jz,σ

[(
cσ

J,Jz

)2
pJ

Jz,σ ;Jz,σ

+ (
dσ

J,Jz+1

)2
pJ

Jz+1,σ ;Jz+1,σ

]
δJ p2,(J (J+1)−Jz2 ), (34)

is obtained by summation of all contributions to a given
value of J p2 analogously to g(Jz ). To display the distribu-
tion function g(J p2), the data is processed into a histogram
with appropriate bin size—typically 100 bins within the range
J p2 ∈ [0, N/2(N/2 + 1)].

The distribution functions, g(Jz ) and g(J p2), as a func-
tion of the effective inverse nuclear spin temperature βn

for fixed βeωh = 0.5 are displayed in Fig. 4. In the high-
temperature limit (small βn), the nuclear spins are randomly
aligned and Jz follows an approximately Gaussian distribution
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FIG. 4. Distribution function of the nuclear spin quantum numbers Jz (upper panels) and J p2 (lower panels) for three typical values of
the anisotropy factor λ of the hyperfine interaction with N = 1000 nuclear spins. The inverse nuclear spin temperature βn is displayed on the
horizontal axis; the inverse electron spin temperature is fixed at βeωh = 0.5.

centered around zero independent on the hyperfine parame-
ter λ. In the high-temperature limit the nuclear spin system
appears isotropic. Hence, the distribution of J p2 at high tem-
peratures is proportional to exp(−2J p2/N ). However when
decreasing the temperature (increasing βn) the distributions
are altered below a certain point: The behavior of the sys-
tem is now determined by the hyperfine interaction and its
anisotropy.

In the Ising limit, where the nuclear-spin polaron state is
oriented along the positive/negative z direction, we find the
two possible orientations reflected by two branches forming
for g(Jz ), depicted in Fig. 4(a). These results fully match the
data in Ref. [23] obtained by the kinetic rate equations taking
into account the diagonal elements of the density opera-
tor. Naturally, the J p2 component remains distributed closely
around zero at λ = 0, see Fig. 4(d).

For a better illustration the vertical cut through the panels
of Fig. 4, is displayed in Fig. 5 for two different values of βn.
Here the two peaks in g(Jz ) (orange lines for λ = 0) move
further apart with increasing βn from βnωh = 80 in the left
hand panels to βnωh = 270 in the right hand panels. As a
comparison we added the data for λ = 0.5 in Fig. 5 as well. In
this case we find similar behavior as for the Ising limit though
the peak of g(J p2) at βnωh = 270 is a bit broader indicating
that for 0 < |λ| < 1 certain correlations appear also in the
in-plane nuclear spin components.

For the system with isotropic hyperfine interaction, the
distributions g(Jx ), g(Jy) and g(Jz ) coincide, see Fig. 4(b) and
Figs. 5(a) and 5(b) (blue lines) for g(Jz ) as an example. The
narrow Gaussian distribution of Jz of the high-temperature
regime transforms into a wide and almost uniform distribution
at low temperatures. The range of the uniform distributions
broadens with decreasing the temperature until the full range
Jz ∈ [−N/2, N/2] is covered. The distributions for λ = 1 at
fixed nuclear spin temperatures, see Fig. 5 (blue lines), are
nearly flat. The uniform distribution of the quantum num-
ber Jz complies with the uniform distribution of the polaron
orientation on the Bloch sphere. Accordingly the distribution

of J p2 is roughly given by g(J p2) = 1/(J (J + 1) − J p2)1/2 at
low temperatures, see Figs. 4(e) and 5(d).

In an anisotropic system with |λ| > 1, the polaron forms
within the (xy) plane. The nuclear distribution functions re-
flect this fact by narrowing the distribution g(Jz ) around
Jz = 0 when lowering the temperature starting from the initial
Gaussian distribution. This is depicted in Fig. 4(c) as well as
Fig. 5(a) and Fig. 5(b) for λ = 2. At the same time the weight
in the distribution of J p2 moves from J p2 = 0 to the maxi-
mum value J p2 = N/2(N/2 + 1) resulting from the maximum
quantum number J = N/2 and the minimum value Jz = 0.
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FIG. 5. Distribution function of the nuclear spin quantum num-
bers Jz (upper panels) and J p2 (lower panels) for various anisotropy
factors λ of the hyperfine interaction, see legend in panel (c). The
inverse nuclear spin temperature is set to βnωh = 80 [(a),(c)] or
βnωh = 270 [(b),(d)]; the inverse electron spin temperature is fixed
at βeωh = 0.5.
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F. Quantum phase transition

The dependence of the nuclear-spin polaron state on the
hyperfine anisotropy parameter λ also tracks the transition
of the ground state of the Hamiltonian, Eq. (8), at a critical
coupling λc = 1.

The sector of lowest eigenenergies of the Hamiltonian is
determined by Eq. (10a), and the lowest eigenenergies are
given by ε−

N/2,Jz ,

ε−
N/2,Jz = −A0

4
− A0

2

{
1

4
+ λ2 N

2

(
N

2
+ 1

)

+ (1 − λ2)Jz(Jz − 1)

}1/2

, (35)

where J = N/2 (assuming even N) is maximized and σ is
set to σ = −. We note that the eigenenergies for Jz and J̄ z =
−(Jz − 1) are degenerate. Furthermore, the eigenenergies do
not depend on the sign of λ as pointed out above.

This leaves us with the determination of Jz to find the
ground-state energy of H . It becomes clear that for λ2 < 1
the term Jz(Jz − 1) has to maximize, and therefore the ground
state results from Jz = −N/2 + 1 or Jz = N/2. At λ2 = 1, the
value of Jz does not influence the eigenenergy, and the ground
state is N-fold degenerate in Jz. By contrast, for λ2 > 1,
the ground state requires a minimum of the term Jz(Jz − 1),
which corresponds to Jz = 0 or Jz = 1. Therefore, the system
undergoes a quantum phase transition at λc ≡ 1 with a change
of the ground-state degeneracy from a twofold degenerate
ground state for |λ| < 1 or |λ| > 1 to a degeneracy of N for
|λ| = λc. For odd N the degeneracy of the ground state is 1
for |λ| > λc.

The difference between the two ground states for λ2 < 1
and the two ground states for λ2 > 1 lies in the fact that for
λ2 < 1 there is no transition between the two ground states
via single spin-flip processes, which disconnects these ground
states for λ2 < 1. Hence at zero temperature, thermal spin-flip
processes between the two ground states are inhibited. For
λ2 > 1 however the two ground states with Jz = 0 and Jz = 1
are directly connected by a single spin-flip process. The cou-
pling to the environment provides nonzero transition matrix
elements as stated in Eqs. (18) and (19) such that even at zero
temperature fluctuations between the two ground states will
take place. In the mean-field approach, presented in Sec. III A,
the difference in the nature of the ground state translates
to two disconnected polaron states for λ2 < 1 whereas the
nuclear-spin polaron forms isotropically within the (xy) plane
for λ2 > 1.

The quantum phase transition at λc = 1 translates to a rapid
change of the nuclear distribution function g(Jz ) at low tem-
peratures, see Fig. 6(a). For |λ| < 1, the distribution function
has two very sharp peaks at Jz/N = ±0.5 [which therefore
are hard to detect in Fig. 6(a)], whereas for |λ| > 1 the dis-
tribution displays a single maximum around Jz = 0. In the
isotropic limit, λ = 1, g(Jz ) covers the full range of potential
values of Jz uniformly. Around the point of isotropy we find a
blurred behavior as a result of the finite nonzero temperatures.

The nuclear spin distribution functions for systems close to
the quantum critical point reveal that even a slight anisotropy
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FIG. 6. Distribution function of the nuclear spin quantum num-
ber Jz. (a) Dependence on the anisotropy factor λ of the hyperfine
interaction for fixed inverse spin temperatures, βnωh = 1000, βeωh =
0.5. [(b),(c)] Dependence on the inverse nuclear spin temperature
with λ adjusted slightly below (b) or above one (c); βeωh = 0.5.

leads to a well distinguished signature of both phases at low
temperatures. We picked λ = 0.99 < λc and λ = 1.01 > λc

as an example and plotted the temperature evolution of the
distribution function in Fig. 6(b) and Fig. 6(c) respectively.

For λ = 0.99, the two polaron branches corresponding to
the opposite spin alignments in z direction appear similar
to Fig. 4(a). In comparison to the results in the Ising limit
λ = 0, the branches are just slightly broadened at intermediate
inverse nuclear spin temperature βn.

The data for λ = 1.01 exhibits similar deviations from the
case of stronger anisotropy λ = 2 in Fig. 4(c), whereas the
overall sharpening of the nuclear distribution function g(Jz )
around Jz = 0 is the same. For λ = 1.01, however, g(Jz ) first
resembles the isotropic case in the regime of intermediate tem-
peratures close to the crossover temperature resembling the
distribution depicted in Fig. 4(b). Only with further decreas-
ing of the nuclear spin temperatures the distribution focuses
around Jz = 0.

Note that the anisotropy factor for the hyperfine interaction
of electron spins in semiconductor nanostructures equates
to the quantum critical point λc = 1. Derivation from an
isotropic system are characteristic for localized hole spins and
significantly effect the polaron formation.

G. Role of the distribution of hyperfine-coupling constants

So far all results are obtained within the box model, i.e.,
for Ak = A0 = ωh/

√
N . This triggers the question how the

results might change for a realistic system with a distribution
function p(A) [9,29,31]. We addressed this question in a previ-
ous publication [23] using a Monte Carlo approach for λ = 0,
since the Ising eigenstates remain analytically known even for
a distribution of the coefficients Ak . While a nuclear polaron
state is also found, we observed two differences compared to
the box model. For a distribution function p(A), we can define
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the effective number of spins Neff by the ratio

Neff

N
= 〈Ak〉2〈

A2
k

〉 . (36)

Neff accounts the number spins significantly contributing to
the Overhauser field and its fluctuations. Therefore, Neff

replaces the role of the absolute number of spins N and de-
termines the crossover temperatures.

Furthermore, the distribution function influences the slope
of the correlator depicted in Fig. 1 below the crossover tem-
perature. Figure 4 in Ref. [23] shows elongated crossover
region as a function of Tn induced by the distribution before
the fully polarized nuclear polaron state is reached for λ = 0.
This can be analytically understood by assuming a frozen
electron spin: the electron spin flip is suppressed by the large
energy difference between the states for strong Overhauser
fields. Under this approximation the system factorizes and the
correlator is given by

〈SzIz〉 ≈ −1

4

∑
k

tanh

(
βnAk

4

)
. (37)

We expect that this observation will prevail also for λ > 0,
since the energy costs of a single nuclear spin flip remains of
the order of Ak but the estimation for the correlator, Eq. (37),
will require some refinement.

V. TEMPORAL SPIN FLUCTUATIONS

nuclear-spin polaron formation strongly affects the tem-
poral dynamics of the electron and nuclear spin degrees of
freedom. The direct access to it is provided by the time-
dependent spin correlation functions. In this section we study
electron and nuclear spin fluctuations in time domain and
highlight the role of the nuclear-spin polaron effects.

A. Electron spin fluctuations

The temporal fluctuations 〈Sz(0)Sz(t )〉 of the electron spin
are accessible by optical measurements of the electron spin
noise [4,47,48]. In terms of the Lindblad-master equation for-
malism, Eq. (4), the electron spin fluctuations are calculated
by the quantum mechanical trace with the steady-state density
operator ρ0,

Cz
S (t ) = 〈Sz(0)Sz(t )〉 = Tr[ρ0SzSz(t )]

= Tr[SzeLt (Szρ0)], (38)

where L is the Liouvillian operator determining the time
evolution of the open quantum system and the superoperator
exp(Lt ) is applied to Szρ0 [49].

Figure 7 presents the electron spin autocorrelation as a
function of time for three distinct values of the hyperfine
anisotropy parameter λ. The initial value of the electron spin
correlator yields Cz

S (0) = 1/4 regardless of the temperature
since both electron spin components are equiprobable. The
electron spin at low temperatures displays long living corre-
lations, related to the spin-polaron formation, whose lifetime
depends on the choice of λ, whereas in the high-temperature
regime the autocorrelation function completely decays on a
timescale given by the inverse thermal electron spin flip rate
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FIG. 7. Temporal fluctuations of the electron spin components
for different values of the hyperfine anisotropy parameter λ in (a),
(b), and (c). Results for various effective inverse nuclear spin tem-
peratures βn are presented respectively whereas βeωh = 0.5 is kept
constant.

τs = 1/W 0
e (= 103/ωh for our choice of parameters) demon-

strating also nontrivial dynamics at shorter timescales.
In the Ising limit, λ = 0, the correlator decays to zero on a

timescale proportional to τs at high temperatures, see Fig. 7(a)
(red line). In this situation the hyperfine interaction does not
effect the electron spin-z component and its decay is fully con-
trolled by the reservoir induced spin-flip processes. However,
when the effective nuclear spin temperature is reduced to the
crossover temperature where the polaron formation sets in, the
correlator Cz

S (t ) does not decay completely anymore within
the presented time range up to tωh = 109 but to a plateau with
a finite nonzero value (orange line). The degree of correlation
at this plateau increases with the lowering of temperatures. At
very low temperatures, e.g., βnωh = 1000 (blue line) deep in
the polaronic phase, no decay is visible anymore, and the full
correlation of the electron spin persists for the full time inter-
val presented in the figure. With lowering the temperatures,
the reservoir induced spin-flip processes become more and
more suppressed, cf. Eq. (21), which shifts the decay of Cz

S (t )
to longer time scales. However, we expect a decay of Cz

S (t ) to
zero on a prolonged time scale for nonzero temperatures as a
result of the exponentially suppressed but non-zero flip rates.

In the isotropic system, the spin-flip terms of the hyperfine
Hamiltonian come into play and yield a two-stage behavior. In
the high-temperature limit, the electron spin initially dephases
in the nuclear spin bath with the rate ωh, which produces
the characteristic curve Cz

S (t ) that reaches a plateau of the
value 1/12, see Fig. 7(b) (red line), analytically derived in
Refs. [9,50] in the limit of frozen nuclear spins for a closed
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system. However, the correlator decays further on a time scale
determined by the inverse rate 1/W 0

e due to the coupling to
the thermal reservoirs [51].

Note that the equidistant spikes in the correlators for λ = 1
and λ = 2 at time scales of ωht ≈ 102 − 103 in Figs. 7(b) and
7(c) are an artifact of the box model approximation and the
finite number N of nuclear spins. For equal hyperfine coupling
constants Ak = A0 of all nuclear spins, the Overhauser field is
quantized, i.e., the spacial components in Eq. (23a) can only
assume values that are an integer multiple of λA0. Thus the
precession frequencies of the electron spin are all commensu-
rate and yield a rephasing at times Tn = 2πn/(λA0) with an
integer n ∈ {−N/2, . . . , N/2} [3].

A reduction of the effective nuclear spin temperature yields
an oscillatory component to Cz

S (t ) in the isotropic system
in the absence of an external magnetic field, since the elec-
tron spin starts to precess around the emerging nuclear spin
polarization, which is isotropically distributed and therefore
contains components perpendicular to the z axis. Lowering
the temperature, the nuclear spins become more and more
oriented and generate a stronger Overhauser field such that
the electron precession frequency increases.

Additionally, the stronger nuclear alignment reduces the
fluctuations of the nuclear spin, which prevents the dephasing
of the electron spin and results in an elongated envelope of
the oscillating Cz

S (t ). At times t � 1/W 0
e , the electron spin flip

processes resulting from the coupling to the thermal reservoir
come into play and provide further dephasing such that the
oscillatory component eventually vanishes even at low tem-
peratures and Cz

S (t ) reaches the plateau of 1/12 [9,50], which
stems from the spatial electron spin component parallel to the
Overhauser field and is protected from thermal spin flips due
to a large energy barrier. The plateau persists for several orders
of magnitude in time and then decays further on a timescale
determined by the effective nuclear spin temperature and the
electron and nuclear spin flip rates in the system.

This decay can be attributed to the rotation of the nuclear-
spin polaron state. Since the system is fully isotropic, a
polaron state, for which exemplarily the electron spin for-
merly was aligned in z direction, may rotate such that the
electron spin points in any other direction on the Bloch sphere.
Thus the temporal correlation of the electron spin z compo-
nent will get lost. The rate of this loss of correlation may be
understood by means of a diffusion process on the diagonal
of Szρ0 entering Eq. (38), see Appendix D for details. As a
consequence the total rate for the rotation of the nuclear-spin
polaron state is approximately made up by

Wr = W 0
e /N2 + W 0

n /N. (39)

For rates W 0
e = 10−3ωh, W 0

n = 10−6ωh, and N = 1000,
the rate for rotation of the polaron state correspondingly is
Wr = 2 × 10−9ωh, which matches the low-temperature result
in Fig. 7(b) (blue line). The rotation of the nuclear polaron
state for λ = 1 maintains a finite rate Wr even for zero temper-
atures, hence the correlations exhibit a fundamental difference
from the case λ < 1 that originates from the different nature
of the ground states.

The autocorrelation function of the electron spin x com-
ponent, Cx

S (t ) = 〈Sx(0)Sx(t )〉, for the system with a hyperfine
anisotropy λ = 2 resembles the results for the isotropic sys-

tem and is plotted in Fig. 7(c). Due to the amplification of the
hyperfine interaction in x and y direction, the dip in the high-
temperature limit predicted by Ref. [9,50] for the isotropic
case is shifted to earlier times. The correlation function for
the spin z component, Cz

S (t ), for λ = 2 alongside the spin x
component, Cx

S (t ), for λ = 0 is provided in Appendix E for
completeness.

Naturally, the electron spin precession is faster for λ = 2
than for λ = 1 at the same temperatures due to the enhanced
Overhauser field perpendicular to the z axis. The correlator
Cx

S (t ) for λ = 2 decays on the timescale dictated by the rate
W 0

e of thermal electron spin flips even in the low-temperature
limit such that the electron spin correlations are limited to a
lifetime of 103ωh for our choice of parameters: The twofold
degenerate (nondegenerate) ground state does not protect
the electron spin correlator from the dephasing induced by
thermal electron spin flip processes. In other words, it is a
consequence of the in-plane isotropy of the system.

B. Fluctuations of the nuclear spins

The long-living correlations of the electron spin at low
temperatures are related to the similar dynamics of the nu-
clear spin bath. In contrast to the electron spin, however,
the nuclear correlator does not display any fast modulations
but is constant for a long time until a temperature-dependent
decay process may take place. Figure 8 displays the nuclear
correlator,

Cz
J (t ) = 〈Jz(0)Jz(t )〉 = Tr[ρ0JzJz(t )]

= Tr[JzeLt (Jzρ0)], (40)

at different inverse nuclear spin temperatures, Fig. 8(a) for the
Ising limit, Fig. 8(b) in the isotropic system, and Fig. 8(c) for
the anisotropic system with λ = 2.

Since the spin fluctuation induced by the thermal reservoirs
will ultimately cause a decay to zero for t → ∞ at nonzero
temperatures, we define the decay time τd as the point in
time where the correlator has reduced by the fraction e with
respect to its initial value, i.e., Cz

J (τd ) = Cz
J (0)/e. We plot τd

as a function of the effective inverse nuclear spin tempera-
ture βn whereas the electron spin temperature, βeωh = 0.5,
remains constant. The data for various values of the hyperfine
anisotropy parameter λ is presented in Fig. 8(d).

At high temperatures the decay is inherently dictated by
the thermal nuclear spin flip rate W 0

n (in our calculations,
W 0

n = 10−6ωh) independent on the hyperfine anisotropy λ.
The related decay time 1/2W 0

n is indicated in Fig. 8(d) by the
lower horizontal dotted grey line.

Moving to the temperature regime of the nuclear-spin po-
laron formation, the characteristic decay time of the correlator
Cz

J (t ) increases for λ < 1 similar to the electron spin correlator
depicted in Fig. 7(a). At low temperatures, Cz

J (t ) does not
reach the fraction 1/e of the starting value within our largest
simulation time of t = 1015/ωh, see Fig. 8(a). In the context of
the quantum phase transition, we pointed out that the twofold
degenerate ground state maximizes J = N/2 as well as Jz so
that the spin flips induced by the thermal reservoir become
exponentially suppressed leading to an exponential increase in
τd . Therefore, the decay time τd grows exponentially starting
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FIG. 8. Temporal fluctuations of the nuclear spin z component
for (a) the Ising limit, (b) the isotropic system, and (c) the anisotropic
system with λ = 2. The inverse electron spin temperature βe is fixed;
the inverse nuclear spin temperature βn is encoded by different col-
ors. (d) Decay time τd of the nuclear spin fluctuations for different
values of the hyperfine anisotropy parameter λ. The transition tem-
perature, Eq. (30), is added as a red dashed-vertical line.

at the transition temperature, Eq. (30), see red dashed-vertical
line in Fig. 8(d).

For λ � 1, this exponential increase of τd is absent as a
result of the rotational symmetry in the nuclear-spin polaron
state. In the isotropic system, the orientation of the nuclear-
spin polaron state rotates with the rate Wr (Wr = 2 × 10−9ωh

for our choice of parameters) previously deduced in the con-
siderations of the electron spin correlation, see Eq. (39).
Accordingly, τd in the temperature range of polaron for-
mation rises to approximately 1/2Wr = 0.25 × 109ωh [upper
horizontal-dotted grey line in Fig. 8(d)].

For λ > 1 the decay time τd reduces when the nuclear spin
temperature is lowered. For an explanation we refer to the
dynamic rotation of the polaron state in the isotropic case.
Here, the dynamics of the non-zero matrix-elements of the
composite operator O = Jzρ0 in the ground state at Te = Tn =
0 follow Eq. (D2) (off-diagonal elements) and Eq. (D3) (diag-
onal elements) respectively. The differential equations yield a
decoupled decay of the off-diagonal elements with approxi-
mate rate W 0

e + NW 0
n , while transitions between the diagonal

elements occur with the same rate W 0
e + NW 0

n . The ground
state for λ > 1 is solely twofold degenerate in contrast to the
N-fold degeneracy in the isotropic case, cf. Sec. IV F. Thus,
for λ > 1, a single spin flip between the two ground states
(generating a transition between the two nonzero diagonal
elements of (Jzρ0)) already leads to a complete loss of corre-
lation whereas in the isotropic case the correlation is gradually
lost by successive spin flips. As a result, the decay of the cor-
relator Cz

J (t ) for λ > 1 remains bound to the decay rate τd ≈
(W 0

e + NW 0
n )−1 when reducing the temperature, while in the

isotropic system the decay is prolonged in the polaronic state.

VI. CONCLUSIONS

We generalized the kinetic approach for the nuclear-
polaron formation to an arbitrary anisotropic CSM. This
allows us to investigate all experimentally relevant regimes of
singly-charged QDs and localized electronic charge carriers.
We proposed a symmetry conserving Lindblad approach that
is applicable to arbitrary hyperfine coupling anisotropy factors
λ and calculated the steady-state solution for two distinct
reservoir temperatures Te and Tn. Our approach overcomes the
limitation of Ref. [23] to λ = 0 but includes the previously
investigated limit as well.

We have studied the electron-nuclear spin correlator, the
nuclear spin distribution function and the temporal autocorre-
lators of the spins. The spin correlation functions as well as the
nuclear distribution function reveal the nuclear polaronic state
formation when reducing the nuclear spin temperature. The
crossover temperature into the nuclear-polaron state coincides
with enhanced fluctuations of the spin-correlation function
and also agrees with a mean-field theory prediction for the
anisotropic CSM.

Importantly, we demonstrate a quantum phase transition
at the anisotropy parameter λ = 1, which separates distinct
polaronic states. For λ < 1 the result in the polaronic phase
is identical to the Ising limit: spin fluctuations are suppressed
by a very large activation barrier. At λ = 1 the polaron state
is fully rotationally invariant, while for λ > 1 we find a rota-
tional invariant phase around the z axis.

Our approach makes it possible to study not only the steady
state of the electron-nuclear spin system, but also the dy-
namics of the polaron formation and temporal fluctuations of
spins. For λ � 1 we found prolonged spin correlation times
in the polaronic phase as compared to the disordered high-
temperature state.
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APPENDIX A: DETAILS ON THE LEVEL
DEGENERACY

The idea of separating the degeneracy factors g(εn,m) in the
transition rates �k,α

m,n, Eq. (5), becomes clear when inserting
the Lindblad operator, Eq. (2), into the Eq. (4)

ρ̇ = −i[H, ρ] −
∑
k,α

∑
m,n

∑
a,b

∑
a′,b′

W α
k hα

k (	mn)

g(εm)g(εn)

× δεm,εaδεn,εbδεm,εa′ δεn,εb′

× {
δa′,a

(
sα

k

)∗
a′,b′

(
sα

k

)
a,b

(Xb′bρ + ρXb′b)

− 2
(
sα

k

)
a,b

(
sα

k

)∗
a′,b′XabρXb′a′

}
. (A1)

We abbreviated the matrix elements of the spin operators
by (sα

k )a,b = 〈ψa|sα
k |ψb〉 and exploited the orthonormality of

eigenstates, 〈ψa′ |ψa〉 = δa′,a. Due to the relation

∑
m,n

δεm,εaδεn,εb = g(εa)g(εb) (A2)

the levels of degeneracy cancel out of the equation,

ρ̇ = −i[H, ρ] −
∑
k,α

∑
a,b

∑
a′,b′

W α
k hα

k (	ab)δεa,εa′ δεb,εb′ × {. . .},

(A3)
where the term within the brace remains unchanged as in
Eq. (A1) and therefore is abbreviated by “. . .”. This clarifies
why we introduced the degeneracy factors in the definition of
the Lindblad rates �k,α

m,n above.

APPENDIX B: SPIN FLIP MATRIX ELEMENTS

As a first step for evaluating 〈J ′, Jz + τ, γ ′|Iτ
k |J, Jz, γ 〉 we

disentangle the quantum number γ that accounts for the de-
generacy of the J quantum number. Since we are interested
in flipping an individual nuclear spin, the state |J, Jz, γ 〉 is
cast into the format |J, Jz, j, γ j, 1/2〉. Here j labels the quan-
tum number of total nuclear spin length excluding the spin
k (whose length is indicated by the 1/2 in the notation) and
can take on the values j = J ± 1/2. The quantity γ j is the
equivalent of γ in the reduced nuclear spin bath without spin
k, i.e., γ j accounts for the degeneracy of j in a spin bath of
size N − 1. Consequently, the sum over γ (γ ′ respectively)
in the transition rate, Eq. (17), is split into a sum over the
quantum numbers j ( j′) and γ j (γ ′

j) where the latter simply
produces a factor of degeneracy gN−1( j) (gN−1( j′)) according
to the definition, Eq. (12). For brevity, the indices γ j , γ ′

j are
omitted in the following notation.

In the former summations, the contributions j = J ± 1/2,
j′ = J ′ ± 1/2 have to be evaluated individually. To this end,
a state is disassembled into states of format | j, jz; 1/2, Iz

k 〉
according to

|J, Jz, j = J ± 1/2, 1/2〉 = ∓
√

1

2

(
1 ∓ Jz

j + 1/2

)
| j, Jz − 1/2; 1/2, 1/2〉 +

√
1

2

(
1 ± Jz

j + 1/2

)
| j, Jz + 1/2; 1/2,−1/2〉 ,

(B1)
where the total nuclear spin z projection is made up by the spin z component in the reduced nuclear spin bath jz and the
contribution of spin k, Jz = jz + Iz

k . Here, we can eventually apply the nuclear spin operator Iτ
k , which yields

I+1
k |J, Jz, j = J ± 1/2, 1/2〉 = 1

2

√(
1 ± Jz

j + 1/2

)
| j, Jz + 1/2; 1/2, 1/2〉 (B2a)

I0
k |J, Jz, j = J ± 1/2, 1/2〉 = ∓

√
1

8

(
1 ∓ Jz

j + 1/2

)
| j, Jz − 1/2; 1/2, 1/2〉 −

√
1

8

(
1 ± Jz

j + 1/2

)
| j, Jz + 1; 1/2,−1/2〉

(B2b)

I−1
k |J, Jz, j = J ± 1/2, 1/2〉 = ∓1

2

√(
1 ∓ Jz

j + 1/2

)
| j, Jz − 1/2; 1/2,−1/2〉 . (B2c)

For the elements 〈J ′, Jz + τ, j′, 1/2|Iτ
k |J, Jz, j, 1/2〉 one obtains consequently

〈J ′, Jz − 1, j′, 1/2|I−1
k |J, Jz, j, 1/2〉 = δ j, j′ (J − j)

√
1

2

(
1 + 2

(J ′ − j)(Jz − 1)

j + 1/2

)(
1 + 2

( j − J )Jz

j + 1/2

)
, (B3a)

〈J ′, Jz, j′, 1/2|I0
k |J, Jz, j, 1/2〉 = δ j, j′

[
(J ′ − j)(J − j)

√(
1 + 2

(J ′ − j)Jz

j + 1/2

)(
1 + 2

(J − j)Jz

j + 1/2

)
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− 1

4

√(
1 + 2

( j − J ′)Jz

j + 1/2

)(
1 + 2

( j − J )Jz

j + 1/2

)]
, (B3b)

〈
J ′, Jz + 1, j′, 1/2

∣∣I+1
k

∣∣J, Jz, j, 1/2
〉 = δ j, j′ (J

′ − j)

√
1

2

(
1 + 2

(J ′ − j)(Jz + 1)

j + 1/2

)(
1 + 2

( j − J )Jz

j + 1/2

)
. (B3c)

APPENDIX C: STABILITY ANALYSIS FOR
MEAN-FIELD SOLUTIONS

When the parameter λ �= 1, Eq. (26) holds true for either
θ = 0, θ = π , or θ = π/2. For the former case we reformu-
late the equation,

θ = arctan(±λ2 tan θ )

and perform a Taylor expansion for small angles

θ ≈ ±λ2θ.

Insertion of a small perturbation 	 to the fix point θ = 0
yields that the point is stable when λ2 < 1 and unstable when
λ2 > 1. Similar results are obtained for the point θ = π . For
the latter case, θ = π/2, we consider an alternative version
of the self-consistency equation for θ . To this end, we use
cot2 θ = 〈Jz〉2/(〈Jx〉2 + 〈Jy〉2) and obtain

cot2 θ = λ−4 cot2 θ

θ = arccot(±λ−2 cot θ ).

The Taylor expansion for a small perturbation 	 around the
angle π/2 yields

π/2 + 	 ≈ π/2 ± λ−2	.

Thus, the solution θ = π/2 is stable for λ−2 < 1, i.e. λ2 > 1,
and unstable for λ2 < 1.

APPENDIX D: ROTATION OF THE NUCLEAR-SPIN
POLARON STATE

The rate of the rotation of the nuclear-spin polaron state
in the isotropic system, and thereby the time scale of the
decay of the correlation functions Cz

S (t ) and Cz
J (t ), can be

derived from the rate equations for the elements of Oρ0 that
enters the definitions Eqs. (38) and (40). The operator O either
corresponds to the operator of the electron spin Sz or the total
nuclear spin Jz. For the matrix elements of Oρ0 in the energy
eigenbasis we introduce

χ J
Jz

m,σm;Jz
n ,σn

= gN (J )
〈
ψ

σm,γ
J,Jz

m

∣∣Oρ0

∣∣ψσn,γ
J,Jz

n

〉
= pJ

Jz
n ,σn;Jz

n ,σn

〈
ψ

σm,γ
J,Jz

m

∣∣O∣∣ψσn,γ
J,Jz

n

〉
(D1)

analogously to pJ
Jz

m,σm;Jz
n ,σn

in Eq. (15). In the second line, we
made use of the fact that the steady-state density operator ρ0

is diagonal in the energy eigenbasis.
The time-dependent matrix elements χ J

Jz
m,σm;Jz

n ,σn
(t ) obey

the same differential equation as pJ
Jz

m,σm;Jz
n ,σn

, see Eq. (16).
Since we are interested in the dynamics of the polaron state
at low temperatures, we refer to the limit Te = Tn = 0 for
simplicity in the following. At zero temperatures solely the
diagonal elements pJ

Jz
n ,σn;Jz

n ,σn
in the subspace with J = N/2

and σn = − are occupied as they constitute the ground state,
cf. Sec. IV F. Furthermore, the operator O fulfills the relations
[J2, O] = [Jz + Sz, O] = 0 and as a result does not gener-
ate transitions between energy eigenstates with distinct index
J or Jz (actually corresponding to the total spin z compo-
nent). Consequently, only the elements of type χ

N/2
Jz,σ ;Jz,− have

nonzero value.
We use the rate equation, Eq. (16), separately for

off-diagonal elements, χ
N/2
Jz,+;Jz,−, and diagonal elements,

χ
N/2
Jz,−;Jz,−, respectively, to obtain their temporal evolution. For

the off-diagonal elements, transitions to other elements drop
out since the rate �τ

J,J ′ (Jz, Jz; +,−, σ, σ ′) in the last line of
Eq. (16) vanishes. The remaining terms in Eq. (16),

χ̇
N/2
Jz,+;Jz,−

= −χ
N/2
Jz,+;Jz,−

{
i	+,J,Jz

−,J,Jz

+
∑

τ

∑
J ′,σ ′

[
�τ

J ′,J (Jz + τ, Jz + τ ; σ ′, σ ′,+,+)

+ �τ
J ′,J (Jz + τ, Jz + τ ; σ ′, σ ′,−,−)

]}
, (D2)

generate oscillations with the frequency 	+,J,Jz

−,J,Jz = A0(J +
1/2) that decay with a rate given by the sum over the
bracket. The resulting decay rate is roughly proportional to
W 0

e + NW 0
n . This approximation results from Eq. (20) mind-

ing Te = Tn = 0 in the function hk (	), evaluating gN (J =
N/2) = gN−1( j = N/2 − 1/2) = 1 and approximately setting
the matrix elements 〈ψσa,γ

J,Jz
a
|sτ

k |ψσc,γ
′

J ′,Jz
a−τ 〉 to a constant.

For the diagonal elements χ
N/2
Jz,−;Jz,−, the differential equa-

tion, Eq. (16), simplifies to

χ̇
N/2
Jz,−;Jz,−

= 2
∑

τ

{−�τ
N/2,N/2(Jz+τ, Jz+τ ; −,−,−,−)χN/2

Jz,−;Jz,−

+ �τ
N/2,N/2(Jz, Jz; −,−,−,−)χN/2

Jz−τ,−;Jz−τ,−
}

(D3)

where the sum over J ′, σ , σ ′ reduces to a single contribution
when solely the ground states, J ′ = N/2 and σ = σ ′ = −,
are occupied. In the above equation the two terms for τ = 0
cancel out such that only the contributions τ = ±1 remain.
The rates according to Eq. (20) read

�τ
J,J (Jz, Jz; −,−,−,−)

= W 0
e

〈
ψ

−,γ

J,Jz

∣∣Sτ
∣∣ψ−,γ ′

J,Jz−τ

〉 〈
ψ

−,γ ′
J,Jz−τ

∣∣(Sτ )†
∣∣ψ−,γ

J,Jz

〉
+ NW 0

n

〈
ψ

−,γ
J,Jz

∣∣Iτ
k

∣∣ψ−,γ ′
J,Jz−τ

〉 〈
ψ

−,γ ′
J,Jz−τ

∣∣(Iτ
k

)†∣∣ψ−,γ
J,Jz

〉
(D4)

with J = N/2 and Jz shifted to Jz + τ for the first term in
the rate equation, Eq. (D3). Due to Te = Tn = 0, the function
hk (	) in the definition, Eq. (20), simplifies to a factor of one
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FIG. 9. Temporal fluctuations of the electron spin components
perpendicular to the directions favored by hyperfine interaction for a
hyperfine anisotropy parameter (a) λ = 0 and (b) λ = 2. Results for
various effective inverse nuclear spin temperatures βn are presented
respectively whereas βeωh = 0.5 is kept constant.

as does the degree of degeneracy gN (J = N/2) = gN−1( j =
N/2 − 1/2) = 1. For simplicity the matrix elements of the
spin flip operators are approximated by 1/

√
8 respectively

minding Eq. (13). As a consequence the rate equation reduces
to

χ̇
N/2
Jz,−;Jz,− = 1

4

(
W 0

e + NW 0
n

)
× (−2χ

N/2
Jz,−;Jz,− + χ

N/2
Jz+1,−;Jz+1,−

+ χ
N/2
Jz−1,−;Jz−1,−

)
. (D5)

Employing the continuum limit for Jz valid for N → ∞
and replacing χ

N/2
Jz,−;Jz,− by the continuous function χ (Jz, t ),

the rate equation can be rewritten as

∂tχ (Jz, t ) = D∂2
Jzχ (Jz, t ) (D6)

with D = (W 0
e + NW 0

n )/4.

This corresponds to a diffusion equation, which has the
fundamental solution

χ (Jz, t ) = 1√
4πDt

exp(−Jz2
/4Dt ) (D7)

in 1D. To obtain the characteristic rate of the rotation of the
nuclear-spin polaron state, we consider the standard deviation
σχ of the above Gaussian and request σ 2

χ = (N/2)2 for the
diffusion process of the diagonal elements χ (Jz, t ). We obtain
the relation 2Dt = (N/2)2 where we insert the inverse rotation
rate, t = 1/2Wr . [The factor 2 here stems from the definition
of the prefactors in the Lindblad equation, Eq. (4).] Finally the
rate of polaron rotation, Eq. (39), results.

APPENDIX E: FLUCTUATIONS OF THE TRANSVERSAL
ELECTRON SPIN COMPONENT

The temporal fluctuations of the electron spin along the
spatial directions, which are not favored by the anisotropic
hyperfine interaction are presented in Fig. 9 for completeness.

In the Ising limit, λ = 0, the hyperfine interaction acts
along the z axis only. The autocorrelation function of
the transversal electron spin component Cx

S (t ) = Cy
S (t ) is

presented in Fig. 9(a) for various inverse nuclear spin tem-
peratures. We find an oscillatory component that builds up
with decreasing the effective nuclear spin temperature and can
be attributed to the polaron formation along the z axis. The
envelope at high temperatures (red/orange curve) results from
the electron spin dephasing in the disordered nuclear spin bath
with a rate ωh. At low temperatures, when the nuclear spins
are oriented along the z axis, the electron spin dephases on a
prolonged time scale determined by the thermal electron spin
flips with rate W 0

e .
In the anisotropic case, λ = 2, the hyperfine interaction

within the (xy) plane is stronger than along the z direction.
Here, the auto correlation Cz

S (t ) in the high-temperature limit,
see Fig. 9(b) (red curve), is slightly modified as compared to
the predictions in the isotropic case [9,50] as a result of the
anisotropy. Additionally the thermal electron spin flips intro-
duce a decay of Cz

S (t ) with the rate W 0
e . At low temperatures

the orientation of the nuclear spins within the (xy) plane leads
to oscillations in Cz

S (t ). Again the dephasing rate changes from
ωh at high temperatures to W 0

e in the low temperature regime.

[1] R. Hanson, L. P. Kouwenhoven, J. R. Petta, S. Tarucha, and
L. M. K. Vandersypen, Spins in few-electron quantum dots,
Rev. Mod. Phys. 79, 1217 (2007).

[2] M. I. Dyakonov, ed., Spin Physics in Semiconductors, 2nd ed.,
Springer Series in Solid-State Sciences 157 (Springer Interna-
tional Publishing, New York, 2017).

[3] M.M. Glazov, Electron & Nuclear Spin Dynamics in Semicon-
ductor Nanostructures, Series on Semiconductor Science and
Technology (Oxford University Press, Oxford, 2018).

[4] D. S. Smirnov, V. N. Mantsevich, and M. M. Glazov, Theory
of optically detected spin noise in nanosystems, Phys. Usp. 64,
923 (2021).

[5] M. S. Rudner, L. M. K. Vandersypen, V. Vuletić, and L. S.
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