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We study the classification of interacting fermionic symmetry-protected topological (SPT) phases with
both rotation symmetry and Abelian internal symmetries in one, two, and three dimensions. By working out
this classification, on the one hand, we demonstrate the recently proposed correspondence principle between
crystalline topological phases and those with internal symmetries through explicit block-state constructions. We
find that for the precise correspondence to hold it is necessary to change the central extension structure of the
symmetry group by the Z, fermion parity. On the other hand, we uncover new classes of intrinsically fermionic
SPT phases that are only enabled by interactions, both in 2D and 3D. Several 3D Majorana-type fermionic SPT
phases are identified. Moreover, several new instances of Lieb-Schultz-Mattis-type theorems for Majorana-type
fermionic SPT phases are obtained and we discuss their interpretations from the perspective of bulk-boundary

correspondence.
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I. INTRODUCTION

A. Background and motivation

Symmetries can greatly enrich gapped phases of quantum
matter. In condensed matter systems, crystalline symmetries
of lattice systems are among the most common symmetries,
besides a few internal symmetries such as charge or spin
conservation and time reversal. Recently, a rich variety of
crystalline symmetry-protected topological (SPT) phases have
been discovered and classified [1-13], in particular for band
insulators of noninteracting electrons, culminating in exhaus-
tive lists of possible topological materials [14—16]. Similar
phases for interacting bosonic/spin systems have also been
constructed, and systematic classifications have been achieved
in some cases [17-19].

Investigations of bulk-boundary correspondence in crys-
talline SPT phases have also been fruitful. For SPT phases
with internal symmetries, it is known that the boundary
must have 't Hooft anomalies and can not have symmet-
ric short-range entangled (SRE) boundary states [20-22].
As a result, SPT boundaries can have gapless excitations,
spontaneously break the protecting symmetries, or develop
symmetric gapped states with topological order when the spa-
tial dimension of the boundary is greater than 1 [23]. The same
principle applies to crystalline SPT phases as well, as long as
the boundary preserves the protecting crystalline symmetries.
However, the fact that symmetries involve spatial coordinate
transformations do bring in new twists to the bulk-boundary
correspondence. For instance, in many cases, boundaries of
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crystalline SPT phases admit tensor product structure both for
the Hilbert space and the boundary symmetry action and can
be viewed as a well-defined lattice systems on their own. In
these cases, 't Hooft anomalies lead to various generalizations
of Lieb-Schultz-Mattis-Oshikawa-Hastings theorems [18,24—
32]. Moreover, it is realized that if one allows nonuniformity
on the boundary, one can trivially gap out almost everywhere
except certain lower-dimensional regions, i.e., corners or
hinges. This phenomena was dubbed “higher-order” boundary
states [33—42].

In this work, we consider interacting fermionic SPT
(FSPT) phases protected by spatial rotation and internal sym-
metries. Many previous works studied either free fermions
or bosonic systems with rotation symmetry. The physics of
strongly interacting fermionic phases remains a major open
question. We focus on rotation, a basic point group op-
eration, to develop systematic understanding of crystalline
fermionic SPT phases. More concretely, we study fermionic
systems with the symmetry group Cy x G, where G is an
Abelian internal symmetry group, and Cy denotes M-fold
rotations.

Another motivation for this work is to gain insight into the
classification of interacting FSPT phases with internal sym-
metry only. Much progress has been made on this problem,
for example a complete picture of how interactions affect the
periodic table for topological band insulators and supercon-
ductors has been obtained [43,44]. Outside the periodic table,
theories of FSPT phases with Z; x G symmetry with a gen-
eral finite G have also been developed [45-48]. However, they
often involve complicated constructions of exactly-solvable
models [45,48], or employ sophisticated algebraic topology
techniques [44,46], and it is not straightforward to extract
physical properties for such FSPT phases. Recently, it has
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FIG. 1. Dimensional reduction procedure for C4 rotation SPT phase.

become clear that the topological classifications for gapped
phases with spatial symmetries is closely related to those with
internal symmetries, as long as the abstract group structures
match [27,49]. It is perhaps clearer for orientation-preserving
symmetries, since one can introduce lattice defects serving
as fluxes of the symmetries to probe the topological prop-
erties. Such correspondence is formalized as a “crystalline
equivalence principle” in Ref. [49]. In fermionic systems, the
global symmetry group is a central extension of the physical,
“bosonic” symmetry group by the Zé fermion parity. We
will show that the equivalence between classifications with
crystalline and internal symmetries requires a change in the
group extension structure.

The goal of this paper is to apply the dimensional reduc-
tion approach [6] to interacting FSPT phases with Cyy x G
symmetry, in particular 3D FSPT phases which are much
less explored, to study their classification and physical prop-
erties. We also aim to explore the crystalline equivalence
principle for FSPT phases and find that it comes with a new
feature compared to the bosonic version (see Sec. IIC for
a summary). In addition, we study Lieb-Schultz-Mattis-type
theorems associated with Majorana-type FSPT phases and
discuss their interpretations from the perspective of bulk-
boundary correspondence. In the rest of the introduction, we
describe the general idea of the dimensional reduction ap-
proach in Sec. I B and summarize our main results in Sec. I C.
We discuss organization of the paper in Sec. ID

B. Classification scheme

We study the classification of interacting fermionic SPTs
with both rotation and internal Abelian symmetry. We will
follow the dimensional reduction approach introduced in
Ref. [6]. In a crystallgraphic symmetry group, the only al-
lowed rotations are Cy; withM = 2, 3, 4, and 6. In this work,
the only spatial symmetry under consideration is rotation, so
there is no limitation on the values of M. We will take any
value M > 1. In addition to rotation, we also consider an
internal symmetry group G, such that the whole symmetry
group is Cy x G (with fermions, we need to specify how
rotations are extended by the fermion parity Z’; , which we
will define more precisely in Sec. IT A).

Let us lay out the general principles of dimensional re-
duction for rotation symmetry in d spatial dimensions. Even
though we always consider lattice systems, let us assume the
space is R¢ for a moment to describe the general principles.
We first divide the space into open disjoint regions related to

each other by the point group symmetries, labeled by M ; (see
Fig. 1). For example, in 2D with polar coordinates,

2r(j— 1) 2 j
where j = 1, ..., M. Note that this leaves out the origin p =

0, and M half lines p > 0, 6 = ZZ. We will denote them
by M, the complement of | J ;M. For physical reasons, it

is convenient to “thicken” M, e.g., we take M to be the
union of a small disk around the rotation center, plus narrow
strips centered at the rays 6 = 2;1—’ Generalizations to higher
dimensions are straightforward.

The dimensional reduction procedure takes three steps to
study rotation SPT phases (Fig. 1). First, consider one of
the regions, M. The state on M may already be an SPT
state protected by the onsite symmetry G. In addition, we will
also consider the case that M hosts an invertible topological
phase, e.g., 1D Majorana chain and 2D p + ip superconduc-
tors, which do not need any symmetry for protection. (It is
generally believed that there is no invertible topological phase
in 3D [44,46]. We will take this assumption throughout this
work.) Due to rotation symmetry, other regions must be in
the same SPT/invertible phase. An important question that we
need to check is whether this whole state is compatible with
the rotational symmetry, when all regions {M ;} are combined.
We answer this question constructively: When the regions
{M} are disconnected from each other, they have nontriv-
ial boundary states. We can then glue the boundary states
together from neighboring regions, in a rotation symmetric
way. Notice that this is always possible because neighboring
boundaries have opposite orientations. The only subtlety here
arises near the rotation center, where one may find some
remaining symmetry-protected low-energy modes. In some
cases, one can remove the degeneracies by introducing lower-
dimensional SPT states in M (one such example is discussed
in Appendix E 4). If not, we conclude that the bulk SPT phase
is not compatible with the rotation symmetry, and should be
excluded from the classification. However, as we will discuss,
in two dimensions where the rotation center is 0D, we can also
interpret such an obstruction to having rotationally invariant
SPT phases as instances of LSM-type theorems for the inter-
nal symmetry SPT phase.

Second, if the state in M is trivial, it can be transformed
into a product state by a finite-depth local unitary that pre-
serves all the internal symmetries. Let U be the local unitary
applied to region M. Because of the rotation invariance, we
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can apply RZUR™/ to disentangle M, where R is the rota-
tion operator. When combined, the local unitary [, R#UR™/
respects both G and Cy;. Now entanglement remains only in
the M region. If we focus on one of the hyper half-planes
away from the rotation center, we can ask whether there is
a nontrivial SRE phase in this (d — 1)-dimensional system.
With rotations, all the (d — 1)-dimensional hyper half-planes
must have the same SRE states on them. Importantly, their
(d — 2)-dimensional boundaries must meet near the rotation
center, so we should impose the condition that M copies
of these boundary states can be gapped out preserving the
internal and the Cj; symmetry. That is, it is required that we
are able to glue the (d — 1)-dimensional half-plane symmet-
rically. We will see that in many cases, certain (d — 1) SPT
phases cannot be glued in a symmetric way.

Third, if the (d — 1)-dimensional half-planes are topolog-
ically trivial, we can disentangle the states on them using
symmetric local unitary, similar to above. Then, we further
ask whether the (d — 2)-dimensional rotation center is in an
SRE phase or not. At the center, rotation becomes an internal
symmetry. Accordingly, the (d — 2)-dimensional SRE phases
should have Z,; x G internal symmetry, where we use Zy, to
reflect the fact that rotation acts as an internal symmetry.

When describing the dimensional reduction approach
above, we have used some constructive viewpoints. In fact, the
whole procedure can be “inverted” and viewed constructively:
d-dimensional rotation SPT phases with Cyy x G symmetry
can be built out of d-dimensional and lower dimensional
G symmetric block states by gluing them together in cer-
tain rotation symmetric fashion. Therefore, depending on
which building blocks are used, we define the following three
groups.

(1) %, the group of d dimensional SPT phases protected
by G and compatible with the Cj; symmetry. When building
these d dimensional “block states”, lower dimensional states
may also be used to successfully glue the blocks.

(2) 44, the group of (d — 1) dimensional block states,
built from (d — 1)-dimensional SRE states with the internal
symmetry group G, by gluing M copies of them together while
preserving both G and rotation.

(3) 4_,, the group of (d —2) dimensional block states,
which are basically a (d — 2) dimensional SRE states with
Zy x G internal symmetry, located at the center of rotation.

A special attention should be paid to the states in ¥_,.
One should notice that there are additional equivalence re-
lations between these phases, so ¢_, is generally different
from the actual classification for (d — 2)D SRE phases with
Zy x G symmetry. The additional equivalence relations lead
to the trivialization of certain (d — 2) dimensional block
states, which are nontrivial as SPT states with strictly internal
Zy x G symmetry.

Generally speaking, SPT phases form an Abelian group
under the stacking operation. Thus the remaining task in the
classification problem is to determine the group structure of
the SPT phases. We have already identified three subgroups:
%, 91, and 4_,. Their own group structures can be de-
rived from the known classification of (internal symmetry)
SPT phases in the corresponding dimensions, modulo further
trivialization mentioned above. Let us denote the group of all
Cy x G SPT phases by ¢, and all SPT states consisting of

(d — 1) and (d —2) block states by ¥<_; (in this notation
¢ = 9<). There is no general formula to determine ¢ from
the known subgroups, and the problem has to be solved on a
case-by-case basis. However, we do know that these groups
should fit into the following two short exact sequences:

1Y%, —>Y% 1 —>9 -1,
l>Y%_ 1 —>9—> % — 1. 2)

Both group extensions are central. See Appendix A for a brief
review of group extension. In general, these two sequences do
not necessarily split. Physically, the first short exact sequences
essentially says that if we stack two (d — 1) dimensional
block states, the result must be another (d — 1)-dimensional
block state, possibly with a (d — 2) dimensional block state.
The second short exact sequence is similar. It is worth point-
ing out that in the bosonic case, with Cy; x G symmetry the
extensions are all trivial. However, as we will see later, for
fermions this is not the case.

To summarize, our task is to (i) obtain the groups %, 41,
and ¢_, and (ii) work out the group extensions in Eq. (2).
We remark that this dimension reduction or “gluing” approach
works for both bosonic and fermionic systems. We have ap-
plied it to bosonic SPT phases with Cyy x G symmetry in
Appendix B, and find that the group extensions in Eq. (2)
are always trivial. That is, for bosonic SPT phases, we always
have ¥ = % x 4_, x 4_,. Nevertheless, we will see that for
FSPT phases, the extensions in (2) may be nontrivial. We
also remark that given ¢, ¢4_|, and ¥_,, Eq. (2) alone does
not determine ¢. Mathematically, there could be many ¥’s
satisfying Eq. (2). To determine ¢, we need to study physical
properties of FSPT phases which vary in dimensions (see, e.g.,
Sec. III B for a 1D example and Sec. V B 4 for a 3D example).

Note that we will include the Majorana chain into %, for
1D fermionic SPTs, as Majorana chains do extend other SPT
phases. However, we will not include p + ip superconductors
into % for 2D fermionic SPTs. This is because p + ip su-
perconductors are chiral and of infinite order. They do not
extend SPT phases which are nonchiral and always have fi-
nite order. Combining the 2D block SPT states and p + ip
superconductors gives a % x Z classification. (A single layer
of p+ ip superconductor may not be compatible with the
rotation symmetry, so there is a subtlety on what is the root
state of Z. See Appendix D for a discussion.)

C. Main results

Based on the dimensional reduction approach explained
above, we derive a systematic classification for FSPT phases
protected by Cy x G symmetry with G being a unitary fi-
nite Abelian group. While the counterparts of 1D and 2D
FSPT phases with internal symmetries were known previ-
ously, our work provides an alternative viewpoint and makes
a connection between SPT phases with internal and spatial
symmetries. For 3D FSPT phases, many of our results are
new, whose counterparts with internal symmetries are not well
understood. Examples of our classification are summarized in
Tables I-1I1.

While the basic construction is parallel to the bosonic case,
fermionic systems exhibit several notable new features and
subtleties. We summarize a few important results as follows.
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TABLEI. Examples of classifications of 1D and 2D FSPT phases
with inversion or rotation symmetry.

Dimension Symmetry 9 Comments
1D ’=1 Zs
12 = Pf Zg
2D Cy, Zu M odd
C/\jl Z4M M = 2(m0d 4)
Cy Doy X Zin M = 0(mod 4)
cl Zyp M even
Gy Zu M odd

(1) We construct intrinsically fermionic crystalline SPT
phases which can only exist with strong interactions. We
show that this is the case for all nontrivial rotational FSPT
phases with Abelian internal symmetries in 3D, and discuss
one example in 2D where the internal symmetry is the BDI
class in the periodic table. We find obstructions in the di-
mensional reduction construction that prevent gluing together
lower-dimensional block states while preserving rotation sym-
metries. No such obstructions were present in bosonic systems
previously studied [18,19].

(2) We formulate the precise correspondence between
classifications with rotation symmetry and those with only
internal symmetry, which can be used to map out the clas-
sification of 3D interacting fermionic SPT phases protected
by internal Abelian unitary symmetries. The correspondence
is stated in Sec. II C.

(3) We identify several new instances of Lieb-Schultz-
Mattis (LSM) type theorems for 2D FSPT phases. Roughly
speaking, certain FSPT phases are only compatible with rota-
tion symmetry projectively represented. Otherwise there has
to be “anomalous” degrees of freedom at the rotation center.
These LSM theorems also indicate that there exist 3D “trivial”
bulk states, whose boundary states are symmetric SRE, but
can not be realized in strictly 2D systems (unless under the
LSM-type conditions [50]).

D. Organization of the paper

The rest of the paper is organized as follows. In Sec. II,
we discuss a few generalities including symmetry groups in
fermionic systems, a subtlety of the trivial state in crystalline
topological phases, and the crystalline equivalence principle
of FSPT phases that we obtain. In Secs. III, IV and V, we
apply the general classification scheme in Sec. IB to various
examples of interacting crystalline FSPT phases in 1D, 2D,
and 3D, respectively. We discuss several new instances of
Lieb-Schultz-Mattis type theorems for 2D FSPT phases in
Sec. VI. We conclude in Sec. VII. Appendix A gives a brief
review of group extension. Appendix B includes a study on
bosonic rotation SPT phases through the dimension reduction
approach. We review some 1D and 2D FSPT phases with
internal symmetries in Appendix C, and discuss the com-
patibility of p + ip superconductors with rotation symmetry
in Appendix D. More 2D and 3D examples are studied in
Appendices E and F, respectively.

II. GENERALITIES

A. Symmetries in fermionic systems

We make some general remarks here regarding symmetries
in fermionic systems. Our remarks apply to any symmetries,
but we will focus on the rotation. For fermionic supercon-
ductors, it is important to distinguish two cases: R¥ = 1 or
RM = P;. (For insulators, one can simply redefine R by a
U(1) rotation, and the two cases become equivalent.) We will
also refer to them as Cj; regarding the action on single-particle
states. To be precise, the fermion creation/annihilation opera-
tors transform linearly under rotation:

R, R™!' = Ur(X)crex)- 3)

Here Ug is a unitary transformation, and we suppress the
spin/orbital/- - - indices. RY = (£1) correspond to

M
[JUr®/ (%)) = +1. 4

J=1

Note that for odd M, we could simply redefine R by RPy
so the two choices are equivalent. Mathematically, these
choices correspond to possible central extensions of Cy, by
the fermion parity symmetry (i.e., H2(Zy, 7o) = Zm.2))-

For example, if the rotation only operates on the spatial
degrees of freedom, then we expect to have R = 1. On the
other hand, for spin-1/2 electrons, naturally rotation affects
both the orbital and spin degrees of freedom, so should satisfy
RM — Py because 27 spin rotation results —1. In this case,
we can also combine R with a 2w /M spin rotation in the
opposite direction to get RM = 1. Even for spinless fermions,
if an odd-parity pairing order parameter is present the rotation
symmetry has to satisfy RY = P;. Therefore, in this paper, we
will consider both C;; symmetries.

We also include an Abelian internal symmetry group G.
In principle, one also has to specify how G is extended by
the fermion parity, but for simplicity, we will just consider
the trivial extension for G in this work. In fact, this form
of symmetry already allows to compare to the most general
FSPT phases with Abelian internal symmetries.

B. Trivial states

We now discuss what it means for a state to be trivial in
systems with point group symmetries. Usually, trivial states
are defined to be those that can be adiabatically connected to
a product state (i.e., an atomic insulator in the context of band
insulators). However, for SPT phases protected by point group
symmetries, we need to refine the notion of triviality.

First of all, we allow for a more general notion of trivial
states. This was discussed in Ref. [6] for mirror reflection
symmetry. Consider a state of the following form: in any of
the M;, we place a lower-dimensional short-range entangled
phase (which may be a nontrivial invertible phase), denoted
by A, and use the point group to fill the other regions. This
state can be made into a true product state by the following
transformation. We fill the rest of U; M; with product states.
We then adiabatically generate pairs of A and A from the
product state. We can then pair annihilate all A and A’s adi-
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TABLEII (Top) Classification of 3D FSPT phases with C;; x Zy symmetry, where M = 2", N = 2" with m, n > 1. The superscript “NA”
means that the generator is a non-Abelian (Majorana) FSPT phase. This classification should be the same as that with the internal symmetry

Z{ X Ly X Zy. (Bottom) Few examples.

Y, Y, g
n=1 Z(Myg) Zz X Z(Mvg)
m:l,n:Z Z2 Z4XZ2
m = 1, n 2 3 Z(ZM,N) Zz X ZIZ\IA Z2 X ZgA
m > 2, n 2 2 Z(M,zN) X ZZNA Z(ZM,N) X Z(M‘ZN) X ZIZ\IA
Symmetry ¢
C{ X Z2 Zz X Z2
C; X Zz Zz X Z4
CS_ X Zz Zz X Zng
C176 X Zz Zz X ZgA
CZ_ X Z4 Zz X Z4
C;XZ4 Z4XZ4XZ2NA
Cy x Z4 L4 x Lg x L™
C1_6XZ4 Z4XZ8XZZNA
CZ_ X Zg Zz X Zng
Cy x 7y Ly x Lg x L™
CS_X23 ZgXZgXZzNA

abatically. Essentially we move the A’s to infinity using this
procedure. We will consider states of this form trivial.

Another subtlety is that there can be topologically distinct
classes of product states, in particular in one and two dimen-
sions [18]. That is, two product states can not be adiabatically
connected preserving the symmetry. This situation occurs
when there are degrees of freedom in the rotation center. For
simplicity, we will assume that the microscopic degrees of
freedom do not live exactly on the rotation center to avoid
this subtlety.

C. Relation to FSPT phases with internal symmetries

A close relation between bosonic topological phases
protected by crystalline symmetries and those by internal
symmetries was recently identified, dubbed as “crystalline
equivalence principle” by Else and Thorngren in Ref. [49].
The equivalence principle states that the classification of crys-
talline topological phases (both SPTs and SETs) of symmetry
G is the same as that of topological phases with internal
symmetry G. For this equivalence to work, an orientation-
reversing spatial symmetry should be mapped to antiunitary
internal symmetry. In Appendix B, we show explicitly that

TABLE III. Classification of 3D FSPT phases with CAj X Iy
symmetry, where M = 2", N =2" with m, n > 1. The general
formula is 4 = Zwn)2 X Zu,any (see Appendix F2 for detailed
discussions). Note that none of them are Majorana FSPT phases.

Symmetry 9
C2+ X Zz ZZ
CI X Zz Z4
C; X Z2 Z4
C2+ X Z4 ZZ
CI X Z4 Zz X Z4
C; X Z4 Z2 X Zg

the classifications of dD bosonic SPT phases protected by
Cy x G symmetry are identical to HAH[Cy x G, U(1)], for
d =2 and 3.

The crystalline equivalence principle is expected to hold
for fermionic topological phases too. We now state the precise
form of the correspondence for rotation FSPT phases: the
C, x G SPT classification for RM = (£1)V' is equivalent to
Zy x G SPT classification with g¥ = (F1)M=DNr | ywhere g
is the generator of Zy.

That is, for even M, the two possible extensions of Cy; by
the fermion parity get swapped, when mapped to internal Z,
symmetry. Intuitively, the difference should be attributed to
the topological spin of fermions, i.e., a 27 rotation results
in —1 phase factor. A similar twist of signs is known to
occur for the correspondence between reflection symmetry
and time-reversal symmetry. This correspondence is obtained
from all the examples that we work out. We do not have a
mathematically rigorous proof without working out individual
examples.

III. INVERSION FSPT PHASES IN 1D

As a warm-up exercise, we study 1D FSPTs with rotation
symmetry. In 1D, the only sensible rotation symmetry is in-
version I (notice that the inversion is orientation-reversing,
unlike rotations in higher dimensions). In fermionic systems,
there exist two possibilities, /> = 1 and I> = P;. Below we
derive the classification of inversion FSPTs following the
general classification principles outlined in Sec. IB. While
most results in this section are not new [51,52], the deriva-
tion touches on conceptual subtleties that will be important
for higher-dimensional systems, so we include them here for
pedagogical purpose.

According to the correspondence principle in Sec. IIC,
the classification of inversion FSPTs in the two cases should
be the same as the classification of 1D time-reversal FSPT
phases with 72 = Py and T2 = 1, respectively. The latter
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classifications are known to be Z, for T? = Py, and Zg for
T? =1 [53]. Our results are completely consistent with the
crystalline correspondence principle.

AP=1

We first consider /> = 1. According to the general clas-
sification scheme, we need to consider (i) possible OD-block
states and (ii) 1D invertible topological phases that are com-
patible with 1> = 1.

For the OD block, the total symmetry group reduces to
Z’; x Z», where the latter Z, represents inversion acting on
the OD block. There are four OD-block states, corresponding
to the four irreducible representations of Zg X Z5. The two
root states are (1) the fermion parity of the 0D block is odd
and (2) the inversion eigenvalue of the OD block is —1.

However, the second root state is actually trivial. To see
that, we consider spinless fermions on a chain, with a bond-
centered inversion / defined as Ic,I™' = ¢;_,. It is easy to
design a gapped Hamiltonian such that the ground state is
L CZ |0). This is obviously a trivial state, as there is no entan-
glement between any two fermions. Then, the OD-block state
with only two sites is

[¥)op = chell0) Q)

Under inversion symmetry, the state |y)op has an eigenvalue
—1: I1$)op = ¢} ej|0) = —|¥)op. Accordingly, the OD-block
state with inversion eigenvalue —1 does not correspond to any
nontrivial FSPT state.

Now we further show that the first root state with odd
fermion parity in the OD block is indeed nontrivial. We will
define the following many-body topological invariant: con-
sider an open chain with boundary conditions preserving the
inversion symmetry. It is always possible to lift any degener-
acy (i.e., from accidental zero modes at the ends) and have a
unique, inversion-symmetric ground state. The fermion parity
of the ground state is a many-body topological quantum num-
ber invariant under fermionic finite-depth local unitary circuit,
and distinguishes two phases. Hence, OD-block states lead to
a 7, classification.

The only “invertible topological phase” in 1D is the Kitaev
Majorana chain. We argue that the Majorana chain is not
compatible with 7> = 1. To see that, we first imagine cutting
the Majorana chain in the middle (i.e., the inversion center),
which leaves two edge Majorana zero modes y; and y,. Under
inversion symmetry, the two Majorana zero modes transform
into one another:

I:y <y (6)

So far, the full symmetry is preserved. Next, we try to glue
the two half chains, by removing the zero modes y; and y;.
However, the only coupling term iy;y, is odd under /, so we
cannot glue the chains. In fact, the zero modes can never
be removed in an inversion symmetric way, even when ad-
ditional OD-block states are decorated. This follows from the
observation that the two-dimensional Hilbert space spanned
by |0) and a'|0), with a = (y; + iy,)/2, forms a projective
representation of Z£ X Z,. Indeed, in this Hilbert space, we

have y; = o*, ¥, =0, P = 0%, and

0 ein/4
/= (e_,.m . ) )

where o are Pauli matrices. This representation fulfils the
transformation (6) and the condition /> = 1. It is easy to
see that Prl = —IPy, which is a sufficient condition show-
ing that the Hilbert space is a projective representation of
Z‘; X Z,. Hence, the twofold degeneracy cannot be lifted,
even if additional OD-block states (i.e., linear representations)
are attached. Accordingly, 1D Majorana chain is not compat-
ible with 17 = 1.

Combining the above results, we conclude that the classifi-
cation of 1D inversion FSPTSs is Z,, the same as the class DIII
superconductors, i.e., T? = Py fermion systems.

B.I* =P

Next we consider 1> = P;. We need to consider (i) possible
0D-block states and (ii) 1D invertible topological phases that
are compatible with I = P;.

For the OD block, the symmetry group is the unitary z!,
with I being the generator. There are four OD-block states, cor-
responding to the four irreducible representations of Zf ,i.e.,
with inversion eigenvalue being 1, i, —1, and —i, respectively.
Similar trivialization procedures to those in the /> = 1 case
are attempted, but all the four OD-block states remain distinct.
It suggests that they represent different FSPT states. Next, we
consider if the 1D Majorana chain is compatible with /> = Py.
We follow the same cutting and gluing setting in Sec. III A.
Now, the middle Majorana zero modes y; and y, satisfy the
following inversion transformation

Iyl =—y ®)

to comply with the requirement /> = Py. The coupling term
—iyy, is symmetric under /, so we can successfully glue the
two half Majorana chains in the middle. Hence, 1D Majorana
chain is compatible with 1> = Py.

Combining all together, we have identified eight distinct
phases. The group structure of the eight FSPTs under stacking,
i.e., how the 1D Majorana chain extends the OD-block states,
remains to be identified. To do that, we consider stacking two
identical Majorana chains (top of Fig. 2). We will show that,
without closing the energy gap and breaking the inversion
symmetry, the double chain can be adiabatically deformed to
a state in which intersite entanglement only exists between
the two sites near the inversion center (bottom of Fig. 2).
To do that, we first consider four Majoranas yi, 2, ¥/, ¥,
and show that there is a smooth deformation between the
following states:

IJ/II_] =Y

T1e ® 2

vy @e

71 @ ® 2
e ‘e

©))

where the ellipses represent that the two Majoranas are paired
up. Indeed, consider the following Hamiltonian

H(0) = cos O(—iy1y2 — iy{yy) + sin0(iy1y| — ivays).
(10)
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_____

—e —o —e —eo &—0 o
1
—e *——eo *——e *——eo :&—o. >
one site
inversion symmetric
adiabatic deformation
0D block

FIG. 2. Inversion symmetric adiabatic deformation of a double
Majorana chain (top) to a state (bottom) in which intersite entan-
glement only occurs in the OD block (gray rectangle). Each dot
represents a Majorana fermion y, and every two dots connected
by a solid line represent a physical complex fermion. Each lattice
site of the double chain contains two complex fermions. Elliptically
shaded two dots are Majorana fermions that are paired up, where
“blue” represents pairing through —iy ¢’ and “red” represents pairing
through iy y’.

When 6 = 0, the ground state is the one on the left in (9);
when 0 = /2, the ground state is the one on the right of (9).
Note that the sign of iy;y; is positive in (10), represented by
a “red” color in (9) for the ground state. (The key here is that
the signs in front of iy;y| and iy,y; are opposite; it does not
matter which one is positive and which is negative.) It is not
hard to find that energy eigenvalues of H(6) are

E=+/2(1—9), (11)

where s = +1 is the eigenvalue of the conserved quantity
y1v27,v5- The whole spectrum is independent of 0, and the
ground state has energy —2. Accordingly, the two states in
(9) are indeed adiabatically connected. Next, we apply this
smooth deformation to the whole double chain in an inversion
symmetric fashion, and obtain the state at the bottom of Fig. 2.
In this state, the only intersite entanglement occurs between
the two sites near the inversion center. These two sites are
viewed as the OD block.

It remains to calculate the inversion eigenvalue of the 0D-
block state. This OD block can be viewed as a single short
Majorana chain with periodic boundary condition. Let us label
the Majorana fermions under the following convention

2N %
*——o *——=o

*——=o *——=o
BV M T

12)

The Majoranas are related to the complex fermions in the
following way:

a=0+in)/2, c=(+ir)/2,
=m+iv)/2, g=W+iy)/2.  (13)
Under inversion symmetry, we have y; — y/ and y/ — —y;.

With the gapping Hamiltonian

H = —iy1y| — ivays — 273 — iva Vs, (14)

it is not hard to find the ground state of the OD block:

[¥)op = (c] — cb —ic| +ic) —cleifey + e ey
+iclele —iclelel)o). (15)

One can easily check that the OD-block state satisfies
1Y )op = il )op. (16)

Accordingly, two Majorana chains stack into the root state of
0D-block states.

Hence, the group structure of inversion FSPTs with 1> =
Py is Zs, agreeing with the classification of 1D T = 1 super-
conductors.

IV. ROTATION FSPT PHASES IN 2D

We now study 2D rotation FSPTs, both with and without
additional Abelian onsite unitary symmetries. We will dis-
cuss the case of FSPT phases with Cj,; symmetry only in
the main text, and present an example of intrinsically inter-
acting fermionic SPT phase with Cf, X Z-zr symmetry. The
classifications are summarized in Table I. We leave the clas-
sifications with an additional Abelian internal symmetries to
Appendix E.

A. C;

Let us begin with FSPTs with C,, symmetry only. Ac-
cordingly to the general classification scheme in Sec. I B, we
need to consider (i) possible OD-block states, (ii) possible
1D-block states, and (iii) 2D invertible topological phases that
are compatible with C;;, symmetry.

For OD-block states, the onsite symmetry group is isomor-
phic to ZgM with the generator being the rotation R. There
are 2M 0D-block states, with the rotation eigenvalue being
1,e™M ., eM=D7/M " regpectively. These states form a
group Zjy. However, not every OD-block state represents a
distinct FSPT state, i.e., there exists “trivialization.” Consider
a system with a fermion c;, on each site, where (j, ) is the
site index with j =1,..., M and « is an additional label.
Under rotation R, the fermions transform as follows:

Cj,Dt — Cj+1,ou 1 < J < M; CMaq —> —Cla- (17)

The “—” sign for transformation of ¢y, complies with RY =
Py. It is easy to design a rotation symmetric gapped Hamil-
tonian such that the ground state is a simple atomic insulator
]_[n a ¢ 410). Letr = O represent the lattice sites closest to the
origin. Then, the 0D-block state is

[¥)op = €] oCh g - - - Chyol0)- (18)

It is easy to see that,

R|Y)op = C2 0030 (= Cl 0)|O> = (_1) [V )op- 19)

Accordingly, when M is odd, this OD-block state has rotation
eigenvalue —1. Hence, the OD-block states reduce to a Zy,
classification. Equation (19) does not lead to trivialization
for even M. We find no other trivialization processes either.
Therefore the classification of 0D-block states remains Z,y,
for even M.

Next, we consider 1D-block states. Consider M semi-
infinite 1D lines, arranged in a rotation symmetric way round
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FIG. 3. Building 1D-block state by gluing half Majorana chains
across the origin in a C;; symmetric way, for even M. We take M = 4
for illustration.

the origin. On each semi-infinite line, we may have a Ma-
jorana chain. Whether it forms a 1D-block state depends on
whether the Majorana zero modes at the origin can be gapped
out in a rotation symmetric way. When M is odd, there are
odd number of Majorana zero modes at the origin. It is ob-
vious that we cannot gap them out. When M is even, one
can show that the Majorana zero modes can be gapped out
while preserving R. One just needs to glue all pairs of the
half-chains that are opposite to one another (see Fig. 3). More
specifically, denote the Majorana zero modes at the origin by
Y1, Y2, - - - » Yu. Under rotation R,

Yi = Vit L <G <M ym — =y (20)

Then, the zero modes can be gapped out by the following
Hamiltonian:

M2
H = —iz YiVi+My2- (21
j=1

Moreover, H is symmetric under the transformation (20).
Hence, we obtain a rotation symmetric 1D-block state.

Does the 1D-block state extend the OD-block states? To
obtain the group structure of FPSTs, we consider stacking two
1D-block states (the left panel of Fig. 4). On each axis, we
have a double Majorana chain. We apply a similar adiabatic
deformation as in Fig. 2, using a Hamiltonian like (10). It
is not hard to see that the stacked 1D-block state can be
deformed to the state on the right side of Fig. 4. An important
feature of that state is that intersite entanglement only occurs
in the neighborhood of the origin. We choose these sites as the
0D block. Then, we need to calculate the rotation eigenvalue
of this OD-block state. The calculation is very similar to that
for 1D inversion FSPTs. In fact, the OD-block state here is
M /2 copies of the OD-block state in Fig. 2 [given in Eq. (15)].
With this understanding, we find

R|¥)op = € 2¥D)yr)op,

where |{)op denotes the OD-block state in Fig. 4. That is, the
0D-block state is nontrivial. However, the rotation eigenvalue
can be modified, if we stack a OD-block state to the original
1D-block state before stacking. If a 0D-block state with a ro-
tation eigenvalue eP/M ig attached to each 1D-block state, the
rotation eigenvalue r of the OD-block state in Fig. 4 becomes

;= ei%(Mfl)Jriz;,—”.

There are two cases: (a) when M = 0 (mod 4), we can take
p= %(1 — M)M such that » = 1; (b) when M = 2 (mod 4),
there exists no integer p. Therefore, when M is a multiple of
4, there is an appropriate 1D-block state which itself forms a
Z structure under stacking. When M is an odd multiple of 2,
1D-block states extend the OD-block states, and all together
they form a Zg4y group.

Finally, we need to consider 2D invertible topological
phases that are compatible with C,, symmetry. 2D fermionic
invertible topological phases are generated by the p, £ ip,
states. Conventionally, they are not considered as FSPTs since
they are topologically nontrivial even in the absence of any
symmetries. We show in Appendix D that p, & ip, are com-
patible with C;, symmetry. However, since these states form
the group Z which is of infinite order, they can never extend
the OD- and 1D-block state. The fact that p, & ip, super-
conductors are only compatible with C;, symmetry will be
important in our later discussions.

rotation symmetric
adiabatic deformation

0D block

A

FIG. 4. Rotation symmetric adiabatic deformation of two stacked 1D-block states. After adiabatic deformation, intersite entanglement only
occurs in the 0D block (gray square). Physical meanings of the graphs are the same as in Fig. 2.
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adiabatic
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=y
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FIG. 5. Two smooth deformations of the state on the left. The state on the top right can be further deformed, in a rotation symmetric way, to
the trivial product state. The OD-block state on the bottom right is a short Majorana chain, arranged rotation symmetrically around the origin,
which is known to have an odd fermion parity. Physical meanings of the graphs are the same as in Fig. 2.

Combining these results together, FSPTs with C;, symme-
try are classified by the following groups under stacking

Zy, M is odd
G = { Ly, M =2 (mod 4). (22)
ZQM X Zg, M=0 (mod 4)

This agrees with the classification of 2D FSPTs with onsite
unitary symmetry Z‘g X L.

B. C;
Let us first consider 0D block state, corresponding to lin-
ear representations of Zg X Zy group. Naively the rotation

eigenvalues are e where | = 0,1,...,M — 1. However,
we should again consider a state like Eq. (18) which may
trivialize some of the rotation eigenvalues. Indeed, we have

R[¥)op = (=D 'y)op. (23)

Thus, for even M, the rotation eigenvalue —1 in fact corre-
sponds to a trivial phase. Thus we obtain Zy/, classification.
For odd M, the classification remains Z,;.

The OD-block state with odd fermion parity can always be
trivialized. It is obvious for odd M. The atomic insulator state
in (18) has odd fermion parity. For even M, it is somewhat

less obvious. Consider a state of M Majorana chains, arranged
in a rotation-symmetric configuration, as illustrated in Fig. 5
for M = 4. We will assume that the system is infinite. On
the one hand, this state can be adiabatically deformed to a
trivial state, by disentangling two neighboring chains. On the
other hand, there exists another adiabatic deformation, namely
choosing an alternative “dimerization” pattern when disentan-
gling neighboring chains, which removes the entanglement
between fermions in a 0D block and those sitting outside. The
remaining state in the OD block of Fig. 4 is nothing but a single
Majorana chain with periodic boundary condition. (Instead,
if we had C,; symmetry, the boundary condition would be
antiperiodic.) It is a well-known fact that the ground state of
a Majorana chain with periodic boundary condition has odd
fermion parity. Combining the two adiabatic deformations,
it proves that the 0D block state with odd fermion parity is
indeed trivial. We note that in a finite system, one can start
from a product state, and adiabatically deform it into a state
with odd fermion parity in the origin, and a Majorana chain
sitting on the boundary.

Now we turn to 1D block states. Again consider M semi-
infinite Majorana chains meeting at the rotation center. To
construct a SPT phase, one must be able to gap out the M
Majorana zero modes in a rotationally invariant way. We can
prove that this is impossible. For odd M this is obvious, so we
will assume M is even. Denote the Majorana zero modes by
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vi,j=1,2,...,M.Rotation actson themby R : y; — y;4i.
Consider the fermion parity near the rotation center. Without
loss of generality, we have

M
Py =M ]_[ Vi (24)
j=1

It is easy to show that
RPR™ ="y oy = (DM 7'Pp = =P (25)

The anticommutation between R and Py forbids a nondegen-
erate ground state.

Lastly we consider 2D block states. In this case, we find
that p, £ ip, superconductors (or any state with an odd Chern
number) are not compatible with the C;; symmetry. Therefore
only those with even Chern numbers are allowed. Interest-
ingly, there is a way around this obstruction: if the system has
a (single) Majorana mode at the rotation center, then one can
realize a p, %+ ip, superconductor with C;; symmetry. We will
elaborate more on this in Sec. V1.

To conclude, we have found that the classification is

Zy,, M is even
g = {ZM/ M is odd ° (26)
All these states are characterized by an “angular momentum,”
i.e., rotation eigenvalues. In a sense they are all “bosonic” SPT
phases.

C. CM XZI

In this section, we consider time-reversal symmetry in the
BDI class, i.e., T> = 1. We will not attempt to give a full
classification, but rather focus on an example of interacting
intrinsically fermionic SPT phase protected by Cy; and Zg.

We will consider a 1D block state. The blocks are 1D
class BDI topological superconductor, each consisting of v
Majorana chains [53]. Since the interacting classification for
BDI superconductors is Zg, interactions can gap out the end
states of 8 Majorana modes. Therefore we may construct a
time-reversal invariant SPT state when Mv is a multiple of
8. It remains to check if the gapping interactions can be Cy
symmetric. If so, the states obtained this way are only enabled
by strong interactions at the rotation center.

Here we study M = 4, v = 2 in detail. We show that there
indeed exist Cy, invariant interactions which gap out the Ma-
jorana zero modes in the rotation center. The edge mode of the
1D BDI superconductor is a complex fermion. We have four
edge modes in the rotation center, ¢; with j =1, 2, 3, and 4.
They transform under the time-reversal symmetry as ¢; — c;.

Under Cf, they transform as
Cj—>Cj+1,j=1,2,3;
c4 —> SCY. 27

where s = 1 corresponding to C, f.

Let us denote n; = cj.cj. First let us add the following
interaction to the Hamiltonian:

(D)D) o)1)

with U > 0. With this interaction, one and only one of the two
fermions 1 and 3 is occupied. It is the same for fermions 2 and
4. Then, there is a twofold ground-state degeneracy from 1 and
3, which can be viewed as a spin-1/2 degree of freedom. So
is it for 2 and 4. We will denote the two spins by T3 and 4.
More precisely,

Ca
T, = (cj cpo” (Cb), (29)
where (a,b) = (1,3) or (2,4), and o* with u =x,y,z are
Pauli matrices. Under Cy, they transform as

" " X X y Yy Z z
T3 ™ Tgo Toa 7 STy3s Ty > —ST3 Ty — s
(30)
Under the time-reversal symmetry, they transform as

T (31)

Now we further add an additional term H, to lift the degener-
acy and obtain a unique ground state. For s = 1, we add

Hy = J(tfy05, + 1375, — T3734) (32)
and for s = —1, we add
Hy = J (0305, + T35, — Ti334), (33)

where J is positive. It is easy to check that the Hamiltonian H,
preserves all symmetries.

Notice that our Hamiltonian preserves the U(1) symmetry.
Therefore we can also view the system as a topological insula-
tor in class AIII, with U(1) x ZI symmetry (i.e., time-reversal
acts as particle-hole transformation). An example of such 1D
topological insulator is the famous Su-Schriffer-Heeger chain.

We can also check that the 1D block construction goes
through for M = 8, v = 1 for both C;.

V. ROTATION FSPT PHASES IN 3D

We study 3D FSPT phases with C;*; x G in this sec-
tion, where G is a finite Abelian unitary group. It is
known that with only finite unitary symmetry group, there
are no free FSPT phases in 3D [54,55]. We will see that
this is true with rotation symmetry as well, as expected
from the crystalline equivalence principle. We will con-
struct a series of FSPT phases which are all stabilized by
interactions.

For 3D systems, we should consider (i) 3D internal FSPT
phases. (ii) 2D block states and (iii) 1D block states on the
rotation axis.

Let us first consider 3D block states. These are internal
FSPT phases with Zg x G symmetry. Recently complete clas-
sifications of such phases have been proposed in Refs. [47,48],
extending an earlier partial classification based on group
super-cohomology [45]. We conjecture that all 3D internal
FSPT phases with Abelian unitary symmetries are consis-
tent with the C,, symmetry. More specifically, as we will
argue later (see Sec. VI), the “beyond-supercohomology”
FSPT phases, or Majorana-decorated SPT phases, are only
compatible with C;, symmetry. We conjecture that the group
supercohomology phases can be compatible with both ij
symmetries.
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Let us comment on the general strategy to study 2D block
states. It turns out that for our purpose, all relevant 2D block
states have free fermion realizations, so we can easily obtain
low-energy theories of 1D gapless edges. They are either
Majorana or Dirac fermions. Let us set up some notations
that will be used throughout the section. The chiral Majorana
edge mode of a p, + ip, superconductor is denoted by y,
and the Majorana edge mode of a p, — ip, superconductor is
denoted by ¥ which has opposite chirality to y. The chiral
Dirac edge mode of a Chern insulator with Chern number
C = 11is denoted by v, while ¥ denotes the chiral Dirac edge
modes for C = —1.

In order to build a fully gapped bulk phase, we demand that
these edges can be gapped out without breaking the internal
symmetries or the Cy symmetries. Once we focus on the
edges, we can imagine “folding” all the half planes so that they
can be treated as a multilayer system, and the rotation acts as a
cyclic permutation of layers, i.e., an internal symmetry. Then
the requirement is that the multilayer system is a trivial SPT
phase under all the symmetries.

The 1D block states are 1D FSPT phases with only internal
symmetries, as CE acts as internal symmetry on the rotation
axis. Another issue one needs to deal with is the possible
group extension of ¥_; by 4_,. Some 2D block states may
stack into 1D block states, leading to nontrivial group exten-
sion of 4_;.

In the main text, we consider the classifications of FSPT
phases with C Aﬁ symmetry only, and those with C;, x Zy sym-
metry, to highlight the main technicalities and the subtleties
that may arise. To simplify our discussions, we will assume
that the orders of groups are all powers of 2, i.e.,

M=2" N=2" (34)

withm > 1 and n > 0. We have also considered other Abelian
internal symmetries and the details can be found in Ap-
pendix F. We summarize the classification s for Cj; x Zy in
Tables II and III, which we believe are complete.

A. C;

When only the rotation symmetry is present, there is no
need to consider 3D block states. For 1D block states the
rotation symmetry becomes an internal symmetry ZZM This
case is covered by Sec. V B 1 below. It turns out that there is
no nontrivial 1D block states. Furthermore, we do not have to
consider 2D block states, since they would have to be a class
D topological superconductor which is classified by Z. There
is no way that their chiral edge modes near the rotation axis
can be gapped out, and thus can not be used to build 2D block
states. In conclusion, we find that there are no nontrivial FSPT
phases in this case.

B. C;; x Zy

We now study FSPT phases with C;; x Zy symmetry. All
nontrivial FSPT phases found here are enabled by strong
interactions. The classification is summarized in Table II.

1. 1D block states

In a 1D block state, the internal symmetry on the rotation
axis is ZgM x Zy. Hence, we need to deal with 1D FSPT

phases with ZgM x Zy internal symmetry, which we review
in Appendix C. The “bosonic” part of the symmetry group is
= Zy X Zy. It is extended nontrivially by Zf The group
extens1on can be described by a 2-cocycle v € 7—[ [Gy, Z,].
We label the group elements of G, by a = (a;, ap) where
ay € Z/MZ, a, € Z/NZ, and group multiplication is denoted
additively. Then, an explicit representation of v is
»(a. by = al+bl_[al+bl]M. (35)
M
where [. .. ]y denotes “modulo M.”

As reviewed in Appendix C, we have three types of 1D
FSPT phases: (i) the Majorana chain, (ii) FSPT phases de-
scribed by u € H'[Gy, Z,], and (iii) bosonic SPT phases
described by an element in H2[Gp, U(D)]. Tt is known from
Ref. [53] that the Majorana chain is not compatible with
a nontrivial v, which is exactly our case. So, we do not
need to consider the Majorana chain. Next, we pick a u €
H'[Gy, Z5] for the second type of FSPT phases (i.e., i is a
homomorphism G, — Z;). However, not all u’s are valid.
Mathematically, u leads to an FSPT phase only if the so-
called the obstruction class [O] € H3[Gy, U(1)] is a trivial
3-cocycle (see Appendix C). More explicitly, O is given by

O(a,b,c) = %,u(a)v(b, c)

_ k(er)
- 2M
uler)
2M
where e; = (1, 0) and e, = (0, 1). To determine whether [O]
is trivial or not, we compute the invariants for group cohomol-
ogy classes defined in Ref. [56]:

ay(by +cy — [by +ci1ly)

+

ax(by +c1 = [b1 +c1lm), (36)

O =mule)), 0,=0, Op=——"u(e), (37

TN
(M, N)
where (M, N) denotes the greatest common divisor of M and
N. It was shown in Ref. [56] that [O] is trivial if and only if all
the above invariants vanish. Therefore we must have p(e;) =

0 and
ies) = {0 !

For the nontrivial case w(e;) =1 when m < n, we also
have to consider bosonic SPT phases. They are classified by
H*[Zy x Zn, U] = Zguny = Zy- 1t can be shown that
the FSPT phases and bosonic SPTs together form a Z,y, group
under stacking. Hence, the overall classification is given by
Zsy with a root fermionic SPT when m < n, and Z Ny =
Zy for m > n with all SPTs being bosonic. Putting the two
cases together, the classification of codimension-2 SPT phases
is given by ¢¥_, = Z@u.n)- These 1D block states cannot be
trivialized.
We note that none of the 1D SPT phases with 1 <

n can be realized in nomnteractmg systems. The reason is

that for free fermions, ZZM with M even is automatically

ifm<n

ifm>n’ (38)
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enhanced to a U(1) symmetry. We can then diagonalize the
single-particle Hamiltonian according to eigenvalues of the
Zy symmetry, and in each subspace with a given eigenvalue,
the single-particle Hamiltonian falls in class A, which has no
nontrivial states in 1D. An interacting commuting projector
model for Z£ x Z4 1D SPT phase is recently presented in
Ref. [57].

2. 2D block states for n = 1

We now turn to 2D block states. The situations for n =
1 and n > 1 are different. We discuss the n = 1 case in this
subsection, and leave the latter to the next subsection. On the
half planes are 2D FSPT phases with Z, symmetry, whose
classification is reviewed in Appendix C. The key question
is whether we can glue the 2D blocks at the rotation axis by
gapping out the edge modes without breaking the symmetries.

To see whether the gapless edge modes can be gapped
out preserving all symmetries, we fold the 2D blocks to a
multilayer system. Then, the rotation symmetry becomes the
cyclic permutation of layers, i.e., an internal ZgM symmetry.
The gappability of the edge modes is equivalent to that the
multilayer state is topologically trivial. This can be checked
by computing the topological response through inserting sym-
metry defects with fluxes corresponding to g and R, the
generators of Z, and C;; respectively. The SPT phase is trivial
if and only if the topological response of these defects are
“trivial”. The precise meaning of “triviality” will be clear be-
low. More specifically, according to Ref. [58], the SPT phase
with Zg v X Z> symmetry is trivial as long as the topological
twists of the g and R are trivial, which we calculate now.

To do that, we first describe how the edge modes trans-
form under the symmetries. 2D FSPT phases with internal
Z, symmetry are classified by Zg. The edge of a nontrivial
SPT phase contains v pairs of counter-propagating Majornana
modes, y, and y,, wherea=1,...,vandv=1,2,...,7.
Since we have M copies of 2D blocks, there are Mv pairs
of Majorana modes, y;, and ¥, ,, with j = 1,..., M. Under
rotation R, they transform as

yj,a — ijrl,av 1 < ] g M — ls

YM,a - —Vla- (39)

The transformations of {y; ,} are the same. At the same time,
under the Z, symmetry g, they transform as

Via = —Via Vj,a - Vj,a' (40)

That is, y; . is neutral while ¥ , is charged under Z, symme-
try.

To proceed, we transform the Majorana fields to an eigen-
basis of the rotation symmetry. We define the following Dirac
fermion modes:

M M
Via=Y 0 Wia Via=) 0 7. @D
j=1 j=1

where w = e and [ is an odd integer. Without loss of gener-
ality, we take / = 1,3, ..., M — 1 and there are M/2 distinct
values of /. It is straightforward to check these fermions sat-
isfy the anticommutation relations of Dirac fermions. Under

rotation R,
M—1
—1j —IM
Y — E o My —om My
j=1

M

= Za)_[(j_l)]/j + ¥
j=2

=o'y, (42)

where we have omitted the index a for clarity. It is the same
for the symmetry transformation of ¥, ,. Accordingly, in this
basis, all Dirac fermion modes transform diagonally under the
rotation R. It is obvious that the Dirac fermions also transform
diagonally under the Z, symmetry g.

To check whether the SPT phase is trivial or not, we cal-
culate the topological spins corresponding to g and R fluxes.
A basic fact that will be used (and repeatedly used later) is
the following: in a Chern insulator with Chern number C, a
2n ¢ flux, where ¢ is a rational number, has a topological
twist factor ¢™C?* . In this section (as well as continuations
in Appendix F), we denote topological twist factor as e*™"
where £ is the topological spin. According to (40), the g flux
corresponds to the collection of 7 fluxes from the v; , modes,
each corresponding to a C = 1 Chern insulator. Hence, we
have

vM

hg = 6 (43)
The triviality of the multilayer SPT phase requires that 2, =
0 modulo integers. The factor of 2 follows from the fact that
g is an order-2 group element (cf. Refs. [58,59]). Hence, vM
should be a multiple of 8. This is just saying that M copies of
the 2D SPT states must be trivial. To calculate the topological
spin of the R flux, we notice that v , and W,’a transform in
the same way under R. However, they contribute oppositely
to the topological spin of R. Accordingly, we have

hg = 0. (44)

Hence, the overall requirement for the multilayer SPT to be
trivial is Mv = 0 (mod 8).

To summarize, as long as the 2D SPT blocks satisfy the
“fusion” requirement Mv = 0 (mod 8), they can be glued to-
gether to form a 3D FSPT phase. The group structure follows
immediately from that of the 2D phases.

(1) For m = 1, the root state corresponds to v = 4 on the
half plane, forming a Z, subgroup. This is in fact a bosonic
SPT.

(2) For m = 2, the root state corresponds to v = 2 on the
half plane, forming a Z4 subgroup. This phase corresponds
to the interacting FSPT phase found in Ref. [60] with Z£ X
Zy X Z4 symmetry.

(3) For m > 3, the root state corresponds to v = 1 on the
half plane, forming a Zg subgroup. This phase corresponds
to the interacting “beyond-supercohomology” FSPT phase
found in Refs. [48,61] with Zg X Zy X Zg symmetry.

In a closed form, the classification is 9_; = Zgcam,3)-
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Finally, we need to check the overall group structure of
SPTs under stacking operation, after taking both 1D and 2D
block states into consideration. This is discussed in Sec. V B 4.
The result is that there is no group extension, so the overall
classification is given by

G =9\ xGy =1L X Lecam,8)- 45)

The results are summarized in Table II.

3. 2D block states for n > 2

When n > 2, 2D FSPT phases with Zy internal symmetry
are classified by Z, x Zy. Here the Z, subgroup is gen-
erated by the so-called “non-Abelian” root SPT phase, with
Majorana edge modes. The Z,y subgroup is generated by
an “Abelian” SPT phase with Dirac edge modes (however,
two copies of the root state is equivalent to a bosonic state).
Both root phases admit free fermion realizations, which are
reviewed in Appendix C.

First, we consider the 2D blocks to be in the Z, Majorana
root state. As long as m > 1, the edge modes at the rotation
axis all together can be gapped out. One just needs to check
whether they can be gapped out without breaking symmetries.
According to Ref. [58], the edge theory of each 2D FSPT
block consists of N?/4 chiral Majorana edge modes y,, with
j=1,...,Mand a=1,...,N?/4, and N?/8 chiral Dirac
edge modes E_,-;, forb=1,..., N2/8. Note that y;, and Eﬂ,
have opposite chiralities. Again, let us denote g as the genera-
tor of Zy symmetry and R as the rotation. Under g, the fields
transform as

Vil = —Vjl,
Via = Vja>

i, — TN, (46)

a>?2,

Under rotation R, we have
Via = Vi+tas Yip— Yisip j<M—1,
YMa = —Via Pup— —Pip 47

We define the following complex fermions to diagonalize the
rotation symmetry transformation:

M
1 )
Ipla = 7= w_ljyjav
M ijl

M
‘(//pb = E w_pjl‘l/jb’ (48)
vM o

where w = ¢/M [ is an odd integer taking values in the range
1,3,...,M — 1, and p is also an odd integer taking values
in the range 1,3,...,2M — 1. Under the rotation R, these
complex fermions transform as

Vie = &' Viar Y py = OV g (49)

With the above preparation, we now check if the 2D blocks
can be glued at the rotation axis while preserving the symme-
tries. It is equivalent to check if the edge of the multilayer
system, obtained by folding the 2D blocks, can be gapped

out without breaking R and g, i.e., if the multilayer sys-
tem is topologically trivial. The symmetries become internal
ZgM x Zy symmetry in the multilayer system. According to
Refs. [58,59], to see if the SPT is trivial or not, it is enough
to check the topological spins of the R, g and gR fluxes. With
similar calculations as in Sec. V B 2, it is easy to check that

hg = hg = 0. (50)

To calculate the topological spin of the gR flux, we first
write down how the complex fermions transform under the
combined gR symmetry:

Ui — —o'yn,
wla - a)lwla»
Yoo — €Ny, (51)

We can then obtain

1 M+1\? N? 1 \?
hg‘*Zé[Z(TM ) *?(TQ(%”
N? 1 p\°
TI6 2 (Ww)
= YN ran—a
64
M /N\2
:_1_6[(5) +N—l}. (52)

Notice that (%V)2 + N — 1 is an odd integer. For the SPT phase
to be trivial, we should have

hgr x [2M,N] =0, (mod 1),

a>?2,

where [...] stands for “least common multiple.” The factor
[2M, N] is the order of the group element gR. This factor is
needed for the purpose of finding “trivial” topological spins
(cf. Refs. [59] or [58]). Then, we have the following two cases.

(1) When m > n > 2, [2M, N] = 2M. Then, we always
have 2M hgg to be an integer.

(2) When m < n, then [2M, N] = N. Then, we should have

MN
Nth — _F — 2m+n—4’
where the equations are defined modulo integers. This require-
ment is not satisfied, i.e., the multilayer SPT is nontrivial,
only if m = 1,n = 2. All other cases with n > m > 1 the
multilayer SPT is trivial.

Therefore the 2D blocks can be glued without breaking
the symmetries for most cases, only except for C, X Zj.
A similar obstruction arises in the construction of “beyond-
supercohomology” phases with Z{ X 2Ly X Z4 symmetry
[48].

Next, we consider the other choice of 2D block states, by
putting an Abelian FSPT phase on the half plane. The Abelian
FSPT phases with Z, symmetry are classified by Z,y. Let
us put each 2D block in such an FSPT phase with index v,
withv =1,...,2N — 1. The edge of each block consists of v
pairs of counter-propagating Dirac fermions ¥, and ¥, with
a=1,...,v.Since we have M copies of 2D blocks, there are
in total Mv pairs of Dirac fermions at the rotation axis. Under
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rotation R and the Zy generator g, the fermions transform as
follows:

R: V> Y Yia— Yjsra 1<j<M;
lI/M,a - _wl,aa EM,a - _El,u
omi - -
g . wj,a —> e N 'Ijj,aa wj,a —> 'pj.w (53)

Again, we Fourier transform them to v, and v;,:

M M
1 . _ 1 L
Vie=—= Y 0 W, Y= —=> o W (54)
vM = vM o

Note that here / ranges from +1, £3, ..., £(M — 1). Under
rotation R, we have

R: 1vbla - wll/flav I/;Ia - C‘)lll_fla' (55)

The g transformation takes the same form as ¥;, and ¥ j,.
Under the combined gR transformation, we have

gR : Vi, — TN Y, Vi — o' Y (56)

With the above preparation, we now check if the 2D blocks
can be glued without breaking the symmetries. As before, it
is enough to check the topological spins of the g, R and gR
fluxes in a multilayer system after folding the 2D blocks. After
similar calculations as before, we find

hg =0,

g = her = 2 5
g — llgR — W ( 7)
Again, considering the orders of the elements g and gR are N
and [2M, N] respectively, the multilayer SPT is trivial if
vM vM
X — = —
2N? 2N
That is, we should have vM = 0 (mod 2N). More specifically,
we have the following two cases.

(1) When m > n > 2, then vM is always a multiple of
2N. Thus the 2D block state is “obstruction-free” and the
classification is Z,y.

(2) When m < n, for vM to be a multiple of 2N, we require
v to be a multiple of % Then, the Abelian 2D block states are
classified by Zy,.

Putting the two cases together, we have the Abelian 2D
block states are classified by Zy vy, where (M, 2N) is the
greatest common divisor of M and 2N. To summarize, the 2D
block states are classified by

7y
Y | = ’
! {Z(M,ZN) X Z§A,

=0 (mod 1).

C;XZ;;

others (58)

For C; x Z4, the 2D block states are Abelian FSPT phases.
For other symmetries, the generator of Z)Y* corresponds the
non-Abelian Majorana FPST phases and Zgcqas,2n) corre-
sponds to Abelian FSPT phases.

Finally, we check the overall group structure of the 1D
and 2D block states under stacking operation. This is done
in Sec. VB 4. The result is that ¢4 _, extends ¢_; only when
M = 2, and the extension occurs only for ZY*. That is, when
M = 2, the root ZI;A blocks state stacks into the 1D root block
state. Since 1D block states are classified by Z oy ny = Za, it

(b)

FIG. 6. Symmetry defects in 2D-block states with Cy; x Zy
symmetry. We have set M = 8 for illustration. (a) Zy symmetry
defect loop (blue solid circle) is a collection of 2D defect points.
The disk bounded by the loop is 2D FSPT state (1D-block state).
The dashed lines are branch cuts. (b) A link of disclination (rotation
defect) and Zy defect loop.

leads to an overall Zg classification. Accordingly, the overall
classification is given by

Zz X Z4,
Zz X Zg,
Z(M,zN) X Z(2M,N) X ZIZ\IA,

m=1,n=2
m=1,n>=3, (59
m=2,n>2

@G —

where we have used the explicit form of 4_; and ¥_,.
One comment is that both C; x Zp and C, x Z; corre-

spond to internal symmetry Z{ X Zy X Zp, and thereby their
FSPT phases should give the same classification. Indeed, the
above result agrees with that in Sec. V B 2. Also, form, n > 2,
the classification is symmetric in M and N, agreeing with
the fact that C;; x Zy corresponds to Z‘g X Zy X Zp internal
symmetry, where Z),; and Zy are in symmetric positions.

4. Group structure of FSPT phases

To obtain the aforementioned group ¢, we make use of the
following two properties. First, if a 2D-block state is bosonic,
it will not stack into a 1D-block state. This can be seen from
our discussion on bosonic rotation SPT phases in Appendix B.
Second, if we insert a loop-like symmetry defect into a 3D
FSPT state, the membrane bounded by the loop supports a 2D
FSPT state. This point is demonstrated in Ref. [60]. It can be
used to infer the group structure of ¢.

The first property is enough to determine ¢ for n = 1.
In this case, the root state in ¢_; is either bosonic itself or
stacking into a bosonic SPT. So, ¢_; will not be extended by
Y ,, making ¥ =94 | x 4_,. It is similar for the “Abelian”
SPT states for n > 2. Therefore the only possible nontrivial
extension of ¥_; by ¥, comes from “non-Abelian” SPT
phases.

To check if two non-Abelian 2D-block states will stack into
a 1D-block state, we consider symmetry defects. Figure 6(a)
shows a unit defect of Zy. It consists of a set of defect
points on the 2D planes, which collectively form a looplike
symmetry defect in 3D. More precisely, in each 2D plane,
we create a pair of defect points, connected by a branch cut.
We then bring one end of the branch cut onto the rotation
axis, and glue all branch cuts together on the rotation axis.
For 2D “non-Abelian” SPT states, the unit Zy defect carries
a Majorana zero mode. So, a branch cut can be thought of
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as a Majorana chain. When we glue the branch cut together,
they form a rotation symmetric 1D-block state on the 2D
membrane bounded by the defect loop. Under stacking, these
membrane FSPTs should follow the same group as 2D C,,
FSPT phases. According to Sec. IV A, nontrivial extension
occurs only when M = 2. That is, for M = 2, 1D-block states
on the membrane stack into OD-block states on the membrane.
It implies that the corresponding 3D FSPT state must be a
1D-block state. Similar analysis can be done on the rotation
defect (i.e., disclination), shown in Fig. 6(b), which does
not change the stacking structure. Therefore ZY* is extended
by &, only for m = 1 and n > 3. This gives the results in
Eq. (59).

Two comments are in order. First, the group ¢ can also be
obtained by studying the surface. Suppose the bulk is a root
2D block state in 4_;. On the rotation axis, edges of the M
blocks are gapped out without breaking any symmetry. On the
surface, the M edges, arranged rotation symmetrically, remain
gapless. If we stack |%_;| copies of the root state, the edge
modes on the surface can be gapped out, leaving the only
subtlety at the intersection point of the surface and rotation
axis. This point may carry a symmetry-protected zero mode.
Whether it hosts a zero mode or not corresponds exactly to
whether the stack of |%_;| copies of the root state is a 1D-
block state or not. However, it is technically not very easy to
do so. Second, symmetry defects themselves have interesting
properties. Here, we mention one. For a “non-Abelian” 3D
FSPT state, if a unit Zy defect loop is linked to a disclination,
both will carry an odd number of Majorana zero modes [see
Fig. 6(b)]. It is obvious that the Zy defect loop carries an odd
number of Majorana zero modes. Since the overall number
of Majorana zero modes must be even, the disclination must
also host an odd number of Majorana zero modes. Note that
an odd number of Majorana zero modes are robust even after
they mobilize on the loop. This property has recently been
studied in internal FSPT states in Ref. [61].

c. ¢

Like in the C;, case, we only need to consider 1D block
states for C,; symmetry. For 1D block states, we have an

internal Zy; x Zg symmetry on the rotation axis. As reviewed
in Appendix C, classification of 1D FSPT phases with in-
ternal symmetry is given by a triple (i, w, ), where [u] €
H'Zy, 7o) = Lo, () € HZy, U(1)] =7Z; and y =0, 1
specifies whether it is a Majorana chain or not. The four 1D
block states form a Z, x Z, classification [46]. We show that
all these 1D block states can be trivialized. Hence, there are
no nontrivial SPTs for the C;; symmetry.

We first consider y = 1, i.e., a Majorana chain on the axis.
Let us consider a surface perpendicular to the rotation axis,
which preserves the symmetry. We see that there is a Majorana
zero mode at the rotation center on the surface. This Majorana
zero mode can be eliminated by the following construction:
as we show in Appendix D, a fully gapped p. + ip, super-
conductor in 2D is only consistent with C;, symmetries. If we
enforce a C;; symmetry, we can build a p, + ip, supercon-
ductor with a Majorana zero mode at the rotation center. We
can then stack this 2D state to the 3D surface, and couple the
two Majorana zero modes to gap them out. We thus find a

iy

DA

FIG. 7. Tllustration of how to trivialize a Majorana chain on C,
rotation axis. On the left, we show two planes of chiral topological
superconductors parallel to the inversion axis, with opposite chiral-
ities. Turning on the inversion-symmetric interplane couplings near
the inversion axis, one can deform the system to the right picture
where the two planes are reconnected and a Majorana chain is left in
the middle. The bottom of the figure shows a top view of the system,
where chiral Majorana edge modes are reconnected.

fully gapped, short-ranged entangled surface on the surface,
meaning that the bulk is also trivial.

One can in fact directly trivialize the bulk, using the con-
struction in Sec. II B [62]. We will illustrate this construction
for M = 2. First, we consider two layers of 2D supercon-
ductors parallel to the inversion axis, one p, + ip, and one
Px — ipy, such that the two layers are mapped to each other
under rotation. This is illustrated in the left panel of Fig. 7.
Now we turn on interlayer couplings in the region close to the
inversion axis, to “reconnect” the two planes. The regions with
interlayer coupling turned on are then disentangled. However,
if we require that the interlayer coupling preserves the C,
symmetry, the disentangling can not be complete; there is
actually a Majorana chain left in the middle, shown in the
right panel of Fig. 7. This can be seen from the surface, by
exactly the same argument in Appendix D.

Now we start from the state with a Majorana chain on
the inversion axis. We can create two cylinderal ‘“bubbles”
of chiral p, — ip, superconductors, bring them close to the
inversion axis, and use the deformation process described
in the previous paragraph to eliminate the Majorana chain
while reconnecting the two cylinders into one larger cylinder
enclosing the axis. Then we can push this topological super-
conductor close to the surface. As shown above, a gapped
surface necessarily harbors a p, + ip, superconductor, which
can be trivialized together with the one created from the bulk.
Now the whole state is trivialized. While we just described a
particular construction, we conjecture that this is what hap-
pens in general: given a finite (Cy-symmetric) region, any
adiabatic deformation that disentangles the Majorana chain on
the axis necessarily creates a p, & ip, superconductor on the
boundary.

We note that this is an interesting kind of bulk-boundary
correspondence: while the bulk is indeed trivial, its surface is
nevertheless a nontrivial invertible topological phase. In fact,
the invertible phase realized on the surface is “anomalous,”
in the sense that one can not find the same phase with the
given symmetry properties in strictly 2D systems. In this
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case, the boundary realizes a p, & ip, superconductor with
C,; symmetry. This is impossible unless the Hilbert space of
the 2D system contains an odd number of Majorana modes
in any Cy-symmetric region, which is of course what the
bulk provides. The “anomalous” invertible phase can only be
realized on the boundary of a trivial bulk state but still with
nontrivial entanglement. If we remove the bulk entanglement,
i.e., transforming the bulk into a product state, we necessarily
remove the boundary state as well.

Next we consider a nontrivial [@], which means that on
the edge, the generator of Zj; (namely, R) does not commute
with the fermion parity. We can realize such a phase by two
decoupled Majorana chains, whose Majorana edge modes
are denoted by y; and 3, and let R maps to (—1)™. One
might worry that such a representation of Z,, is not faithful.
This can be easily resolved by attaching a completely trivial
state where R acts faithfully, without affecting any of the
discussions we will have. The R transformation acts on the
boundary as

Riyi—= =y, n =, (60)
under which the local fermion parity iy;y, changes. That is,
RP; = —P¢R, forming a projective representation of Zg X
Zy.

This 1D block state is trivial, which we show in a similar
way as above. Again, consider a surface perpendicular to the
rotation axis. We see that there is a pair of Majorana modes
on the surface, transforming under rotation according to the
projective representation (60). Now we stack a purely 2D
short-range entangled state onto the surface to eliminate the
Majorana modes. The surface state we stack is the 1D block
state of 2D CII; symmetric state, discussed in Sec. IV B. It is
built out of M copies of semi-infinite Majorana chains, ar-
ranged in a rotation symmetric fashion. The Majorana modes
at the ends of the chains form a projective representation of
CII,," [see Eq. (25)]. Then, when this 2D state is attached to
the surface, these Majorana modes together with the original
pair of Majorana modes can be gapped out without breaking
the symmetry. This is because that C;; has only one projective
representation, which is of order 2. Hence, we have shown that
the 1D block state admits a fully gapped, short-range entan-
gled surface, meaning that the bulk is trivial. One may also try
to directly trivialize the bulk by creating “bubbles” in the bulk,
which now should be loops of Majorana chains. The argument
is very similar to that for the p, + ip, superconductors, which
we will leave for the readers.

Similarly to C};, symmetric p, + ip, superconductors, the
attached 2D state is “anomalous.” It is not compatible with
C,; symmetry if we require it to be fully gapped and to live in
strictly 2D. It can only live on the surface of a trivial 3D bulk,
if fully gapped.

VI. LSM ANOMALY FOR FSPT PHASES

In the derivation of the classification, we have found sev-
eral cases, all with C;; symmetry, that a FSPT phase can
be realized only in a system where degrees of freedom in a
rotationally-invariant region transform “anomalously” under
the symmetry. Conversely, in such a system, a SRE ground
state has to be the associated FSPT phase. These are new

examples of Lieb-Schultz-Mattis theorems for SPT phases.
Previously similar theorems were derived for systems with
magnetic translation symmetries [31,32].

The basic example is a 2D system of fermions with G,
symmetry, and a Majorana zero mode at the rotation center.
When M is even, the ground state has to be a topological
superconductor with odd Chern number. This is closely re-
lated to the “no-go” that a p, + ip, superconductor is only
compatible with C,, symmetry; with C;; symmetry there is
necessarily an unpaired Majorana zero mode at the rotation
center, which is demonstrated in Appendix D. For odd M, we
can obtain a gapped ground state by a 1D block construction
with M number of Majorana chains meeting at the rotation
center.

Let us briefly outline a proof of this LSM theorem, gener-
alizing the technique used in Ref. [29]. Let us consider the C;
subgroup of the Cy, and denote the inversion by I. Imagine
inserting two fermion parity fluxes to the system, and place
them in C,-invariant positions. Under I, the Hamiltonian is
not invariant since the branch line between the two fluxes
change location. Denote by X the region encoded by the
union of the branch lines before and after applying I. The
inversion symmetry can be restored by combining I with
a fermion parity symmetry transformation restricted to the
¥ region. However, this new inversion anticommutes with
the global fermion parity, because there are odd number of
Majorana modes inside the region. Therefore we conclude
that there must be at least two ground states in the pres-
ence of the fermion parity fluxes, with different fermion
parities. Obviously, this kind of nonlocal degeneracy can
only arise in topological superconductors with odd Chern
numbers.

Building on this theorem, we can easily obtain several
others when additional symmetries are present.

(1) With a global Z, symmetry, consider a system with
a fermion mode c at the rotation center which transforms as
¢ — c' under the Z, symmetry. We can prove that a symmet-
ric ground state must be a Z, 2D FSPT phase.

(2) With a global Z] symmetry and T? = Py, we conjecture
that a system with a Majorana Kramers doublet at the rotation
center must have a class DIII TSC as the ground state. This
was recently discussed in Ref. [63].

Similar phenomena can happen for 3D systems. Consider
a class DIII topological superconductor. They are labeled by
an integer v mod 16. We will argue that the odd v ones are
only compatible with C;; symmetry. Consider creating a time-
reversal domain wall in the bulk (i.e., by adding time-reversal
breaking mass terms). Since the time-reversal symmetry is
broken, on either side of the domain wall one can continuously
deform the state into a trivial one. However, there must appear
a 2D class D topological superconductor with odd Chern
number at the domain wall, a defining feature of the bulk state.
Now suppose the domain wall lies in a plane perpendicular
to the rotation axis. The setup exactly preserves the rotation
symmetry, so it is only compatible with C,,. We can conclude
that the original bulk state shares the same property since
everything we have done preserves rotational invariance. If
the symmetry is C;, we are forced to introduce a Majorana
zero mode at the intersection of the domain wall and the
rotation axis. This implies that the rotation axis must host a
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helical Majorana fermion, i.e., the edge state of a 2D class
DIII topological superconductor.

The same arguments apply to “beyond supercohomology”
FSPT phases [47,48]. These phases can be thought as decorat-
ing 2D Majorana FSPT states on domain walls, and we know
that these 2D Majorana FSPT phases are only compatible with
C,,; symmetry. By considering a domain wall perpendicular to
the rotation axis, we conclude that the same is true for the 3D
FSPT phase.

Our discussion in Sec. VC provides a bulk interpreta-
tion for these SPT-LSM theorems, in terms of a trivial but
neverthess entangled bulk. While we focus on rotations, sim-
ilar interpretations hold for other SPT-LSM theorems. For
instance, Ref. [32] proved that for a 2D fermionic system
with an odd number of Majorana modes together with a &
flux per unit cell, SRE ground states preserving the magnetic
translation symmetry must have odd Chern number. The LSM
anomaly in this theorem can be understood as follows: in
systems that do not obey the conditions of the LSM theo-
rem, it is impossible to realize p, & ip, superconductors with
magnetic translation symmetry. This is best understood if
one gauges the fermion parity to obtain an Ising topological
order. There are three types of quasiparticles I, o, and ¥,
where o is the fermion parity flux, an Ising anyon, and ¥
is the fermion. Now the magnetic translation symmetry in
the ungauged fermionic system becomes an usual translation
symmetry in the gauged system, i.e., a symmetry-enriched
Ising topological order. However, this interpretation requires
that the i quasiparticle transform projectively. From the gen-
eral classification of symmetry-enriched topological phases
[64,65], we know that the fermion v in the Ising topological
phase must carry the same symmetry representation as the
vacuum, i.e., linear representation, as both of them appear in
o x o fusion channels. Therefore no projective representation
is allowed on ¥, including magnetic translation symmetry.
The only way out is that the system is realized on the surface
of a 3D bulk, in this case a stack of Kitaev chains.

We can further generalize the argument to conclude that
with a global unitary symmetry G, if fermions carry nontrivial
projective representations of G then it is impossible to re-
alize topological superconductors with odd Chern numbers.
This “no-go” covers both the C;; rotation (there is a twist in
the projective representation as one interprets the symmetry
as an internal one) case, as well as the SPT-LSM theorem
with magnetic translation symmetry discussed earlier. We also
conjecture that such topological superconductors with incon-
sistent symmetries can be realized on surfaces of 3D trivial
but entangled bulk.

VII. CONCLUSION

In conclusion, we have applied the dimensional reduction
approach to study 1D, 2D, and 3D interacting fermionic SPT
phases with a symmetry group Cy x G, where Cy; consists
of rotations and G contains internal Abelian symmetries. We
obtain the classification of fermionic SPT phases for various
symmetry groups. In addition, 2D and 3D fermionic crys-
talline SPT phases that can only exist with strong interaction
are constructed. By comparing our results with known clas-
sifications of internal SPT phases, we formulate a precise

crystalline equivalence principle for fermionic systems. We
also identify several new instances of Lieb-Schultz-Mattis-
type theorems for 2D FSPT phase. The main results have been
summarized in Sec. I C.

In this work, we only study FSPT phases with rotation
symmetry and Abelian internal symmetries. Moreover, the
total symmetry group is a direct product of the two. For
future studies, it is interesting but challenging to study the
classification of more general crystalline symmetry groups,
in particular those in which the crystalline symmetries are ex-
tended by the internal symmetries. The crystalline equivalence
principle of these symmetry groups are particularly interesting
to look at. Also, a general proof of the crystalline equivalence
principle for FPST phases is highly demanded.

Related works. Several relevant works on crystalline SPT
phases appeared on arXiv around the same time that a preprint
of this work was posted (in October 2018; see the note be-
low). References [63,66,67] presented general frameworks
for the classification of crystalline SPT phases. In particu-
lar, our results partially overlap with Ref. [66]. Reference
[68] also constructed interacting intrinsically fermionic SPT
phases with crystalline symmetries.

Note added. Compared to Ref. [69], the main improvement
is the derivation of classification group ¢ of 3D FSPT phases
(see Sec. VB4 and related discussions in Appendix F). In
addition, a new example is included in Appendix F 3.
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APPENDIX A: GROUP EXTENSION

Let G be a finite group, and N C G is a normal subgroup.
Then we can form the quotient group Q = G/N. We say that
G is an extension of Q by N. Equivalently, the three groups
N, G, Q fitin the following short-exact sequence:

1-N—->GC—> Q00— 1. (A1)
What the short exact sequence means is that there is a sur-
jective map m : G — Q, whose kernel is exactly N. It is then
easy to see that N must be normal and Q = G/N.

The extension is said to be central is N is in the center of G,
which also implies that N is an Abelian group. All extensions
considered in this paper are central, and in fact in all cases
N, G, and Q are Abelian. The extension problem refers to
the determination of G from N and Q. For central extension,
the addtional information needed to determine G is a group
2-cocycle w € Z*[Q, N]. More explicitly,  is a function from
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0 x Qto N satisfying the 2-cocycle condition:

w(q1, q2)w(q192, q3) = w(q1, ¢293)w(q2, 43), (A2)

for all g1, g2, g3 € Q. Once w is given, G can be explicitly
constructed as follows: we represent G set-wise as the Carte-
sian product Q x N = {(q, n)|q € Q, n € N}, equipped with
the following group multiplication law:

(q1,m) x (g2, m2) = (192, mmw(q1, q2)). (A3)

The 2-cocycle condition of w ensures that the multiplication
is associative. The map 7 is then given by 7 ((q,n)) = g.
One can prove that the group extension only depends on the
cohomology class [w], so one-to-one correspondent to the
group cohomology H2[Q, N]. If the cohomology class [w] is
trivial, then we have G = Q x N. In this case, we say the short
exact sequence splits, or simply the extension is trivial.

To give a concrete example, consider the following short-
exact sequence:

1> 7y —G— 7y — 1. (A4)

Since H2[Z,, Z5] = Z», there are two possibilities. If we
write Q = Z, = {1, q} and N = Z, = {1, n}, the two pos-
sibilities correspond to w(q,q) =1 or w(q,q) =n (and
w(l,1)=w(g, 1) =w(l,q) =1). It is easy to see that if
w(q, q) = 1, then the extension is trivial, i.e., G =N x Q =
Zy x Z. If w(q, q) = n, then we have

(g, 1) x (g, 1) =, n).

In this case, the extension G is actually isomorphic to Z,4, with
(g, 1) as the generator.

(A5)

APPENDIX B: BOSONIC C, x G SPT PHASES

In this Appendix, we consider bosonic systems with sym-
metry group C, x G. In the dimensional reduction, we will
restrict ourselves to block states that can be captured by group
cohomology classification.

Let us apply the dimensional reduction in two and three
dimensions.

(1) To determine ¥_,, we classify the corresponding (d —
2)D SPT states protected by Z,, x G. The cohomology group
can be computed using Kiinneth formula. For d = 2, we have

HG x Z,,U)] = Z, ®H'[G, U)].  (BI)

The first Z, represents phases protected by rotation alone.
The last factor H'[G, U(1)] obviously means placing a 0D
G-charge at the rotation center. According to the discus-
sion in Sec. IIB, if we can split a G-charge into n parts,
then the state is trivial. Thus we actually have the quotient
H'[G, U()]/nH'[G, U(1)] to take into account the trivial-
ization.
For d = 3, we have

H2[G x Z,, U] = H'[G, Z,) ® H*[G,U(1)]. (B2)

Similar to d = 2, the H?[G, U(1)] corresponds to placing 1D
SPT states protected by G symmetry at the rotation axis. If a
1D SPT can be split into n parts, it is trivial. This trivialization
gives a classification of H2[G, U(1)]/nH>*[G, U(1)].

Now we discuss the H'[G, Z,] factor. Physically, it cor-
responds to nontrivial commutation relations between G and

Z.,, transformations on the boundary of the 1D SPT. Suppose
we choose a cocycle [b] € H![G, Z,], which is basically a
homomorphism from G to Z,, we represent it as a function
b(g) with b*(g) = 1. Suppose that the localized g symmetry
transformation on the boundary is Ug for g € G, and Uy for the
generator of the Z, group (which is a 27 /n rotation restricted
on the rotation axis) then

UUg = b(g)UrUy. (B3)

We will also need to check the trivialization condition. For
simplicity, we assume G is Abelian and unitary. To see that
state is nontrivial, we define the following physical invariant:
for g € G, we insert a g flux loop wrapping around the rotation
axis.

(2) 4_, are formed by order-n elements of H?[G, U(1)], if
the boundaries can be trivially gapped without breaking G and
C,. We will show below that the construction always works for
any order-n element.

(3) % is basically the internal SPT phases protected by G,
as long as they are compatible with the C, symmetry. This is
always the case so ¢ = HAH[G, U(1)], as shown explicitly
in Ref. [49].

Now we show that in both cases, the classification
agrees completely with those of internal G x Z, SPT phases
[19,49]. We can use Kunneth formula to compute HATG x
Zn,U(1)]. Ford = 2,

H3G x Z,, U] = Z, & H*[G, Z,) ® H*[G, U(1)].
(B4)

We can easily identify the Z, factor as the pure C, SPT
phases in 4_,, and H3[G, U(1)] as those protected just by
G. To match the H?[G, Z,] part with the dimension reduc-
tion approach, we need to use the following relation between
cohomology groups [70]:

HIG, M) =HG, 21 @z M & H''[G, ZI1 Rz M

= H7'G, U] @z M & H'[G, U(D)] Kz M.
(B5)

Here ®z denotes the tensor product with respect to the mod-
ule Z, and M; Xz M, denotes the torsion of the two modules
Tory (M,, M3). For M = Z,, they can be understood in more
elementary terms:

A®z L, =A/nA, ARy Z,={acAld"=0}). (B6)

Clearly H?[G,U(1)|Xgz Z, is identified with 4_; and
H'[G, U(1)] ®z Z, is the remaining part of 4_,.
For d = 3, we similarly obtain

HG x Z,, U(1)]

=H'[G, Z,) ® H|G, Z,) ® H'[G, U(1)].  (B7)

We can also use Eq. (B5) to match H3[G, Z,] with part of 4_,
and 4_;.

We now show that (d — 1)-dimensional block states can
always be constructed, as long as the bosonic SPT block
has order n. Consider a bosonic SPT phase corresponding
to a cocycle [w] € H4HG, U(1)], and [w] has order n, i.e.,
" = 8v. We can then redefine  — w(8v)!/" (the ambiguity
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in the nth root has no effect) to make " = 1. We will assume
this gauge in the following.

We consider the group-cohomology model of such a SPT
phase. The boundary can be modeled as a (d — 1)D lattice,
with group elements on each site |g;) where g € G. The sym-
metry transformation reads

Ugl{gi}) = S()l{ggi})- (B3)

Here S(g) is a phase factor that can be expressed in terms
of group cocycles. We will not need its specific form, just
noticing that $”(g) = 1 in our gauge.

Now consider n copies of the boundary. We denote the
basis as [g¥), where o = 1,2, ..., nis the “layer” index.

1
>=]:[m2|g,

gi€G

g, Ya). (B9)

Namely, |¥) is a product state and on each site i. It is
straightforward to show that the ground state is invariant under
arbitrary permutation of layers from S,.

APPENDIX C: REVIEW OF 1D AND 2D FSPTS WITH
ONSITE SYMMETRIES

In this section, we review the classifications of FSPT
phases in 1D [53,71,72] and 2D [58,59].

1. 1D FSPT phases

We follow the algebraic description in Refs. [53,71]. Here
we include Majorana chains in the definition of FSPT phases.
We denote the “bosonic” or physical symmetry group by Gp.
The total symmetry group is a central extension of G, by Z; ,
characterized by a nontrivial 2-cocycle [v] € H2[Gy, Z,]. All
fermionic SPT phases are labeled by a triple (u, w, y) where
[u] € H'[Gp, Z,] and satisfies

Sa):%vu,u, (C1)

where “U” is the cup product. In writing this formula we
represent Z, additively as Z, = {0, 1}. Since u and v are
Z,-valued cocycles, the right-hand side of (C1) is an integer. @
is a R/Z-valued 2-cochain on G. Physically, u(g) for g € G,
specifies whether the local unitary implementing g on an end
of the system commute or anticommute with the fermion
parity.

In other words, 2v U i defines an obstruction class in
H3[Gp, UD)]. y =0, 1 indicates whether the state has un-
paired Majorana zero modes on the edge, and y = 0 if [v]
is cohomologically nontrivial.

2. 2D FSPT phases

A complete classification of 2D FSPT phases with Zg x G
symmetry has been obtained in Ref. [59]. It turns out that these
are all we need for the block state construction.

Let us first present the general algebraic description. 2D
FSPT phases are classified by triples (p, v, w). Here [p] €
HG, Z>], [v] € H?[G, Z>] and w is R /Z-valued 3-cochain.
They need to satisfy

1
dw=zvUw. (C2)

It turns out that for Abelian unitary G, the obstruction class
%v U v always vanishes.

For our purpose, we actually need concrete models for
edge states of 2D FSPT phases, for G = Zy and Zy, X Zy,.
Thus we will now focus on these two groups. We will list the
classifications and explicit free fermion constructions of root
phases, following the discussions in Ref. [58].

First we consider G = Zy. Without loss of generality we
will assume N = 2", It was found in Ref. [59] that the classi-
fication is Zy4y forn =1, and Z, x Z,y forn > 1.

The n = 1 case is well known, so we only present construc-
tions for n > 1. The root phase for the Z, subgroup in the
classification has the following construction: consider two-
component fermions, say spin up and down. Let the spin-up
fermions form N2 /4 copies of p, + ipy superconductors, and
spin-down fermions form a Chern insulator with C = —N?2/8.
We view the Chern insulator as N?/8 copies of the Chern
number C = —1 phase. The internal symmetry is generated
by

Uy = (—1)Mhe ™M, (C3)

where N{l is the particle number operator of the first copy

of the N?/4 spin-up fermions, and N; /" is the total particle
number of all spin-down fermions. It is clear that a g flux binds

a single Majorana zero mode because of (—1)" 1. We can
further compute the topological spin of the symmetry defect:

in N2

eg = e% e M8 = 1’ (C4)

which confirms that this is indeed the root phase.

We set up notations for the edge modes. The Majorana
edge modes of the p + ip superconductors are denoted by
y, fora=1,.. .,N2/4, and the Dirac edge modes of the
Chern insulators with opposite chiralities are denoted by v,
forb=1,...,N?/8.

For the generator of the Z,y subgroup, we consider a
bilayer system. The first layer has C = 1, and the second layer
has C = —1. The symmetry is simply

Ug =N (C5)
where Nif is the particle number of fermions in layer 1. The
topological invariant of this phase:

oY = e¥. (C6)

We raise 6, to the Nth power to remove dependence on charge
attachment.

Next we turn to G = Zy, x Zy,. We will not consider
those phases protected by Zy, or Zy, alone. Those that require
both Zy, and Zy, for protection are classified by

n1=n2=1

otherwise ’ (€7

{Zm
Zle X Zz,
where N, is the greatest common divisor of Ny and N;.

Let us first consider n; = n, = 1. The root phase can be
constructed as follows: consider four layers, layer 1 and 2 are
Px + ipy superconductors, layer 3 and 4 are p, — ip, super-
conductors. The two Z, symmetries are defined as

g = ()" gy = (=N (C8)
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FIG. 8. Construction of a p, + ip, superconductor with Cy; sym-
metry. (a) One starts from M patches of p, + ip, superconductors,
related to each other by Cj rotation. To obtain a fully gapped
superconductor one couple edge modes from neighboring patches.
(b) “Unfold” the edge modes to one dimension.

If either of ny, n, is greater than 1, the generating phase of
the Zy,, subgroup is a bosonic one. We will describe below
how to construct the generating phase of the Z, subgroup.
First we take a two-layer construction, where layer 1 is a
D« + ipy superconductor and layer 2 p, — ip,. In this system,
both generators g; » correspond to (—1)"2. Then we stack two
additional fermionic SPT phases, each protected solely by one
of the generators. More specifically, for the Zy, generator, we
need (1) n; = 1, the v = 2 phase of the Zg classification, and
(2) n; > 2, recall the classification is Zoy X Z,, SO We use
a tuple (vi, vp) withv; =0,1,...,2N;— 1l and v, =0, 1 to
label the phases. We will need the (NT"Z, 1) phase.

This way we realize a phase with ®;; = ”TN”, Oqij = .
We can then stack a bosonic phase to cancel the ®;; when N/
is an odd multiple of 4.

APPENDIX D: SYMMETRY PROPERTIES OF p, +ip,
SUPERCONDUCTORS

Let us first consider a p, + ip, superconductor in contin-

uum. The pairing term reads

AYT (@, +id,)y " + He. (D1)
Naively the term breaks SO(2) rotation symmetry, but it can
be restored by a gauge transformation ¥ — />y where o
is the rotation angle. As a result, the Hamiltonian is consistent
with a C;, symmetry.

If we try to enforce the C}; symmetry, heuristically it can
be done by inserting a superconducting vortex at the origin
and therefore a Majorana zero mode is localized there. We
now demonstrate this result by patching together p, + ip,
blocks. We first partition the 2D plane into M regions similar
to what is done in the dimension reduction. In each of the M
regions, we put a p, + ip, superconductor. We then couple
adjacent edges together to gap out the Majorana edge modes,
as illustrated in Fig. 8(a). The question is whether there are
any low-energy modes left. Clearly if low-energy modes were
to exist, they must be localized near the rotation center. We
will show below that for C,; symmetry, there is exactly one
such zero-energy mode.

We can just focus on the low-energy edge modes, and
“unfold” the M chiral/antichiral Majorana fermions to a 1D
system, with couplings turned on between neighboring Ma-
jorana modes, but only on half lines, see Fig. 8(b) for an
illustration for M = 4. We can write down the following ef-
fective Hamiltonian:

M
1 A
H= E [5(—1)-’nji3xn,-+iAj(x)nﬂ7j+1] (D2)
j=1

Here n;(x) are chiral Majorana fields, and A;(x)=
m®[(—1)/x], where ® is the step function. We will assume
m > 0. Cj; symmetry requires ny+1 = £7;.

We look for zero-energy bound state:

00 M
£ = f dx > o) (x).

o]

(D3)

n=1

From the equation of motion [H, £] = 0, we obtain the fol-
lowing coupled differential equations:

(—l)j% + A fit1(0) — A1 () fi-1(x) = 0. (D4)
An ansatz for a localized solution is
fo) = fulO®)e ™ + O(—x)e*]. (D5)
Here A4+ > 0 to ensure solutions are normalized.
First for even j = 2k, we find
Ay fok = mfopy1, A for = mfo_1. (D6)
For odd j = 2k — 1, we have
Ay forr = mfor, A- for—1 = mfy. (D7)

It immediately follows that Ay = m, and all f;’s are equal.
This is clearly only compatible with C}; symmetry.
To summarize we find a zero mode operator

M 00
&= Z/ dx ey ;(x).
j=1v7%°

Apparently £ is rotationally invariant, i.e., RER™! = &.

Let us provide an alternative argument for why p, + ip,
superconductors are compatible with C;, symmetry only. We
can gauge the fermion parity in a (p, + ip,) superconductor to
obtain an Ising topological order, with three types of quasipar-
ticles I, o, ¥ where o is the fermion parity flux and i is the
fermion. In the presence of C, symmetry, anyons in the (now
bosonic) Ising topological phase can carry fractional quantum
numbers under C,. Because of the Ising fusion rule 0 x o =
1 + ¢, it follows that ¥ must have linear Cy; quantum number,
i.e., RM = 1 on the v quasiparticle. Now we need to relate the
fractional quantum numbers on quasiparticles, to symmetry
representation on second-quantized operators before gauging.
Let us consider a state |y) with M of i particles, arranged
in Cy-symmetric positions. Since M is even, such a state can
be created physically from vacuum. We can ask what is the
Cy quantum number of this state. According to Ref. [73], we
know that the Cy, eigenvalue is equal to the R value on a
single 1, which is 41 in this case. Now we consider the same

(D8)
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state, but in the “ungauged” system:

V) = Ciche ** Chormi 1 0)- (D9)

We may need to average over other internal indices. The R
eigenvalue is given by

R|Y) = Upn (="~ 1Y) = —Ugn|¥).

Here Ugw is the abbreviation for ]_[}jv":1 Ur(R/(x)). To match
the result in the gauged system, we demand that Ugnw = —1.

(D10)

APPENDIX E: MORE CLASSIFICATIONS OF 2D
FSPT PHASES

1. C; x Zy

For C,, x Zy symmetry, FSPTs can be divided into (1)
those protected by C,, only, (2) those protected by Zy only,
and (3) those protected by both C;; and Zy. For FSPTs pro-
tected by C;, only, we have studied them in Sec. IVA. In
principle, we need to check if these FSPTs are compatible
with the onsite Zy. Nevertheless, onsite unitary symmetry
(excluding fermion parity P; or a symmetry that multiplies
to Pr) are always compatible with FSPTs protected by other
symmetries—because there is always the special situation that
the unitary symmetry acts trivially on the FSPTs. On the other
hand, for FSPTs protected by Zy only, they may or may not
be compatible with C;;, symmetry. By definition, rotation R
acts nontrivial on the Hilbert space. However, through similar
analysis as in Appendix D, one can show that all internal
FSPT phases protected by Zy are compatible with C;, (but not
with C}). So, they only require protection from Zy. In this
subsection, we will focus on the FSPTs protected jointly by
C,; and Zy. Hence, we need to consider (i) possible OD-block
states and (ii) possible 1D states.

First, OD-block states correspond to irreducible represen-
tations of the group Z';M X Zy. Different ZgM eigenvalues
correspond to FSPTs protected by C,, only (see Sec. IV A).
Those protected by both C,, and Zy correspond to the dif-
ferent eigenvalues of Zy: 1, ¢2"/N ..., ?"W=D/N However,
not all of them correspond to distinct FSPTs. Imagine a prod-
uct state, in which each site is a state with Zy eigenvalue
being ¢>"P/N . Then, we can take the OD block to contain the
rotation-related M sites that are closest to the origin. This 0D-
block state has a Zy eigenvalue ¢">"PM/N_ Properly choosing
the value of p, we find the that smallest Zy eigenvalue of
this product state is " ™N/N where (M, N) is the greatest
common divisor of M and N. Accordingly, meaningful Zy
eigenvalues are

1, 2N, g2TIMN-1N |
Hence, the OD-block states protected by both C;, and Z form
a group Zy ). We remark that these states are essentially
bosonic, and our argument above is essentially identical to the
discussion in Appendix B.

Next, we construct 1D-block states by gluing M semi-
infinite line across the origin in a rotation symmetric way.
The semi-infinite lines can be either Majorana chains or 1D
FSPTs protected by Zy symmetry. The case of Majorana
chains corresponds to FSPTs protected by C,, only, and have

been considered in Sec. IV A. Here, we study the case of 1D
FSPTs protected by onsite Zy symmetry.

Let us briefly revisit 1D FSPTs protected by Zy, with
the full symmetry group being Z‘; X Zy (see a more general
review in Appendix C). The FSPTs are classified by the two
cohomology groups,

H'Zy, Z2] = Zgeaa.n)s
H[Zy, U] = Z;. (E1)

Accordingly, only even N allows a nontrivial FSPT, corre-
sponding to the nontrivial element of Zgcqe n). This FSPT
state can be constructed on a 1D lattice with two fermions,
¢ and cf-’ , on each site i. The type-a and type-b fermions each
form a Majorana chain. Let g be the generator of Zy. Under
the g symmetry,
b b
=, ¢ = —c. (E2)
That is, g is the fermion parity PJ? of the type-b fermions. At
the end of the 1D lattice, there are two Majorana zero modes,
transforming in the follow way under g symmetry:
e A (E3)
Since the two Majorana fermions has opposite charge under g,
they cannot be removed by the term iy“y?. This degeneracy
is robust against any Z, symmetric perturbation.

Consider M copies of the above 1D FSPTs defined on
semi-infinite lines, arranged around the origin in a rotation
invariant way (similar to Fig. 3). There are 2M Majorana zero
modes around the origin, {y,%} and {y,’}. Under rotation R and
Zy symmetry g, these Majoranas transform as

Riyj=> v, 1<j<M; yu——-n, (EH
where we suppress the a/b index, and the g transformation
is already given in Eq. (E3). Then, we can write down the
following Hamiltonian to remove all Majoranas:

M/2

H=-i Z (vivimp + VJbV]b+M/2)’ (ES)
Jj=1

when M is even. When M is odd, we cannot gapped out the
Majoranas.

Finally, we need to check if the 1D block states will stack
into 0D block states. (We expect that 2D internal FSPTs will
not stack into 1D block states, as they only need Zy for
protection but 1D block states need both rotation and Zy.)
To check this, we stack two copies of 1D block states, such
that entanglement in each 1D block can be symmetrically
removed. The remaining OD block state resembles the one in
Fig. 4, but now we have two copies a and b. Since the fermion
parity of each short Majorana chain is odd, it is not hard to see
that the OD block state has an Zy eigenvalue (=DM/2_ This
0D block state is nontrivial only if M/2 is odd. In addition,
only when both N/2 and M/2 are odd, it is not possible to
split this state into two other identical OD block states. Hence,
nontrivial extension of ¢_; by ¥_, occurs only if both M/2
and N/2 are odd.
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In summary, the classification of C;; x Zy 2D FSPT
phases are classified by

M/2,N/2 are odd

N Zowvys
g = { otherwise (E6)

Ly % Lo, mNy

Note that here we only classify those FSPT phases protected
jointly by C;, and Zy. This classification agrees with that in

Ref. [58] for Z‘g X Zy X Zy internal symmetry.

2. CI\TI X ZN] X ZN2

Let us now consider the internal symmetry group being
Zy, x Zy,. We only consider those FSPT phases that require
protection from all Cy,, Zy,, and Zy,. First of all, OD block
states need protection from at most two symmetries among
Cy» Zy,, and Zy,. One can find them in Sec. IVA and
Appendix E 1. Next, we claim the 2D block states (i.e., 2D
Zy, x Zy, internal FSPT phases) are compatible with the
C,, symmetry. To see that, we notice that 2D FSPT phases
with Zy, x Zy, symmetry have been completely classified in
Ref. [58], and the classification is reviewed in Appendix C.
For our purpose, it suffices to know that all states can be
obtained by stacking free fermion topological phases (i.e.,
copies of p, & ip, superconductors, as well as Chern insu-
lators) and bosonic SPT phases. All of these building blocks
are compatible with the C,, symmetry. So we conclude that
the classification of 2D block states is identical to that of
Zy, x Zn, FSPT phases. So, they only need protection from
Zy, and Zy,, but not Cy,.

Therefore we only need to consider 1D block states. To
construct 1D block state, we put 1D FSPT phases with internal
Zy, x Zy, FSPT states on each 1D block. The 1D internal
FSPTs should be protected jointly by Zy, x Zy,. Accordingly
to Appendix C, such FSPTs are bosonic and are classified
by Hz[ZNI x Zn,, U1)] = Z, n,)- The 1D block state is
a collection of M copies of an FSPT phase in the Z, n,)
classification, arranged in a rotation invariant way. Taking into
accounts the compatibility with C;, symmetry, we have the
1D block states to be classified by Z n,,v,). These are all the
FSPT phases protected jointly by C,,, Zy,, and Zy,. All of
them are essentially bosonic.

3. C}, x Zy

Again, we are interested in those FSPT phases protected
jointly by C,; and Zy. Let us first consider 0D block states.
Those protected jointly by C,; and Zy correspond to 0D
blocks with Zy eigenvalues: 1, /N ... e2*W=D/N Some
of them will be trivialized. We claim that there are two ways:
(1) Similarly to the C;; x Zy case, one may place Zy charges
around the origin, arranged rotation symmetrically. This is
a trivial state but with Zy eigenvalues ¢""M/N So, the Zy
eigenvalues are topologically distinct only modulo e?*M/N
(2) Another way to trivialize some of the OD block states is
similar to Fig. 5. Take two copies of those in Fig. 5, with the

fermions in the two copies transforming under Zy as follows:
= =1, b= b, (E7)

where a and b are the copy indices and site indices are ne-
glected. Then, the Majorana chains in Fig. 5 are replaced

by 1D FSPT phases in the classification H'(Zy, Z,). All
arguments there can still go through, when M, N are even.
Accordingly, we obtain a OD block state which is two copies
of that in Fig. 5, and which represents a trivial FSPT state.
Note that each copy is a short Majorana chain, which should
be odd under fermion parity. According to the transformations
(E7), the OD block state has a Zy eigenvalue —1. Hence, the
Zy eigenvalues for the OD block states should also be modulo
—1 when M and N are even. Combining the two results, we
conclude that OD block states are classified by

M, N even

_ [ Zwuny)s
2= { otherwise * (E8)

Z Ny

Next, let us consider 1D block states. We can assume N is
even because otherwise there are no 1D SPT states protected
by Zg x Zy symmetry. To build a 1D block state, we will also
need M to be even, since the 1D SPT state is of order two.
The end of the SPT state hosts two Majoranas ¢ and y*. The
generator g of Zy is implemented by y” such that y¢ — —y¢
and y” — y". Taking the M copies together, we have

M
U =[]’ (E9)
j=1

The rotation symmetry R acts as v/ — v/, yjb — ij+1' We
find that

RU,R™! = —U,. (E10)

In other words, the Majoranas near the rotation center actually
form a projective representation of Cj; x Zy. Hence, there is
no nontrivial 1D block state.

Finally, we consider 2D Zy FSPT phases, and check if they
are compatible with C}; symmetry. While these phases do not
need protection from C;; symmetry, it is still interesting to
discuss their compatibility. We take N = 2 as an example, and
it is known that the classification of 2D Z, FSPT phases is
Zg. The free fermion realization of the root phase consists
of two decoupled layers, one p, + ip, superconductor and
the other a p, — ip, superconductor. The Z, symmetry is the
fermion parity of one of the layers. This construction is only
compatible with C;,. If we enforce the C}; symmetry with even
M, then we find a pair of Majoranas at the rotation center, y,
and y,, where g acts nontrivially on one of them. The two
Majorana zero modes form the boundary of a 1D Z, FSPT
phase.

Another way to see the compatibility is the following: the
ground-state wave function of the root Z, FSPT phase is a
superposition of fluctuating Z, domain walls decorated by
Majorana chains. For such a superposition to be possible, all
domain walls must have even fermion parity. Now place a
Z, domain wall in a Cy; symmetric position surrounding the
rotation center. The (closed) Majorana chain decorated on the
domain wall has periodic/antiperiodic boundary condition if
the symmetry is C,;/C,,. Only the latter leads to a ground-
state with even fermion parity.

The root Majorana phase is still compatible with Cy, if M
is odd. However, C;; is not different from C,, for odd M. One
can simply redefine RP; as the new rotation operator, and C,);
is turned into C;;. Similar results can be obtained for other
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even values of N. Namely, those “Majorana” SPT phases are
not compatible with C,; symmetry, M being even. For N =
2 (mod 4), the Zy internal FSPT phases are classified by Zay,
with the root phase being “Majorana.” For N = 0 (mod 4), the
internal FSPT phases are classified by Zyy X Z,, with the Z,
root phase being “Majorana.” For odd N, all SPT phases are
bosonic and classified by Zy. Hence, we derive that 2D block
states are classified by

Zo, even M and N
— Zan, odd M, N =2 (mod 4)
G = Zon % Zn, odd M, N =0 (mod 4) (E11)
Zn, odd N

However, all these phases do not need protection from C);
symmetry.

In summary, all FSPT phases that require protection from
both C;; and Zy are 0D block states, given by ¢_, in (E8).
If one wants the full classification of C;; x Zy FSPT phases,
those protected by C;; only and those internal FSPT phases
in % should also be included. The full classification agrees
with that in Ref. [58] for internal FSPT phases with Z}; v X Ly
symmetry.

4. Cf x Zy, x Ly,

Again we are interested in those FSPT phases protected
jointly by Cy, Zy,, and Zy,. Similar to the C,; X Zy, x Zy,
case, there are no 0D block states requiring protection from
the full group. 1D block states are also simple, as they are
bosonic and classified by Zy v, n,) (see Appendix B). What
remains are the 2D block states, in particular their compati-
bility with the C;; symmetry. For simplicity, we will assume
both N; and N, are even. Also, we take M to be even. For
odd M, one can simply redefine P/R as the new rotation, and
then it becomes C,,, so that all 2D internal FSPT phases are
compatible according to Appendix E 2.

To build 2D block states, we put Z; X Zn, X Zy, internal
FSPT phases on each block. While the (free fermion) con-
structions of root FSPT phases are generally involved, we can
focus one of the states with the following physical charac-
terization: on a fermion parity flux, Zy, and Zy, generators
anticommute. In fact, one can divide all FSPT phases into
two families distinguished by having this property or not.
Based on the classification in Ref. [58], we find it sufficient
to consider the following four-layer model, where layer 2
and 3 are p, + ip, superconductors and layer 1 and 4 are
Dx — ipy superconductors. The generators of the Zy, and Zy,
symmetries are defined as

g = (D" gy = (M (E12)

Other phases can be obtained by adding bosonic SPT phases.
Since bosonic SPT phases are always compatible with rota-
tion, so we focus on the above state.

According to Appendix D, to enforce C;; symmetry, it
remains a Majorana zero mode y;, with i = 1, 2, 3, and 4,
at the rotation center, after we glue the 2D blocks in a layer-
by-layer fashion. One can readily see that

g1 :V2—=> —V2, Va—> V4, V3> V3. V4> — V4.
(E13)

We can couple them through an interaction y; 2 y3y4 to select
the fermion parity even sector (i.e., purely bosonic degrees
of freedom), which is two-dimensional. One can easily see
that g, and g, anticommute when acting on this twofold
degenerate space. It may seem like one has to introduce a
spin-1/2 transforming projectively under Zy, x Zy, at the
rotation center to realize the FSPT phase, but this is not always
necessary. Recall that 1D Zy, x Zy, bosonic SPT phases are
classified by ’;’-[2[ZNl X Ziny, U(D)] = Zgeav, n,)- Given that
the projective phase at the rotation center is just —1, it must
be the order-2 element in Zgcq(y,,n,)- If One is able to split this
order-2 element into M copies, i.e., when 2M|gcd(N;, N;),
then we can introduce M semi-infinite 1D bosonic SPT
states joining at the rotation center, each characterized by a
projective phase e, and the end states can neutralize the
projective representation resulting from the Majoranas. In
other words, when we glue the 2D blocks, 1D SPT phases are
attached along the gluing lines, such that it helps to eventually
build a valid 2D block state. Therefore, when 2M |gcd(N, N>),
the 2D block state can be realized with the G
symmetry.

In addition, stacking multiple copies of the above 2D block
state always gives rise to a 1D block state. We notice that
to have 2M|gcd(N;, N,) with even M, it is required that
gcd(Ny, N>) must be a multiple of 4. In this case, it is known
that the above internal FSPT phase forms a Z, classification
[58]. Then, stacking two copies of the above 2D block state
is a 1D block state. Moreover, one can show that it is the root
1D block state. Therefore we have a classification Zo,n, n,)
for those FSPTs protected jointly by Cy, Zy, and Zy, (when
M, N;, N, are all even).

This is an example—the only example we find—that %,
is extended nontrivially by ¢_;. The simplest symmetry to
support this phenomenon is C;r X Z4 X Z4. We point out that

the internal counterpart Z£ X Ly X Z4 is also the simplest
symmetry that supports intrinsically interacting FSPT phases
[58]. It will be interesting to study the connection.

APPENDIX F: MORE CLASSIFICATIONS OF 3D
FSPT PHASES

In this Appendix, we discuss classifications of 3D FSPT
phases for more symmetries of the form lel x G. We will
discuss 1D and 2D block states. We will not discuss the
compatibility of 3D Zg x G FSPTs with respect to the rota-
tion symmetry Ci:, as we do not know the surface theory of
them in general. (In some examples, one may use gapped and
topologically ordered surface state to study the compatibility.)
However, in Sec. VI, we make a conjecture on the compat-
ibility. In principle, if they are compatible with the rotation
symmetry, they may stack into 2D or 1D block states. Again
we will not discuss it in this work.

For C;; x Zy, we believe that there are no 3D block states
(as is indicated by the absence of C £ rotation SPTs), so our
classifications are complete. For C;; x Zy, x Zy,, we only
consider those FSPT phases protected jointly by C:;, Zy,, and
Zy,. The complete classification can be inferred by further
combining with the classification of C;; X Zy and the crys-
talline equivalence principle.

195154-23



MENG CHENG AND CHENIJIE WANG

PHYSICAL REVIEW B 105, 195154 (2022)

1. C;! X ZNl X ZN2

Let N; = 2™ for simplicity. First, we consider 1D block
states. Using the notations in Appendix C, we have G, =
Zy X Zy, x Zy, in this case. We are interested in the phases
that require protection from both Zy, and Zy,, because oth-
erwise it reduces to the discussion in Sec. VB 1. Then,
according to Appendix C, the 1D block states are purely
bosonic and classified by Z, »,). Taking into accounts the
compatibility with C;;, we have the 1D block states to be
classified by ¥ = Z, no) /M Z v, ) = Lt Ny Ny)-

Next we consider 2D block states, using the root FSPT
phases protected by both Zy, and Zy, (otherwise it should
be reduced to the earlier discussions in Sec. V B). Review of
2D internal FSPT phases can be found in Appendix C.

We discuss the 2D block states in two cases.

Case I. Let us first consider n; = n, = 1. The internal
FSPT phases protected by both Zy, and Zy, are classified
by Z4. The root phase can be constructed as follows: con-
sider four layers, layers 1 and 4 are p, — ip, superconductors,
layers 2 and 3 are p, + ip, superconductors. The two Z,
symmetries are defined as

g = (=D, g = (), (F1)

where F; is the fermion number operator in layer i. Now we
consider M copies of the root phase, related by C,; rota-
tions, with the edge being described by Majorana fermions
Vils Yj2> Vi3, Via» J=1,..., M. We notice that because the
root phase is Z4 classified, we must have m > 2.

Next, we define the following complex fermions:

M M
wla = Zwiljyjaa &la = Zwiljf/jaa (F2)
j=1 j=1

where w = ei”_/M, 1=1,3,...,M—1,and a = 2, 3 for ¥,
a = 1,4 for yy,. Under the symmetry transformations, we
have

R : Y1, > o'Yia, Yo > ' Pia,
g v — Yn, Yo — —Yn,
Vi3 = Vi3, Vi — —u,
g Y — Yn, Y — v,
Vi3 = =3, Yie = —Yua. (F3)

It is worth emphasizing that all transformations are diagonal.
The edge modes meet at the rotation axis, and should be
gapped out without breaking the symmetries such that we
obtain a valid 2D block state. To be able to gap out the edge,
the multilayer system, obtained by folding the M copies of
root states, should be a trivial ZéM x Zy x Z, FSPT phase.
According to Ref. [58], the multilayer system is a trivial FSPT
if the symmetry fluxes have trivial braiding statistics after
gauging the symmetries. More precisely, it is required that

2MOg = NiOg, = N20g, = [2M, NilORr.g,
= [2M, N;]6r g, = [N1, N210g, 4, =0, (F4)

where 6, =2mh, is the exchange statistics, and 6, p is
the mutual braiding statistics between the fluxes, and [a, D]

denotes the least common multiple of a and b. All the equa-
tions are defined modulo 2m. Strictly speaking, there are
additional requirements for the multilayer FSPT to be trivial in
the case that the fluxes are non-Abelian anyons. However, one
can show that the transformation (F3) only leads to Abelian
fluxes, so the conditions (F4) are enough.

We need to compute the quantities in (F4) according to
the symmetry transformations (F3). Note that the multilayer
system can be understood as a stack of multiple Chern in-
sulators, so the braiding statistics between fluxes are easy to
compute. With some straightforward calculations, we find that
9[{ = Ggl = ng = 9R,g1 = QR,g2 = O, and

Mm
Opeo = == (F5)

Accordingly, (F4) imposes the condition that M is a multiple
of 4, i.e., m > 2. This leads to a Z4 classification. When
M =2, we can however use two copies of the root phase,
which is bosonic, to build a valid 2D block state. Thus the
classification is Z, when M = 2. For convenience, we write
the classification in a closed form ¥_; = Z .2, 2n,)-

Case II. Next we consider other cases that either n; > 2
or ny > 2. In this case, the 2D FSPT phases with internal
Zg x Zy, X Zy, are classified by Zu, n,) X Z, (those pro-
tected by both Zy, and Zy,). The phases classified by Zw, n,)
are essentially bosonic. Hence, to build 2D block state, we
only require the order of the phase in each block is compatible
with M-fold rotation. Hence, the 2D block states are classified
by Z Ny zo)-

The 2D FSPT phases classified by Z, are intrinsically
fermionic and non-Abelian (in the sense that the fluxes have
non-Abelian braiding statistics). The realization of the root
state is the same as in case I, with the transformations given
in (F3). (To simplify the discussion, we have chosen the root
state to be the one given in Ref. [58] stacked with an order
two bosonic SPT.) In this theory, the Zy, and Zy, are not
realized in a faithful way, but this does not affect any of
our discussions. Then, the only nontrivial braiding statistics
is again g, 4, given in (F5). Since [Ny, N] is always a mul-
tiple of 4, the condition [Ny, N>]6g, ¢, = 0 only requires M
to be even, which we always assume. Accordingly, 4-; =
L.y Ny X Loy

Group structure ¢. Finally, we need to check the overall
group structure ¢. This can be analyzed in a similar way
as in Sec. VB 4. For case I, the root state in ¢_; is either
bosonic or stacking into a bosonic state, so no group extension
occurs. It is the same for the “Abelian” 2D-block states in
Zm.N, v, in case II. For the “non-Abelian” root 2D-block
state, we consider inserting a g, defect loop as in Fig. 6(a).
According to (F1), a defect point on each 2D block carries a
pair of Majorana zero modes y;3 and y;4, and y;3 — V3,
Vj4 —> —Vj4 under gy action. Therefore we can view the
membrane bounded by a g, loop in Fig. 6(a) as a 1D-block
states of C;; x Zy, symmetry. According to Appendix E 1,
this membrane SPT state stacks into OD-block state only if
M = N, = 2, which indicates that the 3D FSPT bulk state
also stacks into a 1D-block state. Similarly, if one inserts a g;
defect loop, one can argue that the 3D FSPT bulk state stacks
into a 1D-block state if M = N, = 2. Therefore, if either
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M =N =20rM =N, =2,9 =17, x Z, is extended by
G 5 =17, givVingd = 7, x Zy.

In summary, the classification of FSPT phases protected
jointly by C},, Zy,, and Zy, is given by

Zy X 7L, M=N=N,=2
g_ ZAXZZ’ N1=N2=27M:N]=25
B OI'M == N2 = 2
Z%M,Nl,Nz) X Z,, otherwise

(F6)

One consistency check is that our classification is expected to
agree with FSPT phases with internal Z{ X Ly X Ly, X ZLn,,
where M, N;, and N, should be on equal footing. It is indeed
the case in our classification.

2. C}, x Zy

Let first consider 1D block states, the problem reduces to
classifying Zg X Zy % Zy internal FSPT phases in 1D. In
this section, we are only interested in the SPT phases that
are protected by both Z), and Zy. According to Appendix C,
there are bosonic SPT phases classified by Z @y, y), which we
will labelasv =0, 1, ..., (M, N). However, the one with v =
(M, N)/2 can actually be trivialized. To see it, we note that
this 1D FSPT phase hosts zero modes at its endpoints, which
are characterized by a projective representation in which the
generators R and g anticommute. Similarly to the discussion
in Sec. IV B, one can show that these zero modes can be
canceled by a pure 2D state, if it is attached to surface of
the 3D system. The pure 2D state to be attached is the one
discussed in Appendix E 3, characterized by Eqgs. (E9) and
(E10). Hence, it reduces to a classification of 4_» = Zuyny2
for the 1D block states.

Next, we discuss 2D block states. We separately consider
twocases:n=1andn > 2.

Case I. We first consider the case n =1, i.e., CJ X 2Ly
symmetry. Each 2D block hosts a Zg x Z, FSPT phase,
which is classified by Zg. On the edge of each block, there
are v pairs of counter-propagating Majorana fermions. Then,
on the rotation axis, we have Majorana fermions y;, and 7; 4,
where j = 1,...,Manda =1, ..., v. Under rotation R, they
transform as

Yia = Vi+las Via = Vi+la (F7)

for all indices j and a. Under the Z, symmetry g, they trans-
form as

Via = —Vi+la> Vja = Vi+la- (F3)

As above, we define
1 . _ 1 .
wla = —F Zw_l]yjas 1/fla = —F Zw_lj )_/ja' (F9)
\/M J «/A_/[ J

Here @ = e and [ is an integer. It is not hard to check
that under rotation R, they transform diagonally v, —
wlwlav wla - wlwla'

There is actually a subtlety here, which is absent for C,,.
One may notices tha_t wfa = E/I(M_l),a. Therefore ;- , and
Yi=my2,a (as well as Yo, and Y2 ) are still Majorana fields.
They need to be treated separately in the following discussion.

On the other hand, v, and ¥, withl =1, ..., (M/2 — 1) are
Dirac fermions.

To form a valid 2D block state, these edge modes should be
gapped out without breaking the symmetries. This is equiva-
lent to check if the multilayer system, obtained from folding
the 2D blocks, is a trivial SPT state of Z} x Zy x Z,. Ac-
cordingly to Ref. [58], the SPT is trivial if and only if we have

M6g = N6y = [M, N1br g = 0 (F10)

and

Op,p,R = Op, P g = Op, g =0. (FI1)

The latter quantities of ®, g, are statistical phases associ-
ated with a special braiding process: vortex « is first braided
around g, then around y, then around 8 again but in an op-
posite direction, and finally around y in an opposite direction.
It is easy to see that these quantities vanish if the vortices are
Abelian. In our case, the multilayer system can be thought of
as a stack of Chern insulators and p, & ip, superconductors.
Vortices in Chern insulators are Abelian, so ® g, always
vanish. In a single p, & ip, superconductor, it was shown in
Ref. [74] that ©p, p, p, = 7. This is enough for us to compute
the quantities in (F11).

The calculations are straightforward and very similar to
before. We find that

Op, rg = V7T, (F12)

and other quantities vanish. (We point out that the non-
vanishing contribution to 0p, r ¢ results from ¥, only.)
According to (F10) and (F11), we find the SPT is trivial if
vM = 0 (mod 8) and v is even. Therefore the v = 1 Majorana
phase is never compatible with the rotation symmetry. More
specifically, we have (1) when m = 1, the root 2D block state
corresponds to v = 4, forming a Z, classification; and (2)
when m > 2, the root 2D block state corresponds to v = 2,
forming a Z4 classification.

Combining all together, we have 4_| = Z.4).

Case II. We now consider the case n > 2. As discussed
in Sec. VB3, FSPT phases with internal Zy symmetry is
classified by Z, x Z,y, where the Z, root phase is “non-
Abelian” and Z,y root phase is “Abelian.” We start with the
root non-Abelian phase, and use the same notations for edge
modes as in Sec. V B 3. While the transformations under g are
the same as in 46, the transformations under R are different:

Yia = Yi+las Yip = Yit1p- (F13)
To proceed, we define the complex fermions,
M
Yia = Z w_lj Yija>
j=1
(F14)

_ 1 o
Vb = Wi 2]:”7PJth-
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where w=¢e%M, and [1=0, 1,....,M/2, p=
0, 1,...,(M —1). Again, when [ =0 and [ = M/2, ¥,
are still Majorana fermions. Under the symmetries, we then
have

R: Vo — w'Vie, Vi = oY,
g: Vi1 —> —Vi1, Yia— Yie a>2,
Uppy — 27N (F15)

To check if the edge modes can be gapped out in a symmet-
ric way, we calculate the quantities in (F10) and (F11). In fact,
it is enough to check ® Pr.R.g> which we show is nontrivial. We
find that

(F16)

for any values of M and N. This phase is solely contributed by
the Majorana fermion v/ ;. Therefore the non-Abelian root
FPST phase can never be gapped out to form a valid 2D block
state.

We now turn to Abelian SPT phases that are classified by
Zyn. Again, we use the notations in Sec. VB3 to describe
the edge modes of the 2D blocks. There are vM counter-
propagating pairs of Dirac fermions in total, ¥, and ¥j,,
which transform under the symmetries as

®Pf,R,g =T

R: lpja — lpj+1,a, lpja — lpj+1,a,

g: ll/]a d eizﬂ/Nlpja, lI_/ju —> lI_/]u (F17)

As before, we Fourier transform them to ,, and 1/7pa where
p=0, 1,...,M — 1. Then, we have diagonal symmetry
transformations

R: wpa e wpl/fpa» l[_fp g wpl&pa’ (FIS)

where @ = ¢2"/M_ The g transformation takes the same form
as in (F17).

Since all the edge modes are complex fermions, the multi-
layer system obtained by folding all the 2D blocks is simply
a stack of Chern insulators. Therefore the non-Abelian invari-
ants in (F11) all vanish. With some calculations, we also find

Or =0,
_ vMm
g — N2 ’
P Tv(M — 1)
Rg=—""—"". (F19)

N

According to (F10), the multilayer system is trivial if vM =
0 (mod 2N) and [M, N]v/N is even. More explicitly, we have
(1) when m > n > 2, any choice of v is valid, leading to a
classification 4_| = Z,y; and (2) when m < n, v should be a
multiple of 2N/M, leading to a classification &¥_| = Zy,.

A single formula ¢_| = Zy2v) summarizes the classifi-
cation.

One can see that the classifications of 2D block states in
both cases n = 1 and n > 2 are given by ¥_1 = Z.2n)-

Group structure ¢. Since the root state in ¢_; is either
bosonic or stacking into a bosonic SPT state, no group exten-
sion occurs. Accordingly, the overall classification is given by

G =95 x99\ =Zwny2 X Lany, (F20)

where we have inserted g_z = Z(M,N)/Z and g_1 = Z(MQN).
The root phase of Zysony is intrinsically fermionic when
M > 2N, with the simplest example being C,” x Z,. The
internal FSPT counterpart (with Zg X 7 symmetry) was first
discovered in Ref. [60].

3. C}, x Zy, x Ly,

In this Appendix, we are interested in those FSPT phases
protected jointly by C;;, Zy, and Zy,. For 1D block states, the
relevant internal FSPT phases are the bosonic ones classified
by H*[Zy, x Zn,,U(1)] = Zy,,, where we use Nj; to denote
the greatest common divisor (N, N,) for brevity. Endpoints of
the 1D block support projective representations characterized
by g1g» = 0g»g;, with the projective phase

=1, 652”/1\’12’ e eiZH(lefl)/le_

However, some values of 6 actually correspond to trivial 1D
block states. First, by placing M copies of 1D SPT phases
around the rotation axis in a rotation symmetry way, we
can modify @ by e?*/M:_ This lead to a result that @ is
topological distinct only modulo ¢2"M/M2_ This is discussed
in Appendix B. Second, as was shown in Appendix E4,
there exists a purely 2D state that respects Cy; x Zy, X Zy,
symmetry but hosts a zero mode at the rotation center, with
the symmetries realized projectively g;8, = —g»g;. This state
can be used to trivialize the surface of 1D block state with
the projective phase 6 = —1. Accordingly, 8 corresponds to
topologically distinct phases only modulo —1. Combining the
two results, we find that 6 takes topologically distinct values
only modulo ¢?™/M:_ with x = (M, Ny»/2). Therefore 1D
block states are classified by 9, = Z.n,,/2)-

Next, we consider 2D block states. We put those 2D in-
ternal FSPT phases protected by Zy, and Zy, jointly on
each block. There are both non-Abelian and Abelian FSPT
phases, with the latter classified by Zy,. As mentioned
in Appendix F 1, depending on N; and N,, the non-Abelian
ones may or may not stack into the Abelian ones, forming
Zon,, or Ly, x Zy classification. Below, we show that the
non-Abelian FSPTs are not compatible with C;; symmetry,
regardless of the values of M, N, and N,.

To see that, it is enough to consider the edge modes of
the root non-Abelian SPT phase, which have already been
discussed in Appendix F 1. On the rotation axis, we have Ma-
jorana fermions ¥;i, yj2, ¥j3, and yjs, with j=1,..., M.
Under rotation R, we have yj, = ¥j4+1.4» Vja = ¥j+1.a- Under
g) and g, the fields transform according to (F1). As always,
we define the new fields

M M
1 ; - 1 :
Vie=—= > 0 ia Va=—=) o P (F2D)
M j=1 M j=1

where w = €™M | =0,...,M — 1, and a = 2,3 for ¥,
a=1,4 for y,. We note that ¥ = Y. and gﬂ;a =
Ym—na. Accordingly, o, and W%,a are still Majorana
fermions. The independent complex fermions correspond to
I=1,....,% _ 1. The symmetry transformations on v, and
V4 are exactly in the same form as in (F3).
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To form a valid 2D block state, the edge modes should
be gapped out without breaking the symmetries. That is, the
multilayer system, obtained by folding all the blocks, should
be a trivial SPT phase with Z; X Ly X Zn, X Zy, internal
symmetry. This can be checked by studying the topological
invariants introduced in Ref. [58]. To show it is a nontrivial
SPT state, it is actually enough to check the quantity Og g, o,,
which we have introduced previously [see the discussion be-
low Eq. (F11)]. This quantity detects certain non-Abelian
braiding statistics among the vortices R, g, and g,. So, all
the complex fermions, which correspond to Chern insulators,

do not contribute to Oy g, ¢,. The only nontrivial contribution
comes from Q%A, giving rise to Or.g, o, = 7. Therefore the
root non-Abelian internal FSPT state cannot be used to build
a valid 2D block state.

Accordingly, we are left with the Abelian SPT phases,
which are purely bosonic. Then, to be compatible with M-fold
rotation, it is easy to see that the classification is reduced
from Zy,, to Z,n,,)- Combining 1D and 2D block states, all
of which are bosonic, we find that the SPT phases protected
jointly by Cy, Zy, and Zy, have a classification Z gy x,,/2) X
L Ny)-
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