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Magnetic impurity as a local probe of the U (1) quantum spin liquid with spinon Fermi surface
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We solve the problem of a magnetic impurity coupled to a U (1) quantum spin liquid with a spinon Fermi
surface, and we compute the impurity spectral function. Using the slave rotor mean-field approach combined
with gauge field fluctuations, we find that a peak located at the top of the lower Hubbard band and one at the
bottom of the upper Hubbard band can emerge in the impurity spectral function. The peaks at the Hubbard band
edges arise from the gauge field fluctuation-induced spinon-chargon binding inside the spinon Kondo screening
cloud of the magnetic impurity. For a magnetic impurity embedded in a Mott insulator, our findings suggest that
the emergence of a pair of peaks at the Hubbard band edges in the impurity density of states spectra provides
strong evidence that the host Mott insulator is a U (1) quantum spin liquid with a spinon Fermi surface.

DOI: 10.1103/PhysRevB.105.195156

I. INTRODUCTION

The Anderson impurity model describes how a local
atomic impurity interacts with electrons in its host system [1].
The most well studied case is a magnetic impurity embed-
ded in a nonmagnetic metal, where the Coulomb repulsion
at the impurity suppresses the charge fluctuations, but the
local magnetic moment can freely couple with spins of nearby
conducting electrons in the metal [2]. The Anderson model of
a magnetic impurity can be reduced to the Kondo model [2,3]
that focuses on the spin interaction between the impurity and
the nearby electrons. Below the Kondo temperature TK, the
conducting electron spins form the Kondo cloud to screen the
local magnetic moment [4–8], and a correlated electronic state
develops at the impurity. The correlated state is characterized
by a narrow peak, known as the Kondo resonance [2,5], which
always shows up at the Fermi energy in the impurity electronic
spectral function. Therefore, the Kondo resonance has become
the fingerprint for the correlation phenomenon induced by a
magnetic impurity on a metallic host [9,10].

The thorough study of a magnetic impurity on a metallic
host has stimulated further interest to generalize the non-
interacting metallic host to a quantum system with strong
electron-electron interaction, such as quantum spin liquid
(QSL) [11–18]. As the magnetic impurity couples with the
electronic states locally in the QSL host, the correlated many-
body ground state in the QSL is expected to affect the
quantum state at the impurity. In this way, the magnetic im-
purity acts as a local probe of the QSL. Among QSLs with
various gauge groups [19–21], the U (1) QSL with a spinon
Fermi surface (SFS) is particularly interesting, and recently
TaS2 and monolayer TaSe2 have been studied as candidates
for the U (1) QSL with SFS [22–31]. Furthermore, it has
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been shown to be experimentally possible to deposit magnetic
impurities on the monolayer TaSe2 surface and perform local
spectroscopy measurements on the magnetic impurity [32].
Since scanning tunneling spectroscopy (STS) has been proven
to be a direct experimental way [33] to study the physics of a
magnetic impurity on an electronic Fermi liquid metal, the
analogous problem of the STS spectrum when a magnetic
impurity is coupled to a U (1) QSL with SFS becomes a
key problem that needs to be theoretically solved. While the
possibility of Kondo screening by a spinon Fermi surface has
previously been addressed [14], the tunneling density of states
has not been calculated. This is the main goal of this paper.

The U (1) QSL with SFS is a Mott insulator with no
magnetic order down to zero temperature [19–21]. In the
U (1) QSL with SFS, the electrons go through spin-charge
separation and are decomposed into spinons and chargons,
with an emergent U (1) gauge field to couple both [34]. The
spinons are charge-neutral spin-1/2 excitations living on a
Fermi surface, while the chargons are gapped spinless bosons
that carry electric charges. For a magnetic impurity embedded
on a U (1) QSL with SFS, since the spinons in the QSL are
itinerant, the magnetic impurity can have spin exchange freely
with the itinerant spinons nearby, and the Kondo model that
involves the spin degree coupling has been applied to study
the system [14].

In the Kondo model description for the magnetic impurity
on a U (1) QSL with SFS, the itinerant spinons in the QSL take
the role of the spin-1/2 conducting electrons in the metal, so it
was predicted and further supported by experimental evidence
that a spinon cloud can form around the magnetic impurity
to screen the local magnetic moment [14,15], similar to the
conventional Kondo phenomenon in a metallic host. However,
unlike the conventional Kondo problem where the impurity
magnetic moment couples to the spin of charged electrons in
the metallic host, the Kondo model adopted in the U (1) QSL
host only takes into account the spinons that carry no charge.
Since the local spectroscopy measurements on the magnetic

2469-9950/2022/105(19)/195156(15) 195156-1 ©2022 American Physical Society

https://orcid.org/0000-0002-1595-8807
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevB.105.195156&domain=pdf&date_stamp=2022-05-31
https://doi.org/10.1103/PhysRevB.105.195156


WEN-YU HE AND PATRICK A. LEE PHYSICAL REVIEW B 105, 195156 (2022)

impurity involve the physical electron transfer that contains
both the spin and charge degree, the Kondo model used in the
QSL host [14] becomes insufficient to generate the impurity
electronic spectral function.

In this work, we obtain the impurity electronic spectral
function of a magnetic impurity embedded in a U (1) QSL
with SFS by solving the Anderson impurity model, which
considers both the spin and charge degree of electrons. The
slave rotor mean-field theory [35,36] is applied to deal with
the Anderson impurity model. At the magnetic impurity, the
electron is decomposed into a spin-1/2 auxiliary fermion
(SAF) and a charged boson (CB), which couples with the
spinons and chargons in the QSL, respectively. The coupling
of the SAF and the spinons corresponds to the Kondo model
that contains only the spin degree, generating the resonance
at the spinon Fermi energy in the SAF spectral function. The
coupling of the CB and the chargons fills in the missing charge
degree of the Kondo model. At the mean-field level with no
gauge field fluctuations in the QSL, the impurity electronic
spectral function obtained from the slave rotor treatment in-
volves the QSL chargon density of states (DOS) in addition
to the original atomic energy levels, so the magnetic impurity
on a U (1) QSL with SFS locally provides information on the
QSL chargon DOS.

In a U (1) QSL, the spinons and chargons both couple to
an emergent U (1) gauge field, so the quantum fluctuations
of the U (1) gauge field affect the low-energy excitations in
the QSL. In a two-dimensional U (1) QSL with a gapped
spinon spectrum, it is known from Polyakov that the low-
energy effective theory of the QSL is a pure compact U (1)
gauge theory that is always confining. As a result, an arbitrary
coupling to the U (1) gauge field gives rise to confinement of
spinons [37]. However, in a U (1) QSL with a gapless spinon
spectrum, since the gapless matter field damps the gauge field,
the situation becomes different. In a U (1) QSL with a Dirac
spinon band dispersion, it has been found that when the phys-
ical SU (2) spin is generalized to SU (N ), deconfinement of
spinons is possible for a sufficiently large N [38]. In our case
of a two-dimensional U (1) QSL with SFS, due to the many
gapless spinon excitations from the SFS, a noncompact U (1)
gauge theory applies to describe the low-energy excitations,
and it becomes possible to have deconfinement of spinons
[39]. In the rest of the paper, deconfinement of spinons is a
prerequisite for the treatment of gauge field fluctuations that
we apply to the two-dimensional U (1) QSL with SFS.

In a two-dimensional U (1) QSL with SFS, as the spinons
and chargons both couple to an emergent U (1) gauge field,
the gauge field fluctuations can generate a binding interaction
between a spinon and a chargon [40,41]. In the spinon Kondo
cloud around the magnetic impurity, the spinon-chargon bind-
ing interaction is found to induce the spectral weight to
transfer from the bulk Hubbard bands to the Hubbard band
edges, so a band-edge resonance peak arises at the top of the
lower Hubbard band (LHB) and one arises at the bottom of the
upper Hubbard band (UHB) in the impurity spectral function.
When the spinon-chargon binding interaction is sufficiently
large, the pair of band-edge resonance peaks can further move
inside the Mott gap and become in-gap bound state peaks.
Due to the spinon Kondo cloud of the magnetic impurity and
the spinon-chargon binding interaction inside, the magnetic

impurity embedded on a U (1) QSL with SFS behaves like
an impurity of acceptor and donor type simultaneously and
induces a pair of peaks at the Hubbard band-edge energies.
As a result, in the spectroscopy of the magnetic impurity, the
emergence of a peak at both the UHB bottom and LHB top
provides strong evidence that the host Mott insulator is a U (1)
QSL with SFS.

The rest of the paper is organized as follows: In Sec. II, the
slave rotor mean-field theory to solve the Anderson impurity
model is introduced. In Sec. III, a magnetic impurity weakly
coupled to a U (1) QSL with SFS is analyzed in both the
SAF spinon coupling channel and the CB chargon coupling
channel. The impurity bare electronic spectral function, which
does not consider the gauge field fluctuations, is analytically
derived. The resulting impurity bare electronic spectral func-
tion is shown to measure the chargon DOS in the QSL host.
In Sec. VI, a full numerical self-consistent mean-field calcu-
lation for a magnetic impurity embedded in a U (1) QSL with
SFS of a triangular lattice is carried out. The impurity bare
electronic spectral function obtained numerically confirms
that a magnetic impurity on a U (1) QSL with SFS probes the
chargon DOS in the QSL, under the condition that the QSL
has negligible gauge field fluctuations. In Sec. V, the gauge
field fluctuations in the QSL are taken into account and the
effect is to bring about the spinon-chargon binding interaction
in the QSL. Around the magnetic impurity, the binding of a
spinon state in the spinon Kondo cloud and a chargon makes
the magnetic impurity become an impurity of acceptor and
donor type simultaneously, giving rise to a peak located at the
UHB bottom and one at the LHB top in the impurity spectral
function. The pair of peaks are either band-edge resonance
peaks inside the Hubbard bands or in-gap peaks of the formed
bound states, depending on the binding interaction strength. In
Sec. VI, our findings about the magnetic impurity on a U (1)
QSL with SFS are summarized, and the connection to experi-
mental spectroscopy measurements of a magnetic impurity on
a Mott insulator is constructed.

II. THE SLAVE ROTOR MEAN-FIELD THEORY
FOR THE IMPURITY MODEL

The Hamiltonian for a local atomic impurity with on-site
Coulomb repulsion U takes the form

Hd =
∑

σ

ε0d†
σ dσ + U

2

(∑
σ

d†
σ dσ − 1

)2

.

Here ε0 is the impurity on-site energy, and σ =↑ / ↓ is the
spin index. In the slave rotor formalism [35,36], the elec-
tronic operator at the impurity is rewritten as d†

σ = a†
σ eiθ ,

dσ = aσ e−iθ , where a(†)
σ is the annihilation (creation) operator

for a SAF, and e±iθ is the rotor to represent the charge degree
of the impurity electron. In the slave rotor representation,
the angular momentum L = −i ∂

∂θ
is introduced to express

the Coulomb repulsion term in Hd as U
2 L2, under the con-

straint L = ∑
σ a†

σ aσ − 1. As the angular momentum L and
the rotor phase variable θ respect the canonical commutation
[θ, L] = i, the action for the impurity can be constructed from
S = ∫ β

0 (−iL∂τ θ + ∑
σ a†

σ aσ + Hd )dτ . After an integration
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FIG. 1. (a) A magnetic impurity embedded in a host system and the slave rotor mean-field description for the system. In the slave rotor
representation, the electronic state at the magnetic impurity is decomposed into a SAF and a CB, while the electrons in the host system are
decomposed into spinons and chargons. The SAF has the mean-field coupling w with the spinons, and the CB takes the mean-field coupling
u with the chargons. The mean-field couplings w and u are developed from the original electronic coupling VR. (b) The mean-field coupling
parameters w and u as a function of the electronic coupling VR for a magnetic impurity on a U (1) QSL with SFS. The QSL is of triangular
lattice. As VR increases, both w and u take significant nonzero values.

over L, we get the action for the local atomic impurity as [35]

Sd =
∫ β

0

[
1

U
(∂τ + h)X †

d (∂τ − h)Xd

+
∑

σ

a†
σ (∂τ + ε0 − h)aσ + λ(X †

d Xd − 1) + h

]
dτ, (1)

with X †
d = e−iθ , Xd = eiθ interpreted as the charged bosonic

operator at the impurity, λ is the Lagrangian multiplier to
guarantee X †

d Xd = 1, and h is the Lagrangian multiplier to
implement the constraint L = ∑

σ a†
σ aσ − 1. In the action Sd,

the impurity electron has been decomposed into a SAF and a
CB, which can couple with external spin and charge degrees
individually.

Embedded on a host system, the atomic impurity couples
with the host, yielding the coupling action

Sc =
∫ β

0

∑
σ

VR( f †
σ,Raσ X †

d XR + a†
σ fσ,RX †

RXd )dτ, (2)

where VR is the electronic coupling with the nearest-neighbor
site R in the host system. Here the electrons in the host
system have been expressed in the slave rotor representa-
tion as well: c†

σ,r = f †
σ,rXr, cσ,r = fσ,rX †

r , with f (†)
σ,r , X (†)

r to

annihilate (create) a spinon and chargon, respectively, at the
site r. The spinon is a chargeless spin-1/2 fermion, and the
chargon is a spinless CB, representing the spin degree and
the charge degree of an electron in the host, respectively.
With the imaginary-time Green’s function G f ,σ (τ, τ ′, r, r′)
and GX (τ, τ ′, r, r′) for the spinon and chargon, respectively,
the action for the host system can be written as

Sh = −
∫

τ,τ ′,r,r′

∑
σ

f †
σ,r(τ )G−1

f ,σ (τ, τ ′, r, r′) fr′,σ (τ ′)

+
∫

τ,τ ′,r,r′
X †

r (τ )G−1
X (τ, τ ′, r, r′)Xr′ (τ ′), (3)

with
∫
τ,τ ′,r,r′ ≡ ∫ β

0 dτ
∫ β

0 dτ ′ ∫ dr
∫

dr′.
Now it is ready to have the total action for an atomic

impurity embedded on a host system as Stot = Sd + Sc + Sh.
In the total action Stot, all terms are quadratic except the ones
in Sc, so the mean-field parameters w for the SAF spinon
coupling, and u for the CB chargon coupling, are introduced
through the Hubbard-Stratonovich transformation to decouple
the quartic terms in Sc. Eventually, the action for the whole
system takes the form

S0 =
∫ β

0

[∑
σ

a†
σ (∂τ + ε0 − h)aσ + ∂τ X †

d ∂τ Xd

U
+ h

U
(X †

d ∂τ Xd − Xd∂τ X †
d ) + λ(X †

d Xd − 1) + h − h2

U

]
dτ

−
∫ β

0
dτ

∫ β

0
dτ ′

∫
dr

∫
dr′ ∑

σ

[ f †
σ,r(τ )G−1

f ,σ (τ, τ ′, r, r′) fr′,σ − X †
r (τ )G−1

X (τ, τ ′, r, r′)Xr′ (τ )]

+
∫ β

0

[
2uw

VR
+ w( f †

σ,Raσ + a†
σ fσ,R) − u(X †

d XR + X †
RXd )

]
dτ. (4)

In this slave rotor treatment, the coupling of the impurity
electron and the electronic states in the host has been decom-
posed into two individual channels: the SAF has the coupling
w with the spinons, and the CB takes the coupling u with
the chargons. The mean-field coupling parameters w and u

are controlled by the electronic coupling VR. For an atomic
impurity embedded in a host system, the decomposition of
electronic coupling into the SAF spinon coupling channel and
the CB chargon coupling channel is schematically shown in
Fig. 1(a). With a given spinon and chargon Green’s function
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in the host system, the action in Eq. (4) is generally applicable
to a local atomic impurity embedded on a host, regardless of
whether the host system is a metal or a QSL.

In the mean-field theory, the coupling fields w, u and the
Lagrangian multipliers λ, h take the value at the saddle point
where the free energy for the whole system gets minimized.
After the Fourier transformation to the Matsubara frequency
space, the self-consistent equations that determine the value
of w, u, λ, and h are

u = − 2wVR

β

∑
ωn

Ga,σ (iωn)G f ,σ (iωn, R, R), (5)

w =uVR

β

∑
νn

GXd (iνn)GX (iνn, R, R), (6)

1 = 1

β

∑
νn

GXd (iνn)eiνn0+
, (7)

1

2
− h

U
= 1

2Uβ

∑
νn

iνnGXd (iνn)[eiνn0+ + e−iνn0+
]

+ 1

β

∑
ωn

Ga,σ (iωn)eiωn0+
, (8)

with the SAF Matsubara Green’s function

Ga,σ (iωn) = 1

iωn − ε0 + h − w2G f ,σ (iωn, R, R)
, (9)

and the CB Matsubara Green’s function

GXd (iνn) = 1
ν2

n
U − 2iνnh

U + λ − u2GX (iνn, R, R)
. (10)

Here G f ,σ (iωn, R, R) and GX (iνn, R, R) are the Matsubara
Green’s functions for the spinon and chargon at R, re-
spectively, ωn = (2n+1)π

β
and νn = 2nπ

β
denote the fermionic

and bosonic Matsubara frequencies, respectively, and kb in
β−1 = kbT is the Boltzmann constant. Equations (5) and
(6) show how the mean-field couplings w and u arise from
the electronic coupling VR, while Eqs. (7) and (8) deter-
mine the chemical potential for the SAF and the CB at the
impurity.

Importantly, for an atomic impurity with given on-site en-
ergy ε0, Coulomb repulsion U , electronic coupling VR, and the
Green’s functions G f ,σ (iωn, R, R), GX (iνn, R, R) for the host
system, all the mean-field parameters w, u, λ, and h can be
self-consistently solved from Eqs. (5)–(8). For the magnetic
impurity embedded in a U (1) QSL with SFS with which we
are concerned, the mean-field equations will be numerically
solved to yield the SAF spinon coupling w and the CB char-
gon coupling u as a function of the electronic coupling VR,
which is shown in Fig. 1(b). At the mean-field level where all
gauge field fluctuations are neglected, the impurity bare elec-
tronic Matsubara Green’s function G0

d,σ (iωn) is constructed
from the convolution

G0
d,σ (iωn) = 1

β

∑
νn

Ga,σ (iωn + iνn)GXd (iνn), (11)

and the impurity bare electronic spectral function takes the
form ρ0

d (ω) = − 1
π

ImG0
d,σ (iωn → ω + i0+). We refer to the

Green’s function and the spectral function as bare because

the spinon-chargon binding has not yet been taken into ac-
count. Therefore, the bare spectral function ρ0

d,σ (ω) gives the
bare electronic DOS of a magnetic impurity based on a U (1)
QSL with SFS, which is the result in the absence of gauge
field fluctuations.

III. THE MAGNETIC IMPURITY WEAKLY
COUPLED TO THE QSL

The full analytical solution to Eqs. (5)–(8) in the presence
of nonzero electronic coupling VR is difficult to obtain, but
at weak coupling VR we can make approximations to first
get the impurity bare electronic spectral function. Since the
weak coupling to the host system has a negligible effect on the
occupation of the atomic impurity, the Lagrangian multipliers
h and λ, which determine the chemical potential for the SAF
and the CB at the impurity, can be approximated by the value
in the isolated magnetic impurity case.

By taking u = 0 and w = 0 in Eqs. (7) and (8), we obtain
h = ε0 and λ = U

4 − h2

U under the condition |ε0| < 1
2U [35],

which corresponds to an isolated single occupied atomic im-
purity that carries a local magnetic moment. The Matsubara
Green’s function for the SAF and the CB can accordingly
be obtained from Eqs. (9) and (10), respectively. In such
an isolated magnetic impurity, the SAF has its energy level
right at the Fermi energy, indicating that the local spin at the
impurity can have free exchange with external spins, as is
schematically shown in Fig. 2(a). On the other hand, the CB
at the impurity has two energy levels gapped by the Coulomb
repulsion U , denoted by the solid green lines in Fig. 2(b).
The CB and the SAF together compose the impurity electron,
and the electronic spectrum has the atomic energy levels at
ω = ε0 ± U

2 , as is shown schematically by the solid spectrum
in Fig. 2(c). The gapped electronic spectrum at the magnetic
impurity indicates that extra charging energy is needed to
remove or add an electron into the impurity, so the charge fluc-
tuations are suppressed by the gap. However, since the isolated
magnetic impurity has the same energy for the spin-up and
spin-down electronic states, the impurity spin can fluctuate
freely.

With the approximated Lagrangian multipliers h = ε0 and
λ = U

4 − h2

U taken from the isolated magnetic impurity model,
the coupling u in the CB chargon channel and the coupling w

in the spin-1/2 auxiliary fermion spinon channel can be deter-
mined by Eqs. (5) and (6), respectively. For a U (1) QSL with
SFS as the base for the magnetic impurity, the spinon Green’s
function takes the form G f ,σ (iωn, R, R) = ∑

k
1

iωn−ξk
with

the spinon band dispersion ξk ∈ [−� f ,� f ], and the char-
gon Green’s function is GX (iνn, R, R) = ∑

k( 1
iνn+εk

− 1
iνn−εk

),
given the chargon band dispersion εk ∈ [�,�X ] (see Ap-
pendix A for more details about the Green’s function). By
assuming the constant DOS for both the spinon and chargon
bands for simplicity, Eqs. (5) and (6), which contain an infinite
summation series, are further approximated by two algebra
equations,

u ≈ − wVR

2� f
ln

�2
eff

�2
f + �2

eff

, w ≈ 4uVRU

U 2 − 4ε2
0

, (12)
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FIG. 2. (a) The spin exchange between the SAF at the impurity and the itinerant spinons in the U (1) QSL with SFS. The impurity SAF lies
at the Fermi level and can freely exchange spin with the QSL spinons in the Fermi sea. (b) The energy diagram of the CB at the impurity and
the chargons in the QSL. In the absence of the mean-field coupling u, the CB has two energy levels denoted by the solid green lines, which are
separated by the Coulomb repulsion U . The chargon energy bands are denoted by the solid blue rectangles, which are separated by the chargon
gap 2�. With finite mean-field coupling u, the hybridization between the CB and the chargons mix the states, so the CB has a fraction of states
at the energies of chargon bands, denoted by the blue dashed rectangles. Meanwhile, the hybridized chargons have states at the energy levels
of the CB, denoted by the green dashed lines. (c) The impurity electronic DOS diagram. The magnetic impurity has the original atomic energy
levels at ω = ε0 ± U

2 , which give the peaks in the solid spectrum. With finite coupling to a U (1) QSL with SFS, there emerge new states at the
Hubbard band energies denoted by the dashed spectrum. (d) The resonance peak at the Fermi energy in the SAF spectral function ρa,σ (ω). The
inset shows that the local spin at the impurity is screened by the spinon Kondo cloud, which is shown in gold. (e) The CB spectral function
ρXd (ω). (f) The impurity bare electronic spectral function ρ0

d,σ (ω), before spinon-chargon binding is taken into account. The spectral functions
in (d), (e), and (f) are numerically calculated for a magnetic impurity on a QSL of triangular lattice.

with the effective broadening function defined as �eff = πw2

2� f
.

The detailed derivation about the two algebra equations are
present in Appendix B. The electronic coupling VR thereby
determines the mean-field couplings w and u in the SAF
spinon channel and the CB chargon channel, respectively.

In the coupling channel of the SAF and spinon, now the
finite mean-field coupling w allows an auxiliary fermion at
the impurity to have spin exchange with the itinerant spinons
in the U (1) QSL, as is shown in Fig. 2(a). Near the impurity,
itinerant spinons at the Fermi level get spin flip scattered by
the local magnetic moment, and the local spin at the im-
purity is also coherently switched in the scattering process.
This magnetic scattering yields resonance at the impurity.
In the presence of finite coupling to the itinerant spinons,
the Matsubara Green’s function for the SAF at the impurity
is modified to be Ga,σ (iωn) = 1

iωn−i�eff
, so the SAF spectral

function ρa,σ (ω) = 1
π

�eff

ω2+�2
eff

always shows a resonance at the

Fermi energy. This is the Kondo-like resonance in the spinon
channel. The width of the resonance is solved to be �eff =
� f exp(−U� f

4V 2
R

), which denotes the Kondo temperature energy

scale kbTK, same as that in a metallic host [2]. Below the
Kondo temperature TK, the nearby spinons of opposite spin
are strongly correlated with the local SAF at the impurity,
forming the Kondo cloud of size ξK [4] to screen the local

magnetic moment, as is shown in the inset in Fig. 2(d). For a
magnetic impurity based on a U (1) QSL with SFS, the spinon
Kondo resonance and the spinon Kondo screening cloud are
in analogy to the conventional Kondo effect of a magnetic
impurity in a metal, as in both cases the spin exchange enables
the spin fluctuations at the impurity.

The CB chargon coupling channel of the magnetic impurity
based on a U (1) QSL, on the other hand, makes the difference
from that in the conventional Kondo effect. In the QSL, the
chargons are gapped, and the mean-field coupling u enables
the hybridization between the chargons and the CB at the
impurity. Due to the hybridization, the charged bosonic state
at the impurity gets mixed with the chargon states in the QSL,
so a fraction of chargon states are transferred to the CB at
the impurity, as is schematically shown in Fig. 2(b) by the
blue dashed rectangles. The hybridization with the chargons
in the QSL modifies the CB Matsubara Green’s function
to be GXd (iνn) ≈ 1

iνn+ε0+ U
2

− 1
iνn+ε0− U

2
+ ZGX (iνn, R, R), with

Z = 16u2U 2

(U 2−4ε2
0 )2 the spectral weight (see Appendix C for the

derivation about the spectral weight), so the CB spectral
function ρXd (ω) = − 1

π
ImGXd (iνn → ω + i0+) now not only

shows the peaks from the original two energy levels, but it
also includes a fraction of chargon states at the energy of
QSL chargon bands. Differing from the conventional Kondo
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effect in a metallic base where the condensed chargons induce
the local CB condensation at the impurity [36], the magnetic
impurity on U (1) QSL with SFS has the impurity charged
bosonic state mixed with a fraction of chargon states in
the QSL.

With both channels of the SAF spinon coupling and the CB
chargon coupling analyzed, the electronic Matsubara Green’s
function for the magnetic impurity based on the QSL is ready
to be obtained from the convolution in Eq. (11), which yields
the form

G0
d,σ (iωn) ≈ 1

2

[
1

iωn − ε0 + U
2

+ 1

iωn − ε0 − U
2

+ Z
∑

k

(
1

iωn + εk
+ 1

iωn − εk

)]
. (13)

The impurity bare electronic spectral function is thus de-
rived to be ρ0

d,σ (ω) ≈ 1
2 [δ(ω − ε0 + U

2 ) + δ(ω − ε0 − U
2 ) +

Z|ρX (ω)|] with ρX (ω) = − 1
π

ImGX (iνn → ω + i0+, R, R).
The calculations of G0

d,σ (iωn) and ρ0
d,σ (ω) through convolu-

tion are carried out in the spectral representation, which can
be found in Eqs. (D6) and (D7) in Appendix D. In addition to
the atomic energy level induced peaks at ω = ε0 ± U

2 , the im-
purity bare electronic spectral function ρ0

d,σ (ω) now involves
the chargon DOS |ρX (ω)| with a spectral weight Z , as the
dashed spectrum shows in Fig. 2(c). The peak in the spectrum
comes from van Hove singularity in the tight-binding chargon
band that we assumed. These impurity states at the energy of
chargon bands take a fraction of QSL electronic states trans-
ferred through the spinon Kondo resonance in the SAF spinon
channel and the hybridization in the CB chargon channel. The
magnetic impurity on U (1) QSL with SFS therefore acts as a
local probe of the chargon DOS in the QSL.

IV. FULL MEAN-FIELD CALCULATION
FOR A MAGNETIC IMPURITY IN A QSL

To verify the above analysis of a magnetic impurity
weakly coupled to a U (1) QSL with SFS, the self-consistent
equations (5)–(8) are numerically solved in the spectral rep-
resentation (see Appendix D for the detailed self-consistent
integral equations in the spectral representation). With regard
to the recent two-dimensional U (1) QSL candidates mono-
layer TaSe2 [30–32], which is in a triangular lattice, we take
the spinon band dispersion ξk and the chargon band dis-
persion εk to be ξk = 2t f (2 cos 1

2 kxa cos
√

3
2 kya + cos kxa) −

μ f and εk = 2tX (2 cos 1
2 kxa cos

√
3

2 kya + cos kxa − 3) + �,
respectively. Here a is the lattice constant, t f = 0.05 eV is
the spinon hopping, tX = −0.03 eV is the chargon hopping,
μ f = −0.04 eV is the spinon chemical potential that makes
the spinon band half-filled, and � = 0.25 eV is the Mott gap
size to match the recent STS measurement on TaSe2 [32].
The spinon spectral function ρ f ,σ (ω) = − 1

π
Im

∑
k

1
ω+i0+−ξk

,

the chargon spectral function ρX (ω) = − 1
π

Im
∑

k( 1
ω+i0++εk

−
1

ω+i0+−εk
), and the convolution generated electronic spectral

function ρc,σ (ω) for the U (1) QSL in a triangular lattice have
been calculated and shown in Fig. 4. At the magnetic impurity,
we set the impurity on-site energy to be ε0 = 0 eV, which

corresponds to the symmetric Anderson impurity model. The
Coulomb repulsion at the impurity is considered to be U =
3 eV, which is much larger than the Mott gap �, so the
atomic energy levels do not have energy overlap with the
Hubbard bands in QSL. The full numerical solutions to the
self-consistent equations (5)–(8) yield the SAF spinon cou-
pling w and CB chargon coupling u as a function of the
electronic coupling VR, as is shown in Fig. 1(b). The w and
u are extremely small at weak coupling VR, and then they
become significantly nonzero as VR increases. With a given
electronic coupling VR, the nontrivial solutions of w and u
from Eqs. (5)–(8) are always guaranteed as long as the on-site
interaction U is sufficiently large to induce a local magnetic
moment formed at the impurity.

With the self-consistent equations generated mean-field pa-
rameters w, u, h, and λ, the SAF spectral function ρa,σ (ω) =
− 1

π
ImGa,σ (iωn → ω + i0+) and the CB spectral function

ρXd (ω) = − 1
π

ImGXd (iνn → ω + i0+) are numerically calcu-
lated and shown in Figs. 2(d) and 2(e). Consistent with our
analysis for a magnetic impurity weakly coupled to a U (1)
QSL with SFS, the SAF spectral function ρa,σ (ω) has the
spinon Kondo resonance at the Fermi energy, and the CB
spectral function ρXd (ω) in the QSL chargon band energy
region −�X < ω < �X replicates the QSL chargon spectral
function ρX (ω) with a spectral weight Z . The original spec-
tral feature of the CB at ω = ± 1

2U appears as well in the
presence of coupling u. Convolving the SAF Green’s function
Ga,σ (iωn → ω + i0+) with GXd (iνn → ω + i0+) then yields
the bare electronic spectral function ρ0

d,σ (ω) for the magnetic
impurity based on the QSL of a triangular lattice, as is shown
in Fig. 2(f). In addition to the peaks from the two atomic
energy levels at ω = ± 1

2U , ρ0
d,σ (ω) at −�X < ω < �X be-

comes nonzero and resembles the QSL chargon DOS |ρX (ω)|
with a spectral weight. The two peaks shown in ρ0

d,σ (ω) at
−�X < ω < �X are from the Van Hove singularities of the
QSL chargon bands. At the Hubbard band-edge energies ω =
±�, the impurity bare electronic spectral function ρ0

d,σ (ω) has
a step that is inherited from the QSL chargon DOS |ρX (ω)|.
The bare impurity spectral function ρ0

d,σ (ω) from the full nu-
merical self-consistent calculations again confirm our analysis
that the magnetic impurity on U (1) QSL with SFS locally
measures the chargon DOS in the QSL.

V. BAND-EDGE RESONANCE PEAKS AND IN-GAP
BOUND STATES FROM SPINON-CHARGON

BINDING INTERACTION

The step edges of ρ0
d,σ (ω) at the Hubbard band-edge

energies ω = ±� make the impurity bare electronic states
susceptible to the residue spinon-chargon interaction in the
QSL host. In the U (1) QSL with SFS, the spinons and
chargons both couple to the emergent U (1) gauge field, so
the gauge field fluctuations in turn modify the QSL elec-
tronic states and further affect the impurity electronic state
that couples to electrons in the QSL host. At the Hubbard
band-edge energies ω = ±�, the transverse components of
the gauge field fluctuations are neglected here due to the
small current-current correlation at band edges, so the longi-
tudinal component of the gauge field fluctuations plays the
dominant role [42]. Since the spinons and chargons carry
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FIG. 3. (a) The schematic diagram showing the spinon-chargon binding interaction incorporated in the slave rotor mean-field description.
The impurity electronic state is affected by the spinon-chargon binding interaction in the QSL. (b) The impurity electronic spectral function
ρd,σ (ω). As the spinon-chargon binding interaction in the QSL increases from 0, a pair of resonance peaks emerge at the Hubbard band-edge
energies as indicated by the arrows. The original atomic energy levels at ω = ±U

2 lie outside the range of energies we plot. (c) The in-gap
bound state peaks in ρd,σ (ω). As the binding interaction increases further, the band-edge resonance peaks move inside the Mott gap and evolve
to be in-gap bound state peaks. (d) A schematic plot of an STM setup to measure the density of states spectroscopy of the magnetic impurity.
The filled red circle with a wavy line connected to the magnetic impurity denotes the hole or electronic state bound to the magnetic impurity.
In the negative bias of ω ≈ −�, the hole state bound to the magnetic impurity is excited so that an in-gap bound state peak emerges above the
top of the LHB. Similarly, a positive bias of ω ≈ � injects an electron into the magnetic impurity and excites the electronic state bound to the
magnetic impurity, generating an electronic bound state peak below the UHB bottom.

the opposite gauge charge, the longitudinal component of
gauge field fluctuations yields a binding between a spinon and
a chargon, which is the spinon-chargon binding interaction
[40,41]. In the presence of spinon-chargon binding interaction
at the QSL, a spinon tends to get bound with a chargon to
form a physical electronic state. At the magnetic impurity,
the SAF has spin exchange with the spinon Kondo cloud,
and the CB gets hybridized with the nearby chargons, so the
spinon-chargon binding interaction in the QSL host affects
the impurity electronic state, as is schematically shown in
Fig. 3(a).

To take into account the spinon chargon binding interac-
tion in the QSL, we notice that the chargons in the QSL
are relativistic [34] and contain both holons and doublons:
Xr = ar + b†

r , X †
r = a†

r + br, with the holon annihilation (cre-
ation) operator a(†)

r and the doublon annihilation (creation)
operator b(†)

r . Assuming a noncompact U(1) gauge field, the
fluctuations of the longitudinal component give rise to the
spinon-chargon binding interaction term:

S′ =
∫ β

0

∫ ∑
σ

Ur f †
σ,r fσ,r(a

†
r ar − b†

rbr)dr dτ, (14)

where Ur > 0 is the spinon-chargon binding interaction
strength. The detailed derivation of Eq. (14) can be found in
Appendix E. Since the longitudinal interaction is screened by
the spinon Fermi sea, we approximate the interaction as short
range and on site only. In Appendix E, the binding interaction
strength has been estimated to be around half of the spinon
bandwidth: Ur ≈ � f . The interaction between a spinon and
a doublon in S′ is attractive, so a spinon tends to get bound
with a doublon to form an electronic bound state. On the
other hand, the repulsion between a spinon and a holon in S′
manifests the attraction between a spinon hole and a holon,
so a spinon hole tends to bind a holon to form a hole bound
state. Around a magnetic impurity, the spinon Kondo cloud
has both spinon excitations and spinon hole excitations, so in
principle both an electronic state and a hole state bound to
the magnetic impurity can be induced by a sufficiently large
binding interaction.

In the presence of the spinon-chargon binding interaction,
the action for a magnetic impurity embedded in a U (1) QSL
with SFS becomes S = S0 + S′. At the impurity, the charged
bosonic operator can also be written in terms of the holon
and doublon operators as Xd = ad + b†

d , X †
d = a†

d + bd , so
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the impurity electronic Matsubara Green’s function Gd,σ (iωn)
calculates the thermal average from S:

Gd,σ (iωn) = −
∫ β

0
〈aσ (τ )a†

σ (0)〉[〈a†
d (τ )ad (0)〉

+ 〈bd (τ )b†
d (0)〉]dτ. (15)

Due to the spinon-chargon binding interaction in the QSL, a
doublon tends to get bound with a spinon to form an electronic
state, and a holon tends to get bound with a spinon hole
to form a hole state. It is known that the CB Xd = ad + b†

d
at the impurity couples to the chargons in the QSL through
the mean-field parameter u, and the SAF aσ at the impurity
couples to the spinons in the QSL through the mean-field
parameter w, so the impurity electronic Matsubara Green’s
function can be calculated through the random phase approx-
imation. The resulting impurity electronic Matsubara Green’s
function Gd,σ (iωn) takes the form

Gd,σ (iωn) = G0
d,σ (iωn) +

∑
i, j=1,2

{T̂σ (iωn)URσz

× [1 − Ĝc,σ (iωn)URσz]
−1T̂σ (iωn)}i j . (16)

A detailed derivation of Gd,σ (iωn) can be found in Ap-
pendix F. Here σz is the z component of the Pauli matrix acting
on the holon and doublon space, and T̂σ (iωn), Ĝc,σ (iωn) are
both 2 × 2 correlators,

T̂σ (iωn) = −
∫ β

0
〈aσ (τ ) f †

σ,R(0)〉0

×
〈(

a†
d (τ )aR(0) a†

d (τ )b†
R(0)

bd (τ )aR(0) bd (τ )b†
R(0)

)〉
0

dτ, (17)

Ĝc,σ (iωn) = −
∫ β

0
〈 fσ,R(τ ) f †

σ,R(0)〉0

×
〈(

a†
R(τ )aR(0) a†

R(τ )b†
R(0)

bR(τ )aR(0) bR(τ )b†
R(0)

)〉
0

dτ, (18)

with 〈· · · 〉0 being the thermal average calculated from S0 in
Eq. (4). The more detailed forms of T̂σ (iωn) and Ĝc,σ (iωn)
have been derived in Appendix F. The spinon-chargon binding
interaction UR in the QSL modifies the impurity electronic
Green’s function through the second term in Eq. (16).

As the spinon-chargon binding interaction increases from
0, it induces the spectral weight to transfer from the bulk
Hubbard bands to the band edges. At UR = 0.23 eV, which is
around half of the spinon bandwidth we considered (see Fig. 4
in Appendix E), a pair of band-edge resonance peaks arise, as
seen in Fig. 3(b). The band-edge resonance peaks indicated
by the arrows in Fig. 3(b) are still located inside the Hubbard
bands, so the band-edge resonance peaks have the intrinsic
width that is determined by the spinons, chargons, and their
coupling to the impurity electronic state. Importantly, the
band-edge resonance peaks appear only at the magnetic im-
purity but do not show up in the pristine QSL given the same
binding interaction (see Fig. 5 in Appendix F for comparison).
Such band-edge resonance peaks at the Hubbard band edges
can be regarded as the precursors to in-gap bound states.

As the spinon-chargon binding interaction increases fur-
ther, the band-edge resonance peaks gradually move inside the
Mott gap and develop into in-gap peaks of bound states, as is
shown in Fig. 3(c). The in-gap bound states arise from the
new poles of Gd,σ (iωn → ω + i0+) that come from URσz[1 −
Ĝc,σ (iωn → ω + i0+)URσz]−1 at a sufficiently large binding
UR, so an electronic bound state and a hole bound state appear
below the UHB bottom and above the LHB top, respectively,
as shown in Figs. 3(c) and 3(d). The in-gap peaks of the
bound states have no intrinsic width, so we introduce an
extrinsic broadening of 5 meV to make them better visualized
in Fig. 3(c).

Physically, the band-edge resonance peaks in the magnetic
impurity spectral function ρd,σ (ω) near ω ≈ ±� and the in-
gap peaks of the bound states can be interpreted as the joint
effect of the spinon Kondo screening cloud and the spinon-
chargon binding interaction around the magnetic impurity. At
the top of the LHB, a spinon hole excitation in the spinon
Kondo cloud attracts a holon to form a hole excitation. The
hole excitation is manifested as a band-edge resonance peak
at a moderate binding interaction, and it evolves into an in-gap
hole bound state as the binding interaction increases further.
In analogy to an acceptor impurity embedded in a semicon-
ductor, the hole excitation and its descendent hole bound state
around the magnetic impurity appear at the top of the LHB,
as seen in Figs. 3(b)–3(d). At the bottom of the UHB, the
attraction between a spinon in the spinon Kondo cloud and
a doublon gives rise to an electronic excitation, which also
shows up as a band-edge resonance peak in ρd,σ (ω). As the
binding interaction increases, the band-edge resonance peak
moves down into the Mott gap and develops into an in-gap
electronic bound state peak. Similar to a donor impurity in a
semiconductor, the electronic excitation and the descendent
in-gap electronic bound state around the magnetic impurity
form at the bottom of the UHB, as shown in Figs. 3(b)–
3(d). When a scanning tunneling microscope (STM) tip is
put on top of the magnetic impurity, as seen in Fig. 3(d),
applying a negative bias with ω ≈ −� extracts an electron
out of the QSL and creates a hole near the magnetic impu-
rity. Depending on the binding interaction strength, either a
band-edge resonance peak at the LHB top or a hole bound
state peak above the LHB top appears. On the other hand,
applying a positive bias with ω ≈ � injects an electron into
the QSL through the magnetic impurity, which induces either
a band-edge resonance peak at the UHB bottom or an elec-
tronic bound state peak below the UHB bottom, depending
on the binding interaction strength. Since the spinon Kondo
screening cloud has both the spinon hole excitations attrac-
tive to the holons and the spinon excitations attractive to
the doublons, the magnetic impurity screened by the spinon
cloud acts as an impurity of acceptor and donor type simul-
taneously, generating a peak located at the top of the UHB
and one at the bottom of the LHB. Such a spectral feature
induced by a magnetic impurity embedded in a Mott insula-
tor therefore indicates that the host Mott insulator is a U (1)
QSL with SFS. Since the effective attraction comes from the
longitudinal component of gauge field fluctuations, the peaks
near ω ≈ ±� in the spectroscopy of a magnetic impurity
manifest the gauge field fluctuations in the U (1) QSL with
SFS.
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VI. CONCLUSION AND DISCUSSIONS

In the above sections, applying the slave rotor mean-
field theory and incorporating the longitudinal component of
gauge field fluctuations, the electronic spectral function of
a magnetic impurity embedded in a U (1) QSL with SFS
was calculated. At the mean-field level where the gauge
field fluctuations are neglected in the QSL, the magnetic
impurity has the spinon Kondo screening cloud around and
locally measures the chargon DOS in the QSL. When the
gauge field fluctuations are included in the QSL, the result-
ing spinon chargon binding interaction in the spinon Kondo
cloud induces a pile-up of spectral weight at the Hubbard
band edges, which shows up as band-edge resonance peaks
in the spectroscopy of the magnetic impurity. The band-edge
resonance peaks appear due to the joint effect of the spinon
Kondo cloud and the gauge field fluctuations at the QSL sites
around the magnetic impurity. As a result, in the spectroscopy
of a magnetic impurity, a pair of resonance peaks emerg-
ing at ω ≈ ±� of the Hubbard band edges provide strong
evidence that the host Mott insulator is a U (1) QSL with
SFS.

Recently, scanning tunneling spectroscopy measurements
have been carried out on a Co adatom embedded in a mono-
layer TaSe2 [32], which is a QSL candidate. The spectroscopy
measurements on top of the Co adatom exhibit a resonance
peak at both the LHB top and UHB bottom, while a con-
trast measurement on an Au impurity shows no resonance
peaks. As the Co atom carries a local magnetic moment, it
matches our theory of a magnetic impurity embedded on a
U (1) QSL with SFS. Based on our theory, the observation
of the resonance peaks in the spectroscopy of a Co adatom
strongly suggests that the monolayer Mott insulator TaSe2 has
the spinon Fermi surface and emergent U (1) gauge field.

Our establishment of the spectral function for a mag-
netic impurity on U (1) QSL with SFS suggests that
depositing a magnetic impurity on a Mott insulator and
carrying out spectroscopy measurements on the impurity
can serve as a diagnosis for the QSL state. Recently
new two-dimensional electronic correlation-induced insula-
tors emerged with moiré flat bands [43–45], thus the magnetic
impurity deposit followed by spectroscopy measurements is
expected to identify more candidates for U (1) QSL with
SFS.
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APPENDIX A: SPECTRAL REPRESENTATION
OF A GREEN’S FUNCTION

We first review the spectral representation of a Green’s
function. For a Green’s function G(z), its spectral represen-

tation reads

G(z) = −
∫ ∞

−∞

ImG(ω′ + i0+)

z − ω

dω′

π
. (A1)

Here z is complex. When z takes z = iωn or z = iνn, the
Green’s function G(z) is a Matsubara Green’s function. When
z takes z = ω + i0+, the Green’s function G(z) is a retarded
Green’s function. The spectral representation of the Green’s
function is widely used in our calculations.

For the U (1) QSL with SFS, its on-site spinon Matsubara
Green’s function takes the form

G f ,σ (iωn, R, R) = − 〈 fσ,R(iωn) f †
σ,R(iωn)〉0ei(k−k′ )·R

= 1

�

∑
k

1

iωn − ξk
, (A2)

with � the volume of the system. The spinon Matsubara
Green’s function can also be expressed in the spectral repre-
sentation as

G f ,σ (iωn, R, R) =
∫ ∞

−∞

ρ f ,σ (ω′)
iωn − ω′ dω′, (A3)

with the spinon spectral function ρ f ,σ (ω′) = − 1
π

ImGR
f ,σ (ω′)

and GR
f ,σ (ω′) = G f ,σ (iωn → ω′ + i0+). Similarly, the on-site

chargon Green’s function can be written as

GX (iνn, R, R) = 〈XR(iνn)X †
R (iνn)〉0

= 1

�

∑
k

(
1

iνn + εk
− 1

iνn − εk

)
, (A4)

and its spectral representation reads

GX (iνn, R, R) =
∫ ∞

−∞

ρX (ω′)
iνn − ω′ dω′, (A5)

with the chargon spectral function ρX (ω′) = − 1
π

ImGR
X (ω′)

and GR
X (ω′) = GX (iνn → ω′ + i0+).

APPENDIX B: DERIVATION OF THE TWO
APPROXIMATED ALGEBRA EQUATIONS

In the isolated magnetic impurity with zero coupling, the
SAF has the bare Matsubara Green’s function G0

a,σ (iωn) =
1

iωn
, and the CB has the bare Matsubara Green’s function

G0
Xd

(iνn) = 1
iνn+ε0+ U

2
− 1

iνn+ε0− U
2

[35].

In the magnetic impurity weakly coupled to the U (1) QSL
with SFS, by taking the approximated Lagrangian multipliers
to be h = ε0, λ = U

4 − h2

U , the Matsubara frequency summa-
tion in Eq. (5) can be calculated as

1

β

∑
ωn

Ga,σ (iωn)G f ,σ (iωn, R, R)

= − 1

π

∫ ∞

−∞
Im

GR
1 (ω)

1 − w2GR
1 (ω)

nF(ω)dω

≈ − 1

π

∫ 0

−∞

ImGR
1 (ω)

1 + [w2ImGR
1 (ω)]2 dω, (B1)
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with

GR
1 (ω) = G0

a,σ (iωn → ω + i0+)G f ,σ (iωn → ω + i0+, R, R)

= 1

ω + i0+

[∫ ∞

−∞

ρ f ,σ (ω′)
ω − ω′ dω′ − iπρ f ,σ (ω)

]
, (B2)

and the Fermi distribution function nF(ω) = 1
eβω+1 . For sim-

plicity, the spinon DOS is assumed to be constant, ρ f ,σ (ω) =
1

2� f
�(�2

f − ω2), and the self-consistent equation (5) is sim-
plified to be

u ≈ − 2wVR

∫ 0

−� f

ω

ω2 + �2
eff

1

2� f
dω = −wVR

2� f
ln

�2
eff

�2
f + �2

eff

,

(B3)

with �eff = πw2

2� f
. In Eq. (6), the Matsubara frequency summa-

tion can be calculated as

1

β

∑
νn

GXd (iνn)GX (iνn, R, R)

= 1

π

∫ ∞

−∞
Im

GR
2 (ω)

1 − u2GR
2 (ω)

nB(ω)dω

≈ − 1

π

∫ ∞

−∞

ImGR
2 (ω)

1 + [u2ImGR
2 (ω)]2 dω, (B4)

with

GR
2 (ω) = G0

Xd
(iνn → ω + i0+)GX (iνn → ω + i0+, R, R)

≈ 4U

U 2 − 4ε2
0

[∫ ∞

−∞

ρX (ω′)
ω − ω′ dω′ − iπρX (ω)

]
, (B5)

and the Bose distribution function nB(ω) = 1
eβω−1 . For sim-

plicity, the chargon DOS is assumed to be constant: ρX (ω) =
1

�X −�
for −�X < ω < −� and ρX (ω) = − 1

�X −�
for � <

ω < �X . Then the self-consistent equation in Eq. (6) is sim-
plified to be

w = uVR

∫ −�

−�X

4U
U 2−4ε2

0

1
�X −�

1 + [
4πu2U

(U 2−4ε2
0 )(�X −�)

]2 dω ≈ 4uUVR

U 2 − 4ε2
0

.

(B6)

In a magnetic impurity weakly coupled to a U (1) QSL with
SFS, the mean-field self-consistent equations (5) and (6) are
then approximated by the two algebra equations (B3) and
(B6), respectively.

APPENDIX C: DERIVATION OF THE SPECTRAL WEIGHT

In the presence of mean-field coupling u, the CB Matsub-
ara Green’s function in Eq. (10) can be approximated by the
Dyson equation as

GXd (iνn) = G0
Xd

(iνn)

1 − u2G0
Xd

(iνn)GX (iνn, R, R)

≈ G0
Xd

(iνn)
[
1 + u2GX (iνn, R, R)G0

Xd
(iνn)

]
. (C1)

As the Coulomb repulsion U is much larger than the low-
energy region with which we are concerned, the G0

Xd
(iνn) in

the second term is approximated to be G0
Xd

(iνn) ≈ 4U
U 2−4ε2

0
and

it yields

GXd (iνn) ≈ G0
Xd

(iνn) + Z
∑

k

GX (iνn, R, R). (C2)

Here Z is the spectral weight, which takes the value Z =
16u2U 2

(U 2−4ε2
0 )2 .

APPENDIX D: SELF-CONSISTENT EQUATIONS IN THE
SPECTRAL REPRESENTATION

By taking the spectral representation of Matsubara Green’s
functions, the self-consistent equations (5)–(8) that involve
the infinite summation series can all be written in integral
equations form as

u = −2wVR

∫ ∞

−∞

[
ρa,σ (ω)ReGR

f ,σ (ω, R, R)

+ ReGR
a,σ (ω)ρ f ,σ (ω)

]
nF(ω)dω, (D1)

w = −uVR

∫ ∞

−∞

[
ρXd (ω)ReGR

X (ω, R, R)

+ ρX (ω)ReGR
Xd

(ω)
]
nB(ω)dω, (D2)

1 = −
∫ ∞

−∞
ρXd (ω)nB(ω)dω, (D3)

∫ ∞

−∞
ρa,σ (ω)nF(ω)dω

= 1

2
− h

U
+ 1

2U

∫ ∞

−∞
ωρXd (ω) coth

1

2
βωdω

− 1

Uβ

∫ ∞

−∞
ρXd (ω)dω, (D4)

where the superscript R denotes the retarded Green’s function
obtained by the analytic continuation iωn → ω + i0+, iνn →
ω + i0+ in the corresponding Matsubara Green’s function.

In the numerical calculation, the spinon spectral function
ρ f ,σ (ω) and the chargon spectral function ρX (ω) we con-
sidered are plotted in Figs. 4(a) and 4(b), respectively. The
resulting electronic spectral function ρc,σ (ω) can be obtained
through the convolution in the spectral representation,

ρc,σ (ω) =
∫ ∞

−∞
ρ f ,σ (ω + ω′)ρX (ω′)[nF(−ω − ω′)

+ nB(−ω′)]dω′, (D5)

and it is plotted in Fig. 4(c).
With a given spinon and chargon Green’s function in the

host system, the four integral equations can be numerically
solved and yield the mean-field parameters w, u, λ, h. In the
spectral representation, the convolution of the impurity bare
electronic Matsubara Green’s function is calculated as

G0
d,σ (iωn) = 1

β

∑
νn

∞∑
−∞

ρa,σ (ω′)
iωn + iνn − ω′ dω′

∫ ∞

−∞

ρXd (ν ′)
iνn − ν ′ dν ′.

(D6)
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FIG. 4. (a) The spectral function ρ f ,σ (ω) for the itinerant spinons in the QSL. (b) The spectral function ρX (ω) for the QSL chargons.
(c) The electronic spectral function ρc,σ (ω) for the U (1) QSL with SFS. The QSL considered here is of a triangular lattice.

By summing over the Matsubara frequency νn, the retarded
Green’s function G0

d,σ (iωn → ω + i0+) can be obtained
through the analytic continuation. The impurity bare elec-
tronic spectral function ρ0

d,σ (ω) = − 1
π

ImG0
d,σ (iωn → ω +

i0+) then takes the form

ρ0
d,σ (ω) =

∫ ∞

−∞
ρa,σ (ω + ω′)ρXd (ω′)[nF(−ω − ω′)

+ nB(−ω′)]dω′. (D7)

APPENDIX E: SPINON-CHARGON BINDING
INTERACTION FROM LONGITUDINAL

GAUGE FIELD FLUCTUATIONS

The low-energy effective action for the U (1) QSL with
SFS is [46]

SSL = S f + Sφ + SM, (E1)

with the spinon field action

S f =
∫ β

0
dτ

∫
dr

∑
σ

[
f †
σ,r(∂τ + iA0,r − μ f ) fσ,r

+ h̄2

2m f
(∂r + iAr) f †

σ,r · (∂r − iAr) fσ,r

]
, (E2)

the complex bosonic field action

Sφ =
∫ β

0
dτ

∫
dr[(∂τ − iA0,r)φ†

r (∂τ + iA0,r)φr

+ h̄2v2
b (∂τ + iAr)φ†

r (∂τ − iAr)φr + �2φ†
r φr], (E3)

and the Maxwell term that controls the gauge field fluctuations

SM = 1

2g2

∫ β

0
dτ

∫
dr[(∇A0,r + ∂τ Ar)2 + (∇ × Ar)2].

(E4)

Here m f is the effective spinon mass, vb is the boson velocity,
� is the chargon gap, g is the bare gauge field coupling con-
stant, and A0,r, Ar are the temporary and spatial components
of the U (1) gauge field, respectively. The action SSL is invari-
ant under the local U (1) gauge transformation [34]. At the
mean-field level where gauge fields are neglected, the spinon
correlation function is −〈 fσ,k(iωn) f †

σ,k(iωn)〉0 = 1
iωn−ξk

with

ξk = h̄2k2

2m f
− μ f the band dispersion in the continuum limit.

The chargon operator becomes X (†)
k =

√
2εkφ

(†)
k and the char-

gon correlation function reads 〈Xk(iνn)X †
k (iνn)〉0 = 1

iνn+εk
−

1
iνn−εk

with εk =
√

h̄2v2
bk2 + �2 the chargon band disper-

sion in the continuum limit. When the QSL is considered
in a periodic lattice, tight-binding band dispersions ξk and
εk can be constructed to replace those in the continuum
limit.

In the Coulomb gauge ∇ · Ar = 0, as the group velocity
at the Hubbard band-edge energies is negligible, the coupling
of the transverse gauge field to the current is small, and we
drop the transverse gauge field fluctuations. The longitudinal
component of gauge field A0,r is kept in S f , Sφ , and SM. The
spinon field action S f describes the Schrödinger field, but the
complex bosonic field Sφ describes the Klein-Gordon field.
The Klein-Gordon field action Sφ can be rewritten in terms of
the canonical momentum operators as

Sφ =
∫ β

0

∫
dr

[
�†

r ∂τφ
†
r + �r∂τφr − iA0,r(�

†
rφ

†
r − �rφr)

− �†
r �r + h̄2v2

b∂rφ
†
r ∂rφr + �2φ†

r φr
]
, (E5)

with �†
r = (∂τ + iA0,r)φr and �r = (∂τ − iA0,r)φ†

r the canon-
ical momentum operators. We apply the Fourier trans-
formation to Eq. (E5). By introducing new bosonic
operators

ak = 1

2
Xk − 1√

2εk
�

†
k, a†

k = 1

2
X †

k + 1√
2εk

�k, (E6)

bk = 1

2
X †

k − 1√
2εk

�k, b†
k = 1

2
Xk + 1√

2εk
�

†
k, (E7)

we transform the relativistic Klein-Gordon action to the non-
relativistic Schrödinger type,

Sφ =
∫ β

0

∑
k,q

[ak(−∂τ δk,q + iA0,−k+q)a†
q + b†

k(∂τ δk,q

− iA0,−k+q)bq + εk(aka†
k + b†

kbk)]. (E8)
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Importantly, here a(†)
k is the holon operator and b(†)

k is the
doublon operator. The doublon and holon together compose
the relativistic chargon Xr = ar + b†

r , X †
r = a†

r + br.
Now with only the longitudinal gauge field, the U (1) QSL

with SFS action SSL takes the form

SSL =
∫ β

0
dτ

∑
σ,k,q

[
f †
σ,k(∂τ + ξk) fσ,k + ak(−∂τ + εk)a†

k

+ b†
k(∂τ + εk)bk + i f †

σ,kA0,k−q fσ,q + iakA0,−k+qa†
q

− ib†
kA0,−k+qbq + q2

2g2�
A0,−qA0,q

]
. (E9)

Integrating out the longitudinal gauge field A0,r then yields the
gauge field A0,r fluctuation-induced interaction terms

1

2

∫
dr

∫
dr′U C

r−r′
∑
σ,σ ′

[ f †
σ,r fσ,r f †

σ,′,r′ fσ ′,r′ + (a†
r ar

− b†
rbr)(a†

r′ar′ − b†
r′br′ ) + 2 f †

σ,r fσ,r(a
†
r′ar′ − b†

r′br′ )],
(E10)

where the Coulomb-type interaction U C
r−r′ = g2

(2π )2

∫
eiq·(r−r′ )

q2+K2 dq
has the screening K due to the itinerant spinons [47]. The
interaction arising from longitudinal gauge field fluctuations
includes the spinon-spinon interaction, the chargon-chargon
interaction, and the spinon-chargon binding interaction. The
spinon-spinon interaction and the chargon-chargon interaction
modify the spinon and chargon correlation function, respec-
tively, but the last term, namely the spinon-chargon binding
interaction, tends to bind the spinon and the chargon into an
electron, which becomes the dominant effect of the gauge field
fluctuations [42].

Taking into account the dominant effect of the gauge field
fluctuations, we arrive at the QSL action in the presence of
longitudinal gauge field fluctuations,

SSL ≈
∫ β

0
dτ

∑
σ,k

[
f †
σ,k(∂τ + ξk) fσ,k + ak(−∂τ + εk)a†

k

+ b†
k(∂τ + εk)bk +

∫
Ur f †

σ,r fσ,r(a
†
r ar − b†

rbr)dr
]
.

(E11)

Here, we only consider the on-site spinon chargon binding in-
teraction since the screening from the itinerant spinons makes
the interaction short-ranged. We know that the Thomas-Fermi
screening is K = g

√
Nf , with Nf being the spinon DOS at

the Fermi energy, so at q → 0 the spinon chargon binding
interaction strength is approximated as

Ur ≈ g2

(2π )2

∫
1

g2Nf
dq =

∫
dq

4π2Nf
≈ � f . (E12)

Here � f is half of the spinon bandwidth. It indicates that the
spinon-chargon binding interaction Ur is estimated to be half
of the spinon bandwidth.

APPENDIX F: DERIVATION OF THE GAUGE FIELD
FLUCTUATION MODIFIED IMPURITY ELECTRONIC

GREEN’S FUNCTION

By numerically solving the self-consistent equations (D1)–
(D4), we can obtain the SAF spionon coupling w, the CB
chargon coupling u, and the Lagrangian multipliers λ, h, so
the magnetic impurity on the U (1) QSL with SFS has the
quadratic action at the mean-field level,

S0 =
∫ β

0

∑
σ

[a†
σ (∂τ + ε0 − h)aσ + w( f †

σ,Raσ + a†
σ fσ,R)]dτ

+
∫ β

0

[
1

U
(∂τ + h)X †

d (∂τ − h)Xd +
(

λ + h2

U

)
X †

d Xd − u(X †
d XR + X †

RXd )

]
dτ

−
∫ β

0
dτ

∫ β

0
dτ ′ ∑

σ

[ f †
σ,R(τ )G−1

f ,σ (τ, τ ′, R, R) fσ,R(τ ′) − X †
R (τ )G−1

X (τ, τ ′, R, R)XR(τ ′)]. (F1)

To incorporate the spinon-chargon binding interaction in the QSL into the mean-field action S0, the holon and doublon operators
at the impurity are defined as

ad = 1

2

(
Xd − U√

λU + h2
�

†
d

)
, (F2)

a†
d = 1

2

(
X †

d + U√
λU + h2

�d

)
, (F3)

bd = 1

2

(
X †

d − U√
λU + h2

�d

)
, (F4)

b†
d = 1

2

(
Xd + U√

λU + h2
�

†
d

)
, (F5)
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with the canonical momentum operators defined to be

�
†
d = (∂τ − h)Xd

U
, �d = (∂τ + h)X †

d

U
. (F6)

In this way, the CB at the impurity, which is also relativistic,
is expressed by the impurity holon and doublon operators as
Xd = ad + b†

d , X †
d = a†

d + bd . Therefore, the relativistic-type
Klein-Gordon field action at the impurity can also be trans-
formed to the Schrödinger field type.

In the Matsubara frequency space, the Green’s functions
for the holon and doublon in the QSL are

Ga(iνn, R, R) =
∑

k

1

iνn − εk
, (F7)

Gb(iνn, R, R) =
∑

k

−1

iνn + εk
, (F8)

and the Matsubara Green’s functions for the holon and dou-
blon at the impurity take the form

Gad (iνn) =
√

U

2
√

λU + h2

1

iνn −
√

λ + h2

U + h
, (F9)

Gbd (iνn) =
√

U

2
√

λU + h2

−1

iνn +
√

λ + h2

U + h
. (F10)

With the holon and doublon operators in both the impurity and
the QSL, the mean-field action S0 now becomes

S0 = −
∑
σ,ωn

(a†
σ (iωn) f †

σ,R(iωn))

(
iωn − ε0 + h −w

−w G−1
f ,σ (iωn, R, R)

)(
aσ (iωn)

fσ,R(iωn)

)

−
∑
νn

(ad (iνn) b†
d (iνn) aR(iνn) b†

R(iνn))

⎛
⎜⎜⎜⎜⎝

G−1
ad

(iνn) 0 −u −u

0 G−1
bd

(iνn) −u −u

−u −u G−1
a (iνn) 0

−u −u 0 G−1
b (iνn)

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝

a†
d (iνn)

bd (iνn)

a†
R(iνn)

bR(iνn)

⎞
⎟⎟⎟⎟⎠. (F11)

In the slave rotor representation, the electron at the impurity is composed of the SAF combined with the impurity holon and
doublon,

d†
σ = a†

σ (ad + b†
d ), dσ = aσ (a†

d + bd ). (F12)

The electrons in the QSL are composed of the spinons combined with the QSL holons and doublons,

c†
σ,r = f †

σ,r(ar + b†
r ), cσ,r = fσ,r(a

†
r + br). (F13)

With the holon and doublon operators, the electronic bare Matsubara Green’s function that involves the impurity, the nearest-
neighboring QSL site, and the coupling is constructed as

G0
σ (iωn) =

(
Ĝ0

d,σ (iωn) T̂σ (iωn)

T̂ †
σ (iωn) Ĝc,σ (iωn)

)
, (F14)

with

Ĝ0
d,σ (iωn) = − 1

β

∑
νn

〈aσ (iωn + iνn)a†
σ (iωn + iνn)〉0

〈(
a†

d (iνn)ad (iνn) a†
d (iνn)b†

d (iνn)

bd (iνn)ad (iνn) bd (iνn)b†
d (iνn)

)〉
0

, (F15)

T̂σ (iωn) = − 1

β

∑
νn

〈aσ (iωn + iνn) f †
σ,R(iωn + iνn)〉0

〈(
a†

d (iνn)aR(iνn) a†
d (iνn)b†

R(iνn)

bd (iνn)aR(iνn) bd (iνn)b†
R(iνn)

)〉
0

, (F16)

T̂ †
σ (iωn) = − 1

β

∑
νn

〈 fσ,R(iωn + iνn)a†
σ (iωn + iνn)〉0

〈(
a†

R(iνn)ad (iνn) a†
R(iνn)b†

d (iνn)

bR(iνn)ad (iνn) bR(iνn)b†
d (iνn)

)〉
0

, (F17)

Ĝc,σ (iωn) = − 1

β

∑
νn

〈
fσ,R(iωn + iνn) f †

σ,R(iωn + iνn)
〉
0

〈(
a†

R(iνn)aR(iνn) a†
R(iνn)b†

R(iνn)
bR(iνn)aR(iνn) bR(iνn)b†

R(iνn)

)〉
0

. (F18)

Those 2 × 2 correlators can all be obtained from the action S0 in Eq. (F11). In this way, the impurity bare electronic Matsubara
Green’s function G0

d,σ (iωn) is recovered as G0
d,σ (iωn) = ∑

i, j=1,2[Ĝ0
d,σ (iωn)]i j .

The spinon-chargon binding interaction in the QSL introduces new terms to the action,

S′ =
∫ β

0

∫
Ur

∑
σ

( f †
σ,r fσ,ra

†
r ar − f †

σ,r fσ,rb
†
rbr)dr dτ, (F19)
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and now the total action is S = S0 + S′. Taking the effect of
the spinon-chargon binding interaction into account, we can
use the random phase approximation to calculate the Mat-
subara electronic Green’s function. The resulting Matsubara
electronic Green’s function is

Gσ (iωn) = [1 − G0,σ (iωn)Û ]−1G0,σ (iωn), (F20)

with

Û =

⎛
⎜⎜⎜⎝

0 0 0 0

0 0 0 0

0 0 UR 0

0 0 0 −UR

⎞
⎟⎟⎟⎠. (F21)

As a result, the spinon-chargon binding interaction modified
impurity electronic Green’s function can eventually be ob-
tained as

Gd,σ (iωn) =
∑

i, j=1,2

[Gσ (iωn)]i j

= G0
d,σ (iωn) +

∑
i, j=1,2

{T̂σ (iωn)URσz

× [1 − Ĝc,σ (iωn)URσz]
−1T̂σ (iωn)}i j, (F22)

and the QSL electronic Green’s function is

Gc,σ (iωn) =
∑

i, j=1,2

{Ĝc,σ (iωn)[1 − Ĝc,σ (iωn)URσz]
−1}i j .

(F23)
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FIG. 5. The electronic spectral function ρc,σ (ω) in the QSL. The
gauge field fluctuation-induced spinon-chargon binding interaction
is taken to be UR = 0.23 eV.

Given the same on-site spinon-chargon binding interac-
tion UR = 0.23 eV, the QSL electronic spectral function
ρc,σ (ω) = − 1

π
ImGc,σ (iωn → ω + i0+) is plotted in Fig. 5. It

can be seen in Fig. 5 that the on-site spinon-chargon bind-
ing interaction changes the QSL electronic spectral function
ρc,σ (ω) compared with that in Fig. 4(c), but there are no
resonance peaks emerging at the Hubbard band edges.
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