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We present an experimental and theoretical study of the longitudinal electron spin relaxation (T1) of shallow
donors in the direct band-gap semiconductor ZnO. T1 is measured via resonant excitation of the Ga donor-bound
exciton. T1 exhibits an inverse-power dependence on magnetic field T1 ∝ B−n, with 4 � n � 5, over a field range
of 1.75 T to 7 T. We derive an analytic expression for the donor spin-relaxation rate due to spin-orbit (ad-
mixture mechanism) and electron-phonon (piezoelectric) coupling for the wurtzite crystal symmetry. Excellent
quantitative agreement is found between experiment and theory suggesting the admixture spin-orbit mechanism
is the dominant contribution to T1 in the measured magnetic field range. Temperature and excitation-energy
dependent measurements indicate a donor density dependent interaction may contribute to small deviations
between experiment and theory. The longest T1 measured is 480 ms at 1.75 T with increasing T1 at smaller
fields theoretically expected. This work highlights the extremely long longitudinal spin-relaxation time for ZnO
donors due to their small spin-orbit coupling.
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I. INTRODUCTION

Shallow impurities in semiconductors are a promising
spin-qubit platform for quantum technologies [1–3]. In direct
band-gap materials, these spins have an optical interface via
the impurity-bound exciton. In high-purity crystals, the shal-
low impurity system can exhibit high optical homogeneity [4].
For II–VI semiconductors [5,6] there is also the potential for
a nuclear spin-free host with isotope purification, and hence
enhanced spin-coherence times [7–9]. Within this class of ma-
terials, shallow donors (D0) in ZnO are particularly promising;
the donor-bound exciton (D0X) exhibits narrow inhomoge-
neous linewidths (∼25 GHz), short radiative lifetimes (∼1 ns)
[10], and a small Huang-Rhys factor (∼0.06) [10]. Addition-
ally, the bound electron exhibits small spin-orbit coupling [11]
which leads to increased isolation from the phonon bath and
potential for long longitudinal-spin-relaxation times (T1). In
this paper, we study the dependence of T1 on magnetic field,
temperature, and excitation energy to gain a fundamental un-
derstanding of the mechanisms limiting T1 for shallow donors
in ZnO.

This paper is organized as follows: Section II provides
an overview of the ZnO donor/donor-bound exciton system
and Sec. III describes experimental techniques utilized for
measuring T1. Section IV reports measurements of T1 as
a function of magnetic field B in both Faraday and Voigt
geometries. T1 as long as 480 ms is measured with longer
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times expected at lower magnetic fields. In Sec. V we analyti-
cally derive an expression for the T1 dependence on magnetic
field and temperature for a single donor, with T1 ∝ B−5. The
spin-relaxation model is based on spin-orbit (admixture mech-
anism) and electron-phonon (piezoelectric) coupling for a
wurtzite crystal symmetry. In both Faraday and Voigt geome-
try, remarkable agreement between theory and experiment in
the magnitude of T1 is observed. However the experimental
exponent is smaller than expected, with the difference more
pronounced in the Voigt geometry. In Sec. VI, we present
measurements of the T1 dependence on the temperature and
excitation energy to further investigate this discrepancy. We
observe dependence of T1 on the excitation energy within the
inhomogeneous donor-bound exciton line. This variation in
T1 at a single field suggests a secondary relaxation mecha-
nism dependent on donor density. Moreover, the temperature
dependence at a given excitation energy is consistent with
the expected phonon-occupation model supplemented with an
additional excitation-dependent contribution. Finally, Sec. VII
concludes with a brief outlook for the ZnO donor system in
the context of quantum information applications.

II. ZnO D0-D0X SYSTEM

The qubit system studied is the electron spin (|↑〉 or |↓〉)
of the neutral donor (D0). D0 is optically coupled to the
donor-bound exciton (D0X), consisting of an electron-hole
pair bound to a neutral donor. The D0-D0X transitions form
two � systems consisting of the two electron ground states
and an excited state for optical spin manipulation [Fig. 1(b)].
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FIG. 1. (a) Diagram of sample orientation in experimental setup. H and V are the linear polarization axes of a beam with wave vector
k. The beam propagates parallel to the crystal axis ĉ. The external magnetic field B is either parallel (B ‖ ĉ) or perpendicular (B ⊥ ĉ) to the
crystal axis, labeled as Faraday or Voigt geometry, respectively. (b) Energy diagram of the shallow donor system in Voigt geometry (left), no
magnetic field (middle), and Faraday geometry (right). We use green-orange colors for Voigt-geometry-related figures, and blue-red colors for
Faraday-geometry-related figures. (c) PL spectra under 3.45 eV excitation in the Faraday geometry (7 T, 1.5 K), in the Voigt geometry (4 T,
5.2 K), and zero field (0 T, 5.2 K). (d) Optical pumping curve in the Voigt geometry, 5.5 T, and 1.5 K. The inset shows the OP laser sequence.
(e) OP curve in the Faraday geometry, 5 T, and 1.5 K. (f) Spin-relaxation curve in the Voigt geometry, 5.5 T, and 1.5 K. The inset shows the T1

measurement scheme. The error bars depict the photon shot noise. (g) T1 curve in the Faraday geometry, 5 T, and 1.5 K.

The Zeeman splitting of the D0 state is determined by the
electron spin g factor. The Zeeman splitting of the D0X is
determined only by the hole g factor (|↑〉 or |↓〉), as the two
electrons form a spin singlet [10]. In this work, we study a
360-µm-thick single-crystal ZnO substrate from Tokyo Denpa
which is further described in our prior work [6]. The total
donor concentration, including all donor types, is on the order
of ∼1016-1017 cm−3. The sample is mounted in a helium
immersion cryostat with a superconducting magnet, either in
Voigt (B ⊥ ĉ) or Faraday (B ‖ ĉ) geometry. Here, ĉ denotes
the [0001] crystal axis and is always parallel to the optical
axis k [Fig. 1(a)]. Approximately 106 donors of all types are
in the optical probing volume.

Figure 1(c) shows the photoluminescence (PL) spectra of
the sample in the Faraday and Voigt geometries. At 0 T, we
observe two bright lines at 3.3599 eV and 3.3607 eV which
closely match the assigned Ga and Al donor transitions [10].
Here, we focus on the Ga donors, with similar behavior ex-
pected for the Al donors.

III. T1 MEASUREMENT

In the Voigt geometry (B ⊥ ĉ), there are four D0-D0X tran-
sitions: two with horizontal and two with vertical polarization
as shown in Fig. 1(b). These transitions are labeled as H↓ ≡
|↓〉 ↔ |↓↑↓〉, H↑ ≡ |↑〉 ↔ |⇑↑↓〉, V↓ ≡ |↓〉 ↔ |⇑↑↓〉, and
V↑ ≡ |↑〉 ↔ |↓↑↓〉 with the subscripts corresponding to the
ground spin state of the transition. Prior to measuring the

longitudinal spin-relaxation time of the donor ensemble, the
spin states are spin-polarized by optical pumping (OP). As
shown in Fig. 2(a), the spin state is pumped into the |↑〉 via
the H↓ transition. The measurement signal, collected from the
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FIG. 2. Energy diagram for OP and T1 measurement schemes
in the (a) Voigt and (b) Faraday geometry. In (b), the unmarked
levels correspond to the energy levels related to the satellite band
transitions.
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V↑ transition, is proportional to the population of the |↓〉 state.
Experimentally, we selectively excite the transition of interest
via polarized resonant excitation. Figure 1(d) depicts a typical
optical pumping trace in the Voigt geometry.

We measure the spin-relaxation time by fitting the popula-
tion recovery of the |↓〉 state as a function of the time delay τ

between OP pulses [see Fig. 1(f) inset]. The population of |↓〉
is proportional to the total counts at the start of the OP trace.
The integration window used is shown in gray in Fig. 1(d).
Population recovery as a function of delay time τ is fitted with
an exponential function, as displayed in Fig. 1(f).

In the Faraday geometry (B ‖ ĉ), there are also four
D0-D0X transitions as shown in Fig. 1(b). Two of the tran-
sitions are polarized parallel to the optical axis, denoted as
ẑ, and thus cannot be detected. The other two transitions
are circularly polarized with σ+ ≡ |↓〉 ↔ |⇑↑↓〉 and σ− ≡
|↑〉 ↔ |⇓↑↓〉. Because the ẑ-polarized transitions cannot be
observed, we utilize the ∼10 times less luminescent two-
electron-satellite (TES) transitions (the D0-D0X transitions to
the 2s and 2p orbital states of D0), one and two longitudinal
optical (LO) phonon replicas (1LO, 2LO), and the first phonon
replica TES transitions (1LO-TES), as a probe of the D0

population, as depicted in the energy diagram of Fig. 2(b) and
the spectrum in Appendix A. We will denote these transitions
as the satellite band transitions.

The OP and T1 measurements in Faraday geometry
[Figs. 1(e) and 1(g)] are similar to those in Voigt. In Faraday
geometry, the pump-down time is longer compared to Voigt
geometry, because of the ∼50-fold weaker ẑ dipole transition
[12]. Hence, a longer integration window was utilized.

Overall, we have observed a degradation of OP in both
Voigt and Faraday geometries with decreasing magnetic field.
We attribute this behavior to the 84.8 µeV (20.5 GHz) inhomo-
geneous broadening of the optical transitions, which becomes
comparable to the energy difference between the transitions
of interest. In the Faraday geometry, the OP contrast is further
degraded by collecting the nonresonant satellite band transi-
tions and at large fields, due to pump-down times comparable
to the spin-relaxation time [Fig. 1(e)].

IV. T1 DEPENDENCE ON MAGNETIC FIELD

The magnetic field dependence of T1 at 1.5 K is shown in
Fig. 3. The minimum magnetic field (2.25 T in the Voigt and
1.75 T in the Faraday geometry) was limited by the increased
measurement time and decreased optical pumping contrast at
lower fields.

As discussed further in Sec. VI, T1 exhibits a resonant
excitation laser energy dependence. To minimize deviations
in T1 due to this dependence, all measurements were taken at
the excitation energy where the lowest T1 was expected. In
Faraday geometry, this corresponds to the maximum of the
(σ+) transition. In the Voigt geometry, the energy was chosen
to lie between the unresolved H↓ and V↓ transitions.

We observed the longest T1, 480 ms, at 1.75 T in the Fara-
day geometry. This is three times higher than the previously
reported T1 [6] where measurements where only performed in
Voigt geometry. In Faraday geometry, measurements at lower
fields are possible due to larger hole Zeeman splitting and
polarization selectivity of the optical transition. We are able

FIG. 3. T1 at 1.5 K as a function of external magnetic field. The
error bars correspond to one standard deviation of the T1 fitting error.
Theoretical curves are calculated from Eq. (12). The curve fitted
to the Voigt geometry data was Eq. (12), where �↓↑ = aB4, with a
single fitted parameter a.

to observe optical pumping contrast at fields as low as 0.3 T
(Appendix B); however, T1 measurements were not performed
at this field due to the long duty cycle and low signal contrast.
A comparison of the experimental magnetic field data with
theory is made in the next section.

V. THEORETICAL DESCRIPTION OF T1 AND
COMPARISON TO EXPERIMENTS

In this section we consider spin-relaxation mechanisms
for donor-bound electrons in ZnO and calculate the corre-
sponding T1. We focus on the spin relaxation mediated by
the phonon emission/absorption in the presence of spin-orbit
coupling (admixture mechanism), which is the dominant spin-
relaxation mechanism for III–V quantum dots [13,14] and
donor-bound electrons in GaAs, InP, and CdTe compounds
[15]. Due to spin-orbit coupling the spin sublevels of the
ground donor state contain an admixture of the excited sub-
levels with opposite spin projections. As a result, the matrix
elements of the spin-independent electron-phonon interaction
between the ground spin sublevels become nonzero resulting
in the relaxation of electron spin. The matrix element of this
second-order process is given by

M↓↑ =
∑

e

[ 〈1s↓|Vph|e↓〉〈e↓|Vso|1s↑〉
E1s↑ − Ee↓

+ 〈1s↓|Vso|e↑〉〈e↑|Vph|1s↑〉
E1s↓ − Ee↑

]
. (1)

Here |1s〉 is the ground orbital state of the donor-bound elec-
tron, |e〉 denotes the excited orbital states, E1s↑(↓) and Ee↑(↓)

are the energies of the ground and excited orbital states with
+1/2 and −1/2 spin projections onto magnetic field, and Vso
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and Vph are the operators of the spin-orbit and electron-phonon
interaction, respectively.

The spin-orbit Hamiltonian for electrons in wurtzite semi-
conductors contains linear in wave vector k terms [11,16,17]:

Vso = α(σxky − σykx ) , (2)

where σx and σy are the Pauli matrices, and α is the constant
of spin-orbit coupling. As for the electron-phonon interaction,
we consider only piezoelectric interaction with phonons, since
it is more efficient at small phonon wave vectors [13,15]. The
corresponding Hamiltonian is

Vph =
√

h̄

2ρωq,α

exp (iq · r − iωq,αt )(eAq,α )b†
q,α + c.c., (3)

where

Aq,α =
∑
i jk

βi jkξiξ je
(q,α)
k , (4)

q and α denote the phonon wave vector and polarization, ρ is
the mass density of the material, ωq,α is the phonon frequency,
b†

q,α is the phonon creation operator, ξ = q/q is the unit vector
along the phonon wave vector, e is the phonon polarization
vector, and βi jk is the piezotensor. The nonzero components
of βi jk in wurtzite media are βzxx = βzyy = h31, βzzz = h33,
βxxz = βxzx = βyyz = βyzy = h15, where h31, h33, and h15 are
piezoelectric constants [18].

In what follows, we use the spherical model for the elec-
tronic states of the donor by introducing the averaged electron
effective mass m∗ and static dielectric constant ε. This model
is supported by the small anisotropy of the electron effec-
tive mass and dielectric constant in ZnO [19]. Within the
spherical approximation, the donor states can be labeled by
electron angular momentum l and its projections, in the same
way as in the hydrogen atom. The spin-orbit interaction (2)
couples the ground |1s〉 orbital (l = 0) and excited |np〉 or-
bitals (l = 1), where n = 2, 3, . . . . In this section we denote
the ZnO c axis as z. In the Faraday geometry, when B ‖ z,
the nonzero matrix elements of Vso are 〈np+↓|Vso|1s↑〉 and
〈1s↓|Vso|np−↑〉, where |p±〉 = (|px〉 ± i|py〉)/

√
2. Keeping in

mind that the splittings between spin and orbital sublevels
induced by magnetic field are much smaller than the en-
ergy distance to excited states, as well the relations between
the matrix elements 〈np+↓|Vso|1s↑〉 = −〈1s↓|Vso|np−↑〉, and
〈1s|Vph|np+〉 = 〈np−|Vph|1s〉, the spin-flip matrix element (1)
is simplified to

M↓↑(B ‖ z) = (h̄ωc − 2gμBB)

×
∑

n

〈1s↓|Vph|np+↓〉〈np+↓|Vso|1s↑〉
(E1s − Enp)2

. (5)

Here E1s and Enp are the energies of 1s and np± orbitals at
zero magnetic field, g is the electron g factor, μB is the Bohr
magneton, and ωc = |e|B/(m∗c) is the cyclotron frequency. In
the derivation of Eq. (5), we took into account the splitting
gμBB between the spin sublevels of 1s and np orbitals, as
well as the splitting h̄ωc between the np+ and np− orbital
sublevels.

In the Voigt geometry, B ‖ x, the nonzero matrix elements
of Vso between the states with opposite spin projections are
〈npx↓|Vso|1s↑〉 and 〈1s↓|Vso|npx↑〉. Note that here ↑(↓) de-
note the spin projections onto the x axis. Using the same
arguments as in the derivation of Eq. (5), we obtain

M↓↑(B ‖ x) = − 2gμBB

×
∑

n

〈1s↓|Vph|npx↓〉〈npx↓|Vso|1s↑〉
(E1s − Enp)2

. (6)

In what follows we use the long-wave approximation (LWA)
for phonons: qa0 � 1, where q = gμBB/(h̄s), s is the sound
velocity, and a0 is the Bohr radius of a donor. This ap-
proximation is valid in the whole range of experimentally
studied magnetic fields due to a small Bohr radius of shallow
donors in ZnO, a0 ≈ 1.5 nm [19]. Using LWA, the relation
〈np|k|1s〉 = im∗(Enp − E1s)〈np|r|1s〉/h̄2, and the procedure
described in Ref. [13], the matrix elements (5) and (6) are
simplified to

M↓↑(B ‖ z) = (2gμBB − h̄ωc)
αm∗β(Ex + iEy)

2eh̄2 ,

M↓↑(B ‖ x) = gμBB
αm∗βEx

eh̄2 . (7)

Here E = −iqVph(r = 0)/e is the electric field induced by a
phonon at the location of the donor, and

β = 2e2
∑

n

〈1s|x|npx〉2

Enp − E1s
(8)

is the donor polarizability for electric field lying in the (xy)
plane. In the spherical approximation that we use, the polariz-
ability is found analytically [20]: β = 9εa3

0/2.
The spin-flip transition rates are found using Fermi’s

golden rule, e.g., for the transition from |1s↑〉 to |1s↓〉 with
emission of a phonon:

�↓↑ = 2π

h̄

∑
q,α

|M↓↑|2δ(h̄qsα − gμBB). (9)

Accurate averaging over the q direction in Eq. (9) is difficult
due to the complicated phonon structure in wurtzite crystals.
However simplified estimations can be made within the model
of the effective isotropic elastic medium, when the longitu-
dinal and transverse phonons are decoupled and propagate
with isotropic sound velocities sl and st [18]. This approxima-
tion seems reasonable since the relations c11 ≈ c33, c12 ≈ c13,
and c44 ≈ (c11 − c12)/2 hold for the elastic moduli values in
ZnO [21]. The summation in Eq. (9) is then performed for a
longitudinal mode with e(q,l ) = ξ and two transverse modes
with e(q,t ) ⊥ ξ. Averaging over the ξ direction for transverse
phonons is done with the use of the formula 〈e(q,t )

i e(q,t )
j 〉 =

(δi j − ξiξ j )/2. By substituting the matrix elements (7) in
Eq. (9) and performing the summation, we obtain

�↓↑(B ‖ z) = ��3
1�

2
2

h̄E4
1s

, �↓↑(B ‖ x) = ��5
1

2h̄E4
1s

, (10)

where

� = 9(eα)2

448πρ h̄3

(
5h2

33 + 8h2
31 + 32h2

15

5s5
l
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TABLE I. Parameters of ZnO used in calculations of T1. The piezoelectric constants are calculated using the values of piezoelectric stress
moduli ei j as hi j = ei j/(εε0 ), where ε is the static dielectric constant, and ε0 is the vacuum permittivity. The electron effective mass and
dielectric constant are calculated as 3/m∗ = 1/me‖ + 2/me⊥, 3/ε = 1/ε‖ + 2/ε⊥, the sound velocities sl = √

c11/ρ, st = √
c44/ρ.

ρ (kg/m3) m∗/m0 ε α (meV Å) g h33 (V/m) h31 (V/m) h15 (V/m) sl (m/s) st (m/s)

5.6 × 103 0.25 8.1 1.1 2 1.5 × 1010 −0.6 × 1010 −0.6 × 1010 6.1 × 103 2.9 × 103

[19] [19] [11] [6] [21] [21] [21] [21] [21]

+ 4h2
33 + 4h2

31 + 52h2
15

5s5
t

)
, (11)

�1 = gμBB, and �2 = �1 − h̄ωc/2. Calculation based
on Eqs. (10) and (11) using parameters listed in Ta-
ble I yields � ≈ 0.02, �↓↑(B ‖ z)/B5 ≈ 0.08 s−1 T−5,
and �↓↑(B ‖ x)/B5 ≈ 0.04 s−1 T−5.

The measured spin-relaxation time T1 at nonzero tem-
perature is T1 = 1/[�↓↑(T ) + �↑↓(T )], where �↓↑(T ) =
�↓↑[Nph(T ) + 1], �↑↓(T ) = �↓↑Nph(T ), and Nph(T ) is the
phonon occupation number. With that we find

T1 = eγ − 1

�↓↑(eγ + 1)
, (12)

where γ = gμBB/kBT and kBT is the thermal energy.
We note that the simple model used here to calculate donor

electronic states does not take into account the anisotropy
of the electron effective mass and the presence of a short-
range impurity potential [19]. These effects result in a small
shift of E1s [19] and consequently slightly affect the T1 value
through the denominator in Eq. (10). However, we neglect
these small corrections in order to keep our model simple. We
also note that the spin-flip rate (10) is quite universal, since
it does not depend on the electron effective mass, as the E1s

value can be taken from experiment. Also, other mechanisms
of electron-phonon interaction, such as deformation potential
and direct spin-phonon interaction, are less efficient at small
phonon wave vectors, and result in smaller spin-flip rates and
T1 ∝ B−7 dependence not observed in the experiment [15].

Figure 3 includes the theoretically expected T1 curves. The
theoretical T1 curves include no fit parameters and lie remark-
ably close to the experimental values. The calculated T1 values
are sensitive to the values of the piezoelectric constants, which
have quite a wide spread in the literature. This spread may re-
sult in ∼2-times change of the calculated T1 which still gives a
good agreement with experiment. Additionally, through much
of the experimental range of magnetic fields, the expected re-
lationship T1(B ‖ x) ≈ 2T1(B ‖ z) is approximately observed.
However, the experimental exponential dependence deviates
from the expected B−5 [see Eqs. (10) and (12)]. Specifically,
in the Faraday geometry, a softening of the exponent is ob-
served at higher fields, while in the Voigt geometry, a B−4

dependence is observed across the full experimental range
of magnetic fields (as shown in Fig. 3). If we extrapolate T1

to lower fields, we may expect a crossover between Faraday
and Voigt geometry T1 to occur for fields below 2 T. This
discrepancy suggests that while spin-orbit coupling is the
dominant relaxation mechanism for donor-bound electrons in
ZnO, there is an additional mechanism.

VI. EXCITATION ENERGY AND
TEMPERATURE DEPENDENCE

T1 at a fixed magnetic field and temperature was found to
depend on the optical pumping excitation energy. Figures 4(a)
and 4(b) show the photoluminescence excitation (PLE) spec-
tra (dashed curves) and T1 (solid curves) in Voigt and Faraday
geometry at 5 T and 1.5 K. The PLE spectra were taken by
tuning the excitation laser over the H↓ and σ+ transitions
respectively, while collecting the satellite band transitions. In
Faraday geometry, we observe the expected PLE peak. T1

reaches a minimum value near the maximum of the PLE.
In Voigt geometry, two peaks are observed. The low-energy
peak corresponds to resonant excitation of the H↓ transition
[Fig. 1(b)]. The high-energy peak corresponds to the resonant
excitation of the V↓ transition. The observation of the high-
energy peak indicates either a relaxation of the polarization
selection rules or an impure polarization excitation. In Voigt
geometry, the spin-relaxation time reaches a minimum in be-
tween the two peaks.

(a)
Faraday

(b)
Voigt

(a
.u

.)
(a

.u
.)

FIG. 4. T1 and PLE at 5 T and 1.5 K for varying excitation energy
detuning �E in (a) Faraday and (b) Voigt geometry. The error bars
correspond to one standard deviation of the T1 fitting error.
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FIG. 5. Normalized T1 measurements at 1.8 K, with varying
field, and excitation energy in the Faraday geometry (solid line, left
axis) and the corresponding PLE spectra (dashed line, right axis).
The measurements were taken on a different spot on the sample than
the ones on Fig. 4(a). The error bars correspond to one standard
deviation of the T1 fitting error. The maximum T1 observed are 1.55
ms, 6.69 ms, 53.6 ms for 7 T, 5 T, and 3 T, respectively, and are
equivalent to 100% of the normalized T1.

A dependence on the pump laser excitation energy for
T1 is not expected for an isolated donor, as the excitation
pulse is only used for spin initialization and the relaxation
process occurs while the excitation pulse is off. Laser leakage
through the acousto-optic modulator (AOM) could result in
optical pumping during the spin recovery period which would
be more efficient on-resonance if the resonance line is ho-
mogeneously broadened. This potential cause of a reduced
T1 on-resonance can be ruled out due to the high AOM ex-
tinction ratio (>104) compared to the spin-relaxation time to
pump-down time ratio, the similar pump-down time observed
over all detunings (suggesting an inhomogeneous broadened
resonance line), and no observed softening of the exponent
or T1 saturation [22] at the measured fields below 3 T with
longer T1 (Fig. 3). For measuring T1 further from resonance,
increasingly longer pump-on times and varying integration
window times were used to fully initialize the system. In
control measurements, we find that the pump-power, pump-on
time (Appendix C), and integration window (Appendix D) do
not significantly affect T1.

We further investigate the size of the energy dependence
of T1 as a function of field. Figure 5 depicts the change of
the excitation energy dependence with varying magnetic field
in the Faraday geometry. We observe that the T1 variation
does not exceed a factor of 1.25 for low fields (3 T), but can
vary by more than a factor of two at higher fields (5 T, 7 T).
Hence, the choice of excitation energy can impact the mag-
netic field dependence shown in Fig. 3. For Faraday geometry,
the magnetic field dependence deviates from the theoretically
predicted behavior at the higher fields (B � 5 T) where the
energy-dependent deviation is largest. However, we note that
the softening of the exponent at high fields would be even

(a)
Faraday

(b) Voigt

FIG. 6. Spin-relaxation time as a function of temperature at
B = 5 T. The error bars in T1 correspond to one standard deviation
of the T1 fitting error. The increasing uncertainty in temperature
arises from a systematic underestimation of the temperature due to
the distance and lack of thermal contact between the temperature
sensor and the sample. The dashed lines are least-squares fits to
the function [�↓↑Fph(T ) + �0]−1. The shaded areas around each fit
depict the model function with �↓↑ = �↓↑,fit ± �↓↑,fit,err . (a) Fara-
day, �↓↑ = 0.1647 ± 0.0091 ms−1, �0,on = 0.0386 ± 0.0144 ms−1,
�0,off = −0.0685 ± 0.0108 ms−1 and (b) Voigt, �↓↑ = 0.0512 ±
0.0021 ms−1, �0,on = 0.0357 ± 0.0035 ms−1, �0,off = 0.0011 ±
0.0027 ms−1.

greater if the magnetic field dependence had been measured
in the off-resonance condition.

The higher spin relaxation at larger D0X intensity (indi-
cating higher donor density) suggests an additional relaxation
mechanism based on donor-donor interactions. The origin of
this relaxation mechanism is unknown at this time. We can
rule out exchange and dipolar donor-donor interactions. The
Bohr radius of the electron donor can be estimated to be
∼1.5 nm [19]. Donor densities on the order of 1016 cm−3 yield
an average distance between donors of ∼30 nm, meaning that
exchange interactions would have little to no effect on the
the ensemble longitudinal spin-relaxation process. Dipolar
interaction on the other hand would yield a flip-flop rate
of approximately 10–1000 Hz, comparable to the the exper-
imentally observed relaxation rate. However, the hyperfine
interaction of the donor with the lattice 67Zn induces inho-
mogeneity of tens of MHz in the Zeeman energies [6]. Due to
energy conservation, this hyperfine interaction should effec-
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tively block dipolar donor-donor flip-flops in the absence of
an additional energy-conserving mechanism.

The temperature dependence of T1 at 5 T is shown in
Fig. 6. The measurements were taken in the two magnetic
field orientations and at two excitation energies which we
label “on-resonance” and “off-resonance.” The on-resonant
measurements are performed at the wavelength near the mini-
mum T1. For the off-resonant measurements, we excite 44 µeV
(10.6 GHz) and 118 µeV (28.5 GHz) negatively detuned from
the resonance condition for the Faraday and Voigt geometries,
respectively. At 1.5 K, T1 values between the two excitation
resonance conditions differ by approximately a factor of 2.
At high temperatures (T > 10 K), the on- and off-resonance
relaxation times converge.

We are able to obtain reasonable agreement to a sim-
ple relaxation model in which the total spin relaxation is
proportional to a sum of a phonon-dependent and a con-
stant term; (T1)−1 = �↓↑Fph(T ) + �0, with phonon factor
Fph(T ) = 2Nph(T ) + 1 [compare with Eq. (12)]. The fit was
performed with a common �↓↑ for both on- and off-resonance
data sets, and different �0, on and �0, off .

As shown in Fig. 6, this simple temperature dependence
model describes both on- and off-resonance data sets. In
both geometries we find a significantly larger �0 for on-
resonance than off-resonance, consistent with the excitation
energy dependence. In the Faraday off-resonance case, the fit
in fact produces a negative �0, indicating that the additional
relaxation mechanism cannot solely be explained by a simple
constant. This could indicate a suppression of the phonon-
induced spin-relaxation rate when detuned from the ensemble
resonance; however the simplicity of the model (which does
not include a temperature dependence for �0 or the effect
of temperature on the homogeneous exciton linewidth) pre-
vents a firm conclusion. Thus, the origin of the additional
relaxation (or stabilization) mechanism is a subject for future
study.

VII. CONCLUDING REMARKS

In summary we have demonstrated long longitudinal re-
laxations times of up to 480 ms for shallow donors in
ZnO. The measured T1 is approximately three orders of
magnitude longer than prior work in other direct band-
gap materials (GaAs, CdTe, and InP [15]) and stems
directly from ZnO’s small spin-orbit coupling. Quantita-
tively we find good agreement of the experimental results
with a single-phonon relaxation mechanism. The small lon-
gitudinal spin relaxation supports the promise of donors
in direct band-gap II-VI semiconductors in which iso-
tope purification is possible to enable long spin coherence
times.
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FIG. 7. Satellite band transitions in Faraday geometry at 5 T and
1.5 K with resonant excitation of the Ga D0X line.

APPENDIX A: SATELLITE BAND TRANSITIONS

When we collect off-resonance photoluminescence, we
collect a wide band of energies, ranging from 3.20 eV to
roughly 3.32 eV. Within this broad band, we have identified
the lines at 3.318 eV, 3.288 eV, 3.247 eV, and 3.214 eV as the
TES, 1LO, 1LO-TES, and 2LO transitions for the Ga donor,
respectively [10] (Fig. 7).

APPENDIX B: LOW MAGNETIC FIELD
OPTICAL PUMPING

In Sec. III, we discussed two ways to verify optical pump-
ing. In the Faraday geometry at low field, the optical pumping
contrast becomes too low to be detected via the satellite band
transitions due to laser background in the corresponding col-
lection energy region. Instead, the excitation laser beam was
offset on the focusing lens. This side-excitation scheme allows
for the reflected excitation beam and the emitted photolumi-
nescence to be spatially filtered as depicted in Fig. 8(b) and
resonant photoluminescence to be collected.

Figure 8(a) depicts an optical pumping trace at 0.3 T. At
such low magnetic fields, T1 is expected to be very long and
hence the wait time between pump-on pulses would deem
the experiment very slow. To speed up the measurement, we
utilize a short scrambling pulse at 3.45 eV to initialize the two
D0 electron spin states to 50%.
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FIG. 8. (a) Optical pumping of electrons from the |↓〉 state to
the |↑〉 state (exciting the σ+ transition) in Faraday geometry, 0.3 T,
1.5 K. A scrambling pulse is used to initialize both neutral donor
electron states to 50%. (b) Optical paths of the excitation beam and
emitted photoluminescence in the side-excitation scheme.
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FIG. 9. (a) Optical pumping curve using a pump and a probe
laser in the Faraday geometry at 5 T and 1.9 K. The excitation energy
was chosen to be close to the maximum of the ensemble resonance.
The inset shows the color-coded spectral position of the pump and
probe levels in the energy level diagram. (b) Spin-relaxation trace
in the same condition. The red curve is the fit curve from which
we extract T1. The inset shows the OP and T1 pump-probe measure-
ment schemes. The integration window used is highlighted with gray
color both in the inset and in (a). (c) T1 pump-probe measurements
conducted with various pump excitation powers and pump-on times
(with constant probe conditions). The horizontal axis depicts the
pump powers, while the shape and shade of each point represent
the pump-on time. The number of points of each color is displayed
between parentheses in the legend.

APPENDIX C: DEPENDENCE OF T1 ON PUMP-ON TIME
AND EXCITATION POWER

For measuring T1 as a function of the excitation energy (see
Sec. VI), the pump-on time was varied to achieve initialization
of the ground-state spins (see Sec. III). It is possible that the
observed excitation energy dependence of T1 (see Sec. VI)
might be due to a variation in pump-on time. Additionally,
while the nominal excitation power was kept constant during
these measurements, it is interesting to test whether T1 dis-
plays a dependence on excitation power in order to understand
limiting factors for T1. Thus, we performed experiments to
gauge the influence of different pump-on times and nominal
excitation powers on T1. Performing such experiments similar
to the approach presented in Sec. III is challenging, for exam-
ple, because at very high excitation powers it is not possible
to detect the start population due to very fast optical pumping.
This problem can be mitigated by conducting the experiment
using two lasers (pump-probe experiment).

In Faraday geometry, the pump laser will be set resonant
with the σ+ transition of a specific sub-ensemble, and for
this sub-ensemble, the |↓〉 population is transferred to the
|↑〉 population. The specific amount of population that is
transferred depends on the pump-on time and/or excitation
power of the pump laser. After a delay time τ , the probe
laser, resonant with the σ− transition of the sub-ensemble,
probes the remaining |↑〉 population [see Fig. 9(a)]. Plotting
this population as a function of τ can be used to obtain T1. We
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FIG. 10. (a) Optical pumping trace using a pump and a probe
laser in the Faraday geometry at 5 T and 1.9 K, fitted with a
double exponential model, with fast and slow decays of tf and ts,
respectively. The y axis is in logarithmic scale. (b) Normalized T1

from a single pump-probe experiment, as a function of the window
integration time. The gray area depicts the the experimental choices
on gate-on time, 0.3 × ts to 0.9 × ts.

then measure T1 while tuning the pump parameters, allowing
the T1 dependence on pump-on time and excitation power
to be measured without varying the probing conditions [see
Fig. 9(b)].

As shown in Fig. 9(c), T1 does not vary more than a factor
of 1.2 in dependence on excitation power and/or pump-on
time. Thus, it is unlikely that the specific parameters chosen
for the T1 measurements have a significant influence on the
measured value for T1. In Fig. 9(c), the data points with a
pump-on time of 500 µs resemble closest the conditions used
in the main text for determining T1 because complete spin
initialization has been achieved.
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FIG. 11. Zeeman splitting of the Ga donor lines as a function
of magnetic field at 5.2 K in the Faraday geometry. Each point is
obtained via Voigt profile fits on PL spectra under 3.45 eV excitation
at different fields. The error bars depict the standard deviation error
of the Voigt profile fits.
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APPENDIX D: DEPENDENCE OF T1 ON OPTICAL
PUMPING INTEGRATION TIME

When measuring T1 via optical pumping, we observe dif-
ferent pump-down time for different experimental conditions.
Since the goal is to only collect signal from the beginning
of the pump-down trace, which is proportional to the popu-
lation of the state of interest, we need to integrate the signal
in the smallest possible time window. However, the smaller
the integration window (or gate-on time), the less signal we
collect, leading to unsatisfactory statistics. In order to balance
the two effects, we choose different gate-on times for each
measurement in the main text.

As shown in Fig. 10(a), the OP curve can be sufficiently
described by a double exponential decay model. The fast
decay time of the OP is roughly up to one order of mag-
nitude shorter than the slow decay time. For the excitation
energy dependence experiments, the gate-on time remained
between 0.3 to 0.9 times the slow component of the OP curves.
To investigate the effect of choosing such a wide range of
gate-on times we utilize a two-laser pump-probe experiment
(see Appendix C). Figure 10(b) shows the normalized T1

as a function of gate-on time normalized to the slow decay
time. We observe that for normalized gate-on times of 0.3
and 0.9 the variation of T1 is negligible (∼8%). It is inter-
esting to note that for much smaller normalized integration
windows, T1 can vary as much as 20%. However, we do not
probe such short gate-on times due to the low count rate.
Overall, we conclude that the integration window choice does
not significantly change the observed T1 for all experimental
data.

APPENDIX E: FARADAY GEOMETRY g FACTOR

The g factors for the Ga donors in this sample in the Voigt
geometry have been estimated by linear fits of the electron
and hole Zeeman splitting at different fields. In prior work,
we found that g⊥

e = 1.97 ± 0.01 and g⊥
h = 0.34 ± 0.02 [6].

To determine the hole g factor in the Faraday geometry, we fit
the transition splitting of the σ+ and σ− transitions (Fig. 11).
The resulting effective g factor is the difference between the
electron and the hole g factors. If we assume g‖

e = g⊥
e = 1.97,

we estimate g‖
h = −1.22 ± 0.01, which is in agreement with
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