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Density matrix renormalization group (DMRG) algorithm has been extremely successful for computing the
ground states of one-dimensional quantum many-body systems. For problems concerned with mixed quantum
states, however, it is less successful in that either such an algorithm does not exist yet or that it may return
unphysical solutions. Here we propose a positive matrix product ansatz for mixed quantum states which preserves
positivity by construction. More importantly, it allows one to build a DMRG algorithm which, the same as the
standard DMRG for ground states, iteratively reduces the global optimization problem to local ones of the same
type, with the energy converging monotonically in principle. This algorithm is applied for computing both the
equilibrium states and the nonequilibrium steady states and its advantages are numerically demonstrated.
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I. INTRODUCTION

Density matrix renormalization group (DMRG) algorithm
has become a standard numerical tool for computing the
ground states of one-dimensional quantum many-body sys-
tems. As its defining feature, to compute the ground state of
a many-body Hamiltonian, DMRG iteratively builds a local
effective Hamiltonian for a single site (or two nearby sites)
together with an effective environment compressed from the
rest sites and then computes the ground state of the local
Hamiltonian. DMRG is well known for its efficiency and
extremely high precision in practice [1–4]. Compared to the
imaginary time evolution algorithm, DMRG is free of errors
resulting from time discretization as well as Trotter expansion
[5–7]. During the past two decades, DMRG has been elegantly
reformulated based on the variational matrix product state
(MPS) ansatz for pure quantum state and optionally the matrix
product operator (MPO) representation for the many-body
Hamiltonian [8–10]. DMRG-like algorithms have also been
applied to solve machine learning problems [11–15].

For many problems of interest, the underlying quantum
states are not pure states. In this work we will primarily
consider two such instances: (1) the finite temperature equi-
librium states (ESs) and (2) the nonequilibrium steady states
(NESSs) of Lindblad equations. Similar to the MPS represen-
tation for pure states, mixed quantum states can generally be
written as MPOs. The MPO representation for a quantum state
is efficient if only a small bond dimension is required for the
MPO (the number of parameters for a generic matrix product
ansatz usually grows quadratically with the bond dimension
and linearly with the system size). However, a generic MPO
does not guarantee positivity, which means that iterative algo-
rithms built on a variational MPO ansatz could easily result in
unphysical solutions. This problem could be overcome by the
matrix product density operator (MPDO), which is a special
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form of MPO that is positive by construction [16]. In general,
MPO is more expressive than MPDO since if a density opera-
tor can be efficiently represented as an MPDO, then it can also
be efficiently represented as an MPO, while the reverse may
not be true [17].

However, even if certain many-body mixed states can be
efficiently represented as MPDOs [18], there lacks a DMRG
algorithm which directly works on a variational MPDO
ansatz. For the NESS which is an eigenstate of a Lindblad
operator L with eigenvalue 0, two approaches based on varia-
tional MPO ansatz have been used, either of which substitute
L [19,20] or L†L [21–23] into the standard DMRG. Since L is
not Hermitian in general, convergence (even to local minima)
is not guaranteed in the first approach. In the second approach
the nature of the original problem is completely ignored; the
usage of L†L will also introduce longer range interactions
and square the bond dimension in the MPO representation.
Moreover, for problems with vanishing spectrum gaps for L
[24], the convergence could be extremely slow. To this end
we note that a positive variational ansatz which takes into
account nearest-neighbor correlations has also been applied
to compute the NESSs [25], which are not in matrix product
form and the algorithm is not DMRG-like.

The difficulty for building a DMRG algorithm directly on a
variational MPDO ansatz is deeply related to the fact that the
information about the mixedness (entropy) of a quantum state
is global; for example, one cannot tell whether an unknown
quantum state is mixed or not by only performing local mea-
surements on it. MPDO breaks the global mixed state into a
product of local mixed states. However, the ES, as an example,
is formulated as a minimization problem that directly relies on
the entropy. The local problem, if it can be formulated from a
variational MDPO (or generally MPO) ansatz, is likely to lose
the physical content that it originates from a globally mixed
state and the nature of the local problem could be completely
different from the global one.

In this work we propose a variational positive matrix prod-
uct ansatz (PMPA) for mixed states which overcomes the
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difficulty of MPDO. It can be seen as a very special form of
MPDO with an orthogonal center at certain site c, similar to
the mixed canonical representation of MPS. The orthogonal
center is itself a proper mixed state on site c and an effec-
tive environment. Most importantly, the orthogonal center is
related to the global (mixed) quantum state by an isometry;
thus it fully encodes the mixedness of the latter. We show
that the standard DMRG algorithm can be straightforwardly
generalized to work on the variational PMPA. The gener-
alized DMRG algorithm is then applied for computing ESs
and NESSs, and its advantages are numerically demonstrated
against current state of the art algorithms, with either a much
faster calculation or a higher precision.

II. VARIATIONAL POSITIVE MATRIX PRODUCT ANSATZ

The MPO representation of an L-site mixed quantum state
is written as

ρ
s′

1,...,s
′
L

s1,...,sL =
∑

b1,...,bL−1

W
s1,s′

1
b1

W s2,s2
b1,b2

. . .W sL,s′
L

bL−1
, (1)

with sl the physical index of size d , bl the auxiliary index, and

W
sl ,s′

l
bl−1,bl

the lth site tensor. In the following we will omit the
indices for ρ and denote the lth site tensor simply as Wl when
there is no confusion. The MPDO is a special form of MPO
which guarantees positivity for each Wl by requiring

W
sl ,s′

l

al−1,a′
l−1,al ,a′

l
=

∑
τl

Msl ,τl
al−1,al

(
M

s′
l ,τl

a′
l−1,a

′
l

)∗
. (2)

Here the index tuple (al , a′
l ) corresponds to bl in Eq. (1). The

tensor Ml in Eq. (2) can be interpreted as a site tensor (with
two physical indices sl and τl ) of an MPS for a pure state
(purification of ρ). The MPDO representation is certainly not
unique. For example, one can fuse τl and τl+1 into a single
index (τl , τl+1) by contracting the two tensors Ml and Ml+1,
and then separating (τl , τl+1) into different τ ′

l and τ ′
l+1 by

splitting the resulting tensor using singular value decompo-
sition (SVD).

The PMPA is designed to ensure positivity and at the
same time allows straightforward variational optimization.
It can be seen as a very special form of MPDO which
only allows a single τc at certain site c (the “orthogonal
center”) to be nontrivial. Additionally, it requires that Wl =
Al ⊗ A∗

l for l < c and Wl = Bl ⊗ B∗
l for l > c, where Al

and Bl are rank-3 tensors satisfying the left-canonical condi-
tion

∑
sl ,al−1

Asl
al−1,al

(Asl

al−1,a′
l
)∗ = δal ,a′

l
and the right-canonical

condition
∑

sl ,al
Bsl

al−1,al
(Bsl

al−1,a′
l
)∗ = δal−1,a′

l−1
, respectively [8].

The PMPA is also shown in Fig. 1(a). The largest size of the
auxiliary indices al is referred to as the bond dimension of
PMPA, denoted as D = maxl [dim(al )] similar to MPS. The
size of the index τc is denoted as R, namely R = dim(τc). The
PMPA representation of ρ is efficient if D and R remain almost
unchanged when L grows. Now defining the isometry

V s1,...,sc,...,sL
rc,ac−1,ac

= δsc,rc ⊗
∑

a1,...,ac−2

As1
a1

. . . Asc−1
ac−2,ac−1

⊗
∑

ac+1,...,aL−1

Bsc+1
ac,ac+1

. . . BsL
aL−1

(3)

FIG. 1. (a) Positive matrix product ansatz for mixed quantum
states. (b) Procedures to move the current orthogonal center to a
nearby site: clockwise for the left-to-right sweep and counterclock-
wise for the right-to-left sweep. (c) Preparation of a generic mixed
state into the positive matrix product form.

and ρ̃
s′

c,a
′
c−1,a

′
c

sc,ac−1,ac = W sc,s′
c

ac−1,a′
c−1,ac,a′

c
, which simply reshuffles the in-

dices of Wc, then the PMPA for ρ can be written as

ρ = V ρ̃V †. (4)

It follows that ρ̃ has exactly the same spectrum property as ρ;
therefore, the mixedness of ρ is fully encoded in ρ̃. As such
PMPA is only efficient for mixed states which are fairly pure
[26], that is, they can be written as the sum of a few pure
states which can be efficiently represented as MPSs. More
concretely, given a fixed integer R, the Schmidt rank of the
underlying mixed state is bounded by R, and the entanglement
entropy bounded by ln(R). In other words, PMPA cannot
efficiently represent those mixed states whose entanglement
entropy grows extensively with the system size, as a trivial
example, a separable quantum state from the tensor product
of local mixed states. Nevertheless, there also exists many
interesting quantum states which are indeed fairly pure—to
name a few examples, the low-temperature equilibrium states,
the nonequilibrium steady states under certain engineered dis-
sipation which drives the system towards a pure state [27,28],
as well as the process tensor that describes the multitime
quantum state of an open quantum system coupled to a finite
environment [29–31].

Given a (positive semidefinite) optimization problem on ρ,
denoted as f (ρ), a local problem f̃ of ρ̃ naturally follows as

f̃ (ρ̃ ) = f (V ρ̃V †) (5)

by keeping the isometry V as constant. Importantly, due to the
relation in Eq. (4), f̃ is often a same (positive semidefinite)
optimization problem as f in the standard DMRG, which
will be explicitly demonstrated in the applications later. After
solving the local problem, one needs to move the orthogonal
center as required by the DMRG sweep [8], for which one
can first contract the current center Mc with the nearby site
tensor Ac−1 or Bc+1 depending on the direction of the sweep
and then split the resulting two-site tensor (using SVD) with
τc attached to the next center. This procedure is illustrated in
Fig. 1(b). If the error induced by SVD is negligible, the new
center will still be a proper mixed state and can be used as an
initial guess for solving the next local problem. Therefore, the
local optimization can only improve the “energy” [value of
f̃ (ρ̃)] since its solution should not be worse than the initial
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Algorithm 1. Positive DMRG algorithm to find ρ in positive
matrix product form which minimizes f (ρ ).

1: Initialize a random MPS with a fixed bond dimension D and
prepare it into right-canonical form

2: for n = 1 : total number of sweeps do
3: for c = 1 : L − 1 do � left to right sweep
4: Construct and solve the local optimization problem

f̃ (ρ̃c ) [Eq. (5)]
5: Compute Mc by eigendecomposition of the optimal ρ̃c

and keep only the R largest Schmidt numbers [Eq. (9)];
6: Compute �

sc,τ,sc+1
ac−1,ac+1 = ∑

ac
Msc,τ

ac−1,ac
Bsc+1

ac,ac+1

7: Perform SVD on �: SVD(�sc,τ,sc+1
ac−1,ac+1 ) =∑

ac
U sc

ac−1,ac
λacV

sc+1,τ
ac,ac+1 (reserving D largest Schmidt numbers)

8: Update Asc
ac−1,ac

← U sc
ac−1,ac

9: Use Msc+1,τ
ac,ac+1 = ∑

ac
λacV

sc+1,τ
ac,ac+1 as the new orthogonal

center on site c + 1, which may be used as the initial guess for
solving f̃ (ρ̃c+1)

10: end for
11: for c = L : 2 do � right to left sweep
12: Construct and solve the local optimization problem

f̃ (ρ̃c )
13: Compute Mc by eigendecomposition of the optimal ρ̃c

and keep only the R largest Schmidt numbers;
14: Compute �

sc−1,τ,sc
ac−2,ac = ∑

ac−1
Asc−1

ac−2,ac−1 Msc,τ
ac−1,ac

15: Perform SVD on �: SVD(�sc−1,τ,sc
ac−2,ac ) =∑

ac−1
U sc−1,τ

ac−2,ac−1λac−1V
sc

ac−1,ac
(reserving D largest Schmidt

numbers)
16: Update Bsc

ac−1,ac
← V sc

ac−1,ac

17: Use Msc−1,τ
ac−2,ac−1 = ∑

ac−1
U sc−1,τ

ac−2,ac−1λac−1 as the new
orthogonal center on site c − 1, which may be used as the initial
guess for solving f̃ (ρ̃c−1)

18: end for
19: end for

� Move the orthogonal center to the middle
20: for c = 1 : L/2 − 1 do
21: Construct and solve the local optimization problem f̃ (ρ̃c )
22: Compute Mc by eigendecomposition of the optimal ρ̃c and

keep only the R largest Schmidt numbers;
23: Compute �

sc,τ,sc+1
ac−1,ac+1 = ∑

ac
Msc,τ

ac−1,ac
Bsc+1

ac,ac+1

24: Perform SVD on �: SVD(�sc,τ,sc+1
ac−1,ac+1 ) =∑

ac
U sc

ac−1,ac
λacV

sc+1,τ
ac,ac+1 (reserving D largest Schmidt numbers)

25: Update Asc
ac−1,ac

← U sc
ac−1,ac

26: Use Msc+1,τ
ac,ac+1 = ∑

ac
λacV

sc+1,τ
ac,ac+1 as the new orthogonal center

on site c + 1, which may be used as the initial guess for solving
f̃ (ρ̃c+1)

27: end for
28: Construct and solve the local optimization problem f̃ (ρ̃L/2)
29: Compute ML/2 by eigendecomposition of the optimal ρ̃L/2

30: Return the PMPA formed by tensors Al with 1 � l < L/2, ML/2
and Bl with L/2 < l � L

guess. With a well-defined local optimization problem and
the center move technique, the standard DMRG algorithm
for pure states can be straightforwardly generalized to mixed
states. We will refer to this generalized DMRG algorithm as
positive DMRG (p-DMRG) since it directly works on mixed
states and preserves positivity. The initial PMPA for p-DMRG
can be simply chosen as a randomly generated pure state in
mixed canonical form (which is a PMPA with R = 1). The
p-DMRG algorithm is summarized in Algorithm 1.

We note that in the end we have used an additional half
sweep from the left boundary to the middle site to avoid the
boundary effect which will be explained later. The p-DMRG
algorithm optimizes a single site in each step, similar to
the single-site DMRG algorithm, while after the single-site
optimization, p-DMRG generates a two-site tensor and then
performs SVD on it, which is similar to the two-site DMRG
algorithm. Due to these features, p-DMRG can also be directly
used in the presence of global quantum symmetries [32–34],
since quantum number blocks could be adapted during the
center move as in two-site DMRG.

We also note that a generic mixed state ρ can be system-
atically prepared into a PMPA as shown in Fig. 1(c). That is,
one first performs an eigenvalue decomposition on ρ to get
ρ = U�U †; then one performs a sequence of SVDs on U to
bring it into the desired matrix product form. In the next we
explicitly demonstrate the p-DMRG algorithm for computing
ESs and NESSs.

III. POSITIVE DMRG ALGORITHM
FOR EQUILIBRIUM STATES

The ES of temperature T for a Hamiltonian H is the mini-
mum of the free energy

min
ρ

[tr(Hρ) − T S(ρ)], (6)

with S(ρ) = −tr[ρ ln(ρ)] the von Neumann entropy [35].
The solution is ρT ∝ exp(−βH ) up to a normalization factor
tr[exp(−βH )], with β = 1/(kBT ) the inverse temperature (kB

is the Boltzmann constant). Substituting Eq. (4) into Eq. (6),
we obtain the local problem as

min
ρ̃

(tr(H̃ ρ̃ ) − T S(ρ̃)), (7)

where H̃ = V †HV is exactly the local effective Hamiltonian
in the standard DMRG. The solution ρ̃ of Eq. (7) is simply

ρ̃ ∝ exp(−βH̃ ). (8)

Then one can obtain the optimal Mc by eigendecomposition of
ρ̃ and reserving the R largest eigenvalues. The complexity of
evaluating Eq. (8) is O(d2D6), since H̃ is of size dD2 × dD2.
However, for low temperature, we expect R to be small. In
this case Mc can be computed much more efficiently as fol-
lows. First we compute the R smallest eigenvalues of H̃ , that
is, H̃U = U�, with � an R × R diagonal matrix of these
eigenvalues. Note that for this operation one does not have to
explicitly build H̃ , but only needs to implement its operation
on an input vector, as a common practice in DMRG. The
complexity of this operation is only O(dD3). Then we have

Mc ∝ U exp

(−β�

2

)
. (9)

Therefore, the cost of solving each local problem is similar to
that of the standard DMRG. In the zero temperature limit, Mc

becomes the ground state of H̃ .
To this end we note that in practice there are two effects

that can hinder the monotonic convergence of the p-DMRG
algorithm. First, there is a boundary effect that is absent in the
standard DMRG. Assuming c = 1, then the size of H̃1 is at
most d2 × d2 since dim(a1) � d . If d2 < R, then ρ̃1 does not
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FIG. 2. (a), (c) Correlation Cl as a function of l at β = 10 (a) and
β = 20 (c). The cyan, green, blue, and yellow solid (p-DMRG) and
dashed (t-MPS) lines correspond to L = 14, 50, 100, and 200, re-
spectively. The insets show the average difference between p-DMRG
and t-MPS results, defined as

∑L−1
l=1 |Cp-DMRG

l − C t-MPS
l |/(L − 1). The

red circles in (a),(c) represent exact diagonalization results at L = 14.
(b),(d) The runtime scaling for p-DMRG and t-MPS at β = 10
(b) and β = 20 (d). We have used h = J = 1. For t-MPS we have
used a fourth order Trotter expansion of exp(−HIsingdτ ) with step
size dτ = 0.05. In both simulations we have used D = 30. For p-
DMRG we have further used R = 50 for β = 10 and R = 10 for
β = 20, with two sweeps for both cases. All the simulations done
in this work use a single thread of a CPU with 3.5 GHz frequency.

have enough degrees of freedom to accommodate R nonzero
Schmidt numbers. As a result optimization at the boundaries
could be less accurate and the energy may fluctuate. This
effect can be avoided by grouping sites at the boundaries into
larger ones [36]. Here we simply locate the final orthogonal
center at the middle site to avoid this effect, which is done
by the last half sweep in Algorithm 1. Second, the SVD
performed during the center move could also be a source of
inaccuracy, similar to the SVD performed after a local opti-
mization in the two-site DMRG algorithm. This effect could
be leveraged by using a larger D.

To demonstrate the powerfulness of p-DMRG, we apply
it to compute the low-temperature ES for the transverse field
Ising chain and compare its performance with the imagi-
nary time-evolving MPS (t-MPS) algorithm [16,37–39]. The
Hamiltonian is

HIsing = h
L∑

l=1

σ z
l + J

L−1∑
l=1

σ x
l σ x

l+1, (10)

with σ x, σ y, σ z the Pauli operators, L the total number of
spins, h the magnetization strength, and J the interaction
strength (we set h = 1 as the unit). The results are shown in
Fig. 2, where we have computed the correlation

Cl = −[tr(σ+
l σ−

l+1ρT ) + H.c.] (11)

at different sites [the correlation is chosen instead of an on-site
observable such as tr(σ z

l ρT ) since it is in general much harder
to converge]. From Figs. 2(a) and 2(c) we can see that the p-
DMRG results match very well with t-MPS results (difference
of the order 10−3 at L = 200). Meanwhile, p-DMRG has a
more than 3 and 21 times speedup at β = 10 and β = 20,
respectively, compared to t-MPS. Interestingly, while the t-
MPS simulation becomes slower for lower temperature (since
we need to evolve for longer times), the p-DMRG simulation
becomes more efficient in the latter case.

IV. POSITIVE DMRG ALGORITHM FOR
NONEQUILIBRIUM STEADY STATES

The NESS of a Lindblad equation, denoted as ρst , satisfies

L(ρst ) = −i[H, ρst ] +
∑

k

Dk (ρst ) = 0, (12)

with Dk (ρ) = 2CkρC†
k − {C†

k Ck, ρ} [40,41]. ρst is also a solu-
tion of the following minimization problem:

min
ρ

∣∣∣∣ tr(ρ†Lρ)

tr(ρ†ρ)

∣∣∣∣. (13)

Substituting Eq. (4) into Eq. (13), we get the local problem

min
ρ̃

∣∣∣∣ tr(ρ̃†L̃ρ̃ )

tr(ρ̃†ρ̃ )

∣∣∣∣. (14)

The explicit form of the local effective operator L̃ is obtained
by evaluating the numerator in Eq. (13) term by term as

tr(ρ†[H, ρ]) = tr(V ρ̃†V †HV ρ̃V †) − tr(V ρ̃†V †V ρ̃V †H )

= tr(ρ̃†V †HV ρ̃ ) − tr(ρ̃†ρ̃V †HV )

= tr(ρ̃†[H̃, ρ̃]), (15)

tr(ρ†CkρC†
k ) = tr(V ρ̃†V †CkV ρ̃V †C†

k ) = tr(ρ̃†C̃k ρ̃C̃†
k ), (16)

tr(C†
k Ckρ) = tr(C†

k CkV ρ̃V †) = tr(V †C†
k CkV ρ̃). (17)

Here H̃ = V †HV is the same to the local effective Hamil-
tonian for computing ESs and C̃k = V †CkV . Combining all
these terms together we thus obtain

L̃(ρ̃ ) = −i[H̃, ρ̃] +
∑

k

(2C̃k ρ̃C̃†
k − {V †C†

k CkV, ρ̃}). (18)

The second term in Eq. (18) is not in the standard Lind-
blad form (a standard Lindblad operator is the generator of
some completely positive and trace preserving quantum map
[42,43]). Nevertheless, it has been shown that an operator in
the form of Eq. (18) is a generator of a completely positive
quantum map [44–46]. The complexity of solving Eq. (14)
generally scales as O(d2D6) [47].

To demonstrate the p-DMRG algorithm for computing
NESSs, we first study the dissipative Ising chain with the
Hamiltonian in Eq. (10) and the bulk dissipation [48,49]

DIsing,l (ρ) = 2σ−
l ρσ+

l − {σ+
l σ−

l , ρ}, (19)

which acts on each spin and tends to drive it into the down
state. Here we have used the anticommutator {A, B} = AB +
BA. The magnetization term (first term) in Eq. (10) commutes
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FIG. 3. (a) Correlation Cl as a function of l . The cyan, green,
blue, and yellow solid lines represent p-DMRG results with L =
10, 15, 20, and 25, respectively, while the cyan, green, and blue
dashed lines represent DMRG results with L = 10, 15, and 20,
respectively. The red circles are results calculated with ED. (b) The
runtime t and the final energy Ef (the inset) as a function of the
system size L for p-DMRG and DMRG, respectively. J = 0.1 and
h = 1 are used in our simulations. We have also used 10 000 sweeps
for DMRG and two sweeps for p-DMRG.

with the dissipative term defined in Eq. (19); therefore, for
J = 0 the NESS of the dissipative Ising chain would simply
be a separable state with each spin in the down state (thus
a pure state). For J � h = 1, we expect that the underly-
ing NESS would still be close to a pure state which could
be suitable for our p-DMRG algorithm to solve. Similar to
the equilibrium case, we compute the correlations defined
in Eq. (11) with DMRG (using L†L) and p-DMRG, respec-
tively, and the results are shown in Fig. 3. In Fig. 3(a), the
DMRG results for L = 25 are missing since they are clearly
unphysical [for example, the local magnetization tr(σ z

l ρst ) on
some sites become much smaller than −1]. In comparison the
p-DMRG results are still in a reasonable range (although for
L = 20 the p-DMRG results are not as accurate as the DMRG
results). This issue of DMRG still exists when using a larger
bond dimension (D = 25). Therefore, this issue is more likely
due to that DMRG has not fully converged for L = 25 even
after 10 000 sweeps [with the final energy E f already lower
than 10−6 from Fig. 3(b)], instead of that the MPO ansatz
with D = 20 is not expressive enough (this issue of DMRG
may be leveraged with a better initialization strategy [23],
while in this work we only consider random initialization for
both DMRG and p-DMRG). For J comparable to h, we find
that DMRG can also obtain accurate solutions till L = 25 (in
comparison the p-DMRG results in such case using the same
D and R become less inaccurate since the underlying NESS is
more mixed).

As a second example, we demonstrate the p-DMRG al-
gorithm for computing the NESS of a particularly hard (for
numerical computation) problem: the boundary driven XXZ
chain [50,51], with the Hamiltonian

HXXZ =
L−1∑
l=1

(
σ x

l σ x
l+1 + σ

y
l σ

y
l+1 + 
σ z

l σ z
l+1

)
(20)

and the boundary dissipations

D1(ρ) = 2σ+
1 ρσ−

1 − {σ−
1 σ+

1 , ρ}, (21)

4 6 8 10 12 14

L

10

10

10

10

10

J

(a)

DMRG

p-DMRG

ED

4 6 8 10 12

L

10

10

10

10

10

E
f

(b)

10

10

10

10

10

10

ε

FIG. 4. (a) Scaling of the steady state current J with system size
L, computed by DMRG, p-DMRG, and ED. Since the results for
(p-)DMRG may not converge, we use JL/2 (J(L−1)/2 if L is odd) in-
stead in these cases. (b) The green dashed lines corresponding to the
left axis plot the final energy (Ef ) for p-DMRG (square) and DMRG
(triangle) as a function of L. The red dashed lines corresponding
to the right axis plot the mean relative error of the current, defined
as ε = ∑L−1

l=1 |Jl/J − 1|/(L − 1) with J the exact value from ED,
for p-DMRG (square) and DMRG (triangle) as a function of L. In
all those simulations we have used D = 15 and 10 000 sweeps for
DMRG, D = 20, R = 50, and two sweeps for p-DMRG.

DL(ρ) = 2σ−
L ρσ+

L − {σ+
L σ−

L , ρ}. (22)

Boundary driven open quantum systems provide important
setups to study nonequilibrium transport problems [52,53].
In case the bulk system is integrable, the spectrum gap of L
typically scales as 1/L3 [24,54], which makes it extremely dif-
ficult to compute the NESS even for small systems. Utilizing
a special global U(1) symmetry of such systems [55], exact
diagonalization (ED) up to 14 spins has been performed [56].
Moreover, DMRG based on L almost can never converge in
this case (in comparison for bulk dissipative systems it can
often quickly converge for even hundreds of spins [20]), while
DMRG based on L†L converges extremely slowly and can
easily be trapped [22].

The numerical results are shown in Fig. 4, where we have
computed the steady state current defined as

Jl = i[tr(σ+
l σ−

l+1ρst ) − H.c.], (23)

with ED, DMRG (using L†L), and p-DMRG, respectively.
Jl is l independent if ρst is exact. We focus on the strongly
interacting scenario with 
 = 1.5, where J decreases ex-
ponentially with L (insulating) and is the most numerically
challenging regime [51] (the regimes with 
 � 1 have been
solved quite accurately for several tens of spins using DMRG
[23]). From Fig. 4(a) we can see that p-DMRG results with
D = 20, R = 50, and two sweeps agree fairly well with ex-
act results up to L = 12 (still reasonable for L = 15), while
DMRG results with D = 15 and 10 000 sweeps fail to con-
verge as early as L = 9. The major issue for DMRG is that
the observables are very off even if the final energy is of
the same order as p-DMRG (although the energies in these
two cases have completely different meanings), and they do
not seem to improve for larger D’s or more sweeps. For ED
L = 12 is already the upper limit we can deal with using a
personal computer [without using the global U(1) symmetry].
More details of the simulations done here can be found in
Appendix D.
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V. DISCUSSIONS

We have proposed a positive matrix product ansatz (PMPA)
for mixed quantum states and demonstrated a generalized
DMRG algorithm (p-DMRG) which directly works on the
variational PMPA and preserves positivity. The advantages
of p-DMRG for both equilibrium states and nonequilibrium
steady states are numerically demonstrated with comparisons
to state of the art algorithms.

To this end we stress again that PMPA is only efficient
for quantum states that are fairly pure. It is less expressive
than MPDO and MPO since it belongs to a very special case
of the latter ones. Therefore, it is complementary, instead
of a substitution, to existing algorithms based on MPDO
and MPO. As a trivial example, PMPA fails to (efficiently)
represent the maximally mixed state (for which it requires
R = dL), which, however, can be efficiently represented as
an MPO with bond dimension 1. Therefore, if the solution
is close to the maximally mixed state, t-MPS algorithm which
directly starts from the maximally mixed state is the method
of choice [57]. Nevertheless, PMPA can efficiently represent
many physically relevant quantum states as pointed out in the
main text and demonstrated in our numerical examples.

PMPA could also be useful in other settings such as quan-
tum information, as a convenient ansatz that allows one to
efficiently compute many important quantities. For example,
given two quantum states ρ and σ that can be efficiently repre-
sented as PMPAs, the quantum fidelity, defined as F (ρ, σ ) =
tr2(

√√
ρσ

√
ρ ), can be efficiently computed, which is not

possible even if both ρ and σ can be efficiently written as
MPOs or MPDOs. Interestingly, an unknown quantum state,
if assumed to be efficiently representable as PMPA, allows ef-
ficient quantum tomography [58,59]. Generalization of PMPA
to higher dimensions could be interesting but also more chal-
lenging; for example, a canonical form of the PMPA could not
be easily defined as in the one-dimension case [thus Eq. (4)
and the nice properties of the PMPA would no longer hold].

The code for the p-DMRG algorithm together with the
examples used in this work can be found at [60].
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APPENDIX A: EFFICIENT CONSTRUCTION
OF THE LOCAL PROBLEM FOR COMPUTING

THE EQUILIBRIUM STATES

As a standard practice in DMRG algorithm, the local prob-
lem f̃ (ρ̃) can be efficiently constructed by reusing a large
portion of the previous calculations [8]. In the case of equi-
librium states, it reduces to the construction of H̃ as shown
in the main text, which is exactly the same as the standard
DMRG. We will sketch the procedures to build H̃ here for
completeness.

Assuming that the L-site many-body Hamiltonian H can
be written as an MPO

H
s′

1,s
′
2,...,s

′
L

s1,s2,...,sL =
∑

b1,b2,...,bL−1

O
s1,s′

1
b1

O
s2,s′

2
b1,b2

. . . OsL,s′
L

bL−1
, (A1)

with sl the physical index and bl the auxiliary index. The
largest size of the auxiliary index is referred to as the bond di-
mension of the MPO, denoted as Dw = maxl [dim(bl )]. Then
H̃c at the orthogonal center c can be computed as

H̃
s′

c,a
′
c−1,a

′
c

sc,ac−1,ac =
∑

bc−1,bc

L
a′

c−1

bc−1,ac−1
Osc,s′

c
bc−1,bc

Ra′
c

bc,ac
, (A2)

where L and R are rank-3 tensors which represent the effective
environments left and right to the orthogonal center c. They
can be computed iteratively

L
a′

l
bl ,al

=
∑

bl−1,al−1,a′
l−1,sl ,s′

l

L
a′

l−1

bl−1,al−1
O

sl ,s′
l

bl−1,bl
Asl

al−1,al

(
A

s′
l

a′
l−1,a

′
l

)∗
,

(A3)

R
a′

l−1

bl−1,al−1
=

∑
bl ,al ,a′

l ,sl ,s′
l

R
a′

l
bl ,al

O
sl ,s′

l
bl−1,bl

Bsl
al−1,al

(
B

s′
l

a′
l−1,a

′
l

)∗
, (A4)

with the starting tensors

L
a′

1
b1,a1

=
∑
s1,s′

1

O
s1,s′

1
b1

As1
a1

(
A

s′
1

a′
1

)∗
, (A5)

R
a′

L−1

bL−1,aL−1
=

∑
sL,s′

L

OsL,s′
L

bL−1
BsL

aL−1

(
Bs′

L

a′
L−1

)∗
. (A6)

Here we note that computing Lc−1 and Rc for center c requires
one to compute Eqs. (A3) and (A4) throughout the chain.
However, computations can be saved if we first compute all
the R tensors beforehand and store them in memory, then
during the left to right sweep at site c, one only has to evaluate
Eq. (A3) for l = c to update the storage. This can be done
similarly during the right to left sweep. In this way one re-
duces the total number of evaluations of Eqs. (A3) and (A4)
from L2 to 2L. Additionally, instead of building H̃ explicitly
as in Eq. (A2), one can simply implement its operation on an
input rank-3 tensor X with an output rank-3 tensor Y , that is,
Y = H̃ (X ), which is explicitly

Y s′
c

a′
c−1,a

′
c
=

∑
bc−1,bc,ac−1,ac,sc

L
a′

c−1

bc−1,ac−1
Osc,s′

c
bc−1,bc

Ra′
c

bc,ac
X sc

ac−1,ac
. (A7)

The complexity of evaluating Eq. (A7) is O(dDwD3). An
iterative eigensolver is able to compute the lowest eigenpairs
once the operation in Eq. (A7) is given.

APPENDIX B: COMPARISON BETWEEN THE LOW
TEMPERATURE RESULTS AND THE RESULTS

FROM THE GROUND STATE

To demonstrate the effectiveness and efficiency of the p-
DMRG algorithm for computing equilibrium states, we have
used the transverse Ising chain as an example with the inverse
temperatures β = 10, 20 in the main text. Here we also di-
rectly compare these low-temperature results to their ground
state values (the ground state is computed by the standard
DMRG) to show that they have a non-negligible derivation
from the latter, which is shown in Fig. 5. We can see that the
correlations corresponding to β = 10 and β = 20 are similar
in the bulk and differ close to the boundaries, in which they
have a finite difference to the ground state values in both the
bulk and the boundaries.
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FIG. 5. Comparison between the low-temperature correlations
and the ground state (zero-temperature) correlations for L = 200. For
both DMRG and p-DMRG we have used D = 30. For p-DMRG, we
have further used R = 50 for β = 10 and R = 10 for β = 20.

APPENDIX C: EFFICIENT CONSTRUCTION OF THE
LOCAL PROBLEM FOR COMPUTING THE

NONEQUILIBRIUM STEADY STATES

Now we assume that the Lindblad operator L can be writ-
ten as an MPO

Ls′
1,r

′
1,s

′
2,r

′
2,...,s

′
L,r′

L
s1,r1,s2,r2,...,sL,rL =

∑
b1,b2,...,bL−1

O
s1,r1,s′

1,r
′
1

b1

× O
s2,r2,s′

2,r
′
2

b1,b2
. . . OsL,rL,s′

L,r′
L

bL−1
. (C1)

In the following we will use x, y to denote the auxiliary indices
of the positive matrix product ansatz. Then L̃ can be computed
as

L̃s′
c,r

′
c,x

′
c−1,y

′
c−1,x

′
c,y

′
c

sc,rc,xc−1,yc−1,xc,yc =
∑

bc−1,bc

L
x′

c−1,y
′
c−1

bc−1,xc−1,yc−1
Osc,rc,s′

c,r
′
c

bc−1,bc
Rx′

c,y
′
c

bc,xc,yc
.

(C2)

Here we have used the same symbols L and R, but they are not
directly related to Eq. (A2). Similarly, the L and R tensors in
this case can be iteratively computed as

L
x′

l ,y
′
l

bl ,xl ,yl
=

∑
bl−1,xl−1,yl−1,x′

l−1,y
′
l−1,sl ,rl ,s′

l ,r
′
l

L
x′

l−1,y
′
l−1

bl−1,xl−1,yl−1

× O
sl ,rl ,s′

l ,r
′
l

bl−1,bl
Asl

xl−1,xl

(
Arl

yl−1,yl

)∗(
A

s′
l

x′
l−1,x

′
l

)∗
A

r′
l

y′
l−1,y

′
l
,

(C3)

R
x′

l−1,y
′
l−1

bl−1,xl−1,yl−1
=

∑
bl ,xl ,yl ,x′

l ,y
′
l ,sl ,rl ,s′

l ,r
′
l

R
x′

l ,y
′
l

bl ,xl ,yl
O

sl ,rl ,s′
l ,r

′
l

bl−1,bl

× Bsl
xl−1,xl

(
Brl

yl−1,yl

)∗(
B

s′
l

x′
l−1,x

′
l

)∗
B

r′
l

y′
l−1,y

′
l
, (C4)

with the starting tensors

L
x′

1,y
′
1

b1,x1,y1
=

∑
s1,r1,s′

1,r
′
1

O
s1,r1,s′

1,r
′
1

b1
As1

x1

(
Ar1

y1

)∗(
A

s′
1

x′
1

)∗
A

r′
1

y′
1
, (C5)
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FIG. 6. (a) Mean relative error of the current, defined as ε =∑L−1
l=1 |Jl/J − 1|/(L − 1) with J the exact value from ED, as a

function of the system size L. (b) The runtime scaling as a function of
L. (c) The final energy as a function of L. (d) The energy versus the
minimization step n for L = 15 (N is the total number of minimiza-
tion steps). In all panels the cyan dashed and solid lines represent
DMRG results with D = 15 and D = 25, respectively, and the blue
dashed and solid lines represent p-DMRG results with D = 20 and
D = 25, respectively. For DMRG we have used 10 000 sweeps, while
for p-DMRG we have used two sweeps.

R
x′

L−1,y
′
L−1

bL−1,xL−1,yL−1
=

∑
sL,rL,s′

L,r′
L

OsL,rL,s′
L,r′

L
bL−1

BsL
xL−1

(
BrL

yL−1

)∗(
Bs′

L

x′
L−1

)∗
Br′

L

y′
L−1

.

(C6)

Similar to the case of equilibrium states, one can first compute
all the R tensors and then update them one by one during each
local optimization to reduce the total number of evaluations
of Eqs. (C3) and (C4). For the local optimization, one should
in general also treat L̃ as a linear operation on an input rank-6
tensor X with an output rank-6 tensor Y [Y = L̃(X )], which is
explicitly

Y s′
c,r

′
c

x′
c−1,y

′
c−1,x

′
c,y

′
c
=

∑
bc−1,bc,xc−1,yc−1,xc,yc,sc,rc

L
x′

c−1,y
′
c−1

bc−1,xc−1,yc−1

× Osc,rc,s′
c,r

′
c

bc−1,bc
Rx′

c,y
′
c

bc,xc,yc
X sc,rc

xc−1,yc−1,xc,yc
. (C7)

APPENDIX D: MORE DETAILS OF THE NUMERICAL
SIMULATIONS OF THE BOUNDARY DRIVEN XXZ CHAIN

The boundary driven XXZ chain, due to the rapid van-
ishing of the spectrum gap for L [typically O(1/L3)], is
extremely difficult to solve numerically. Nevertheless, this
case can be analytically solved [51]. Therefore, it is an ideal
test ground for different numerical methods.

The additional details of our simulations for the boundary
driven XXZ chain are shown in Fig. 6. In Fig. 6(a), we show
the convergence of the DMRG and p-DMRG algorithm when
increasing D (and also increasing R for p-DMRG). We can
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see that for both algorithms the relative error ε compared to
the exact values from ED does not improve significantly with
D. For DMRG there is no clear improvement at D = 25 and
J does not converge as well starting from L = 8 for D = 25,
the same as the case of D = 15. For p-DMRG we see tiny
improvements starting from L = 8 (except for the case with
L = 11 which may be due to a bad random initial state).
In p-DMRG there is an additional source of error compared
to the single-site DMRG, namely the SVD truncation used
during the center move (in single-site DMRG on truncation
is done in the SVD used after local optimization). Since we
are using a relatively small D in both algorithms, we observe
that the additional SVD truncation could easily induce an
error of the order 10−5, which is the same order of J for
large L. Thus a high-precision current cannot be expected
from p-DMRG if one does not increase D significantly, which
would be extremely expensive. Nevertheless, we can see that
for this problem p-DMRG can already reach a much higher
precision compared to DMRG in almost all the cases we have
considered. For p-DMRG we can still obtain relatively rea-
sonable current at L = 15. In Fig. 6(b), we show the runtime
scaling for DMRG and p-DMRG at different D’s. First we see
the exponential scaling of ED as expected. For p-DMRG the
advantage compared to ED only appears from L = 12 (but the
scaling of DMRG or p-DMRG is of course more favorable if
the issue of convergence is not considered). Here we note that,
for 
 = 1 when the transport is diffusive, it has been shown
that one could compute the steady state current with fairly
high precision for up to 100 spins, using a specially designed
initialization strategy [23].

To better visualize the convergence for DMRG and p-
DMRG, we further show the final energy E f as a function of
L in Fig. 6(c) and the energy E as a function of the local min-
imization step for the particular case of L = 12 in Fig. 6(d).

From Fig. 6(c) we can see that for all the two cases we have
studied with p-DMRG, the final energy can only reach a value
of the order 10−5, which is the reason that we could not expect
to get a precise J for p-DMRG since one expects J to be the
order 10−5 or less after L = 12. For DMRG J is completely
wrong even for L = 9, 10, where the final energies are of the
order 10−7 (and for L = 15 where the final energy is less
than 10−8). The most important reason for this discrepancy
between the energy and J could be that the resulting state
is unphysical (which can be directly seen by checking with a
Hermitian observable such as σ z

l , the imaginary part of which
will be significantly different from 0). Another reason may
be that the energy of L†L loses the physical meaning of the
spectrum of the original Lindblad operator L. From Fig. 6(d)
we can see the extremely slow convergence of DMRG. Even
worse, although the energy could be significantly slower when
we increase D from 15 to 25 in DMRG, the predicted J is
still completely wrong (even for the sign). For p-DMRG the
results converge fairly well with only two sweeps, although
monotonic convergence is lost due to the effects explained in
the main text. Larger D and R are required to reach lower
energies for p-DMRG. Nevertheless, J at L = 15 predicted
with p-DMRG is still reasonable (although the error is not
negligible).

In the end we note that, due to the faster scaling of the
complexity of p-DMRG compared to DMRG, the runtime
for DMRG is not larger than p-DMRG even if the number
of sweeps used for DMRG is much larger, which can be
seen from Fig. 6(b). Actually the calculation becomes de-
manding when L � 10 for all the algorithms considered. The
current issue with p-DMRG is that the local optimization is
too expensive [O(d2D6)], partially due to the fact that the
low-Schmidt-rank nature of ρ̃ is not made use of when solving
the local problem, which we leave to future investigations.
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