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We explore higher-order topological superconductivity in an artificial Dirac material with intrinsic spin-orbit
coupling, which is a doped Z2 topological insulator in the normal state. A mechanism for superconductivity
due to repulsive interactions, pseudospin pairing, has recently been shown to naturally result in higher-order
topology in Dirac systems past a minimum chemical potential [T. Li et al., 2D Mater. 9, 015031 (2022)]. Here we
apply this theory through microscopic modeling of a superlattice potential imposed on an inversion-symmetric
hole-doped semiconductor heterostructure, known as hole-based semiconductor artificial graphene, and extend
previous work to include the effects of spin-orbit coupling. We find that spin-orbit coupling enhances interaction
effects, providing an experimental handle to increase the efficiency of the superconducting mechanism. We
show that the phase diagram of these systems, as a function of chemical potential and interaction strength,
contains three superconducting states: a first-order topological p + ip state, a second-order topological spatially
modulated p + iτ p state, and a second-order topological extended s-wave state sτ . We calculate the symmetry-
based indicators for the p + iτ p and sτ states, which prove these states possess second-order topology. Exact
diagonalization results are presented which illustrate the interplay between the boundary physics and spin-orbit
interaction. We argue that this class of systems offers an experimental platform to engineer and explore first- and
higher-order topological superconducting states.
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I. INTRODUCTION

Higher-order topological superconductors are topologi-
cal phases which exhibit gapless corner (hinge) modes in
two (three) dimensions protected by spatial symmetries and
the bulk gap, and have recently attracted immense inter-
est [1–49]. It was recently proposed that Dirac materials,
with purely repulsive interactions and sufficiently localized
orbitals, intrinsically give rise to higher-order topological su-
perconductivity [50]. We will refer to this as mechanism as
pseudospin pairing.

Superlattices are a promising platform for this mechanism
[51] since they allow the experimental study of materials
with tunable lattice constants, atomic orbitals, and interactions
[52], and have been extensively explored in the context of
optical lattices [53–56] and van der Waals heterostructures
[57–63]. Recently, significant experimental progress has also
been made in forming honeycomb superlattices in patterned
semiconductor heterostructures [64–73]. Motivated by these
developments, in this paper we discuss a p-type quantum well
overlaid with a periodic potential with honeycomb symme-
try (see, e.g., Refs [74–79]) as an explicit realization of the
pseudospin pairing mechanism. Here we extend the theory

*h.scammell@unsw.edu.au

to include the influence of intrinsic spin-orbit coupling. The
superlattice potential gives rise to Dirac band crossings at the
K, K ′ points; accounting for the intrinsic spin-orbit coupling
gives rise to a spin-dependent mass for the Dirac fermions,
opening up a Z2 topological band gap. The low-energy ef-
fective theory is equivalent to the Kane-Mele model for a
topological insulator [78–80], with an effective Dirac velocity
controlled by the strength of spin-orbit coupling. We find that
spin-orbit coupling enhances the superconducting instability
and provides an additional handle to manipulate the topologi-
cal superconducting phases.

We present results specifically for a model of an artifi-
cial honeycomb lattice based on a nanopatterned hole-doped
semiconductor quantum well, having in mind the fact that in
this situation there is a high degree of experimental control
over the electron-electron interaction as well as the band
structure. However, our field-theory treatment is generic and
we anticipate our results are relevant to a number of other
Dirac materials, in which similar spin-orbit physics is present
alongside localized orbitals. Unconventional superconductiv-
ity has recently been observed in twisted transition metal
dichalogenides (TMDs) [81], which are Dirac systems where
spin-orbit coupling plays an important role. Theoretical stud-
ies of twisted TMDs, e.g., Ref. [82], have suggested effective
models for the superlattice potential similar to the one we
examine in this paper. Superconductivity has also been seen in
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the intrinsic heterostructure Ba6Nb11S28, a material which can
be modeled as a stack of decoupled NbS2 layers subjected to
a superlattice potential arising from the Ba3NbS5 spacer lay-
ers [83]. Other than superlattice systems, superconductivity
is seen in spin-orbit coupled topological materials including
Pb1/3TaS2 [84], few-layer stanene [85], monolayer TMDs
[86–90], doped topological insulators [91–99], and recently
discovered vanadium-based kagome metals [100–123].

We determine the phase diagram of the system as a
function of chemical potential and interaction strength. Em-
ploying physically realistic parameters, we find three adjacent
superconducting phases, one first-order topological p + ip in-
tervalley, and two higher-order topological: sτ intervalley, and
p + iτ p intravalley, with spin-orbit coupling entangling the
valley and spin polarization of the Cooper pairs. The sτ state
is similar to the s± state discussed in the context of iron-based
superconductors, which consists of s-wave pairing but with
a gap that has opposite signs at the hole and electron pockets
[124–129]; here, the valley structure imposes that s-wave state
changes sign under exchange of the valleys.

The p + iτ p and sτ pairing instabilities satisfy a simple
criterion for second-order topology derived from symmetry-
based indicators [6–8]: by counting the inversion eigenvalues
of the valence and conduction bands in the normal state, we
prove that if a superconducting instability with odd inversion
parity opens a full excitation gap in a hole-doped Kane-
Mele honeycomb system, then the resulting superconducting
state must have second-order topology, hosting Kramers pairs
of Majorana corner modes. This conclusion holds for weak
spin-orbit coupling much smaller than the bandwidth, and
for the onset of superconductivity where the superconducting
order parameter is the smallest energy scale. The second-order
topological phase persists as long as increasing the supercon-
ducting order parameter does not close the bulk excitation gap.

In Sec. II, we will outline how the effective Dirac theory
arises from the superlattice imposed on the two-dimensional
(2D) hole gas. In Sec. III, we will discuss the form of the
symmetry-allowed interactions for the effective Dirac system.
Particularly important are the pseudospin-dependent Hubbard
interactions; we present numerical results for these param-
eters. In Sec. IV, we will analyze the screening properties
of this system: screening plays a crucial role for supercon-
ducting pairing mechanism, as discussed in earlier work for
electrons, without spin-orbit coupling [51]. It was shown
that the pseudospin-dependent Hubbard interactions are an-
tiscreened (enhanced) by many-body effects; we analyze
this phenomenon in the presence of spin-orbit coupling. In
Sec. V, we present the solution to the BCS equations us-
ing the screened form of the interactions, and present a
phase diagram. In Sec. VI, we discuss the phenomenology
of the possible superconducting phases, and present numer-
ical results describing the edge physics as well as symmetry
indicators which confirm the higher topology of the p + iτ p
and sτ states. Finally, Sec. VII provides a discussion of our
findings and suggests future directions.

II. SINGLE-PARTICLE EFFECTIVE HAMILTONIAN

In this section, we will present the effective Dirac theory
that arises for a particular honeycomb superlattice system,

FIG. 1. Schematic view of the honeycomb superlattice patterned
on the heterostructure 2DHG: a patterned dielectric or gate is placed
on a quantum well, e.g., GaSb-InAs-GaSb. Superlattice Brillouin
zone: the reciprocal lattice vectors Gi connect zone corners corre-
sponding to K j , and connect corners corresponding to K ′

j , the parity
reflections of K j .

p-type artificial graphene, though aspects of the model ap-
ply generally. We briefly outline the schematics of artificial
graphene, and in doing so establish the key parameters which
may be tuned in experiment.

A. Spin-orbit coupled honeycomb superlattice

We consider a p-type quantum well, having in mind for,
e.g., a GaSb-InAs-GaSb heterojunction (see Fig. 1). The hole
gas experiences a potential well, arising from the band bend-
ing along the growth direction of the heterojunction, confining
the holes along the z direction leaving a two-dimensional hole
gas (2DHG) unconfined in the xy plane. The hole states are
formed from p 3

2
orbitals and can be described by the Luttinger

Hamiltonian involving spin- 3
2 operators S in the axial approxi-

mation, i.e., U(1) symmetry in plane [130]. Ignoring the cubic
anisotropy of the zinc-blende lattice, which has a weak effect
for the carrier densities we consider, the Hamiltonian is

H2DHG = 1

2me

[(
γ1 + 5

2
γ2

)
p2 − 2γ2(p · S)2

]
+ Wc(z). (1)

The γi are the Luttinger parameters; in what follows we shall
use parameters for InAs, presented in Table I. In this work we
model the confinement as a rectangular infinite well of width
d:

Wc(z) =
{

0, z ∈ (−d/2, d/2)

∞, otherwise.
(2)

TABLE I. Physical parameters for InAs.

Parameter Details Value

γ1 Luttinger parameter 20.4
γ2 Luttinger parameter 8.3
γ3 Luttinger parameter 9.1
mH Effective mass: me(γ1 + γ2)−1 0.0348me

εr Dielectric constant 14.6
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The Hamiltonian (1) satisfies time-reversal and inversion
symmetries, so each 2D subband is twofold degenerate. We
consider densities for which only the lowest pair of subbands
is occupied, and introduce an effective spin- 1

2 degree of free-
dom with Pauli matrices sμ.

Next, we consider the influence of a periodic electrostatic
potential, with honeycomb symmetry, on the 2DHG, i.e., the
superlattice. Experimentally, this may be implemented by
etching the pattern onto a metal plate or dielectric on top of
the 2DHG. A minimal model of the superlattice is given by
[74]

W (r) = 2W0

∑
i

cos(Gi · r), (3)

where G1 = K2 − K1, G2 = K3 − K2, G3 = K1 − K3; K1 =
4π
3L (1, 0), K2 = 4π

3L
1
2 (−1,

√
3), K3 = 4π

3L
1
2 (−1,−√

3), with
(super)lattice constant L, and magnitude of the electrostatic
potential W0. The separation along the z axis of the superlattice
top gate from the 2DHG is z0. Although z0 plays a role [74],
we will fix its value and not consider it further. Moreover,
we employ a minimal three K-point grid for numerical diag-
onalization of H2DHG + W (r), which is used to estimate the
couplings entering the effective Dirac Hamiltonian (4). In this
scheme, W0 scales out, and so will not explicitly appear as
a free parameter in our analysis. The shortcomings of this
approximation are discussed further in Sec. V C in relation
to the phase diagram.

B. Effective Dirac Hamiltonian

Since the periodic potential W (r) has the same symmetries
as the atomic potential in graphene, the band structure of
the hole gas with superlattice, i.e., H2DHG + W (r), features
Dirac cones at the high-symmetry points K i. Performing this
diagonalization explicitly (see Appendix A), and expanding
the resulting Hamiltonian about the Dirac points, we arrive at
the effective Dirac Hamiltonian with Kane-Mele mass term
[80]

H0 =
∑

p

ψ†
p[v(σ · p)τz − μ + ησzsz]ψp. (4)

The Pauli matrices σi, τi, and si act on sublattice, valley, and
the effective spin 1

2 , and a chemical potential μ describes dop-
ing beyond the Dirac points. For τ = 1, pseudospin up (down)
corresponds to sublattice A (B), while at the opposite valley
τ = −1, pseudospin up (down) corresponds to sublattice B
(A). One may perform a unitary transformation so that the
pseudospin has the same definition at τ = −1 as it does at
τ = 1, but intermediate calculations are made more simple in
the basis of (4). At the end of Sec. IV, we shall change to the
alternative basis as it makes aspects of our final results clearer.

The symmetries of the system are 2π/3 and π rotations,
and time reversal. The resulting transformation properties of
the operators σi, τi, and si are given in Table II.

The time-reversal-invariant mass term ησzsz arises from
the spin-orbit interaction and is absent in n-type artificial
lattices. This term gives rise to a Z2 topological insulating
state. In the Appendix we show that, in an effective tight-
binding description of the artificial lattice, this term arises due
to a spin-dependent complex next-nearest-neighbor hopping

TABLE II. Transformation properties of operators σi, τi, and si

under the symmetries of the system: 2π/3 and π rotations C3z, C2z,
C2x (for completeness we include C2y), and time reversal T .

C3z C2z C2x C2y T

sz sz sz −sz −sz −sz

σz σz σz −σz −σz −σz

τz τz −τz τz −τz −τz

τ± τ± τ∓ τ± τ∓ τ∓
σ± e2iθ±σ± σ± σ∓ σ∓ σ∓

which is equivalent to two copies of the Haldane model. While
the effective Dirac theory is identical to that of the Kane-Mele
model, the hopping phases in the real-space description are
different, due to the fact that the mass term arises from a
spin-orbit interaction quadratic in momentum, rather than a
linear Rashba spin-orbit interaction.

Performing exact diagonalization of the Luttinger Hamilto-
nian (1), with parameters for an InAs 2DHG, we numerically
obtain the Dirac Hamiltonian (4). We plot the Dirac velocity
v and spin-orbit mass gap η as a function of d/L in Fig. 2, in
terms of the scale E0 = K2

0 /(2mH ), with K0 = |K i|. There we
see that the effective Dirac velocity v and the spin-orbit mass
gap η depend strongly on the ratio d/L. The Dirac velocity can
be significantly reduced by increasing d/L, thereby enhancing
interaction effects (for a full treatment of the band structure
see [77,79] and explicitly for the physics of this system in
the flat-band limit, see [77]). We sketch here the reason that
increasing d/L decreases the velocity v and increases the
spin-orbit coupling (SOC) band gap η: in the 2DHG system,
the strength of the spin orbit is encoded in the admixture of
the heavy hole (lowest bands) with the light hole (next low-
est bands). The admixture becomes significant near p ∼ 1/d
since this is the location of the anticrossing of these bands.
Now, consider applying an external modulated potential on
top of the 2DHG, and consider the effective theory at the Dirac
cone, i.e., near momenta K = 4π/(3L). If the anticrossing is
bandfolded to the Dirac cone, i.e., 1/d ≈ 4π/(3L), then there
is “large” spin orbit. On the other hand, if 1/d 	 4π/(3L),
then the approximately quadratic part of the underlying 2DHG
heavy-hole band is bandfolded to the effective Dirac point,
in which case there is minimal admixture of the heavy-hole
and light-hole states, and therefore there a “weaker” effective
spin-spin orbit.

/

[
/

]

/

[
]

(a) (b)

FIG. 2. Parameters of the effective Dirac Hamiltonian (4).
(a) Dirac velocity v, in units of E0/K0. (b) Spin-orbit gap η, in units
of E0.
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v00
v12
v33

/

v07
v47

v44
v77
v56

−

/

u00
u12

/

u33
u03

−

/

(a) (b) (c) (d)

FIG. 3. (a) Spin-independent matrix elements of VI . Solid lines: blue, orange, green = v00, v12, v33. (b) Spin-dependent matrix elements of
VI . Dashed lines: blue, orange, green, red and purple = v44, v77, v56, v07, v47. (c) Spin-independent matrix elements of VII . Solid lines: blue,
orange = u00, u12. (d) Spin-dependent matrix elements of VII . Dashed lines: blue, orange = u33, u03. In units of 2πe2/(εrK0).

Finally, we comment that since the ratio d/L controls
the effective Dirac velocity, it also controls how localized
the orbitals are. We note that such a handle is not available
in the analogous electron-based superlattice honeycomb sys-
tems [51,69], and is highly desirable for generating correlated
phases.

III. COULOMB MATRIX ELEMENTS

In this section, we will discuss the form of the Coulomb
interaction in the effective Dirac theory. By writing the
Coulomb interaction in the basis of states near the K and K ′

points, we find that the Coulomb repulsion contains a short-
range Hubbard part, which depends on the pseudospin σ ,
valley τ , and effective spin s, extending earlier results on these
models by including spin [50,51]. The form of these Hubbard
interactions is constrained by the symmetry transformations
of Table II. Here we directly numerically compute the values
of the symmetry-allowed matrix elements.

Using the wave functions |k, s, σ, τ 〉 obtained from diago-
nalization of the InAs 2DHG subject to superlattice potential
W (r) (3), i.e., H2DHG + W (r), and expanding near the Dirac
points, we explicitly compute the matrix elements of the
Coulomb interaction:

V̂ = 〈k1, s1, σ1, τ1| ⊗ 〈k2, s2, σ2, τ2| e2

2εr |r − r′| |k3, s3, σ3, τ3〉 ⊗ |k4, s4, σ4, τ4〉 ≡ 2πe2

εrq
+ V̂I + V̂II ,

V̂I = (v00σ0 ⊗ σ0 + v44τzsz ⊗ τzsz ) + (v33τz ⊗ τz + v77 sz ⊗ sz )σz ⊗ σz + (v12 + v56τzsz ⊗ τzsz )(σ+ ⊗ σ− + σ− ⊗ σ+)

+ v07(σ0 ⊗ σzsz + σzsz ⊗ σ0) + v47(τzsz ⊗ σzsz + σzsz ⊗ τzsz ),

V̂II = [u00σ0 ⊗ σ0 + u33szσz ⊗ szσz + u12(σ+ ⊗ σ− + σ− ⊗ σ+) + u03(σ0 ⊗ σzsz + σzsz ⊗ σ0)](τ+ ⊗ τ− + τ− ⊗ τ+). (5)

Here q = k1 − k3, and subscripts I and II denote intravalley
(τ -diagonal) and intervalley (τ -off-diagonal) interactions.
The vertices appearing in the bare interactions are Jμ

I ∈
{1, σ±, τzσz, τzsz, τzszσ±, σzsz}, Jμ

II ∈ {1, σ±, σzsz} ⊗ τ±,
which defines the adjoint basis. Using these vertices,
the interactions are parametrized V̂ 0

I = vμν Jμ
I ⊗ Jν

I and
V̂ 0

II = uμν Jμ
II ⊗ Jν

II , which defines the notation in Eq. (5). In
Fig. 3 we plot the dependence of the coefficients {vμν, uμν}
on the spin-orbit parameter d/L.

IV. SCREENING

In this section we discuss how the bare Coulomb interac-
tions (5) are modified by screening. A standard approach for
analyzing the feedback of many-body effects on interactions
is the random phase approximation [50,51,131–134], which
involves resumming the infinite series of bubble diagrams
which contribute corrections to the bare Coulomb interaction.

The resulting screened interactions V R
μν (p0, p) are given by

V R
μν (p0, p) = Vμν + Vμααγ (p0, p)V R

γ ν (p0, p), (6)

where αγ is the particle-hole polarization operator, given by

iαγ (p0, p) = Tr
∫

JαG(q0 + p0, q + p)Jγ G(q0, q)
dq0d2q
(2π )3

,

G(q0, q) = 1

q0 + μ − vτzq · σ − ησ zsz + i0 sgn(q0)
, (7)

where G(q0, q) is the single-particle Green’s function. In
general, the vertices Jμ, Jν can be any matrix σ iτ j sk which
appears in the bare interactions of the form VμνJμ ⊗ Jν . In
this paper we will restrict our attention to the case of static
screening, so we neglect the frequency dependence of the
polarization operator and set p0 = 0.

As shown in Sec. III, the vertices appearing in the bare
interactions (5) are Jμ

I ∈ {1, σ±, τzσz, τzsz, τzszσ±, σzsz}, Jμ
II ∈

{1, σ±, σzsz} ⊗ τ±, which defines the adjoint basis. In this ba-
sis, the tensor form of the static polarization operator becomes

̂I (p0 = 0, p) = μν (0, p)Jμ
I Jν

I ,

̂II (p0 = 0, p) = μν (0, p)Jμ
II J

ν
II . (8)

The quantities μν (0, p) are evaluated in Appendix B. We
find that only four independent polarization operators emerge.
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To gain some insight into their physical meaning, we shall
discuss their behavior in the long-wavelength limit q → 0.
First, we find a term 0 → −μN/(2π ); this term corresponds
to the usual density-density (Thomas-Fermi) screening, i.e.,
the vertices coupling to a negative polarization operator are
weakened by screening. Second, z → μN/(2π ), which cor-
responds to a pseudospin dipole-dipole antiscreening, first
discussed in [51]; the positive sign here causes an enhance-
ment of the couplings v33(τzσz ⊗ τzσz ) and v77(szσz ⊗ szσz ),
i.e., those proportional to σz ⊗ σz, which as we shall later
see promotes an intravalley p + iτ p higher topological super-
conductivity. Similarly, an antiscreening occurs for intervalley
terms u00σ0τ± ⊗ σ0τ∓, u33szτ± ⊗ szτ∓, which acts to favor
the higher topological intervalley sτ state. We shall elabo-
rate on this phenomenon in the following subsection. Third,
we have η =→ ηN/(2π ), a direct result of the spin-orbit
coupling. Last, we have ± ∝ eiθp : this Hall-type response,
with momentum dependence, promotes interaction matrix el-
ements that were otherwise not present in the bare interaction
structure (5).

Inverting the matrix equation (6) is now straightforward
and gives

V̂ R
I = vR

μνJμ
I Jν

I , V̂ R
II = uR

μνJμ
II J

ν
II ,

with superscript R to denote the RPA renormalized values.
Despite there being a closed-form analytic expression, we do
not provide the full expressions for matrix elements vμν, uμν

since they are lengthy and unenlightening. The expression
(10) defines the RPA-renormalized interaction structure which
we use to search for superconducting and magnetic instabili-
ties.

Up until this point we have worked in a particular basis
for the single-particle Hamiltonian (4), which allowed for
straightforward evaluation of the polarization operators. How-
ever, from this point on, we work in a more physical basis,
which will make our later discussion of the superconducting
gap structure more transparent. Performing a unitary transfor-
mation, with P = 1

2 (τ0 + τz ) + 1
2 (τ0 − τz )σx, we obtain

H̃0 = PH0P† = vpxσxτz + vpyσy−μσ0 + ηszσzτz. (9)

The interactions transform as

ˆ̃V
R

I = vR
μν

(
PJμ

I P†
)(

PJν
I P†

)
,

ˆ̃V
R

II = uR
μν

(
PJμ

II P
†
)(

PJν
II P

†
)
,

PJμ
I P† ∈ P{1, τzsz, τzσz, σzsz, σ±, τzszσ±}P†

= {1, τzsz, σz, τzσzsz, σ
τ
±, τzszσ

τ
±},

PJμ
II P

† ∈ P{1, σzsz, σ+, σ−} ⊗ τ±P†

= {σx,±iσysz, (σ0 ± σz )/2, (σ0 ∓ σz )/2} ⊗ τ±.

(10)

Here σ τ
± ≡ σx ± iτzσy, and in PJμ

II P
†, the ± indices in pseu-

dospin and valley are connected.
“Pseudospin pairing” refers to the effective attraction

mediated by the emergent quantum numbers σ and τ , as
discussed in [51] and reviewed briefly in the next section.
In the basis of (9), the pseudospin is σz, but we refer to
pseudospin pairing more loosely as including pairing from the
τ± interactions as these also act on emergent two-component
wave functions.

V. SUPERCONDUCTING INSTABILITIES

In this section we analyze superconductivity resulting from
the renormalized pseudospin-dependent couplings. At a finite
doping away from the Dirac point, the states at the Fermi
surface are not pseudospin eigenstates, but band eigenstates.
The interactions (10) are therefore rewritten in the basis of
band indices, and furthermore since we are only interested
in Fermi surface instabilities, we project onto the upper band
(i.e., only include states at the Fermi surface). The BCS gap
equation is then used to calculate Tc for pairing between these
states.

A. Interactions in the Cooper channel

To find the superconducting instability, we are interested
only in states near the Fermi surface, which participate in
pairing. Hence, we keep only states in the upper band of (9),
the eigenstates of which are given by

|k, τ, s〉 = 1√
2

eik·r[wa
τ,s(k)|a〉 + wb

τ,s(k)eiτθk |b〉], (11)

where |a〉, |b〉 are the σ z eigenstates, which are localized
on the A and B sites, respectively, and the wave-function
components wa

τ,s(k) = vk/
√

2εk (εk − sτη), wb
τ,s(k) = (εk −

sτη)wa
τ,s(k)/(τvk). Note that the “upper band” in question

are the positive-energy states of the Dirac theory. These orig-
inate from the lowest doubly degenerate bands in the original
Luttinger Hamiltonian (1) [see the solid line in Appendix A,
Fig. 9(a)].

To obtain the interactions between Cooper pairs, we
perform the following process: (i) project the RPA inter-
action tensor (10) onto the upper band using (11), (ii)
impose the scattering conditions of the Cooper channel k1 =
−k3, k2 = −k4, i.e., θk3 = π + θk1 , θk4 = π + θk2 , (iii) re-
strict all momenta to lie on the Fermi surface |ki| = kF .
The interactions then only have angular dependence, and
we decompose the resulting Cooper interaction into par-
tial waves with different angular momentum. The result is
the coupling between Cooper pairs with a given angular
momentum.

We arrive at the couplings in angular momentum channels
� = 0,±1 (the |�| > 1 channels are negligible or zero):

V̂�=0 = g̃0 + g̃1τz ⊗ τz + g̃2sz ⊗ sz + g̃3szτz ⊗ szτz + ( j̃0 + j̃1sz ⊗ sz )(τx ⊗ τx + τy ⊗ τy), (12)

V̂�=±1 = g0 + g1τz ⊗ τz + g2sz ⊗ sz + g3szτz ⊗ szτz + �(g4 + g5szsz )(τ0τz + τzτ0)

+ [ j0 + j1sz ⊗ sz + � j2(s0 ⊗ sz + sz ⊗ s0)](τx ⊗ τx + τy ⊗ τy). (13)

The coefficients gi, ji, g̃i, j̃i are functions of chemical potential μ due to the screening effects, as well as the well width to lattice
spacing ratio d/L, which controls the strength of the spin-orbit-dependent couplings. The (un)tilded couplings correspond to the
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(� = ±1) � = 0 partial wave channels. They also depend on the microscopic parameters of the 2DHG; we have evaluated these
quantities numerically for an InAs 2DHG. The matrix elements gi denote intravalley scattering processes, while ji represent
intervalley scattering.

B. Gap equation

The mean field Hamiltonian, which accounts for all pairing possibilities, is

HMF =
∑
k,s,τ

εkψ̃
†
ksτ ψ̃ksτ + 1

2

∑
k,s,τ,s′,τ ′

ψ̃
†
ksτ (�k)sτ,s′τ ′ψ̃

†
−ks′τ ′ + H.c. + 1

2
(�†

k)s1τ1,s3τ3 (V−1)k,p;s1τ1s2τ2s3τ3s4τ4 (�p)s4τ4,s2τ2
, (14)

where ψ̃
†
ksτ is the hole creation operator for the upper band.

We parametrize the gap in the standard form, collecting the
spin, valley, and angular momentum structure into a tensor
dμν

� :

�k =
∑
μν,l

dμν

� sμτνe−i�θk (τysy). (15)

The spin and valley structure follows from the usual singlet-
triplet decomposition (dropping the angular momentum index
�) [135]

dμν = dμ
s ⊗ dν

τ ,

dx
s = 1

2
(|↑↑〉 − |↓↓〉), dy

s = 1

2i
(|↑↑〉 + |↓↓〉),

dz
s = −1

2
(|↑↓〉 + |↓↑〉), d0

s = 1

2
(|↑↓〉 − |↓↑〉),

dx
τ = 1

2
(|++〉 − |−−〉), dy

τ = 1

2i
(|++〉 + |−−〉),

dz
τ = −1

2
(|+−〉 + |−+〉), d0

τ = 1

2
(|+−〉 − |−+〉),

where subscript s indicates spin and τ indicates valley. The
BCS gap equation is given by

dμν

� = −G�
μν;δγ dδγ

�

∫ εc

0

N dε

2πv2

ε

2E (dδγ

� )
tanh

(
E (dδγ

� )

2T

)
,

E
(
dδγ

�

) =
√

(ε − μ)2 + |dδγ

� |2, (16)

where the matrix Gμν;δγ is given by

G�
μν;δγ ≡ 1

4 (ŝμŝy)†
ac(τ̂ν τ̂y)†

a′c′ (V̂�)abcd;a′b′c′d ′ (ŝδ ŝy)bd (τ̂γ τ̂y)b′d ′ .

(17)

To determine the dominant instability dμν , we find the gap
function with highest Tc via the eigenvalue problem (with
eigenvalue λ�

μν)

G�
μν;δγ dδγ

� = λ�
μνdμν

� . (18)

Substitution of the eigenvectors dμν into the gap equation then
results in

1 = −ν0λ
�
μνL(Tc, μ, εc),

L(Tc, μ, εc) =
∫ εc

0

dε ε/μ

2|ε − μ| tanh

( |ε − μ|
2Tc

)
,

ν0 = Nμ

2πv2
, (19)

where ν0 is the density of states at the Fermi level, and εc is
an ultraviolet cutoff. The logarithmic behavior of L(Tc, μ, εc)
gives rise to the exponential dependence of Tc ∼ εce−1/(ν0λ

�
μν )

on the density of states ν0 and the eigenvalue λμν , which
must be negative for the the gap equation to have a solution,
corresponding to an attractive interaction.

Using the explicit form of the interactions (12) and (13),
we find the three dominant gap structures, with the following
(negative) eigenvalues of G (17):

dx∓
�=±1 : λ∓1

x± = g0 + g1 + g2 + g3 − g4 − g5, (20a)

dzz
�=±1 : λ±1

zz = g0 − g1 − g2 + g3 + j0 + j1, (20b)

dz0
�=0 : λ0

z0 = g̃0 − g̃1 − g̃2 + g̃2 − j̃0 − j̃1. (20c)

These gap structures will be described in detail in Sec. V C.
We pause to discuss the mechanism of attraction explicitly

in reference to these eigenvalues (20a)–(20c). We focus on
terms that do not contain sz in (12) and (13) since these drive
the transition, while sz-dependent terms act to fix the spin
orientation of the corresponding spin-triplet states.

For � = 0, we identify the driving term for superconductiv-
ity as j̃0(τ x ⊗ τ x + τ y ⊗ τ y), whereas for � = ±1, the driving
term for superconductivity is g0(τ0 ⊗ τ0). The coupling j̃0
is positive, and antiscreening increases its magnitude as the
chemical potential increases. Hence, choosing a valley-singlet
structure generates a negative eigenvalue − j̃0, analogous to
how antiferromagnetism promotes spin-singlet pairing. Anti-
screening in g0 manifests as a sign change: for large enough
chemical potential, g0 is overscreened and becomes negative,
as has been previously discussed in Refs. [50,51].

C. Explicit solution and phase diagram

In this section we construct the phase diagram consisting of
the three leading superconducting instabilities of (20a)–(20c),
as well as for competing charge and magnetic order, which
will be described in Sec. V D.

We specify the phase diagram as follows: (a) We choose
to fix the ratio d/L = 0.375, which as we have stated earlier
quantifies the strength of spin-orbit coupling; our motiva-
tion for this choice is that typical quantum wells are of
width d ≈ 10 nm. We allow for a physically achievable su-
perlattice L ≈ 30 nm (several current superlattice devices
have L ≈ 50 nm [67–73]). While, larger values of d/L are
desirable for resulting in flatter bands, i.e., smaller veloc-
ity Fig. 2(a), and therefore relatively stronger interactions,
for presentation we constrain ourselves to the physically
reasonable d/L = 0.375. (b) We designate a critical dop-
ing μc = 0.025vK0 and plot phase diagrams for μ/μc =
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FIG. 4. Phase diagram. The three superconducting phases d�=0
z0 , d�=±

zz , dα±
�=±, which correspond to s-wave intervalley (sτ ), (p +

ip)-wave intervalley (p + ip), and p + iτ p intravalley (p + iτ p), as well as the magnetic phase. (a) Fixing the bare values
{v00, v33, v44, v77, v56, v07, v47, u00, u33, u03} to those computed and shown in Fig. 3, while allowing for a variable ṽ12 and ũ12, which are
substituted into the interaction structure in place of v12 and u12. Here we show the variable values as ratio of the calculated values. (ai),
(aii), (aiii) Show the same parameters but with increasing chemical potential μ/μ0 = 0.75, 1, 1.25, respectively, with μ0 ≡ 0.025vK0, with
d/L = 0.375, L = 30 nm. (b) Same as (a), but allowing for a variable ṽ33 and ũ00. (bi), (bii), (biii) Show the same parameters but with
increasing chemical potential μ/μ0 = 0.75, 1, 1.25.

{0.75, 1, 1, 25}. (c) Having computed the bare interaction
matrix elements uμν, vμν , i.e., v12, v33, u00, u12 from (5),
from exact diagonalization, we replace them with continu-
ous tuning parameters ũμν/uμν, ṽμν/vμν which vary about the
computed bare values. In Fig. 4, we plot two sets of diagrams
spanned by (ṽ12/v12, ũ12/u12) and (ṽ33/v33, ũ00/u00).

The motivation for choice (c) is that one expects quantita-
tive changes to the values of bare interaction matrix elements
(5), shown in Fig. 3, for four reasons: (i) inaccuracies of
the microscopic modeling, such as those due to neglecting
higher harmonics in (3), i.e., additional cosine terms which
respect the honeycomb symmetry, as discussed in [74]; (ii)
corrections to the infinite square well potential (2); (iii) cor-
rections of order W0/E0, which are not captured in the three
K-point approach; (iv) since we only present results for a InAs
heterostructure, the variation in the calculated bare values may
be very approximately linked to teasing out the phase diagram
for other choices of semiconductor heterostructures. Hence,
instead of incorporating all such corrections numerically, we
will allow the bare interaction parameters to vary about the
values presented in Fig. 3. In this way we absorb uncer-
tainty due to microscopic details of the superlattice potential
into the numerical values of the bare interaction parameters
uμν, vμν (5). The dominant bare interactions are found to be
v12, v33, u00, u12, as shown in Fig. 3, and for the purposes of
presentation, we choose to vary these four parameters, i.e.,
ṽ12, ṽ33, ũ00, ũ12.

As anticipated in (20a), (20b), and (20c), three distinct gap
structures appear in the phase diagram, which we describe
here:

(i) Intravalley p + iτ p spin triplet, valley triplet,

�k = eiτz (φ−θk )
(
dx

s sx + dy
s sy
)
τy(τysy). (21)

The spin-triplet vector is pinned in plane, and the valley po-
larization is coupled to the orbital angular momentum, i.e.,
� = ±1 at valley τ = ∓1. This implies a chiral p-wave gap,
with opposite chiralities in each valley, a state which respects
time-reversal symmetry. This phase exhibits a U(1) × U(1)
symmetry-breaking due to the presence of a relative phase φ

between opposite valleys and a spin direction ds = (dx
s , dy

s , 0).
The superconducting state is analogous to that of Ref. [51]
but with d pinned in plane. This state exhibits higher-order
topology, as will be demonstrated in Sec. VI.

(ii) Intervalley p + ip spin triplet, valley triplet,

�k = e±iθk dz
s szτz(τysy). (22)

Here the chiral angular momentum states � = ±1 are de-
generate. An analysis of the Landau-Ginzburg free energy
is required to understand if these degenerate states compete
or coexist. A simple computation gives the Landau-Ginzburg
free energy for the two order parameters e±iθk szτz ≡ φ±:

F[φ±] = −s(φ2
+ + φ2

−) + α(φ4
+ + 4φ2

+φ2
− + φ4

−). (23)

The quartic term breaks the SO(2) rotational symmetry in
the isospin space (φ+, φ−), and the order parameters φ± act
like an Ising degree of freedom; the system must sponta-
neously choose a chirality (� = ±1), and therefore sponta-
neously break time-reversal symmetry. This phase possesses a
nontrivial first-order topological invariant which manifests as
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chiral modes propagating along the edge, as we discuss in
Sec. VI.

(iii) Intervalley sτ spin-triplet, valley-singlet,

�k = dz
s szτ0(τysy). (24)

The spin-triplet vector is pinned out of plane along z. As
shown in [136], owing to the valley-singlet structure, this spin-
triplet phase satisfies an “Anderson theorem,” which provides
protection against nonmagnetic disorder, provided the disor-
der does not induce intervalley scattering. Quite unexpectedly,
this phase hosts a second-order topological invariant, to be
described in Sec. VI.

As can be seen in Fig. 4, for each superconducting state
there is a critical μc such that for μ > μc the system be-
comes superconducting, which as discussed earlier reflects
the fact that as the chemical potential is increased, screening
becomes more efficient, causing the pseudospin and/or valley-
dependent interactions to become attractive.

Note that the phase boundaries between normal and
superconducting states are second order, while the phase
boundaries between distinct superconducting states are first
order, which in principle leaves open the possibility of co-
existence between these superconducting phases. However,
a straightforward Landau-Ginsburg analysis shows that all
coexistence is energetically penalized.

The rightmost portion of Fig. 4 contains a region labeled as
a “magnetic instability.” In this region, we find that magnetic
insulating states can compete with superconductivity, as we
discuss in Appendix D. In short, the antiscreened couplings
contribute only to ferromagnetic and spin-density wave order,
which are nearly degenerate and eventuate through a Stoner
instability for strong coupling.

Finally, we state that in the presented phase diagram, the
highest critical temperatures reached are on the order of Tc ≈
0.2μ ≈ 2 K, which is estimated using the gap equation (19),
and explicitly taking L = 30 nm. From this expression we see
that going to larger doping μ is desirable to achieve larger crit-
ical temperatures; however, large values of μ enter the strong
coupling regime, in which magnetic or charge instabilities are
likely to compete.

VI. TOPOLOGICAL PROPERTIES OF THE
SUPERCONDUCTING PHASES

In this section we will prove that all three superconduct-
ing phases are topological, and discuss their properties. For
intervalley pairing, we have �k ∝ τy and �k ∝ e±iθkτx for
the sτ and p + ip phases, respectively, while �k ∝ eiτz (φ−θk )

for the intravalley p + iτ p phase. Since τx, τ̂z are even under
inversion (r → −r) while τy is odd, we find that the gap is
odd under inversion for both intervalley phases, while the
intravalley p + iτ p phase is even for φ = nπ and odd for
φ = (n + 1

2 )π , with n ∈ Z. A fundamental requirement for a
nontrivial topology hosting Majorana edge or corner modes
is that the gap changes sign under inversion.1 This is fulfilled

1A close examination of the classification presented in Refs. [5,9]
reveals that when the system respects time-reversal symmetry, i.e., in

for both the intervalley phases, as well as for the intravalley
p + iτ p phase in the special case φ = (n + 1

2 )π .
The time-reversal symmetry-breaking intervalley p + ip

phase exhibits first-order topology; taking into account the
U(1) spin-rotation symmetry, we find that this system is in
Cartan class A, which permits a Chern number in two di-
mensions [137,138]. We find that this phase exhibits a pair
of chiral Dirac modes propagating along the boundary, estab-
lishing it as a first-order topological superconductor.

The intervalley sτ phase is time-reversal symmetric, and
accounting for the U(1) spin-rotation symmetry, is in class
AIII, which always implies trivial first-order topology in two
dimensions. The time-reversal-symmetric intravalley p + iτ p
satisfies a Z2 symmetry expressed by a combination of spin
rotation and gauge transformation, such that the system is
described by a Bogoliubov–de Gennes (BdG) Hamiltonian
in class D. For intervalley sτ and intravalley p + iτ p, a
second-order topological phase protected by the crystalline
symmetries is possible. We will establish the second-order
topology for intravalley p + iτ p and intervalley sτ pairing us-
ing symmetry-based indicators. Finally, we will present exact
diagonalization results for the Bogoliubov–de Gennes Hamil-
tonian for all three superconducting phases. These numerical
results provide clear evidence for the suggested topology by
demonstrating the corresponding anomalous edge and corner
states.

The origins of protected corner modes in the higher-order
topological phases p + iτ p and sτ may be understood intu-
itively as follows. We find that, in both these phases, edge
modes exist for certain parameters, which are gapped for
certain edge geometries. Since these modes can be gapped,
they are not protected by a topological bulk-boundary cor-
respondence and can be continuously pushed into the bulk
continuum; in cases where they do exist, we may introduce
a one-dimensional (1D) theory for the boundary modes. Since
the superconducting gap is odd under inversion � → −�,
the gap is forced to vanish at inversion-symmetric points, i.e.,
the corners of the sample. Hence, there are domain walls, or
“kinks,” in the superconducting gap function at the corners of
the sample, which give rise to anomalous zero modes. These
corner modes survive even when parameters are tuned so that
the 1D modes are pushed into the bulk continuum. Hence,
despite the nonexistence of 1D edge modes generically, each
phase is adiabatically connected to a model possessing gapped
1D modes, which must possess anomalous zero-energy corner
modes.

It is first necessary to express the mean field Hamilto-
nian (14) as a lattice model involving creation operators c†

R,s
for Wannier orbitals localized at the sites R of the artifi-
cial honeycomb lattice, HMF = Hnor. + H�. The normal state

Cartan class DIII, and the gap is even under inversion, the topological
classification with inversion symmetry is trivial. This implies that a
first-order topological phase hosting a helical Majorana edge mode,
as well as a second-order topological phase hosting Kramers pairs
of Majorana corner state, is prohibited. When more symmetries are
included it is still possible that further topological phases appear;
however, they must have distinct boundary signatures from the ones
mentioned.
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Hamiltonian Hnor. is equivalent to two copies of the Haldane
model, consisting of a sum of spin-independent nearest-
neighbor hoppings and next-nearest-neighbor spin-dependent
hopping terms:

Hnor. = −
∑

〈R,R′〉;s
tc†

R,scR′,s −
∑

〈〈R,R′〉〉;s
t ′e

2π i
3 σ sc†

R,scR′,s, (25)

where the parameters of the Dirac model (9) are related to the
hopping parameters via v = √

3at/2 and t ′ = 9η/2.
The pairing term H� is given by

H� =
∑
R,R′

�(R, R′)c†
R,↑c†

R,↓ (26)

for the intervalley p + ip and sτ phases with pairing between
opposite spins, and

H� =
∑
R,R′

�(R, R′)
1

2
[eiφs c†

R,↑c†
R′,↑ + e−iφs c†

R,↓c†
R′,↓] (27)

for the intravalley p + iτ p phase with equal spin pairing,
where (dx, dy, dz ) = (sin φs, cos φs, 0). The form of the pair-
ing function �(R, R′) may be derived by projecting the
momentum-space expression for H� in (14) onto the Wannier
orbitals, and are derived in the Appendix. For the intervalley
paired phases, �(R, R′) possesses the discrete translational
symmetry of the lattice and changes sign under inversion,
�(−R,−R′) = −�(R, R′), while for the intravalley p + iτ p
phase, the discrete translation symmetry of the lattice is
spontaneously broken and �(R, R′) exhibits spatial modu-
lations, oscillating as a function of R + R′ and, except at
special values φ = nπ/2, also spontaneously breaks inversion
symmetry.

A. Symmetry-based indicators for p + iτp and sτ phases

In this section, we prove that the superconducting states
with p + iτ p or sτ pairing symmetry realize a second-order
topological phase with Majorana Kramers pairs pinned to
the corners by the crystalline point-group symmetries. We
will first examine the symmetries of the system to determine
under which conditions we may expect a second-order topo-
logical phase. Next, we apply the theory of symmetry-based
indicators [6–8] to derive a simple, sufficient criterion for
a transition into a second-order topological superconducting
state when an infinitesimal pairing which is odd under inver-
sion symmetry creates a full gap in the BdG spectrum. Finally,
we show that this criterion is fulfilled for the p + iτ p and sτ

pairing instabilities in our honeycomb lattice model.
The symmetry group of our hexagonal lattice is given by

the direct product of translations in the x, y plane and the
crystalline point group D6h � C6v ⊗ Ci, where Ci is generated
by spatial inversion I : x, y, z → −x,−y,−z and C6v is the
point group of the hexagonal lattice in the x, y plane. Fur-
thermore, the normal-state Hamiltonian satisfies time-reversal
symmetry T and U(1) spin-rotation symmetry S around the
sz axis. A symmetric unit cell can be chosen to coincide
with the hexagons in the hexagonal lattice, where the lattice
sites are located on the threefold rotation symmetric corners
of the hexagonal unit cell. Each site is occupied by one
Kramers pair of fermionic orbitals, which, without loss of

generality for the following discussion, can be chosen to be
s orbitals.2 In the following, we argue that inversion sym-
metry is sufficient to protect the second-order topological
phase and prove its appearance from the symmetry-based
indicator. Therefore, it is sufficient to consider the represen-
tations of time-reversal symmetry and inversion symmetry. In
Bloch basis, these representations in the normal state can be
written as

u(T ) = isyσ0,

u(I; k) = s0σxei(a2−a1 )k (28)

with si, σi the Pauli matrices in spin and sublattice space,
respectively, and the Bravais lattice vectors a1 = √

3ax̂, a2 =
(
√

3ax̂ + 3aŷ)/2, where a is the interatomic distance. Here we
chose the center of the hexagons as the center of inversion.

The p + iτ p and sτ superconducting orders preserve
time-reversal symmetry. Out of the large symmetry group
containing the point group D6h and Z2 or U(1) spin-rotation
symmetry, respectively, it is sufficient to preserve only a
single-crystalline symmetry element such as inversion, per-
pendicular twofold rotation, or mirror symmetry in order
to protect a second-order topological phase [5,9]. Here, we
focus on inversion symmetry, as it also allows us to write
a symmetry-based indicator as a topological invariant. By
restricting the topological classification to inversion and time-
reversal symmetry and neglecting the remaining symmetries,
we resolve the topological phases in Cartan class DIII with
inversion symmetry.3 The remaining symmetry elements apart
from time reversal and inversion may enrich these topological
phases, either prohibiting or giving rise to further topolog-
ical phases. For example, the U(1) spin-rotation symmetry
prohibits the first-order topological superconductor in Cartan
class DIII with helical Majorana edge states. The mirror and
sixfold-rotation symmetry enrich the second-order topolog-
ical phase protected by inversion, as the mirror symmetry
pins the corner states to mirror-symmetric corners and at the
same time requires a gapless anomalous edge state on mirror-
symmetric edges [4,5], while the sixfold-rotation symmetry
requires that on a sixfold-symmetric sample, gapless states
should exist on all six corners.

The topological classification depends on whether the su-
perconducting order parameter is even or odd under inversion;
this parity determines the representation of inversion sym-
metry and its commutation relations with the particle-hole
antisymmetry of the BdG Hamiltonian [6,8]. In case the su-
perconducting order parameter is even under inversion, the
topological classification is trivial [5,9]. In case it is odd

2The s orbitals are even under inversion. Choosing different orbitals
may change the representation of inversion symmetry that is carried
through the calculation, but does not affect the conclusions.

3Notice that, previously, we took the U(1) spin-rotation symmetry
or Z2 combined spin-gauge symmetry into account to conclude that
each of the spin blocks is in Cartan class AIII or D, respectively.
Here, we only utilize a minimal set of symmetries that is necessary to
protect the second-order topological phase whose existence we want
to prove, which does not require additional U(1) or Z2 symmetry.
Thus, we may utilize the results for the less restrictive class DIII.
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under inversion, the classification of topological phases with
anomalous boundary states is Z4, where odd elements “1” and
“3” indicate a first-order topological superconductor hosting
a helical Majorana edge mode, and the even element “2” is
a second-order topological superconductor hosting Kramers
pairs of Majorana corner states on an inversion-symmetric
sample [5,9].

The (p + iτ p)-wave order parameter in Eq. (26) is spatially
modulated [50,51] such that it is even (odd) under inversion
for φ = 0 (π/2). For other values of φ, the system does not
respect inversion symmetry. Following the arguments above,
this implies that we may find a second-order topological phase
hosting Kramers pairs of Majorana corner states only for
φ = π/2. However, the corner states may persist for a range
of φ around φ = π/2 until the surface gap closes [4,5,50].
The sτ -wave order parameter (27) is odd under inversion, thus
allowing a second-order topological phase.

Symmetry-based indicators are sufficient criteria for topo-
logical crystalline phases expressed in terms of symmetry
eigenvalues at a few high-symmetry momenta only. A particu-
lar strength of this formalism is that in the weak-pairing limit
of an infinitessimal pairing strength � → 0, the symmetry-
based indicator can be expressed in terms of symmetry data of
the normal-state Hamiltonian only. The symmetry-based indi-
cator takes the symmetry of the superconducting order param-
eter into account, as different symmetry-based indicators are
defined depending on the irreducible representation of the or-
der parameter. This allows one to formulate sufficient criteria
for the topology of a superconducting phase depending on the
pairing symmetry and band-structure data of the normal state.

The symmetry-based indicator for the second-order topo-
logical phase with inversion symmetry I and pairing symme-
try u(I )�(−kx,−ky)uT (I ) = −�(kx, ky) has been calculated
as [6]

z2 = N�
+ − NM

+ mod 4, (29)

where N
ks+ is the number of Kramers pairs of eigenstates

of the BdG Hamiltonian with negative energy and even in-
version eigenvalue +1 at the inversion-symmetric momenta
ks = �, M. Here, we used that sixfold-rotation symmetry re-
lates the three M points in the hexagonal Brillouin zone,
such that NM

+ = N
M1+ = N

M2+ = N
M3+ . For the symmetry-based

indicator, z2 = 1, 3 corresponds to a first-order topological
superconductor with a helical Majorana edge state, and z2 = 2
corresponds to the second-order topological superconductor.
In the weak pairing limit of an infinitesimal order parame-
ter � → 0, we can express the symmetry-based indicator in
terms of the symmetry-data of the normal-state Hamiltonian
only:

zWP
2 = n�

+|occ + n�
−|unocc − nM

+ |occ − nM
− |unocc mod 4, (30)

where nks± |occ (nks± |unocc) are the occupied (unoccupied)
Kramers pairs of bands with inversion parity ±1 at the
high-symmetry momentum ks = �, M. It is notable that this
formula does not depend on the properties of the low-energy
theory at the K , K ′ points.

sτ pairing. First, we evaluate the weak-pairing limit of
the symmetry-based indicator for sτ -wave pairing. At the
points �, M, the energy of the bands is of the order of the

nearest-neighbor hopping t , which is our largest energy scale,
t 	 t ′, μ,�. This allows one to neglect spin-orbit coupling
when computing the inversion parities of the occupied and
unoccupied bands. Without spin-orbit coupling, the Bloch
Hamiltonian for the nearest-neighbor hopping can be written
as

h0(k) = ts0

(
0 1 + e−ia1k + e−ia2k

1 + eia1k + eia2k 0

)
σ

, (31)

where we wrote the 2 × 2 matrix in sublattice space σ

explicitly. Together with the representation of inversion sym-
metry [Eq. (28)], we find by simultaneously diagonalizing
h0(k) and u(I; k) for the number of Kramers pairs resolved
by their inversion parity n�

+|occ = 0, n�
−|unocc = 0, nM

+ |occ =
1, nM

− |unocc = 1, such that zWP
2 = 2. Taking into account that

the sτ pairing opens a full excitation gap, the onset of this pair-
ing instability is a second-order topological superconducting
phase.

p + iτ p pairing. Due to the spatial modulation of the
p + iτ p superconducting order parameter, the Dirac cones at
the K and K ′ points get folded onto the � point. For finite
hole doping, the chemical potential lies inside the valence
band. Taking the band folding into account, we find n�

+|occ =
0, n�

−|unocc = 2, nM
+ |occ = 2, nM

− |unocc = 2 such that zWP
2 = 2.

As the p + iτ p pairing instability opens a full gap in the
spectrum that is odd under inversion for φ = π/2, it leads to
a second-order topological phase for φ = π/2.

B. Exact diagonalization results

We now present exact diagonalization results, for which
we have employed a simplified lattice model which accounts
only for pairing between the closest sites for which the
gap is nonvanishing. For the intervalley p + ip spin-triplet
phase

H� =
∑
〈R,R′〉

�(R, R′)c†
R,↑c†

R′,↓,

�(R, R′) =
{

�′ei(θ− π
2 ), R′ ∈ A

�′ei(θ+ π
2 ), R′ ∈ B

(32)

where θ is the hopping direction.
For the intervalley sτ spin-triplet phase, we find that pairing

vanishes exactly between nearest neighbors, thus, we consider
only pairing between next-nearest neighbors:

H� =
∑

〈〈R,R′〉〉
�(R, R′)c†

R,↑c†
R′,↓,

�(R, R′) =
{

+�′, θ = 0,± 2π
3

−�′, θ = π,±π
3 .

(33)

For the intravalley p + iτ p spin-triplet phase, we consider
pairing between nearest neighbors:

H� = 1

2

∑
〈R,R′〉

�(R, R′)(eiφs c†
R,↑c†

R′,↑ + e−iφs c†
R,↓c†

R′,↓),

�(R, R′) =
{+�′, R′ ∈ A

−�′, R′ ∈ B.
(34)
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FIG. 5. Exact diagonalization results for the second-order topological sτ spin-triplet phase. (a), (b) The 1D dispersion of infinite supercon-
ducting ribbons with (a) armchair and (b) zigzag terminations. Edge modes propagating along opposite edges are shown in different colors.
(c) Wave-function profile of the six zero-energy eigenstates on a flake geometry. These are the subgap states marked in red in the corresponding
spectrum displaying 60 eigenstates around zero in (d). Here we use the parameters η = 0.2t , μ = 0.4t , �′ = 0.033t corresponding to a bulk
superconducting gap � ≈ 0.16t .

For the intervalley sτ and p + ip spin-triplet phases, we may
write the Bogoliubov–de Gennes Hamiltonian in matrix form
as

Hnor. + H� =
∑
R,R′

(
c†

R,↑ cR,↓
)

×
(

H↑↑(R, R′) �↑↓(R, R′)

�
†
↑↓(R, R′) −H∗

↓↓(R, R′)

)(
cR′,↑
c†

R′,↓

)
,

(35)

where the normal-state Hamiltonian Hnor. is defined in
Eq. (25).

Similarly, we may write the Bogoliubov–de Gennes Hamil-
tonian for the intravalley p + iτ p spin-triplet phase as

Hnor. + H� = 1

2

∑
R,R′,s

(
c†

R,s cR,s
)

×
(

Hs,s(R, R′) �s,s(R, R′)

�†
s,s(R, R′) −H∗

s,s(R, R′)

)(cR′,s

c†
R′,s

)
.

(36)

Here the two blocks with opposite sz eigenvalue are re-
lated by time-reversal symmetry T = isyK , while each block

separately satisfies particle-hole symmetry. The block-
diagonal form allows us to perform the exact diagonalization
in only one of the two spin blocks, and infer the results in the
other block by its relation required by time-reversal symmetry
or particle-hole antisymmetry.

We plot the spectrum of infinite superconducting ribbons in
the intervalley sτ , intravalley p + iτ p, and intervalley p + ip
spin-triplet phases in Figs. 5, 6, and 8, as a function of momen-
tum k along the ribbon, respectively. We observe anomalous
edge features in all three cases. In most cases, the 1D dis-
persion of modes propagating along opposite edges is split,
and the lines of different color and thickness indicate opposite
edge modes. We note that the Bogoliubov–de Gennes Hamil-
tonian (35) does not exhibit a redundancy associated with
particle-hole doubling, thus, the quasiparticle spectra are not
particle-hole symmetric for the intervalley phases.

To demonstrate the second-order topology of the interval-
ley sτ and intravalley p + iτ p spin-triplet phases, we show
the wave-function profile of the six lowest-energy eigenstates
forming the Majorana corner modes on a hexagonal flake
geometry, and corresponding spectrum in Figs. 5 and 6. The
exact diagonalization of the BdG Hamiltonians was perform-
ing within a spin block for both intervalley sτ and intravalley
p + iτ p spin-triplet phases [cf. Eqs. (35) and (36)], so the

0.2

0.1

0.0

0.1

0.2

E
[t]

)d()c()b()a(

FIG. 6. Exact diagonalization results for the second-order topological p + iτ p intravalley spin-triplet phase. (a), (b), The 1D dispersion
of infinite superconducing ribbons with (a) armchair and (b) zigzag terminations. Edge modes propagating along opposite edges are shown
in different colors. (c) Wave-function profile of the six lowest absolute energy eigenstates on a flake geometry. These are the subgap states
marked in red in the corresponding spectrum displaying 60 eigenenergies around zero in (d). Here we use the parameters η = 0.2t , μ = 0.4t ,
�′ = 0.13t , and φ = π/2 corresponding to a bulk superconducting gap � ≈ 0.16t .
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Majorana corner modes in both cases have a degenerate
Kramers partner in the opposite spin block.

For the intervalley sτ spin-triplet phase, in which pair-
ing occurs between opposite spins, we plot the spectrum
of the nonredundant BdG Hamiltonian, so that each energy
eigenvalue corresponds to a quasiparticle whose antiparticle
is identical to its Kramers partner. Decomposing each zero-
energy mode into two Majorana modes, we find one Majorana
Kramers pair at each corner which is protected by time-
reversal symmetry. Two gapless counterpropagating modes
are observed on each edge for the armchair geometry, but
we find no edge states for the zigzag geometry, as shown in
Fig. 5. On the flake geometry, Majorana corner states appear
on corners between zigzag edges. The Majorana corner modes
are a signature of the intrinsic second-order topology of the
crystalline bulk superconductor because these corner modes
can not be removed without breaking the symmetries or clos-
ing the bulk gap [5].

For the intravalley p + iτ p phase, in which pairing occurs
for equal spins, we plot the spectrum for the BdG Hamiltonian
within a single spin block, so that each energy eigenvalue
corresponds to a quasiparticle with a Kramers partner in the
opposite spin block. For a hexagonal flake with an armchair
boundary, at φ = π/2, we find one Majorana Kramers pair
at each corner of the flake, protected by time-reversal sym-
metry. These results confirm the existence of a second-order
topology which we concluded in the previous section via
the symmetry-based indicators. We observe gapless counter-
propagating modes along each edge for the zigzag geometry,
however, the edge behavior for an armchair ribbon is sensitive
to the width of the ribbon as well as the value of the pair
density wave order parameter φ, as shown in Fig. 6. Both the
armchair ribbon and flake have a width of 35 unit cells. In
this case, the plotted ribbon dispersion with armchair edges is
gapped, and the flake exhibits Kramers pairs of Majorana cor-
ner states on corners between armchair edges at φ = π/2. For
φ = π/2, the flake is inversion symmetric and the zero-energy
corner modes are a signature of the intrinsic second-order
topology of the bulk superconductivity [5,50].

The behavior of edge modes exhibits a threefold peri-
odicity in the ribbon width. In Fig. 7 we show the level
spectrum at k = 0 as a function of φ for an armchair ribbon
of various widths: (a) 35, (b) 36, (c) 37 unit cells. In all
cases, the modes propagating along the left and right edges
have distinct 1D dispersions, except at values φ = nπ/2,
with n ∈ Z for which the gap function �(R, R′) is reflection
symmetric about the center of the ribbon. We find that the
edge is always gapped at φ = π/2, when �(R, R′) is odd
under inversion. At φ = 0, the gap function is even under
inversion and no higher-order topology is possible. The edge
gap closes for a value of φ between φ = 0 and π/2, corre-
sponding to the transition at which the Majorana corner modes
disappear.

For the intervalley p + ip spin-triplet phase, two co-
propagating modes are observed on each edge for both the
armchair and zigzag geometries, as illustrated in Fig. 8.
Keeping in mind that these modes have been obtained from
the BdG Hamiltonian in the form of Eq. (35), the chiral
edge modes are Dirac fermions, i.e., they are not their own
antiparticle.

(a)

(b)

(c)

FIG. 7. Dependence of the spectrum (in units of t) on the pair
density wave order parameter φ in the p + iτ p state, for ribbons of
various width. The energy spectrum at k = 0 of an infinite super-
conducting ribbon with armchair termination of width (a) 35, (b) 36,
(c) 37 unit cells as a function of φ, for parameters η = 0.2t, μ =
0.4t , and �′ = 0.13t corresponding to a bulk superconducting gap
� ≈ 0.16t .

VII. DISCUSSION

In this paper we considered the phase diagram of an inter-
acting artificial honeycomb superlattice, with Fermi pockets
around the Dirac K , K ′ points, subject to intrinsic spin-orbit
coupling, i.e., a doped two-dimensional topological insulator.

We have shown that first- and second-order topological
superconductivity arises purely due to the Coulomb repulsion,
an effect which is enhanced in the limit of localized atomic
orbitals.

The mechanism has been elucidated for general lattice
models with C6v point-group symmetry, SU(2) spin rotation
and time-reversal symmetry in [50], and is extended here in

)b()a(

FIG. 8. The 1D dispersion of infinite superconducting ribbons
with (a) armchair and (b) zigzag terminations in the p + ip inter-
valley spin-triplet phase, with parameters η = 0.2t , μ = 0.4t , and
�′ = 0.2t corresponding to a bulk superconducting gap � ≈ 0.18t .
Edge modes propagating along opposite edges are shown in different
colors.
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two ways: (i) the influence of intrinsic spin-orbit coupling
is incorporated, breaking spin SU(2) → U(1) generating a
Z2 topological band gap, and (ii) microscopic modeling
for a specific, experimentally promising, material is pre-
sented. However, while our field-theory treatment is generic,
we present results specifically for a model of an artificial
honeycomb lattice based on a nanopatterned hole-doped semi-
conductor quantum well, having in mind the fact that in this
situation there is a high degree of experimental control over
the electron-electron interaction as well as the band structure.

Our microscopic modeling shows that three distinct
(first- and second-order) topological superconducting phases
emerge for realistic material parameters and, moreover, that
these instabilities are the leading weak coupling instabilities
of the Fermi surface, with magnetic and charge ordering only
setting in at larger interaction strengths. The superconducting
phases are as follows:

(1) p + ip intervalley, which admits a first-order topolog-
ical invariant and therefore hosts gapless chiral edge modes;
we have shown from numerical calculations that this phase
hosts two copropagating chiral Dirac fermionic edge modes.

(2) p + iτ p intravalley, a spatially modulated pair density
wave which hosts two Majorana edge modes of opposite
chirality due to the opposite pairing in the two valleys. Hy-
bridization of the edge modes may give rise to the Kramers
pairs of Majorana corner modes. We have confirmed the cor-
responding second-order topology of the bulk superconductor
for φ = π/2, where φ is the phase of the pair density wave,
using an argument from symmetry-based indicators in addi-
tion to our exact diagonalization results.

(3) sτ intervalley, which is also second-order topological,
but with a bulk order that has a different spatial structure
to the p + iτ p state. It is interesting to note that despite the
s-wave nature of the sτ state, the phase exhibits nontrivial
higher-order topology. This is due to the fact that while the
gap is s wave, it has different signs on the two Fermi surfaces
at each valley since the gap is proportional to τy.

The boundary physics of the superconducting state could
be probed in experiment through STM [23], or through mea-
surements of the Josephson critical current [24]. It has been
proposed that higher-order topological superconductors host
Majorana states at disinclinations and defects [26–30], a phe-
nomenon currently unexplored experimentally, which could
offer another signature of higher-order topology.

Recent progress in n-type semiconductors patterned with
a honeycomb superlattice [67–69] has clearly demonstrated
Dirac band-structure features. Our findings show that p-
type semiconductor patterned with a honeycomb superlattice
is an enticing avenue towards topological superconducting
phases. The p-type semiconductor allows for strong intrinsic
spin-orbit coupling, which is otherwise negligible in n type.
Stronger spin-orbit coupling reduces the effective Dirac ve-
locity, flattening the bands and enhancing interaction effects
compared to the n-type scenario. We find that having spin-
orbit coupling as an additional handle, we are more readily
able to realize the necessary conditions for the pairing mech-
anism discussed here.

It would be interesting to further pursue the possible
coexistence between the magnetic instabilities and the super-
conducting phases explored here. A similar coexistence has

been exhibited in twisted trilayer graphene subject to prox-
imity induced spin-orbit coupling [139], which was further
argued to introduce other exotic transport signatures, such as
the zero-field superconducting diode effect [140].

Other superconducting superlattice systems in which
spin-orbit coupling is present intrinsically include, e.g.
twisted transition metal dichalogenides [81] and Ba6Nb11S28

[83]; or extrinsically, via proximity to a transition metal
dichalogenide, include twisted multi-layer graphene systems
[141,142]. Non-superlattice materials featuring superconduc-
tivity and Dirac physics, localised orbitals and spin-orbit
coupling include Pb1/3TaS2 [84], few-layer stanene [85],
monolayer TMDs [86–90], doped topological insulators
[91–99], and recently discovered vanadium-based kagome
metals [100–123]. Many of these systems exhibit super-
conductivity at relatively low carrier densities, and a phase
diagram as a function of density similar to the one predicted
here. It is our hope that the present study offers a new per-
spective on the results of these experiments, and suggests new
directions to explore.
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APPENDIX A: DERIVING THE EFFECTIVE
DIRAC HAMILTONIAN

1. 2D hole gas

The two-dimensional hole gas can be described by the
Luttinger Hamiltonian in the axial approximation, i.e., U(1)
symmetry in plane,

HL = H0 + V,

H0 =
[
γ1 + 2γ2

(
5

2
− S2

z

)]
p2

z

2m
+ W (z)

+
[
γ1 − γ2

(
5

4
− S2

z

)]
p2

2m
,

V = −γ2 + γ3

8m
(p2

+S2
− + p2

−S2
+)

− γ3

4m
{pz, {Sz, p+S− + p−S+}}, (A1)

where Sx, Sy, Sz are angular momentum 3
2 operators, S± =

Sx ± Sy and we use bold font to express the in-plane momenta
p = (px, py), and p± = px ± py. The axial approximation is
useful for quasi-2D systems with frozen dynamics along one
direction, in the present case, the z axis.

We perform exact diagonalization of HL in the basis of
wave functions obtained from H0. We use the lowest-lying
states in the quantum well to define effective spin s =↑,↓
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FIG. 9. (a) 2DHG spectrum, ε(p)/E0 for InAs. Solid blue line corresponds to the doubly degenerate spectrum that enters the computations
of the effective Dirac Hamiltonian (4), the dashed line is the next highest subband, which is ignored in our approximations. (b) Probability
densities |aSz (p)|2 of each physical spin component Sz, presented in (A14).

states, which correspond to the doubly degenerate band of
Fig. 9(a), and are related by the following transformation:

�̂↑(p) = Ā↑(p)eip·r =

⎛⎜⎜⎜⎜⎝
a3/2(p)ô

ia1/2(p)eiφ ê

a−1/2(p)e2iφ ô

−ia−3/2(p)e3iφ ê

⎞⎟⎟⎟⎟⎠eip·r, (A2)

�̂↓(p) = Ā↓(p)eip·r =

⎛⎜⎜⎜⎜⎝
ia−3/2(p)e−3iφ ê

a−1/2(p)e−2iφ ô

−ia1/2(p)e−iφ ê

a3/2(p)ô

⎞⎟⎟⎟⎟⎠eip·r. (A3)

The complex phase is given by the in-plane momenta eiφ =
(px + ipy)/p, with p = |p| and the coefficients aSz (p) are
found numerically via exact diagonalization of the Luttinger
Hamiltonian (A1), shown in Fig. 9(b). Finally, we have intro-
duced two orthogonal vectors ê, ô, which account for the even
and odd parity (inversion in z axis) of the wave-function and
spin components, aSz (p, z).

2. Superlattice potential

For a superlattice placed on top of the 2DHG heterostruc-
ture, the superlattice potential has a z dependence,

W (r, z) = 2W0

∑
i

cos(Gi · r)e−(z+z0 )G0 , (A4)

where Gi are the reciprocal lattice vectors connecting corners
of the hexagonal Brillouin zone in Fig. 1. Here, z = 0 is the
center of the quantum well and z0 is the distance from the
superlattice to the center of the quantum well. This top-gate
superlattice breaks inversion symmetry, but one may argue
that parity-breaking effects are exponentially suppressed and
may be ignored in the regime where z0G � 1. Alternatively,
we can envisage placing a superlattice on both the top and
bottom gates, preserving parity. This is captured by

W (r, z) = 2W
∑

i

cos(Gi · r)e−z0G0 cosh(zG0). (A5)

Henceforth, we remove explicit parity breaking in the super-
lattice potential, working with the expression given in the
main text equation (3).

3. Effective Dirac Hamiltonian

We describe the problem by the Hamiltonian operator

Ĥ = Ê + Û (r), (A6)

whereby Ê represents the kinetic energy operator. To proceed
we need to project the Hamiltonian operator onto an appropri-
ate basis, which we generate directly from the wave functions
of the 2D confined Luttinger Hamiltonian (A1), i.e., |l, σl , k〉,
with an extra index i added, which labels sites in the momen-
tum grid ki = k + gi, where the discrete momentum-space
grid gi ∈ {n1G1 + n2G2 + n3G3 : ni ∈ Z} is the space of de-
generate momentum points. Therefore, we write |l, σl , k〉 →
|l, σl , k, i〉, and project the Hamiltonian operator onto this
basis.

We generate the Hamiltonian by projecting onto the 2DHG
wave functions, and enumerated by the lattice momentum Ki:

Ās(p + τK j ) ≡ Ā j,s,τ (p), (A7)

〈r| j, s, τ, p〉 = Ā j,s,τ (p)eiτK j ·reip·r, (A8)

Hisτ ; js′τ ′ (p) ≡ 〈i, s, τ, p| H2DHG + U (r) | j, s′, τ ′, p〉 (A9)

= Eisτ ; js′τ ′ (p) + Uisτ ; js′τ ′ (p).

We further decouple the potential into spin- (and valley-)
independent and dependent terms

Uisτ ; js′τ ′ = U 0
i; jδs,s′δτ,τ ′ + δUisτ ; js′τ ′ . (A10)

The lowest-energy, doubly degenerate subspace of U 0
i j defines

the pseudospin index σ = ±; we project onto this subspace.
Explicitly, we work with a weak potential, small W , such that
we keep only the first three K points, i.e., Ki ∈ {K1, K2, K3}
The pseudospin eigenfunctions (i.e., of U 0

i j) are then obtained
analytically,

Cσ, j = 1√
3

ei2π ( j−1)σ/3. (A11)

195149-14



INTRINSIC FIRST- AND HIGHER-ORDER TOPOLOGICAL … PHYSICAL REVIEW B 105, 195149 (2022)

Finally, projecting the Hamiltonian (A9) into this psuedospin
(σ = ±) subspace, we arrive at the effective single-particle
Hamiltonian near the Dirac point (p = 0):

〈r|s, τ, σ, p〉 =
3∑

j=1

Ā j,s,τCσ, je
iτK j ·reip·r, (A12)

(H0)s,τ,σ ;s′,τ ′,σ ′ = 〈s, τ, σ, p|H2DHG+W |s′, τ ′, σ ′, p〉
= [v(σ · p)τz − μ + ησzsz]s,τ,σ ;s′,τ ′,σ ′ .

(A13)

We have allowed for a chemical potential μ which can be
tuned using, e.g., gates. Explicitly, we take

Ā j,s=↑,τ =

⎛⎜⎜⎜⎜⎝
a3/2(K0)ô

ia1/2(K0)τei2π ( j−1)/3ê

a−1/2(K0)ei4π ( j−1)/3ô

−ia−3/2(K0)τei2π ( j−1)ê

⎞⎟⎟⎟⎟⎠,

Ā j,s=↓,τ =

⎛⎜⎜⎜⎜⎝
ia−3/2(K0)τe−2π ( j−1)ê

a−1/2(K0)e−i4π ( j−1)/3ô

−ia1/2(K0)τe−i2π ( j−1)/3ê

a3/2(K0)ô

⎞⎟⎟⎟⎟⎠. (A14)

For completeness we also specify the symmetry properties of
the wave functions. The symmetries of a honeycomb system
are 2π/3 and π rotations, reflections, and time reversal. At
the high-symmetry points p = 0, using the explicit form of
the wave functions (A12) and (A14) the transformations are

found to be

D(C3z ) |s, τ, σ 〉 = −e2iπσ/3 |s, τ, σ 〉 ,

D(C2z ) |s, τ, σ 〉 = −is |s,−τ, σ 〉 ,

D(C2x ) |s, τ, σ 〉 = i |−s, τ,−σ 〉 ,

D(C2y) |s, τ, σ 〉 = −s |−s,−τ,−σ 〉 ,

D(T ) |s, τ, σ 〉 = −s |−s,−τ,−σ 〉 . (A15)

The resulting transformation properties are summarized in
Table II.

APPENDIX B: POLARIZATION OPERATORS

1. Preliminaries

The polarization operators are given by (setting velocity
v = 1 for ease of notation)

iμν (p0, p) =
∫

dq0d2q

(2π )3

Tr[JμhαJνhβ]

q̃2
0 − q2 − η2

× q̃β (q̃ + p̃)α
(q̃0 + p0)2 − (q + p)2 − η2

with modified momenta q̃α ∈ {q0eiε + μ, q, η}, p̃α ∈
{p0eiε + μ, q, 0} with infinitesimal ε, and vertices hα ∈
{1, σx, τzσy, szτzσz}, pertaining to the Hamiltonian, and Jμ

I ∈
{1, σ±, τzσz, τzsz, τzszσ±, σzsz}, Jμ

II ∈ {1, σ±, σzsz} ⊗ τ±,
pertaining to the interactions.

By evaluating the frequency integral by residues, the ex-
pression reduces to

iμν (p) =
∫

d2q

(2π )3

Tr[JμhαJνhβ]

q2
0 − q2 − η2

qβ (q + p)α
(q0 + p0)2 − (q + p)2 − η2

{1 − [�(μ − εq) + �(μ − εq+p)]}

≡ i(0)
μν (p) + iδμν (p), (B1)

where (0)
μν (p) is defined as the polarization operator at zero chemical potential μ = 0, i.e., the interband polarization operator

[51]. The remaining contribution δμν (p) is referred to as the intraband polarization operator.
This function is divergent and requires regularization; we shall use dimensional regularization. Returning to the original

expression (7) and setting μ = 0 gives us the intraband contribution; regulating this quantity gives a finite total result. Using the
Schwinger parametrization

1

AB
=
∫ 1

0

dy

[yA + (1 − y)B]2
, (B2)

the function i(0)
μν (p) becomes

i(0)
μν (p) =

∫ 1

0
dy
∫

dq0d2q

(2π )3

Tr[JμhαJνhβ]qβ (q + p)α{
y
(
q2

0 − q2 − η2
)+ (1 − y)[(q0 + p0)2 − (q + p)2 − η]

}2

=
∫ 1

0
dy
∫

d3l

(2π )3

Tr[JμhαJνhβ](l − yp)β [l + (1 − y)p]α

[l2 − �(p0, p, y)]2 (B3)

with �(p0, p, y) = η2 − y(1 − y)(p2
0 − p2), where we Wick-rotated to Euclidean momentum lμ. The expression (B3) is eval-

uated analytically, at zero frequency p0 = 0, and for all μ, ν; the results are shown in Appendix B 2. The second contribution
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δμν (p), which depends on chemical potential μ, can be evaluated through the rearrangements

δμν (p) =
∫

d2q

(2π )2

Tr[JμhαJνhβ]qβ (q + p)α�(μ − εq)

2εq[(εq + p0)2 − (q + p)2 − η2]
+ Tr[JμhαJνhβ]qβ (q + p)α�(μ − εq+p)

2εq+p[(εq+p − p0)2 − q2 − η2]

= −
∑
σ=±

σ

∫
dq dθ

(2π )2

Tr[JμhαJνhβ]qβ (q + σ p)α
cos θ + aσ

�(μ − εq)

4εq p
, (B4)

where

aσ = q2 + p2 + η2 − (εq + σ p0ei0)2

2qpσ
, a0

σ ≡ aσ (p0 = 0) = σ
p

2q
.

We specialize to the static limit p0 = 0, which means we only need to keep the principal value of 1/(aσ + cos θ ).

2. Results

We decomposed the polarization operator into interband and intraband contributions

μsτ (p0, p) = 0
μsτ (p0, p) + δμsτ (p0, p) (B5)

with indices μ = 0, x, y, z, s = 0, sz, τ = 0, τz. We denote the relatively few distinct nonzero polarization operators as

±(p) = z00,x00(0, p) ± iz00,y00(0, p) = zsτ,xsτ (0, p) ± izsτ,ysτ (0, p),

0(p) = 0sτ,0sτ (0, p), z = zsτ,zsτ (0, p), η = zsz0;0szτ (p) = z0τz ;000(p). (B6)

Here we factor out N = 8 coming from the trace (spin × pseudospin × valley). Subscripts x, y, z correspond to pseudospin,
while s, τ correspond to spin sz and valley τz. We then evaluate the trace in Eq. (B3), which results in the following integrals
which are straightforwardly evaluated:

i(0)
0s;0s(p) = N

∫ 1

0
dy
∫

dd l

(2π )d

l2
0 + l2

x + l2
y − y(1 − y)p2 + η2

[l2 − �(p0, p, y)]2

= N
∫ 1

0
dy

[
1

2

i�(1 − d/2)

(4π )d/2�(2)
�d/2−1 + [η2 − y(1 − y)p2]

i�(2 − d/2)

(4π )d/2�(2)
�d/2−2

]
= N

i

8π

∫ 1

0
dy[−[η2 + y(1 − y)p2]1/2 + [η2 − y(1 − y)p2][η2 + y(1 − y)p2]−1/2]

= N
i

8π

∫ 1

0
dy[−2y(1 − y)p2[η2 + y(1 − y)p2]−1/2]

= N
i

8π

[
−η + 1

2p
(4η2 − p2) arcsin

(
p√

4η2 + p2

)]
(B7)

and, similarly,

i(0)
zs;zs(p) = N

i

8π

[
2η + 1

p
(4η2 + p2) arcsin

(
p√

4η2 + p2

)]
,

i(0)
xs;xs(p) = N

i

8π

p2
y

p2

[
η − 1

2p
(4η2 − p2) arcsin

(
p√

4η2 + p2

)]
,

i(0)
ys;ys(p) = N

i

8π

p2
x

p2

[
η − 1

2p
(4η2 − p2) arcsin

(
p√

4η2 + p2

)]
,

i(0)
xs;ys(p) = i(0)

ys;xs(p) = N
i

8π

px py

p2

[
−η + 1

2p
(4η2 − p2) arcsin

(
p√

4η2 + p2

)]
,

i(0)
x00;0szτz

(p) = −i(0)
0szτz ;x00(p) = i(0)

xsτ ;000(p) = −i(0)
000;xsτ (p) = − iN

8π

ipy

p

[
2η arcsin

(
p√

4η2 + p2

)]
,

i(0)
y00;0szτz

(p) = −i(0)
0szτz ;ys̄(p) = i(0)

ysτ ;000(p) = −i(0)
000;ysτ (p) = iN

8π

ipx

p

[
2η arcsin

(
p√

4η2 + p2

)]
. (B8)
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We now consider the contribution explicitly dependent upon the chemical potential. Again with p0 = 0, one finds

δ0s;0s(p) = N

8π

[
−2μ + η − 1

2p
(4η2 − p2) arcsin

(
p√

4η2 + p2

)]
,

δx;x(p) = N

8π

p2
y

p2

[
−η + 1

2p
(4η2 − p2) arcsin

(
p√

4η2 + p2

)]
,

δy;y(p) = N

8π

p2
x

p2

[
−η + 1

2p
(4η2 − p2) arcsin

(
p√

4η2 + p2

)]
,

δz;z(p) = N

8π

[
2μ − 2η − 1

p
(4η2 + p2) arcsin

(
p√

4η2 + p2

)]
,

δx;y(p) = N

8π

px py

p2

[
η − 1

2p
(4η2 − p2) arcsin

(
p√

4η2 + p2

)]
,

δx;z(p) = − N

8π
ipy,

δy;z(p) = N

8π
ipx,

δx00;0τ (p) = N

8π

i2ηpy

p
arcsin

( √
p2√

4η2 + p2

)
,

δxsτ ;000(p) = N

8π

i2ηpy

p
arcsin

( √
p2√

4η2 + p2

)
,

δy00;0sτ (p) = − N

8π

i2ηpx

p
arcsin

( √
p2√

4η2 + p2

)
,

δysτ ;000(p) = − N

8π

i2ηpx

p
arcsin

( √
p2√

4η2 + p2

)
,

δzsz0;0sτ (p) = δz0τz ;000(p) = N

8π
2η. (B9)

Now (with s = 0, sz), we relate to channel I (here ordering
of τ τ̄ does not affect the result):

ττ̄
0;0(p) = 1

2
z;z(p),

ττ̄
x;x(p) = 1

2
y;y(p),

ττ̄
y;y(p) = 1

2
x;x(p),

ττ̄
z;z(p) = 1

2
0;0(p),

ττ̄
x;y(p) = −1

2
x;y(p),

ττ̄
x;0(p) = 0,

ττ̄
y;0(p) = 0,

ττ̄
z;0(p) = 1

2
zs;0(p) = N

η

8π
,

ττ̄
x;z(p) = 0,

ττ̄
y;z(p) = 0. (B10)

APPENDIX C: INTERACTIONS IN COOPER CHANNEL

To obtain the interactions in band basis, we define the cre-
ation operator ψ̃

†
k which creates a fermion in the upper band,

while ψ
†
k creates a fermion of definite pseudospin. Changing

to the band basis, we use

ψk = Uk,τ,sψ̃k, Uk,τ,s =
(

wa
τ,s(k) w̄a

τ,s(k)

wb
τ,s(k)eiτθk w̄b

τ,s(k)eiτθk

)
(C1)

with the wave-function components given by wa
τ,s(k) ≡

vk/
√

2εk (εk − ατη), wb
τ,s(k) ≡ (τεk − αη)/(vk)wa

α,k,τ , with
functions w̄a

τ,s(k), w̄b
τ,s(k) similarly defined for the lower band

eigenstates, but not needed.
We then keep only the upper band, e.g., we use the projec-

tions

U†
[1]σx U[2]|++ = (

wa
[1]w

b
[2]e

iτ2θk2 + wa
[2]w

b
[1]e

−iτ1θk1
)
,

U†
[1]σy U[2]|++ = i

(−wa
[1]w

b
[2]e

iτ2θk2 + wa
[2]w

b
[1]e

−iτ1θk1
)
,

U†
[1]σz U[2]|++ = (

wa
[1]w

a
[2] − wb

[1]w
b
[2]e

−iτ1θk1 +iτ2θk2
)
,

U†
[1]σ0 U[2]|++ = (

wa
[1]w

a
[2] + wb

[1]w
b
[2]e

−iτ1θk1 +iτ2θk2
)
. (C2)
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We compress notation such that indices are [1] = {k1, τ1, s1}.
The notation “|++” indicates that we consider just the upper-
band contribution. The phase factors owe to the single-particle
Berry phase and play a central role in the pairing mechanism.

In the Cooper channel, k1 = −k3, k2 = −k4, such that
θk3 = π + θk1 , θk4 = π + θk2 . The matrix elements of the
screened Coulomb interaction in the upper band, separated
into intravalley and intervalley Cooper channels, are obtained
as

Vintra =
∑

τi,si,ki

(U†
[1] ⊗ U†

[3]V̂I U[2] ⊗ U[4] )|++

× δτ1,τ2,τ3,τ4δs1,s2δs3,s4δk1,−k3δk2,−k4 ,

Vinter =
∑

τi,si,ki

{
(U†

[1] ⊗ U†
[3]V̂I U[2] ⊗ U[4] )|++

× δτ1,τ2,−τ3,−τ4δs1,s2δs3,s4δk1,−k3δk2,−k4

+ (U†
[1] ⊗ U†

[3]V̂II U[2] ⊗ U[4] )|++

× δτ1,−τ2,−τ3,τ4δs1,s3δs2,s4δk1,−k3δk2,−k4

}
. (C3)

We compactly write this as a spin and valley ten-
sor (pseudpspin has been removed since we work in
band basis and keep just the upper band), using the
scattering angle θ ≡ θk2 − θk1 , V̂ (θ ) = gabcd (θ )sasbτcτd +
jabαβ (θ )sasbτατβ , where a, b, c, d ∈ {0, z} and α, β ∈ ±. We
explicitly display the angular dependence of the interac-
tion matrix elements. Considering the angular momentum
channel l ,

V̂l =
∫

dθ

2π
eilθ [gabcd sasbτcτd + jabαβsasbτατβ]

= gl
abcd sasbτcτd + jl

abαβsasbτατβ. (C4)

We find that l = ±1 (p wave) and l = 0 (s wave) are the
dominant channels. The resulting tensor is given in Eqs. (12)
and (13) in the main text.

APPENDIX D: COMPETING INSTABILITIES

In this Appendix we address the question of whether other
instabilities may compete with superconductivity. As is ex-
pected in general, superconductivity dominates in the limit of
weak interactions when the Fermi surface is not nested. We

find a portion of the phase diagram at stronger couplings in
which magnetic order dominates, as shown in Fig. 4.

We consider three types of instabilities: ferromagnetism
(FM), spin density wave (SDW), and charge density wave
(CDW), where the SDW and CDW states are commensurate
with the lattice with period K. These phases are referred to
as particle-hole instabilities, and are captured by the order
parameters, respectively,

�1 =
∑

k

ψ
†
↑,τ,kψ↓,τ,k,

�2 =
∑

k

ψ
†
↑,τ,kψ↓,−τ,k,

�3 =
∑

k

ψ
†
↑,τ,kψ↑,−τ,k. (D1)

These orders take hold when their associated susceptibilities
diverge, a condition which results in equations analogous to
the BCS gap equation. Denoting the particle-hole suscepti-
bility χs1τ1,s2τ2 (p0, p), FM order corresponds to a divergence
in χ1 = χsτ,−sτ (0, 0), SDW order to χ2 = χsτ,−s−τ (0, 0), and
CDW to χ3 = χsτ,s−τ (0, 0).

In the previous Appendix, we wrote the interactions in the
basis of states in the upper band (i.e., at the Fermi surface)
with k1 = −k3, k2 = −k4, corresponding to the Cooper scat-
tering channel. For the particle-hole instabilities, the relevant
scattering amplitudes are the direct and exchange channels.
We again restrict all momenta to lie on the Fermi surface
|ki| = kF . The scattering condition for the exchange channel
is k1 = k4, k2 = k3, with scattering angle θ ≡ θk2 − θk1 . The
corresponding couplings V are obtained analogously to the
procedure in the Cooper channel (C3). We further define
the � = 0 component as

∫
dθ V̂ /(2π ) ≡ V̂X . For the density

channel, k1 = k2, k3 = k4, with scattering angle θ ≡ θk3 −
θk1 , and we define the � = 0 component as

∫
dθ V̂ /(2π ) ≡

V̂D. The procedure of the previous Appendix yields the
tensor

V̂X = gX
0 + gX

1 τz ⊗ τz + gX
2 sz ⊗ sz + gX

3 szτz ⊗ szτz

+ gX
4 (1 + szsz )(τzτ0 + τ0τz )

+ (
jX
0 + jX

1 sz ⊗ sz
)
(τ+ ⊗ τ− + τ− ⊗ τ+),

V̂D = jD
0 (τ+ ⊗ τ− + τ− ⊗ τ+). (D2)

The ladder equations give the total susceptibilities in terms of
the static susceptibilities and the direct and exchange scatter-
ing amplitudes,

χs1τ1,s2τ2 (0, 0) = χ0
s1τ1,s2τ2

(0, 0) +
∑

sa,sb,τa,τb

∫
d3q1d3q2

(2π )6
Gs1τ1 (q10, q1)Gs2τ2 (q10, q1)Vs1τ1saτa,s2τ2sbτb (θ2 − θ1)

× Gsaτb (q20, q2)Gsbτb (q20, q2) + · · ·

= χ0
s1τ1,s2τ2

(0, 0) + χ0
s1τ1,s2τ2

(0, 0)
∑

sa,sb,τa,τb

(∫
dθ

2π
Vs1τ1saτa,s2τ2sbτb (θ2 − θ1)

)
χsaτa,sbτb (0, 0)

= χ0
s1τ1,s2τ2

(0, 0) + χ0
s1τ1,s2τ2

(0, 0)
∑

sa,sb,τa,τb

VX/D
s1τ1saτa,s2τ2sbτb

χsaτa,sbτb (0, 0),
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where the static susceptibilities are given by

χ0
s1τ1,s2τ2

(0, 0) ≡ −i
∫

d3q

(2π )3
Gs1τ1 (q0, q)Gs2τ2 (q0, q). (D3)

For FM, SDW, and CDW order, we evaluate the relevant static
susceptibilities as χ0

sτ,−sτ (q0 = 0, q = 0) = χ0
sτ,−s−τ (q0 =

0, q = 0) = χ0
sτ,s−τ (q0 = 0, q = 0) = μ/(2π ). The resulting

RPA equations for the susceptibilities reduce to

χ1 = μ

2π
+ μ

2π

(
V̂X

s+s+,s̄+s̄+ + V̂X
s+s−,s̄−s̄+

)
χ1,

χ2 = μ

2π
+ μ

2π

(
V̂X

s+s+,s̄−s̄−
)
χ2,

χ3 = μ

2π
+ μ

2π

(
V̂D

s+s−,s−s+
)
χ3. (D4)

The condition for FM, SDW, and CDW instabilities immedi-
ately follow, and can be written analytically in terms of the
coupling constants found in (D2):

(FM): 1 = μ

2π

(
V̂X

s+s+,s̄+s̄+ + V̂X
s+s−,s̄−s̄+

)
= μ

2π

(
gX

0 + gX
1 − gX

2 − gX
3 + jX

0 − jX
1

)
,

(SDW): 1 = μ

2π
V̂X

s+s+,s̄−s̄− = μ

2π

(
gX

0 − gX
1 − gX

2 + g3
)
,

(CDW): 1 = μ

2π
V̂D

s+s−,s−s+ = μ

2π
jD
0 . (D5)

From Eq. (D5), the system exhibits instabilities which com-
pete with superconductivity when the dimensionless coupling
constants are order unity, as distinct from the superconducting
instability which occurs for arbitrarily weak attractive cou-
pling. Throughout most of the phase diagram we considered,
this condition is not met, and so superconductivity is the sole
instability of the system.

Increasing the chemical potential, the antiscreening mecha-
nism causes the g0 coupling to grow large. Since this coupling
does not appear in the susceptibility for CDW order, antis-
creening gives rise to only FM and SDW ordering. We do
find one small region of phase diagram where g0 grows large
enough to give rise to FM and SDW order. The other cou-
plings, which are much smaller than g0, act to favor SDW over
FM order. In the phase diagram we simply label this region
as magnetic instability since we expect FM and SDW to be
nearly degenerate. Moreover, this part of the phase diagram
should not be taken too literally since the large coupling
constant means corrections to mean field theory are likely
significant.

APPENDIX E: EFFECTIVE TIGHT-BINDING MODEL
FOR THE SUPERLATTICE

In order to derive the effective lattice model, we introduce
a basis of Wannier orbitals |R, α〉 localized at the sites R of
the honeycomb lattice, with α being a spin index defined by
the action of threefold rotations (C3z)

u(C3z )|R, α〉 = e
2π i

3 α|�R, α〉, (E1)

where α = {± 3
2 ,± 1

2 }. We consider only the four lowest-
energy orbitals on each site.

The lattice Hamiltonian has the form

H =
∑

Tα,α′ (R, R′)c†
R,αcR′,α′ , (E2)

where

Tα,α′ (R, R′) = 〈R, α|H2DHG|R′, α′〉, (E3)

with H2DHG is defined in (1). There is a splitting between the
onsite energies Tαα (R, R) = εα = ε|α| for the α = ± 3

2 and ± 1
2

states, and we consider an effective model involving only the
α = ± 3

2 states, which are lowest in energy, and denote α = 3
2 s

where s is the spin index used throughout the main text, and
cR,α → cR,s.

The topological mass term originates from nearest-
neighbor hopping terms which involve a spin transition α′ −
α = ±2. By symmetry we find, for hopping from a site R to a
nearest neighbor R + d,

T∓ 1
2 ,± 3

2
(R + d, R) = λd2

±. (E4)

An effective spin-conserving next-nearest-neighbor hopping
term arises due to two consecutive hoppings with initial,
intermediate, and final sites R, R + d, and R + d + d ′, re-
spectively

T eff
ss (R + d + d ′, R) = λ2

ε 3
2
− ε 1

2

|d|2e2isσ (θ ′−θ ), (E5)

where θ, θ ′ are the hopping directions in the first and second
steps, respectively, and σ = +1,−1 when R ∈ A, B, respec-
tively.

Choosing lattice vectors a1 = (a, 0), a2 = (a/2, a
√

3/2),
and denoting the three nearest-neighbor bonds d i = R − R′

with R′ in the A sublattice and R a neighboring site, and the six
next-nearest-neighbor bonds d̃n which are vectors of length
a directed along angles θn = nπ

3 for n = {0, 1, 2, 3, 4, 5}, we
obtain an effective Hamiltonian involving only the |α| = 3

2
states (after absorbing the onsite potential into the chemical
potential)

H = −t
∑

〈R+d i,R〉
c†

R+d i,s
cR,s − t ′ ∑

〈〈R+d̃n,R〉〉
eisσϕn c†

R+d̃n,s
cR,s,

(E6)

where ϕn = 2π
3 for n = 0, 2, 4 and ϕn = − 2π

3 for n = 1, 3, 5.
We make contact between the two forms of the normal state

Hamiltonian by expanding the Hamiltonian near the K points,
and reproduce the effective Dirac Hamiltonian

H(τK + k) ≈ v(τkxσx + kyσy) + ητσzsz, (E7)

where we find the relation between the parameters in the Dirac
theory and in the real-space model

v =
√

3at

2
, η = 9

2
t ′. (E8)
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Near the K points we have the upper-band eigenstates

ψ̃
†
kτ s =

∑
R

ϕkτ s(R)c†
Rs (E9)

with symmetry properties ϕkτ s(−R) = ϕ−kτ̄ s(R) and
ϕ−kτ̄↓(R) = ϕ∗

kτ↑(R). Explicitly,

ϕkτ s(R) = 1√
2

ei(τK+k)·R[wa
τ,s(k)a(R) + eiτθkwb

τ,s(k)b(R)
]

(E10)

with a(R) = {1, 0}, b(R) = {0, 1}, for R ∈ A, B, respectively,
and the functions wa

τ,s(k) and wb
τ,s(k) are defined in Ap-

pendix C. We shall use these wave functions to obtain a
real-space form for the the superconducting gap functions
presented in momentum space in Sec. V.

APPENDIX F: PAIRING TERM IN THE LATTICE
REPRESENTATION

The mean field BdG Hamiltonian is

H =
∑
k,τ,s

εkψ̃
†
kτ sψ̃kτ s + 1

2

∑
k,−k,τ,τ ′,s,s′

ψ̃
†
kτ s(�k)τ s,τ ′s′ψ̃

†
−kτ ′,s′

+ H.c., (F1)

where we have used ψkτ s to refer to the upper-band creation
operator, as in the previous subsection. The three supercon-
ducting phases we study are given by

�k = �k ×

⎧⎪⎨⎪⎩
dz

s szτ0(τysy),

e±iθk dz
s szτz(τysy),

eiτz (φ−θk )
(
dx

s sx + dy
s sy
)
τy(τysy)

(F2)

for the sτ , p + ip, and p + iτ p phases, respectively. We have
added a factor �k absent in the main text. This is a smooth
function peaked at the Fermi momentum, encapsulating the
fact that pairing should only occur near the Fermi surface,
and should be retained in deriving the correct real-space gap
function. Writing

�k;ττ ′;ss′ = �ττ ′ (k)(dμsμiŝy)ss′ (F3)

to separate out the spin structure, we can use the upper-band
wave functions to go to the coordinate representation in terms
of the full real-space creation operator c†

rs,

H = 1

2

∑
(dμsμiŝy)ss′ϕkτ s(R)�ττ ′ (k)ϕ−kτ ′s′ (R′)c†

Rsc
†
R′s′

= 1

2

∑
�ss′ (R, R′)c†

Rsc
†
R′s′ . (F4)

Note that under inversion, R → −R, R′ → −R′ we have

�ss′ (−R,−R′) =
∑

k

(dμŝμiŝy)ss′ϕ−kτ̄ s(R)�ττ ′ (k)ϕkτ̄ ′s′ (R′)

=
∑

k

(dμŝμiŝy)ss′ϕkτ s(R)�τ̄τ̄ ′ (−k)ϕ−kτ ′s(R)

(F5)

and the valley structures are explicitly given by

�ττ ′ (k) = �k ×

⎧⎪⎨⎪⎩
(iτ̂y)ττ ′,

e±iθk (τ̂ziτ̂y)ττ ′,

eiτ̂z (φ−θk ).

(F6)

We can now explicitly evaluate the functions �(R, R′). We
begin with the intervalley phases, which take the form

H� =
∑
k;s

�kei�θk ψ̃
†
k+sψ̃

†
−k−s̄, (F7)

where � = 0 for the s± phase and � = ±1 for the p ± ip
phases. Expanding ψ̃

†
kτ s in the position basis (E9) we find

H� =
∑

�kei�θkϕk+s(R)ϕ−k−s̄(R′)c†
Rsc

†
R′ s̄

=
∑

�(R, R′)c†
R↑c†

R′↓, (F8)

where we may write

�(R, R′) =
∑

k

�kei�θk [ϕk+↑(R)ϕ∗
k+↑(R′)

− ϕk+↑(−R)ϕ∗
k+↑(−R′)]. (F9)

In order to perform the summation over k we introduce the
functions f σσ ′

m (l ) defined by

f σσ ′
m (l ) =

∫
�kw

σ
++(k)wσ ′

++(k)Jm(kl )
kdk

2π
, (F10)

with m = 0, 1, 2, . . . , and the relation∑
wσ

++(k)wσ ′
++(k)�kei[k·(R−R′ )+�θk] = i|�|ei�θ f σσ ′

|�| (|R − R′|),
(F11)

where θ = θR − θR′ .
The function f σσ ′

0 (l ) is peaked at l = 0 and oscillates over
length scales ∼k−1

F with decaying amplitude, while for m > 0
the functions f σσ ′

m (l ) vanish at l = 0, increase to a global
maximum at l ≈ k−1

F , and then decay for larger values of l .
In terms of the functions f σσ

m (l ) the gap �(R, R′) is
given by

�(R, R′) = 1

2
×

⎧⎪⎪⎨⎪⎪⎩
i|�|ei�θ

(
f σσ
|�| (|R − R′|)eiK·(R−R′ ) − (−1)� f σ̄ σ̄

|�| (|R − R′|)e−iK·(R−R′ )
)
, R, R′ ∈ σ

ei�θ
(
i|�−1|ei[K·(R−R′ )−θ] f AB

|�−1|(|R − R′|) + (−1)�i|�+1|e−i[K·(R−R′ )−θ] f AB
|�+1|(|R − R′|)), R ∈ A, R′ ∈ B

ei�θ
(
i|�+1|ei[K·(R−R′ )+θ] f AB

|�+1|(|R − R′|) + (−1)�i|�−1|e−i[K·(R−R′ )+θ] f AB
|�−1|(|R − R′|)), R ∈ B, R′ ∈ A.

(F12)

Note that for R, R′ ∈ σ we have

�(R, R′) = − 1
2 i|�|ei�θ

(
f σ̄ σ̄
|�| (|R − R′|)eiK·(R−R′ ) − (−1)� f σσ

|�| (|R − R′|)e−iK·(R−R′ )) (F13)
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while for R′ ∈ A, R ∈ B we have

�(R, R′) = 1
2

(
i|�+1|ei[K·(R−R′ )+(�+1)θ|R−R′ |] f AB

|�+1|(|R − R′|) + (−1)�i|�−1|ei[−K·(R−R′ )+(�−1)θ] f AB
|�−1|(|R − R′|)). (F14)

For nearest neighbors, R − R′ = d i, recall that we have K · d i = {0,−2π/3, 2π/3} and θR = θi = {π/2, π/2 + 2π/3, π/2 +
4π/3}, giving us K · R + θR = π

2 . Thus, for R′ ∈ A we have

�(R′ + d i, R′) = 1

2
ei�θi

[
i|�+1|+1 f AB

|�+1|

(
a√
3

)
+ (−1)�i|�−1|−1 f AB

|�−1|

(
a√
3

)]
. (F15)

For next-nearest neighbors, R − R′ = d̃
′
n we have

eiK·(R−R′ ) =
{

e− 2π i
3 , i = 1, 3, 5

e
2π i
3 , i = 2, 4, 6

(F16)

which gives us, for R − R′ = d̃n

�(R, R′) =
{

1
2 i|�|ei�θ ′

i
(

f σσ
|�| (a)e− 2π i

3 − (−1)� f σ̄ σ̄
|�| (a)e

2π i
3
)
, i = 1, 3, 5

1
2 i|�|ei�θ ′

i
(

f σσ
|�| (a)e

2π i
3 − (−1)� f σ̄ σ̄

|�| (a)e− 2π i
3
)
, i = 2, 4, 6

(F17)

with θ ′
i being the angle between d ′

i and the x axis.

1. sτ

We obtain the gap in the sτ phase by setting � = 0 in (F12). For neighbor pairing we find from (F15)

�(R′ + d i, R′) = 1

2
f AB
1

(
a√
3

)
(−1 + 1) = 0 (F18)

and therefore restrict the pairing to next-nearest neighbors only. The gap depends on the function f σσ
0 (a). Writing f AA

0 (a) =
α + β, f BB

0 (a) = α − β we have from (F16)

�(R, R′) =
{

1
2

(
(α + β )e− 2π i

3 − (α − β )e
2π i

3
)
, i = 1, 3, 5

1
2

(
(α + β )e

2π i
3 − (α − β )e− 2π i

3
)
, i = 2, 4, 6

=
{− 1

2 (β + i
√

3α), i = 1, 3, 5

− 1
2 (β − i

√
3α), i = 2, 4, 6.

(F19)

In the limit of spin-orbit interaction we have β → 0. For the numerical diagonalization we choose a gap in which β = 0 (since
the spin-orbit interaction is weak) and α = i�′, so that �(R, R′) is purely real.

2. p + ip

For exact diagonalization we take only the nearest-neighbor pairing terms. For R′ ∈ A, R = R′ + d i, the gap is given by
setting � = +1 in (F15),

�(R, R′) = 1
2 eiθ

[−i f AB
2 (R) + i f AB

0 (R)
] = �′eiθ , (F20)

where θ = θR − θR′ .

3. p + iτp

We now consider the p + iτ p phase. Since the ds vector is pinned in plane for this phase, pairing is between the same spin
species, i.e., the gap is proportional to sz. This way, BdG Hamiltonian can be decomposed into spin blocks, the Majoranas corner
states associated to each of which are related by time-reversal symmetry. The derivation then proceeds through more or less the
same manipulations as above (cf. Appendix A4 of [50]). It is possible to decompose the pairing term into two identical spin
blocks:

H� = 1

2

∑
k,τ,s

�keiτφe−iτθk ψ̃
†
k,τ,sψ̃

†
−k,τ,s = 1

2

∑
s

�(R, R′)c†
R,sc

†
R′,s. (F21)
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Expanding ψ̃k,τ,s in the position basis (E9) we find

�(R, R′) =
∑

k

�k

(
1

2
ei{K·(R+R′ )+k·(R−R′ )+φ−θk}{[wa

+,s(k)a(R) + eiθkwb
+,s(k)b(R)

][
wa

+,s(k)a(R′) − eiθkwb
+,s(k)b(R′)

]}
+ 1

2
ei{−K·(R+R′ )+k·(R−R′ )−φ+θk}{[wa

−,s(k)a(R) + e−iθkwb
−,s(k)b(R)

][
wa

−,s(k)a(R′) − e−iθkwb
−,s(k)b(R′)

]})
. (F22)

Performing the summation over k yields functions f σσ ′
m (|R − R′|) which all vanish at small separations R − R′ � k−1

F except for
m = 0. For purposes of exact diagonalization, we keep only terms involving nearest neighbors, which correspond to those that
cancel the winding factor eiθk . This gives

�(R, R′) =
∑

k

�k

{
1

2
ei{K·(R+R′ )+k·(R−R′ )+φ−θk}wa

+,sw
b
+,se

iθk [−a(R)b(R′) + b(R)a(R′)]

+ 1

2
ei{−K·(R+R′ )+k·(R−R′ )−φ+θk}wa

−,sw
b
−,se

−iθk [−a(R)b(R′) + b(r)a(R′)]
}
. (F23)

We note that wa
−,sw

b
−,s = −wa

+,sw
b
+,s, and is independent of spin index s. Performing the summation over k,∫

wa
+,sw

b
+,s�keik·(R−R′ ) d2k

(2π )2
=
∫

vk

εk
�kJ0(k|R − R′|)kdk

2π
= f AB

0 (|R − R′|), (F24)

we find

�(R, R′) = 1
2 f AB

0 (|R − R′|)[ei{K·(R+R′ )+φ} − ei{−K·(R+R′ )−φ}][−a(R)b(R′) + b(R)a(R′)]

= i f AB
0 (|R − R′|){sin[K · (R + R′) + φ]}[−a(R)b(R′) + b(R)a(R′)], (F25)

and, therefore, with R ∈ A, R′ ∈ B,

H� =
∑
〈R,R′〉

�′[sin[K · (R + R′) + φ]c†
Rc†

R′ + H.c.], (F26)

where �′ = i f AB
0 (|R − R′|).
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