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Significant reduction in semiconductor interface resistance via interfacial atomic mixing
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The contact resistance between two dissimilar semiconductors is determined by the carrier transmission
through their interface. Despite the ubiquitous presence of interfaces, quantitative simulation of charge transport
across such interfaces is difficult, limiting the understanding of interfacial charge transport. This work employs
Green’s functions to study the charge transport across representative Si/Ge interfaces. For perfect interfaces,
it is found that the transmittance is small and the contact resistance is high, not only because the mismatch
of carrier pockets makes it hard to meet the momentum conservation requirement, but also because of the
incompatible symmetries of the Bloch wave functions of the two sides. In contrast, atomic mixing at the interface
increases the carrier transmittance as the interface roughness opens many nonspecular transmission channels,
which greatly reduces the contact resistance compared with the perfect interface. Specifically, we show that
disordered interfaces with certain symmetries create more nonspecular transmission. The insights from our study
will benefit the future design of high-performance heterostructures with low contact resistance.
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I. INTRODUCTION

The importance of interfaces in advanced semiconductor
devices has been clearly pointed out by Herbert Kroemer
with his famous statement “the interface is the device”
[1]. Semiconductor heterostructures play essential roles in
vertical-cavity surface-emitting lasers [2–4], heterostruc-
ture bipolar transistors [5–7], quantum cascade lasers [8],
quantum well infrared photodetectors [9], thermionic micro-
coolers [10,11], spin qubit devices [12,13], thermoelectric
power generators [14–17], etc. However, the interfaces in het-
erostructures strongly scatter electrons and cause the contact
resistance [18–21]. The interface scattering probabilities are
not only determined by the intrinsic properties of bulk mate-
rials, but by the nonintrinsic properties such as the interface
structures. Specifically, the interface roughness due to atomic
mixing [22], as a common type of interface disorder, alters
the contact resistance. In order to design proper interface
structures that minimize interfacial resistance, it is crucial to
understand how the atomic mixing affects electron scattering
at interfaces.

The nonequilibrium Green’s function (NEGF) is often
used to describe the structure-dependent charge transport
[23]. Many works using NEGF combined with Landauer
formula for conductance are conducted to study the trans-
port across molecular junctions [24–27], nanotransistors
[28,29], grain boundaries in two-dimensional materials [30],
metal-semiconductor interfaces [31,32], metal-metal inter-
faces in magnetic multilayers [33–36], and semiconductor
interfaces [37,38]. In particular, Bellotti et al. investigated
the carrier transport through semiconductor interfaces in the
presence of positional and compositional disorders using
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NEGF and found that the disorder significantly impedes the
coherent propagation of carriers through multiple interfaces
[37]. Tibaldi et al. performed a large-scale NEGF calcula-
tion of the carrier transport in a realistic tunnel junction for
vertical-cavity surface-emitting lasers and achieved a good
agreement with experimental I-V curve. However, the inter-
face roughness in the transverse directions is neglected in
these works, as the computational cost of NEGF increases
dramatically with the cross-section areas of the interface.
Aside from NEGF calculation, Daryoosh et al. used a simple
effective mass model to study the carrier transport through
barriers in metal-based superlattices and found that the non-
specular (diffuse) scattering can dramatically increase the
thermoelectric figure of merit zT [17]. Los studied how the
transmission probability varies with the average fluctuations
of potential energies due to interface disorders under the ef-
fective mass approximation [39]. However, the effective mass
approximation adopted in these works can poorly describe
practical semiconductors with band pockets not at zone center.
Due to the multivalley nature [15] of the band structures
of semiconductors, new physics shall emerge for interfacial
charge transport.

In this work, we apply the mode-resolved Green’s function
formalism with tight-binding Hamiltonian to study charge
transport across perfect and rough interfaces due to atomic
mixing. In particular, we take advantage of the transverse
translational symmetry to reduce the computational cost
of surface Green’s function. The tight-binding Hamiltonian
makes sure the multiple carrier pockets in the Brillouin zone
are properly described. We vary the degree of disorders in
transverse directions and perpendicular direction and study
the specular and nonspecular interface scattering processes
with mode resolution. Moreover, we unveil the roles of dis-
orders and symmetries in assisting nonspecular transmission.
We show that over one order of magnitude of reduction of the
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FIG. 1. (a) The partitioning for Green’s function calculation with repeated unit cell in the lead region being numbered with 0, 1,... . (b) The
transverse momentum conservation law and how the transverse momenta in the unit-cell representation and the supercell representation are
related. (c) Specular transmission process through a perfect interface where the transverse momentum is conserved, ki,‖ = k f ,‖. (d) Non-
specular transmission processes through a disordered interface, where ki,‖ = k f ,‖ + mGx + nGy, allows the scattering between valleys with
different k‖.

specific contact resistance can be achieved by the interfacial
atomic mixing.

II. METHODOLOGY

In the Green’s function calculation, we first divide the
system into three regions, two semi-infinite lead regions and
a device region, as depicted in Fig. 1(a). The repeated cells
along z direction in the lead region are indexed by 0, 1, ... and
the period length is az,α with α = L, R. The whole supercell
structure is periodic along directions parallel to the interface.
Inside the lead region, there are Nuc,x × Nuc,y identical unit
cells along the transverse directions. The transverse lattice
vector for the supercell is Rsc,β = Nuc,βRuc,β with β = x, y,
where Ruc,β is the transverse lattice vector for the unit cell.
As a result, the transverse momentum in the supercell repre-
sentation can be uniquely unfolded into a momentum defined
in the unit-cell representation, as elucidated in Fig. 1(b). The
unfolded momentum can be expressed by

kuc,‖ = ksc,‖ + aGsc,x + bGsc,y, (1)

where Gsc,x and Gsc,y are the transverse reciprocal lattice
vectors, and a and b are integers to be determined. Finding
the correct pair of a and b is known as an unfolding problem
and we use the unfolding scheme by Popescu and Zunger [40]
to resolve the correct kuc,‖.

We consider the elastic interface scattering limit, where the
energy E of the incident electron is conserved. In addition, the
in-plane translational symmetry of the supercell dictates that
the transverse momentum ksc,‖ must be conserved during an
interface scattering event. When the device region contains a
perfect interface with the same in-plane periodicity as the lead
region, the transverse momentum kuc,‖ is conserved. However,
when the device region consists of a rough interface, kuc,‖ is
not always conserved. This is because the interface roughness
breaks the internal transverse translational symmetry within
the supercell and ksc,‖ can be unfolded into different kuc,‖ for
the incident state and the transmitted state. As illustrated in
Fig. 1(c), for a perfect interface, kuc,‖ is conserved, and we
denote this type of scattering process the specular transmis-

sion. For a rough interface shown in Fig. 1(d), kuc,‖ can be
either conserved or nonconserved. Particularly, we denote the
scattering process with nonconserved kuc,‖ the nonspecular
transmission.

We define the transmission probability matrix from the left
side Tji(E , ksc,‖) as the ratio between the normal current of
the transmitted state j to the incident state i. Formally, we can
express the specular and nonspecular transmission probability
matrix with

Ts, ji(E , ksc,‖) = Tji(E , ksc,‖), when kuc,‖, j = kuc,‖,i
Tns, ji(E , ksc,‖) = Tji(E , ksc,‖), when kuc,‖, j �= kuc,‖,i.

(2)

The elements of the transmission probability matrix from the
left side are given by

Tji(E , ksc,‖) = |tRL, ji(E , ksc,‖)|2, (3)

where the transmission matrix tRL, ji(E , ksc,‖) is related to the
Green’s function via the following relation [41]:

tRL(E , ksc,‖) = i
√

V r
R

[
U r

R

]−1
GN+1,0

[
U a†

L

]−1√
V a

L . (4)

The formal definitions and detailed calculations of the ve-
locity matrices V r/a

R/L , eigenvector matrices U r/a
R/L, and Green’s

function GN+1,0 can be found in Appendix A. Note that the
calculation of the velocity matrices and eigenvector matrices
require the surface Green’s function ga/r

L/R(E , ksc,‖). We ap-
ply the Fourier transform to the Hamiltonian to obtain the
block-diagonal surface Green’s function. Then, we apply the
inverse Fourier transform to obtain the surface Green’s func-
tion. These procedures allow us to invert small matrix multiple
times rather than directly inverting the large matrix, which
greatly boosts the computational efficiency. The detailed im-
plementation can be found in our prior work on studying
diffuse phonon scattering by rough interfaces [42].

III. BAND STRUCTURES

We study the [001] Si/Ge interface as it is a classical
semiconductor interface used in a wide range of applications
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FIG. 2. (a) The band structure for bulk Si, Ge along high-symmetry lines in the first Brillouin zone. Left inset: the three-dimensional first
Brillouin zone of Si (Ge) and its projection on the (001) plane. Right inset: the atomic structure for Si (Ge) unit cell along [001] direction.
(b) The band structures for Ge and tensile-strained Ge (2%). (c) The band structures for Si and Ge slabs along high-symmetry lines in the
surface Brillouin zone. The slab contains 108 atom layers (27a in thickness with a the lattice constant).

such as quantum information storage [13], strained field-effect
transistors [43,44] and thermoelectrics [15,45]. To start with,
we examine the band structures for Si and Ge individually.
We use sp3d5s∗ Slater-Koster tight-binding model [46,47] to
construct the Hamiltonian, with hopping integral parametriza-
tions from Niquet et al. [48]. More specifically, the hopping
integral varies with the bond length according to a power law

Vαβγ (L) = V0,αβγ

( L

L0

)χαβγ

, (5)

where α and β refer to the orbital types, γ is the type of
bond, L is the bond length, L0 is the unstrained bond length,
V0,αβγ is the hopping integral for unstrained bond, and χαβγ

is the power-law exponent. The band structures using this
set of hopping integrals have shown an excellent agreement
with GW calculations with various strain ratios [48]. The
bulk Si and Ge have mismatched lattice constants with aSi =
5.431 Å and aGe = 5.658 Å. Correspondingly, the unstrained
bond lengths for Si and Ge are 2.352 and 2.450 Å , respec-
tively. For simplicity, we study the lattice-matched interface
and we assume the Si-Si and Ge-Ge bond lengths are the
same, L = 2.398 Å, which is relaxed Si-Ge bond length found
by Niquet et al. [48]. Furthermore, we rescale the L0 for
Si-Si bond and Ge-Ge bond to be L0 = 2.398 Å to ensure
that the Si’s and Ge’s band structures are the same with their
unstrained bulk band structures [49,50]. In our calculation, the
spin-orbital coupling is not included.

First, we compare the band structures En(k) of bulk Si and
Ge along high-symmetry paths and examine the distributions
of electron and hole pockets in the first Brillouin zone, as
depicted in Fig. 2(a), which clearly shows that the conduction
band pockets for Si and Ge are distributed very differently,
whereas their valence band pockets are quite similar. In par-
ticular, the highest valence bands for Si and Ge are both at
the � point. In contrast, the conduction band edge for Si is
close to the X point along the �X path (in the following, we
denote this point �), while the conduction band edge for Ge

is at the L point. In addition, there are six pockets for Si’s
lowest conduction band at the � point, while there are four
pockets (or eight half-pockets) for Ge at the L point. The
second-lowest conduction band for Si is at the X point. The
second- and third-lowest conduction bands for Ge are at the
� point and � point, respectively.

Next, we look into the symmetry properties of the Bloch
wave functions in order to develop an understanding of how
symmetry affects the transmission. In the bra-ket notation,
the transmission matrix element is directly proportional to the
Green’s function matrix element

t ji ∝ 〈u j | Ĝ |ui〉 , (6)

where Ĝ = (EI − Ĥ )−1 is the Green’s function operator and
Ĥ is the Hamiltonian operator [51,52]. It is easy to show that
Ĝ inherits all symmetries of Ĥ [53]. For |u j〉 and |ui〉 with
certain type of symmetries, the transmission matrix element
t ji is guaranteed to vanish according to group theory [54].
Thus, it is essential to identify the symmetries of Bloch wave
functions of the two sides.

To describe the symmetry properties of Bloch wave func-
tions in Si and Ge, the Bouckaert-Smoluchowski-Wigner
(BSW) [55] notation is adopted in Fig. 2(a), which marks
the irreducible representations for the Bloch wave function.
The different irreducible representations of the same group
(labeled by the same greek letter with different subscripts)
are orthogonal to each other. The character tables for different
groups can be found in group theory textbooks [54] and online
databases [56]. They describe how the Bloch wave function
transforms under different symmetry operations. For instance,
the states of the lowest conduction band of Si at the � point
transform as �1 representation under the symmetry operations
of the C4v group. On the other hand, the states of the second-
lowest conduction band in Ge at the � point transform as �2′

representation. Without the loss of generality, we consider the
� points along the z axis [(0,0,1) axis]. In this case, one of the
C4v group elements is the symmetry operation Ŝ = {C4|τd}
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with τd = 1
4 (a, a, a), which first rotates the Bloch wave

function by 90◦ with respect to the z axis and then applies the
translation operator by τd . When applying Ŝ to a state |ui〉 of
�1 symmetry, we have Ŝ |ui〉 = 1 · eikza/4 |ui〉, where kz is the
wave vector’s z component. The phase factor eikza/4 appears
because the space group of Si (Ge) structure is nonsymmor-
phic. In comparison, when applying the same operator Ŝ to a
state |ui〉 of �2′ symmetry, we have Ŝ |ui〉 = −1 · eikza/4 |ui〉.
Intuitively, one can regard �1 as “even” and �2′ as “odd”
in a more generalized way. If the incident and transmitted
states are not compatible, they will never interact. Hence,
knowing the symmetry properties of wave functions (i.e., their
irreducible representations) will be useful in the later analysis
of the transmission probabilities.

Moreover, the strain effect can change the relative positions
for different valleys in the reciprocal space. We find that the
strain generally has a smaller impact on Si compared with
Ge, thus, we only consider the case of applying strain to Ge.
Since we have already assumed the Si and Ge have the same
bond lengths L = 2.398 Å, we change the equilibrium L0 of
Ge from 2.398 to 2.343 Å while keeping L unchanged. The
corresponding hopping integrals Vαβγ defined in Eq. (5) are
altered and the Ge band structure is accordingly changed.
Equivalently, we have applied a tensile strain of 2% to Ge. In
Fig. 2(b), we compare the band structures of strained Ge (sGe
for short) with the relaxed Ge. The elongated bond pushes the
second-lowest conduction band downwards and makes it the
lowest conduction band. It also shifts the third-lowest band
further upwards. Meanwhile, the strained Ge-Ge bond also
makes the valence band upwards, thus causing a smaller band
gap. The features of the sGe band structure are consistent with
other works [13,57].

When forming an interface, the translational symmetry is
broken along the direction normal to the interface, and the
band structures are now projected to the two-dimensional
surface Brillouin zone, as depicted in the left inset of Fig. 2(c).
We conduct a slab calculation to study the projected band
structure. The slab is periodic along the x and y directions
and finite in the z direction. The unit cell for Si (Ge) slab
along [001] direction contains four atoms, as shown in the
right inset of Fig. 2(a). Note that the atomic structure of Si
(Ge) has mirror symmetries with respect to (110) and (11̄0)
planes. In Fig. 2(c), we find that the highest valence bands of
Si and Ge are both projected to the �̄ point. Two out of the
six lowest conduction band pockets of Si are projected to the
�̄ point, two pockets are projected to a point between the �̄

and X̄ points, and the remaining two pockets are projected to
a point between the �̄ and Ȳ points. As for Ge, two of the four
lowest conduction band pockets at L points are projected to
the X̄ point and the remaining two are projected to the Ȳ point.
Since we use a slab to compute the projected band structure,
we observe the surface states [58] for Si and Ge in the band
gap. They each have two degenerate surface states within the
x-y plane, one for the top surface, one for the bottom surface.
However, in the direction normal to the interface (z direction),
these surface states are localized, thus do not contribute to the
interfacial transport.

Lastly, we study the density of states for the projected band.
The density of states for the projected band structures at the
given energy E and transverse momentum kuc,‖ is obtained by

taking the imaginary part of retarded surface Green’s function
given by Eq. (A4) for the lead

SDOS(E , kuc,‖) = − 1

π
Imgr

α (E , kuc,‖), (7)

where gr
α (E , kuc,‖) is the retarded surface Green’s function for

α lead with α = Si, Ge. From the density of states shown in
Fig. 3(a), where we use color to indicate ln[SDOS(E , kuc,‖)],
we identify the localized states in the band gap, the continuum
spectrum of propagating conduction band electrons and the
resonant states inside the continuum spectrum.

IV. TRANSMISSION THROUGH A PERFECT INTERFACE

We first study the electron transmission through a perfect
interface. There are several relevant physical quantities, and
we want to clarify their definitions here to avoid confusion.
tRL, ji(E , ksc,‖) is the transmission matrix, which is used to
compute the transmission probability matrix. Tji(E , ksc,‖) is
the transmission probability matrix, which described mode-
to-mode transition probability, normalized by normal incident
current. Ti(E , ksc,‖) refers the transmission probability (trans-
mittance) across the interface for an incident electron i. The
transmission spectrum T (E , ksc,‖) is the number of transmis-
sion channels including all subbands that have same E and
ksc,‖. The transmission function (we use transmission in short
in figures) 	(E ) describes the total number of transmission
channels at the given energy E and is the sum of all trans-
mission channels with different ksc,‖. Note that tRL, ji(E , ksc,‖),
Tji(E , ksc,‖), Ti(E , ksc,‖) depend on which side incident elec-
tron is from, whereas T (E , ksc,‖), 	(E ) are independent of
the side of incidence.

The transmission probability can be computed by sum-
ming the transmission probability matrix over all possible
final states. The specular part and nonspecular part of the
transmission probability read as

Ts,i(E , ksc,‖) = ∑
j Ts, ji(E , ksc,‖),

Tns,i(E , ksc,‖) = ∑
j Tns, ji(E , ksc,‖).

(8)

The transmission function is the measure of conductance
channels and can be expressed by 	(E ) = 	s(E ) + 	ns(E ),
where the specular and nonspecular transmission functions
are defined by

	s(E ) = 1

Nksc,‖

∑
i,ksc,‖

Ts,i(E , ksc,‖), (9)

	ns(E ) = 1

Nksc,‖

∑
i,ksc,‖

Tns,i(E , ksc,‖). (10)

For the case of perfect interface, all the transmission processes
are specular, hence, we have Ts, ji(E , ksc,‖) = Tji(E , ksc,‖). In
addition, for the perfect interface, we only need to construct
a unit cell as the supercell such that the in-plane momenta
in the unit-cell representation and the supercell representation
are the same, kuc,‖ = ksc,‖.

The transmission spectrum is attained by T (E , kuc,‖) =∑
i Ti(E , kuc,‖), where we sum over all subbands with the

same E and kuc,‖. In Figs. 3(d) and 3(e), we show the trans-
mission spectra T (E , kuc,‖) through the Si/Ge and Si/sGe
interfaces. Comparing with the surface density of states
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FIG. 3. The surface density of states SDOS(E , kuc,‖) for (a) Si, (b) Ge, and (c) sGe. The logarithm of the surface density of state is
indicated by colors and the spin degree of freedom 2 is not multiplied. The transmission spectra T (E , kuc,‖) along high-symmetry lines in
the surface Brillouin zone through (d) a perfect Si/Ge [001] interface and (e) a perfect Si/sGe [001] interface. The color indicates the value
of T (E , kuc,‖). (f) Left panel: the transmission function 	(E ) = 1

Nkuc,‖

∑
kuc,‖ T (E , kuc,‖) for a perfect Si/Ge interface and a perfect Si/sGe

interface (Nkuc,‖ = 40 × 40 is used). Right panel: the transmittance τα (E ) = 	(E )
	bulk,α (E ) from Si and Ge side, where 	bulk,α (E ) is the transmission

function for bulk α material.

through examining Figs. 3(a)–3(d), we see that the transmis-
sion is nonzero only when the surface density of states for
Si and sGe overlap. This is due to the energy and momen-
tum conservation requirement. For example, the Ge’s lowest
conduction band at X̄ and Ȳ does not have any corresponding
states in Si, thus cannot contribute to transmission. Most of
the overlapped states are the valleys at �̄ and along the �̄M̄
path, which correspond to the lowest conduction band in Si,
and second- and third-lowest conduction bands in Ge.

Because of the mismatch of conduction band valleys of Si
and Ge, a large “transport gap” of 1.65 eV emerges at the
�̄ point. For a Si/sGe interface, the transmission spectra for
holes change slightly from a Si/Ge interface. The transport
gap is 1.91 eV, which is even larger due to fewer energy
and momentum matched conduction bands. From the energy-
resolved transmission and transmittance in Fig. 3(f), we also
find that strain has much smaller impact on the hole trans-
mission than the electron transmission. This is because the
valence bands stay at the �̄ point even with strain, while the
strain changes the position of conduction bands in reciprocal
space more profoundly.

What is intriguing is that at the �̄ point, Si and sGe
have overlapped conduction band pockets, yet the transmis-
sion T (E , kuc,‖) is still almost zero. This implies that there
are other factors other than energy and momentum conser-
vation which limits the transmission. We found out that the

zero transmission originates from the different symmetries of
the wave functions. In three-dimensional Brillouin zone, the
lowest conduction band of sGe is at the � point with �2′ sym-
metry. Under the symmetry operation Ŝ = {C4|τd} mentioned
above, it transforms as Ŝ |uR,�〉 = − |uR,�〉. In comparison,
for the lowest conduction band of Si at the � point, it
satisfies Ŝ |uL,�〉 = eikL,za/4 |uL,�〉. The Hamiltonian for a per-
fect Si/sGe interface should always have “even” symmetry
representation �1. Hence, it follows that ŜĤ = eikL,za/4Ĥ
and ŜĜ = e−ikL,za/4Ĝ. As a result, the transmission matrix
element should satisfy the condition t ji ∝ 〈uR,�| Ĝ |uL,�〉 =
〈ŜuR,�| ŜĜ |ŜuL,�〉 = − 〈uR,�| Ĝ |uL,�〉. Consequently, we ob-
tain that Tji = |t ji|2 = 0. Similarly, for the electrons at
the � point with k = (0, 0, kR,z ), they have �2′ sym-
metry and transform as Ŝ |uR,�〉 = −eikR,za/4 |uR,�〉. Resul-
tantly, we have t ji ∝ 〈uR,�| Ĝ |uL,�〉 = 〈ŜuR,�| ŜĜ |ŜuL,�〉 =
− 〈uR,�| Ĝ |uL,�〉 and, correspondingly, Tji = 0. In short, the
transmission at �̄ is exactly zero, dictated by symmetry.

V. TRANSMISSION THROUGH ROUGH INTERFACES

We add interface disorders in the form of atomic mixing.
In particular, we randomly swap pairs of Si and Ge atoms
that have the same distance to the interface. We use a larger
supercell with in-plane periodicity to describe the rough inter-
face. To mimic an actual rough Si/Ge interface observed in
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FIG. 4. The ensemble-averaged total transmission function 	(E ) and nonspecular transmission function 	ns(E ) through rough Si/Ge
interfaces for (a) electrons and (b) holes in solid lines compared with the transmission function for a perfect interface in dashed line. 21
configurations of 2 × 2, 8-ml disordered interfaces are used for ensemble average. (c), (d) The transmission function for Si/sGe interfaces.
(e), (f) The ensemble-averaged mode-resolved specular and nonspecular scattering probabilities at E = 1.77 eV for rough Si/sGe interfaces
defined by Eq. (8) as a function of in-plane momentum kuc,‖. The calculation uses a 40 × 40 ksc,‖-point mesh. Equivalently, it corresponds to
an 80 × 80 kuc,‖-point mesh.

experiments [22], we make sure that the further away from
the interface, the fewer or equal number of atom pairs are
swapped. In the following, we define two measures of the
degree of interfacial disorder along the interface normal and
along the transverse directions.

The first measure is the number of atom layers that are in-
volved in atomic mixing. If there are two layers of Si and two
layers of Ge atoms that are involved in atomic intermixing, the
number of atoms that are swapped per layer follows a pattern
of 1|2|2|1. We label such interface structure by 4 ml, in short
for four mixing layers. A larger ml number corresponds to
a larger degree of disorder in the cross-plane direction. The
atomic number density of Si across the rough interface with
different mixing layers can be found in Fig. 7 in the Appendix.

The second measure is the size of the transverse supercell.
For example, when we construct a 2 × 2 transverse supercell
with 4-ml structure, there are two out of four atoms for the
Si atom layer closest to the interface and one out of four
atoms for the Si atom layer secondly closest to the interface
involved in atomic mixing. When we use a larger transverse
supercell (3 × 3 or 4 × 4), we let the number of swapped
atoms unchanged. The larger transverse supercell we use, the
smaller degree of disorders along the transverse directions.
For a given ml number and a given supercell size, we generate
21 random configurations and compute the ensemble average
of the transmission and reflection probability matrix elements.

We found that the total transmissions for electrons and
holes are both enhanced for rough Si/Ge and Si/sGe inter-
faces compared with the corresponding perfect interfaces, as
shown in Figs. 4(a)–4(d). Particularly, the total transmission
function for a perfect Si/sGe interface with energy E ranging
from 1.5 to 1.9 eV is zero, whereas the transmission function
for the corresponding rough interface is largely enhanced by
nonspecular scattering processes. For the hole transmission,

we notice that the nonspecular part is much smaller than the
specular part and the enhancement in the total transmission is
not significant, although the transmission for both electrons
and holes are enhanced by the rough interface compared
with the perfect interface. This is because holes are close to
k = 0 and have long wavelengths. A more detailed discussion
on the enhancement of hole transmission can be found in
Appendix C. In Figs. 8 and 9, we have shown the depen-
dence of transmission function on the degree of disorders
along transverse and longitudinal directions. It turns out that
the smaller transverse supercell dimensions and large mixing
layer numbers are in favor of the nonspecular transmission.
The smaller transverse supercell provides a large G‖, which
allows the transition between valleys with large momentum
mismatch. The larger degree of disorders along the perpen-
dicular direction can lower the lateral symmetry to a greater
extent and provides more channels that are previously for-
bidden by symmetry. Moreover, the effective thickness δ of
the interface roughness along the perpendicular direction in-
creases with increasing ml number. The interface roughness
preferably couples with carriers with |kz| ∼ 2π

δ
. The enhance-

ment of transmission will be promoted if the corresponding
valley satisfies |kz| ∼ 2π

δ
.

In Fig. 4(e), we plot the mode-resolved specular transmis-
sion and reflection probabilities at E = 1.77 eV as a function
of their unfolded momentum kuc,‖. We find that the overlapped
valleys for Si and sGe at the �̄ point lead to small specular
transmission probability. This is because the atomic mixing
at the interface breaks the symmetry of Hamiltonian Ĥ and
the above-mentioned symmetry-forbidden transmission at the
�̄ point is now allowed. In Fig. 4(f), we show the nonspecu-
lar transmission and reflection probabilities. The majority of
nonspecular transmission processes are found to be starting
from the �̄ and M̄ points in Si to the X̄ and Ȳ points in
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sGe. These processes correspond to the transition between the
lowest conduction band of Si at the � point and the lowest
conduction band of Ge at L in the three-dimensional Brillouin
zone. Si’s conduction band at the � point and Ge’s conduction
band at the L point are both far from the � point and the
conduction band electrons have small wavelengths. The char-
acteristic length of disorders has to be small to contribute to
the nonspecular interface scattering. Thus, smaller transverse
supercell dimensions, i.e., atomic-scale disordered structures,
are in favor of more nonspecular transmission channels.

We can define the specular and nonspecular reflection
probabilities similarly to the transmission. By examining the
specular and nonspecular reflection probabilities, we find
that the newly emerged nonspecular reflection channels are
accompanied by the removal of the specular transmission
channels at the same kuc,‖. Although the increasing non-
specular reflection probability is detrimental for interfacial
transport, there are overall more nonspecular transmission
channels than the nonspecular reflection channels, thus, the
total transmission is still enhanced.

With the knowledge of the transmission function, we pro-
ceed to compute the contact resistance. The Landauer-Büttiker
formalism is used to compute the two-probe conductance

G12 = −2e2

h

∫
dE 	(E )

∂ f

∂E
, (11)

where h is the Plank constant, f = 1
e(E−μ)/kBT +1 is the Fermi-

Dirac distribution function, and the factor 2 describes the spin
degree of freedom. The subscripts 1 and 2 refer to the left and
right sides. The four-probe conductance can be computed by
[51,59]

G4 = 1

G−1
12 − 1

2

(
G−1

11 + G−1
22

) , (12)

where G11 and G22 are the two-probe conductance for bulk
material 1 and 2, respectively. In practical calculations of the
conductance for a bulk material, we let the two leads and the
device all consist of the same materials. Then, the specific
contact resistance is defined by

ρc = A

G4
, (13)

where A is the cross-section area.
In Fig. 5, we observe over an order of magnitude reduc-

tion in the contact resistance for conduction band electrons
through the rough Si/sGe interface at various temperatures
compared with the corresponding perfect interface. For the
rough Si/Ge interface, a much smaller reduction in electron
contact resistance is found. This is because the perfect Si/Ge
interface does not have the symmetry-forbidden transmis-
sion for low-energy conduction band electrons as the perfect
Si/sGe interface does. As a result, for Si/Ge interface, the
lowered symmetry due to interface roughness does not benefit
as much as the Si/sGe interface. For valence bands, the hole
contact resistances for Si/Ge and Si/sGe interfaces are only
slightly reduced by the interface disorders, as most holes from
two sides have compatible momenta and symmetries.

Last but not least, we want to examine how the sym-
metry of the disordered interface changes the nonspecular

FIG. 5. The specific contact resistance for (a) electrons and
(b) holes for rough Si/Ge interfaces in solid lines and for the perfect
Si/Ge interface in dashed lines at various temperatures. The specific
contact resistance for (c) electrons and (d) holes for rough Si/sGe
interfaces in solid lines and the perfect Si/sGe interface in dashed
lines at various temperatures.

transmission. The nonspecular transmission probability can
be analyzed using perturbation theory [42,60] and we argue
that the nonspecular transmission probability is proportional
to the scattering matrix element tns, ji ∝ 〈u j | �H |ui〉, where
the perturbed potential is the difference between the potential
energy for disordered interface and perfect interface �H =
Hrough − Hperfect. For different disordered interface structures,
the symmetry of �H can be different.

In Fig. 6, we show the nonspecular transmission for
three representative disordered interface configurations. In
Fig. 6(d), we have plotted the projected band structures of
Si and sGe, sorted according to the symmetries of Bloch
wave functions under mirror operation. The conduction band
for Si and sGe are both even under the σx operation,
thus, it is preferred to have �H with even symmetry as
well such that tns, ji ∝ 〈u j | �H |ui〉 = 〈σxu j | σx�H |σxui〉 =
〈u j | �H |ui〉 and tns, ji is not forbidden by symmetry. As for
the case with no mirror symmetries along x or y directions, the
symmetry of the whole system is lowered and the symmetry
analysis for tns, ji does not work. Although there are some
nonspecular transmission channels for the case with no mirror
symmetry, the nonspecular transmission still favors the disor-
dered structures with compatible symmetries with the initial
and final states than those without.

In general, our symmetry analysis for wave functions and
disordered structures can be applied to study other interfaces
between semiconductors with mismatched band valleys. The
extent of the contact resistance reduction depends on the
specific materials on two sides of the interface and can only
be known from Green’s function calculations. However, the
computational cost of Green’s function calculation increases
rapidly with number of atoms. On top of that, when the
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FIG. 6. (a) The disordered structure with both σx and σy symme-
try. (b) The disordered structure without σx yet with σy symmetry.
(c) The disordered structure without σx and σy symmetry. σx and
σy refer to the mirror symmetries along the x and y directions. In
(a)–(c), the open circles are the Si atoms and the filled circles refer
to the swapped Ge atoms. The larger circles represent the atoms
closer to the interface. We only plot the Si side here, and on the
Ge side the swapped Si atoms have the same transverse positions
with the swapped Ge atoms on the Si side. (a)–(c) All correspond to
4 × 4, 2-ml structures. (d) The projected bulk band structures of Si
and sGe along the �̄X̄ in the surface Brillouin zone sorted by their
symmetries. (e) The nonspecular transmission function 	ns(E ) for
the three disordered interface structures plotted in (a)–(c).

material is polar, the band edge profile near the interface
(especially for complex oxide interfaces [61]) can vary sig-
nificantly over a long distance, thus the Poisson equation has
to be solved using a large supercell. Due to these challenges,
we only study Si/Ge interfaces in this work.

VI. CONCLUSION

We have studied the charge transport through a [001] Si/Ge
interface. The transmission though a perfect interface must
be specular. The electron transmission through the Si/Ge
interface is very low due to momentum-mismatched band
structures. The incompatible symmetries of the electron states
at different pockets also forbid the transmission, leading to
a high contact resistance. However, with atomic mixing at
the interface, the symmetry is lowered and the previously

forbidden transmission is allowed. In addition, the nonspec-
ular transmission connecting electron pockets with different
transverse momentum is enabled by those interface disorders.
As a result, the specific contact resistance is reduced by over
an order of magnitude.
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APPENDIX A: MODE-RESOLVED GREEN’S FUNCTION
FORMALISM

The mode-resolved Green’s function formalism to compute
the transmission and reflection probability matrix is developed
by Khomyakov et al. We present a brief introduction to the
formalism as follows for completeness. We first construct the
Hamiltonian for the structure shown in Fig. 1(a). For a given
ksc,‖, the Hamiltonian writes

H (ksc,‖) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

. . .

HL
11 HL

01

HL
10 HL

00 HLD

HDL HD HDR

HRD HR
00 HR

01

HR
10 HR

11

. . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(A1)

with the matrix blocks corresponding to different cells of the
supercell along the interface normal as well as the interactions
between neighboring cells. In the semi-infinite lead region, we
have HL

nn = HL
00 and HR

nn = HR
00, where n denote the nth re-

peated supercell cell in the lead region as denoted in Fig. 1(a).
HD is the Hamiltonian corresponding to the device region.
HLD/DL and HRD/DR describe interactions between the lead and
the device region.

The Green’s function matrix is defined by

[(E ± iη)I − H (ksc,‖)]Gr/a(E , ksc,‖) = I, (A2)

where I is the identity matrix, η is an infinitesimal positive
real number, and the superscripts r and a denote retarded and
advanced Green’s function, depending on the sign in front of
iη. The retarded Green’s function at the given energy E in the
block-matrix form is explicitly expressed by

Gr (E , ksc,‖) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

. . .

GL
11 GL

01 . .
.

GL
10 GL

00 GLD G0,N+1

GDL GD GDR

GN+1,0 GRD GR
00 GR

01

. .
.

GR
10 GR

11
. . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (A3)
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In particular, the matrix blocks GL
00 and GR

00 are useful
physical quantities to compute the transmission matrix, called
the surface Green’s functions for the left and right leads which
satisfy

gr
L/R(E , ksc,‖) = GL/R

00 = [
(E + iη)I − HL/R

00 − �r
L/R

]−1
,

(A4)

where the self-energies of the left and right leads are �r
L =

HL
10gr

LHL
01 and �r

R = HR
01gr

RHR
10. In this work, the surface

Green’s functions are iteratively solved using the decimation
technique [62].

The matrix block GN+1,0 describes the response at N + 1
th cell (0th cell in the right lead) cell given the perturbation at
0th cell in the left lead. We use Dyson’s equation to compute
the matrix GN+1,0. To obtain GN+1,0, we need to evaluate
the matrix block GD for the device region, which contains a
large amount of atoms for the case of rough interfaces. The
efficient computation for device Green’s function GD is thus
challenging. To overcome this difficulty, the device Green’s
function is calculated using the recursive technique [63,64]
and the detail for our implementation of the recursive Green’s
function can be found in our prior work [42].

To compute the transmission mentioned in Eq. (4), we need
to compute the eigenvector matrices and velocity matrices. We
outline how to compute these matrices in the following. For a
given transverse momentum ksc,‖ and energy E , there are mul-
tiple subbands in the lead region with different perpendicular
momenta kz’s. What is more, the lead is semi-infinite, which
supports both propagating (real kz) and evanescent (imaginary
kz) states. We need to resolve the perpendicular momentum kz

and its corresponding velocity vz to compute the ratio of scat-
tered current to the incident current to obtain the transmission
and reflection probability matrix.

We first introduce an auxiliary matrix for the right lead,

F r
R = gr

RHR
10, (A5)

and compute its eigenvalue �r
R and eigenvector U r

R via

F r
RU r

R = �r
RU r

R. (A6)

It has been pointed out by Khomyakov et al. [41] that the
eigenvalue �r

R,i stores the phase information of the electron
and the eigenvector matrix U r

R,i contains the Bloch wave func-
tions for state i. If |�r

R,i| �= 1, it corresponds to an evanescent
state. If |�r

R,i| = 1, it corresponds to a propagating state. We
can extract the perpendicular momentum by kR,i = 1

aR
log�r

R,i.
Similarly, for the left lead, we define the auxiliary matrix, and
its eigenvalues and eigenvectors write

F a
L = ga

LHL
01, (A7)

F a
L U a

L = �a
LU a

L , (A8)

where ga
L = (gr

L )† is the advanced surface Green’s function for
the left lead.

The velocity along the transport direction (perpendicular to
interface) vz can be described by the velocity matrix

V a
L = −U a†

L �a
LU a

L , (A9)

V r
R = U r†

R �r
RU r

R, (A10)

FIG. 7. The atomic number density (the number of atoms of a
given type per unit volume) of Si at different atom layers of the
interface.

where � = i(� − �†). The diagonal elements of these matri-
ces correspond to the group velocities along the z direction of
different states.

The reflection probability matrix from α side
Rαα, ji(E , ksc,‖) is similarly defined by

Rαα, ji(E , ksc,‖) = |rαα, ji(E , ksc,‖)|2. (A11)

Specifically, the reflection matrices from the left and right
sides are

rLL(E , ksc,‖) = i
√

V r
L

[
U r

L

]−1(
G0,0 − Q−1

L

)[
U a†

L

]−1√
V a

L ,

(A12)

rRR(E , ksc,‖) = i
√

V r
R

[
U r

R

]−1(
GN+1,N+1 − Q−1

R

)[
U a†

R

]−1√
V a

R ,

(A13)
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(a) 8 ml 4 ml 2 ml

2x2 3x3 4x4

(b) (c)

(d) (e) (f )

FIG. 8. The sensitivity of electron transmission through Si/Ge interfaces on the degree of transverse and longitudinal disorders. In (a)–(c),
we use a 2 × 2 transverse supercell and change the ml number. In (d)–(f), we use 8-ml structures and vary the in-plane supercell size. We use
20 × 20, 15 × 15, 10 × 10 ksc,‖-point meshes for 2 × 2, 3 × 3, 4 × 4 transverse supercells, respectively:

where Q−1
L = (E + iη)I − HL

00 − HL
10gr

LHL
01 − HL

01gr
L′HL

10 and
Q−1

R = (E + iη)I − HR
00 − HR

01gr
RHL

10 − HR
10gr

R′HR
01 are the re-

tarded Green’s functions for bulk materials. gr
α′ , α = L, R,

are the retarded surface Green’s function similar to Eq. (A4),
except that they describe the semi-infinite lead of the same
material extending to infinity in the opposite direction
given by

gr
L′ (E , ksc,‖) = [

(E + iη)I − HL
00 − �r

L′
]−1

, (A14)

gr
R′ (E , ksc,‖) = [

(E + iη)I − HR
00 − �r

R′
]−1

, (A15)

where the self-energies write

�r
L′ = HL

01gr
L′HL

10, (A16)

�r
R′ = HR

10gr
R′HR

01. (A17)

The reflection matrix also depends on another two surface
Green’s function gr

L and ga
R, as defined by Eq. (A4). The aux-

iliary matrices, eigenvalue matrices, and eigenvector matrices
for these two surface Green’s functions are

F r
L = gr

LHL
01, (A18)

F r
L U r

L = �r
LU r

L , (A19)

F a
R = ga

RHR
10, (A20)

F a
R U a

R = �a
RU a

R . (A21)

The self-energies for these two surface Green’s functions are

�a
R = HR

01gr
RHR

10, (A22)

�r
L = HL

10ga
LHL

01. (A23)

The corresponding broadening matrices are computed by � =
i(� − �†). The velocity matrices V a

R and V r
L introduced in

Eqs. (A12) and (A13) are expressed by

V a
R = −U a†

R �a
RU a

R , (A24)

V r
L = U r†

L �r
LU r

L . (A25)

APPENDIX B: INTERFACE ATOMIC MIXING

In Fig. 7, we present the ensemble-averaged atomic
number density along the z direction for different ml and
transverse supercell sizes. In Figs. 8 and 9, we demonstrate
the corresponding electron transmission for different inter-
face configurations. At fixed ml number, smaller transverse
supercell sizes give rise to higher nonspecular transmission
function. At a fixed transverse supercell size, the higher
ml numbers give rise to higher nonspecular transmission
function.

APPENDIX C: ENHANCEMENT OF HOLE
TRANSMISSION

From Fig. 4, we observe that the hole transmission func-
tions for disordered Si/Ge and Si/sGe interfaces are both
slightly enhanced compared with corresponding perfect in-
terfaces. To investigate the origin of such enhancement, we
compare the mode-resolved hole scattering probabilities for
rough Si/sGe interfaces and the perfect Si/sGe interface in
Fig. 10.

First, we notice that the specular part of the scattering
probability is generally much larger than the nonspecular part
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(a) 8 ml 4 ml 2 ml

2x2 3x3 4x4

(b) (c)

(d) (e) (f )

FIG. 9. The sensitivity of electron transmission through Si/sGe interfaces on the degree of transverse and longitudinal disorders. Other
computational details are the same with those for Fig. 8.

FIG. 10. The ensemble-averaged mode-resolved (a) specular and
(b) nonspecular scattering probabilities as a function of in-plane
momentum kuc,‖ at E = −0.41 eV. (c) The difference between the
ensemble-averaged specular scattering probability for disordered
interfaces and the specular scattering probability for the perfect in-
terface �Ps,α (kuc,‖) = Ps,α (kuc,‖) − Pperfect,α (kuc,‖), where P = T, R
and α = Si, sGe, as a function of in-plane momentum kuc,‖ at E =
−0.41 eV.

except for the reflectance from the Si side. This is because the
valence bands of Si and sGe are both at the �̄ point, which
means that the momentum conservation is easier to satisfy.
Also, the symmetries for hole wave functions from two sides
are compatible, which puts no symmetry restriction on hole
transmission and reflection. Second, the nonspecular scat-
tering probabilities (both transmittance and reflectance) are
promoted at the points with relatively large |k‖| on the Si and
sGe side, such that those points can differ by integer number
of transverse reciprocal vectors Gsc,‖. Furthermore, compared
with the perfect interface, the specular transmittance for rough
interfaces can be either reduced or enhanced, depending on
the transverse momentum. In contrast, the specular reflectance
for most holes from Si and sGe are reduced. Consequently, the
total hole transmission is slightly enhanced. However, such
enhancement might not be universal. The reasons for this are
as follows.

For the perfect interface, there are already a considerable
amount of scattering channels (all of them are specular).
When interfacial disorders are introduced, the change in
specular scattering probability �Ps,α (kuc,‖) and the non-
specular scattering probability Pns,α (kuc,‖) are both small
perturbations compared in the specular scattering probability
for the perfect interface Pperfect,α (kuc,‖). The signs of these
perturbations depend on both the wave functions of the initial
and final states. Specifically, it is difficult to predict how
the specular part of the scattering probability changes using
symmetry analysis. Eventually, the scattering probability for
rough interfaces Pα (kuc,‖) = Ps,α (kuc,‖) + Pns,α (kuc,‖) can be
either higher or lower than the scattering probability for the
perfect interface Pperfect,α (kuc,‖).
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