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Frustrated Mott insulators such as transition metal dichalcogenides present an ideal platform for the experi-
mental realization of externally tuned insulator-metal transition. In this paper, we present the first nonperturbative
numerical investigation of the disorder-induced insulator-metal transition in a two-dimensional frustrated Mott
insulator. Our approach is generic and captures the essential physics of Mott insulator-metal transition in geo-
metrically frustrated lattices. For concreteness, we have compared our results with the experimental observations
on copper (Cu) intercalated 1T-TaS2. Based on the magnetic, spectroscopic, and transport signatures, we have
mapped out the thermal phase diagram of Cu intercalated 1T-TaS2 and established that over a regime of moderate
disorder strength this material hosts an antiferromagnetic metal. Moreover, the insulator-metal transition in this
system is not tied to the loss of magnetic correlations, thereby giving rise to two quantum critical points. The
emergent non-Fermi liquid metal is governed by resilient quasiparticles, that survive as the relevant low energy
excitations even after the break down of the Fermi liquid description. The transport and spectroscopic signatures
discussed in this letter are expected to serve as important benchmarks for future experiments on this and related
class of materials.
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I. INTRODUCTION

Interplay of interaction and disorder in systems with strong
electron-electron correlation has always been a subject of
fundamental interest in condensed matter physics [1–3]. In
the noninteracting limit, an infinitesimal disorder in known
to lead to Anderson localization in one and two dimensions,
while a three-dimensional system undergoes a metal-insulator
transition (MIT) at a critical disorder strength [4,5]. In the
opposite limit are the Mott insulators wherein strong electron-
electron interaction leads to localization at commensurate
electron filling [6]. At low temperatures, Mott insulators are
often associated with magnetic ordering, low energy spin ex-
citations and gapped charge excitations [7,8]. The outcome
of the interplay between these two localizing tendencies was
suggested to stabilize a metallic phase between the Mott
and the Anderson insulating phases, leading to an insulator-
metal-insulator transition, in two-dimensions (2D) [9,10]. The
first possibility of a Mott insulator-metal transition (IMT)
in 2D was suggested based on the renormalization group
(RG) theory by Finkel’stein [9,10], while the first experi-
mental signature of the same was observed in the transport
data of high-mobility silicon metal oxide semiconductor field
effect transistor [2,11]. Disorder-induced IMT on the bipar-
tite square lattice is an well investigated subject, both at the
ground state and at finite temperatures. The range of applied
theoretical tools include, inhomogeneous mean field theory
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[12,13], dynamical mean field theory (DMFT) and its vari-
ants [14–24], determinant quantum Monte Carlo (DQMC)
[25–27], exact diagonalization [28], typical medium theory
[29] and its extensions [30], auxiliary field quantum Monte
Carlo with static path approximation [31], etc. In the clean
limit, this system is a Mott insulator with a Neel antiferro-
magnetic order of the local moments. Disorder brings electron
itinerancy back into the picture, thereby allowing the compe-
tition between insulating tendency of the localized moments
and the metallicity of the itinerant electrons. The outcome of
this competition is a metallic regime which lacks any mag-
netic ordering, at intermediate disorder. Notably, the system
hosts a single quantum critical point (QCP) corresponding to
the IMT; the onset of metallicity is accompanied by the loss
of (quasi-) long range magnetic order [31].

The primary difficulty in the experimental realization of
IMT is to find suitable Mott insulators in which disorder can
be introduced in a controlled manner without changing the
carrier concentration. An avenue to circumvent this difficulty
is the recently discovered 2D transition metal dichalcogenide
(TMD) and related systems, which allows for the independent
control over lattice filling and electron-electron correlations
[32,33]. One such candidate material is 1T-TaS2, which is
a geometrically frustrated system with a rich phase diagram
[34–38]. Recent experiments on intercalation of 1T-TaS2 with
potassium (K) [39], copper (Cu) [40] and iron (Fe) [41] have
brought forth the possibility of IMT and a disorder-stabilized
“magnetic” metal in this material; the origin of the same is
currently debated [39,42,43].

Geometric frustration dictates the low temperature mag-
netic state both in clean and disordered systems [44,45]. In
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presence of frustration the (quasi-) long range magnetic order
is not tied to the IMT and the magnetic correlations survive
even after the Mott gap collapses. The system thus hosts
different QCPs corresponding to the IMT and the loss of
magnetic order. Multiple QCPs is a generic feature of geo-
metrically frustrated lattices and has been observed in recent
experiments on 2D TMDs [33]. This is in sharp contrast with
the bipartite lattices wherein IMT is tied to the loss of the
magnetic order, leading to a single QCP [31]. Note that at low
temperatures, the magnetic order is closely tied to the lattice
geometry as long as the disorder strength is comparable to the
electron correlation.

In this paper, we report the first nonperturbative theoret-
ical study of disorder-induced IMT in 2D frustrated Mott
insulators. While our approach and results are generic for
such systems, for concreteness we present the example of
Cu intercalated 1T-TaS2 and compare our results with the
relevant experimental observations made on this material. The
tool of our choice is auxiliary field quantum Monte Carlo
technique with static path approximation (SPA) [46], which
has been extensively utilized in the context of magnetic and
superconducting systems [47–54] (see Appendix). Recently
SPA has also been used to investigate disorder-induced IMT
in square lattice; the results obtained therein are in agreement
with the existing understanding of IMT in unfrustrated lattices
[12–24,27–30,55].

Our key results on disorder-induced IMT in 2D frustrated
Mott insulators are as follows. (i) We map out the generic
thermal phase diagram to show the disorder-induced IMT
in 2D frustrated Mott insulator, wherein a metallic phase is
stabilized over a regime of intermediate disorder potential. (ii)
Owing to the geometric frustration the system hosts separate
QCPs corresponding to the IMT and loss of (quasi-) long-
range magnetic order. (iii) The disorder-stabilized emergent
antiferromagnetic metal is a non-Fermi liquid (NFL), char-
acterized by resilient quasiparticles (QP), as attested via the
transport and spectroscopic signatures. (iv) The metallic phase
exhibits a thermal crossover between NFL and bad metallic
phases as a re-entrant thermal transition, characterized by a
change in the sign of dσdc/dT (T is temperature and σdc is dc
conductivity, discussed later). (v) Our results provide the first
microscopic description of the existing experimental observa-
tions on Cu intercalated 1T-TaS2 and serves as benchmarks
for related class of materials.

II. MODEL AND METHOD

We model the disordered 2D frustrated Mott insulator as
the Anderson Hubbard model on a triangular lattice [8], which
reads as

H =
∑
〈i j〉,σ

ti j (c
†
iσ c jσ + H.c.) +

∑
i,σ

(Wi − μ)n̂iσ + U
∑

i

n̂i↑n̂i↓.

Here, ti j = −t , for the nearest neighbor hoppings on an
isotropic triangular lattice (coordination number z = 6). t = 1
is set as the reference energy scale. U > 0 is the on-site
repulsive Hubbard interaction. The site dependent disorder is
introduced in the system via Wi which is randomly selected
from an uniform distribution [+W/2,−W/2]. We work at half

filling and the chemical potential μ is adjusted to achieve the
same.

We make this model numerically tractable by decomposing
the interaction term via Hubbard-Stratonovich (HS) decom-
position [56,57], which introduces a vector mi(τ ) and a scalar
φi(τ ) (bosonic) auxiliary field at each site, where the former
couples to the spin and the later to the charge. We next drop
the time dependence of these auxiliary fields and treat them
as “classical” fields mi and φi. The thermal fluctuations in mi

are retained completely but φi is treated at the saddle point
level, φi → 〈φi〉 = 〈ni〉U/2. These approximations lead to a
coupled spin-fermion model wherein the fermions move in
the spatially fluctuating background of mi. The equilibrium
configurations of {mi} are generated via Monte Carlo (MC)
simulation and the different correlators are computed on these
equilibrium configurations. Technical details of the method
are discussed in the Appendix.

III. RESULTS

The different phases of this system are characterized by the
following indicators.

(1) Magnetic structure factor,

S(q) = 1

N2

∑
i j

〈mi.m j〉eiq.(ri−r j ), (1)

where q corresponds to the magnetic ordering wave vector
and N is the number of lattice sites. 〈. . . 〉 corresponds to MC
configurational average.

(2) Single particle density of states (DOS),

N (ω) = (1/N )
∑

α

〈δ(ω − εα )〉, (2)

where εα are eigenvalues in a single equilibrium configura-
tion.

(3) Single particle local density of states (LDOS)

ρi(ω) =
∑
α,σ

〈∣∣ui
α,σ

∣∣2
δ(ω − εα )

〉
, (3)

where ui
α,σ is the eigenvector corresponding to the eigenvalue

εα .
(4) Inverse participation ratio (IPR),

IPR =
∑

i,α,σ

∣∣ui
α,σ

∣∣4

[ ∑
i,α,σ

∣∣ui
α,σ

∣∣2]2 . (4)

(5) Optical conductivity, calculated using the Kubo for-
mula,

σ (ω) = σ0

N

∑
α,β

nα − nβ

εβ − εα

|〈α|Jx|β〉|2δ(ω − (εβ − εα )), (5)

where the current operator Jx is defined as

Jx = −i
∑
i,σ,�δ

[�δt�δc†
ri,σ

cri+�δ,σ − H.c.]. (6)

The dc conductivity (σdc) is the ω → 0 limit of σ (ω), σ0 =
πe2

h̄ in 2D. nα = f (εα ) is the Fermi function, and εα and |α〉
are respectively the single particle eigenvalues and eigenvec-
tors of Heff in a given background of {mi}.
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FIG. 1. Phase diagram of Anderson-Hubbard model on a tri-
angular lattice in the disorder-temperature (W -T ) plane at U =
6t . Different phases of this model are antiferromagnetic gapped
Mott insulator (AF-MI), antiferromagnetic gapless insulator (AFI),
antiferromagnetic metal (AFM), paramagnetic insulator (PMI), para-
magnetic metal (PMM), and the nonmagnetic correlated Anderson
insulator (CAI). The thermal scales TMott and Tc indicate the tem-
peratures where the Mott gap and the magnetic correlations vanish,
respectively. See text for detail characterization of the phases.

(6) Spectral line shape

A(k, ω) = −(1/π )ImG(k, ω), (7)

where G(k, ω) = limδ→0G(k, iωn)|iωn→ω+iδ . G(k, iωn) is the
imaginary frequency transform of 〈ck(τ )c†

k(0)〉.
The results presented here corresponds to a system size

of 24 × 24 and are found to be robust against finite system
size effects (see Appendix). The on-site Hubbard repulsion is
selected to be U = 6t which is close to the Mott boundary
of the triangular lattice in the clean limit [22,23,35,49,58–
71]. This choice of U ensures that our parameter regime is
well suited to capture the experimental observations on Cu
intercalated 1T-TaS2 [37,40]. The observables are averaged
over 30 disorder realizations.

A. Phase diagram and thermal scales

In the clean limit, the half filled triangular lattice at U = 6t
hosts a 120◦ spiral magnetic order with the ordering wave vec-
tor Q = {2π/3, 2π/3}, in the ground state [22,23,35,49,58–
69]. The corresponding antiferromagnetic Mott insulator (AF-
MI) phase undergoes thermal transition to a paramagnetic
insulator (PMI) comprising of randomly oriented magnetic
moments [49]. Introduction of quenched random disorder al-
ters this picture significantly and leads to a disorder-induced
IMT, as shown in Fig. 1. We characterize the resulting phases
based on the indicators shown in Fig. 2. The regime of weak
disorder (0 < W � t) is akin to the clean limit and hosts an
AF-MI in the ground state, comprising of a robust spectral
gap at the Fermi level. Increasing disorder leads to progressive
accumulation of spectral weight at the Fermi level such that
the Mott gap collapses for W � t , even though the magnetic
order survives. The collapse of the Mott gap sets the first QCP
(Wc1 ∼ t) of the system, while a second QCP (Wc2 ∼ 2.75t) is
set by the loss of the magnetic order. We show these QCPs in
Fig. 2(a), as disorder dependence of Mott gap and magnetic
structure factor peaks, respectively. In addition, we show the

FIG. 2. (a) Disorder dependence of normalized single particle
energy gap, (Gap), normalized magnetic moment amplitude (〈|mi|〉)
and normalized magnetic structure factor peak (S(q)), at T = 0. The
error bars correspond to the cumulative error arising out of MC and
disorder averaging of the observables. (b) Distribution of magnetic
moments (P(|mi|)) at T = 0 for different disorder potentials. Note
the transfer of weight towards |mi| = 0 with increasing disorder,
indicating the spatial fragmentation of the system into puddles with
suppressed amplitude of local moments, followed by the percolation
of these puddles. (c) Single particle DOS [N (ω)] as a function of
disorder at T = 0. (d) Scaled optical conductivity [ωσ (ω)] (in ap-
propriate units) plotted over a small range of low frequencies, for
different disorder potential, at T = 0.

disorder dependence of the average local moment amplitude
(〈|mi|〉), which survives even at strong disorder. The system
does not undergo any spontaneous symmetry breaking across
the disorder-induced quantum phase transitions. The order of
these transitions are reminiscent of weak first order transition
observed in the clean limit [72–74].

The distribution of the average magnetic moment ampli-
tude (P(|mi|)) is shown in Fig. 2(b). At weak disorder P(|mi|)
is unimodal indicating a homogeneous distribution of local
moments with a mean amplitude of m̄. Increase in disorder
results in progressive fragmentation of the magnetic state in-
dicated by the broadening of the peak. Along with m̄ there
is accumulation of weight at |mi| = 0 which indicates that
the system comprises of regions with vanishing local moment
amplitude. The intermediate disorder regime shows that the
contributions from m̄ and |mi| = 0 are comparable. On fur-
ther increasing disorder the regimes with suppressed magnetic
moments percolate through the system, thereby destroying
the magnetic order. The corresponding P(|mi|) shows that the
weight is now largely accumulated at |mi| = 0.

In Fig. 2(c), we show the single particle DOS at the ground
state for a range of disorder potentials. While the AF-MI com-
prises of a robust spectral gap, the antiferromagnetic insulator
(AFI), antiferromagnetic metal (AFM) and correlated Ander-
son insulator (CAI) shown in Fig. 1 are gapless phases and can
not be distinguished based on the single particle DOS alone.
The distinction is made based on the transport properties of
the system. Transport signature of the system is shown in
Fig. 2(d) in terms of the scaled optical conductivity (ωσ (ω)).
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FIG. 3. Spatial maps of local density of states (Ni(0)) at the Fermi level at different disorder potential across the insulator-metal-insulator
transition. While both and AF-MI and CAI are characterized by localized energy states, the AFM regime shows significant delocalization of
the energy states (see text).

For W � Wc1, ωσ (ω) = 0, corresponding to a gapped AF-
MI. Over a narrow regime Wc1 � W < 1.50t , ωσ (ω) → 0
as ω → 0, nonlinearly, indicating an insulating phase [75].
In the regime 1.50t < W � Wc2, ωσ (ω) → 0 linearly, thus,
σ (ω) is a constant at small ω, corresponding to a metal.

B. Disorder-induced localization

The regime W > Wc2 of Fig. 1 corresponds to the CAI,
characterized by the absence of magnetic order, presence of
gapless excitations and localized low energy single particle
eigenstates. In Fig. 3, we show the localization of the single
particle states at the representative disorder strengths, in terms
of the LDOS at the Fermi level. In the AF-MI phase, LDOS is
gapped, at W = 2.5t the system is an AFM, characterized by
the delocalized energy states as shown in the LDOS maps.
The system is in the CAI phase both at W = 5t and 8t ,
and the corresponding LDOS maps show progressively robust
localization of the energy states. At still stronger disorder
(not shown here) the energy states at the Fermi level gets
completely localized via Anderson localization phenomenon.

In Fig. 4(a), we show the inverse participation ratio (IPR)
and the dc conductivity (σdc) at the ground state that have been
used to characterize the CAI phase. The localization length
(ξloc) of an eigenstate ψi,α is related to the IPR as, IPR ∝ ξ−2

loc ;
consequently, increase in disorder is expected to reduce ξloc

and increase IPR. The disorder dependence of IPR at the
Fermi level shown in Fig. 4(a) corresponds to the results at the
thermodynamic limit, determined based on the finite system
size scaling analysis of IPR, shown in Fig. 4(b). Our result
suggests that for both AF-MI and CAI, the IPR increases with

FIG. 4. (a) Disorder dependence of Inverse participation ratio
(IPR) at the Fermi level in the thermodynamic limit and dc con-
ductivity (σdc) at L = 24, at T = 0. (b) Finite system size scaling
of IPR at the Fermi level at indicated disorder potentials. The points
represent the numerical data. Dashed lines are linear fit to the data.
The IPR vanishes for metal and extrapolates to a finite value for the
insulating phase as L → ∞.

increasing disorder. The disorder regime Wc1 < W � 1.50t
corresponding to the AFI is weakly localized and has a small
but finite IPR at the Fermi level. The intermediate disorder
regime (1.50t < W � Wc2) is anomalous and an increase in
disorder leads to delocalization of the eigenstates. In the ther-
modynamic limit, as shown in Fig. 4(a), IPR vanishes over
this regime of intermediate disorder potential, as is expected
from a metallic phase. The anomaly in IPR over the regime
Wc1 � W < Wc2 is reflected in transport signatures as well,
in terms of significant increase in σdc, attesting an AFI and a
metallic phase.

C. Finite temperature scales

Figures 5(a) and 5(b) correspond to the indicators based
on which the thermal scales shown in Fig. 1 are determined.
Fig. 5(a) shows the thermal evolution of the magnetic struc-
ture factor peak [S(q)] at different disorder potentials. The
point of inflection of these curves correspond to the Tc, which
undergoes suppression with increasing disorder. Note that as
per the Mermin-Wagner theorem in 2D the system can not
host any long range order at T > 0 [76]. The low tempera-
ture magnetic state observed in this system is (quasi-) long
range ordered; it comprises of magnetic correlations which
decay as power law, unlike the exponential decay one would
expect from a true disordered phase. Increase in temperature
and the associated thermal fluctuations lead to progressive
suppression of this “algebraic long range order” such that
at high temperatures the correlations are short ranged and
exponentially decaying.

The thermal evolution of the single particle DOS at the
Fermi level [N (0)] is shown in Fig. 5(b), based on which TMott

is determined. For a given disorder potential, temperature
leads to fluctuation of magnetic moments and accumulation
of spectral weight at the Fermi level. The high temperature

FIG. 5. (a) Thermal evolution of magnetic structure factor peak
S(q) and (b) single particle DOS at the Fermi level, N (0), at different
disorder potentials.
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FIG. 6. Thermal evolution of scaled optical conductivity (ωσ (ω)) at selected disorder cross sections. A nonlinear dependence of ωσ (ω) →
0 as ω → 0 indicates an insulating behavior, while for a metal the dependence is linear.

phase is thus a paramagnetic insulator (PMI) for W < 1.50t ,
and a paramagnetic metal (PMM) for W � 1.50t . Note that
dN (0)/dT undergoes a temperature dependent change in sign
in the regime Wc1 � W < Wc2, indicating a weak “re-entrant”
thermal transition.

The finite temperature metal-insulator boundaries of our
phase diagram are determined based on the behavior of ωσ (ω)
in the low frequency regime, shown in Fig. 6. At W = 0.25t ,
even at high temperatures the accumulation of weight in
the low frequency regime is insignificant and the system
continues to remain gapped. This high temperature regime
corresponds to a PMI characterized by randomly oriented
magnetic moments and a spectral gap at the Fermi level. At
W = t, the system is in the AFI phase at low temperature
which is signalled by the nonlinear behavior of ωσ (ω) → 0
as ω → 0. Increase in temperature leads to crossover of the
system to a metallic phase and accordingly the low frequency
behavior of ωσ (ω) progressively becomes linear. The phase at
W = 2t is an AFM, the corresponding ωσ (ω) → 0 linearly as
ω → 0. The metallic regime both at low and at high tempera-
tures is characterized by the linear low frequency dependence
of ωσ (ω). The insulating CAI phase at W = 6t is once again
signalled by the nonlinear behavior of ωσ (ω) → 0 in the low
frequency regime. For T � 0.1t, the linear frequency depen-
dence of ωσ (ω) signals a finite temperature insulator-metal
(CAI-PMM) crossover.

D. Non-Fermi liquid metal and thermal crossover

In order to obtain a deeper insight into the characteristics
of the metallic regime at intermediate disorder potentials, we
next analyze the high frequency behavior of σ (ω), as shown
in Fig. 7(a), at T = 0.06t . Based on σ (ω) the different disor-
der regimes are characterized as follows: (i) AF-MI at weak
disorder is gapped at the Fermi level, σ (ω) contains displaced
Drude peak (DDP) at ω �= 0; (ii) moderate disorder closes the
gap via spectral weight accumulation and DDP shifts to low
frequencies, indicating an IMT; and (iii) strong disorder leads
to CAI phase and accordingly DDP shifts back to higher ω.
The corresponding single particle DOS is shown in Fig. 7(b).
As the system undergoes transition from the AF-MI to the
AFM state with increasing disorder, N (ω) accumulates large
spectral weight at the Fermi level, indicating a pseudogap
behavior. Note that similar pseudogap behavior have been ob-
served in DQMC studies of disorder-induced IMT on square
lattice [27]. The transition from the AFM to the CAI phase is

signalled by the loss of spectral weight at the Fermi level as
shown in Fig. 7(b).

In Fig. 7(c), we present the temperature dependence of
magnetic moment distribution (P(|mi|)), at a selected disorder
potential of W = 0.25t . The generic effects of temperature
at any disorder cross section are (i) suppression of the peak
height of P(|mi|) and (ii) shifting of m̄ towards larger values,
with increasing temperature. This thermal dependence of |mi|
arises because temperature destroys angular correlations and
therefore suppresses P(|mi|); moreover, thermal fluctuations
enhance m̄ but lead to a broader distribution showing that
the underlying state is not magnetically ordered. Had the
underlying state been ordered, this increase in m̄ would have
strengthened the order and made the spectral gap robust. How-
ever, in the absence of any order, magnitude fluctuations and
loss of angular correlation leads to accumulation of spectral
weight at the Fermi level. This increases N (0) and gives rise
to a pseudogap. At even higher temperatures the increase in
m̄ slows down as shown in Fig. 7(c), also the orientational
fluctuations almost saturates; this leads to loss of spectral
weight at the Fermi level and N (0) undergoes suppression.

From the low frequency (ω → 0) behavior of σ (ω), we
determine σdc, and show its thermal evolution in Fig. 7(d).
We distinguish the metallic and insulating phases primar-
ily based on the sign of dσdc/dT , such that, dσdc/dT < 0
corresponds to metal while for an insulator dσdc/dT > 0.
At high temperatures, dσdc/dT > 0 for the AF-MI (W =
0.5t), AFI (W = 1.25t), and CAI (W = 4t, 6t, 8t) phases
and σdc increases monotonically. In the intermediate disorder
regime (W = 1.5t, 2t) representative of the AFM, dσdc/dT
undergoes a change in sign across a crossover temperature
at which σdc is maximum, say, TIRM. In Fig. 7(e), we ex-
plore the metallic phase at the intermediate disorder regime,
in detail. The nonmonotonic temperature dependence of σdc

and the corresponding deviation of resistivity (ρ = 1/σdc)
from the ρ ∝ T 2 behavior at low temperatures is the signature
of the underlying NFL state. The “pseudogap” behavior of the
single particle DOS (Fig. 7(b)) at the Fermi level suggests that
even though the Fermi liquid description breaks down in the
NFL state, the low energy excitations can still be described via
the QPs. For T �= 0 the finite spectral weight at the Fermi level
progressively increases upto TIRM, corresponding to the Ioffe-
Regel-Mott limit [77,78]. The NFL regime can be inferred in
terms of “resilient quasiparticles”, which continues to survive
as the relevant low energy excitations in the system even after
the Fermi liquid description breaks down [79].
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FIG. 7. (a) Optical conductivity (σ (ω)) and (b) single particle DOS (N (ω)) at different disorder potential at T = 0.06t . (c) Thermal
evolution of the magnetic moment distribution profiles (P(|mi|)) at W = 0.25t . (d) Thermal evolution of dc conductivity (σdc) at different
disorder cross sections. The NFL regime at intermediate disorders is shown in detail in (e). (f) Thermal evolution of optical conductivity at
W = 1.75t . (Inset) Isosbestic crossing point (ω ∼ 5.8t) corresponding to thermal crossover from NFL to bad metallic phase.

The breakdown of resilient QP description is signalled by
two characteristics of σ (ω): (i) the DDP is broadened, un-
dergoes suppression and gets monotonically shifted towards
the high frequency range, (ii) the isosbestic crossing point
of the σ (ω) curves is lost. We show these characteristics in
Fig. 7(f), where thermal evolution of σ (ω) is presented at a
fixed disorder strength of W = 1.75t . The isosbestic crossing
point for this disorder is at ω ∼ 5.8t and is lost for T >

0.09t (see inset). The thermal evolution of σ (ω) thus encodes
signature of resilient QP phase over the regime T � TIRM

and its subsequent crossover to the “bad metallic” phase for
T > TIRM. The crossover from the resilient QP to bad metal
is a gradual degradation of the QP signatures and is not asso-
ciated with any sharp transition. The QP energy scale given
by the Brinkmann-Rice scale is tied to TIRM at which the QP
description breaks down.

IV. DISCUSSIONS

Resistivity measurements on Cu intercalated 1T-TaS2

shows dρ/dT < 0 in the metallic regime at low tempera-
tures [40], in agreement with our results. Further experimental
works on this and related class of systems are however called
for, particularly optical measurements which provide unam-
biguous evidence of NFL physics. For example, signatures of
NFL state and resilient QPs observed in optical measurements
has recently been reported in molecular charge transfer salt
κ-[(BEDT-STF)x(BEDT-TTF)1−x]2Cu2(CN)3, which under-
goes chemical substitution induced IMT [80]. Similarly,
emergence of NFL metal via the interplay of quenched dis-
order and strong correlation has been recently observed in
x-ray irradiated organic Mott insulator κ-(ET)2Cu[N(CN)2]Cl
[45,81]. The emergent novel electronic state close to the Mott

boundary, as identified based on nuclear magnetic resonance
(NMR) measurements, is suggested to be possibly the first
experimental evidence of the much sought after “electronic
Griffiths phase” [82].

In Cu intercalated 1T-TaS2 disorder-stabilized metallic
regime has been reported based on the ARPES measurements
[40]. In the Mott phase of clean 1T-TaS2 the band lying closest
to the Fermi energy has a bandwidth WB ≈ 45 meV, while
the onsite Coulomb energy is found to be of the order of
≈0.1 eV [37]. Accordingly, U/WB ≈ 2.2, which is larger than
Uc/WB ≈ 1.3 corresponding to the Mott transition and the sys-
tem is well within the Mott insulating phase [35]. In the clean
limit, the single band Hubbard model on a triangular lattice
is in the Mott insulating phase beyond Uc ≈ 5.27t [49]. Our
choice of U = 6t in this work thus ensures that we are in the
experimentally relevant regime for our numerical calculations.

The energy distribution curve (EDC) at the � point of
the Brillouin zone, as obtained from the ARPES measure-
ments reveal that disorder leads to accumulation of spectral
weight at the Fermi level and gives rise to pseudogap. The
experimentally observed EDC at the � point for clean and
Cu intercalated 1T-TaS2 are shown in Fig. 8(a) [40]. For
comparison we show the low temperature spectral line shape
A(k, ω) at the � point, obtained numerically, in Fig. 8(b).
The disorder generated pseudogap at the Fermi level is in
excellent agreement with the experimental observations. Ther-
mal fluctuations lead to progressive closure of the pseudogap,
accompanying the crossover of the system from the NFL to
bad metallic phase, as is observed both experimentally as well
as from our numerical calculations, is shown in Fig. 9.

IMT and the associated NFL behavior discussed in this
paper is a fairly generic feature of 2D TMDs. Recently
signatures of NFL have been realized in TMD heterostructures
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FIG. 8. (a) Symmetrized experimental energy distribution curve
(EDC) determined from ARPES measurement on clean and Cu
intercalated 1T-TaS2, at the � point; data extracted from [40].
(b) Symmetrized spectral line shape (A(k, ω)) as determined numer-
ically at a low temperature for the clean (W = 0) and disordered
(W = 1.75t) cases at the � point of the Brillouin zone.

such as, MoTe2/WSe2 Moire superlattices [32] and twisted
bilayer WSe2 [33]. In Ref. [32], continuous insulator-metal
transition is realized in MoTe2/WSe2 Moire heterostructure
at half filling via applied electric field tuned electronic in-
teraction. The corresponding resistivity measurements show
deviation from T 2 behavior thereby providing clear signature
of NFL physics. The thermal phase diagram of this system as
mapped out in the electric field-temperature (E -T ) plane in
terms of the electrical resistance shows that a metallic phase
is stabilized close to the QCP (see Fig. 3(c) of Ref. [32]). The
high temperature regime exhibits a crossover to the bad metal-
lic phase. Moreover, magnetic susceptibility measurements
confirmed the absence of long range magnetic order and/or
presence of spiral antiferromagnetic order in this system at

FIG. 9. Temperature dependence of numerically determined
spectral line shape [(a) and (c)] and experimental EDC [(b) and
(d)], for the clean (black) and disordered (red) system. At low tem-
perature, the spectra are gapped out for the clean system, while in
presence of disorder there is a soft gap at the Fermi level. Temper-
ature leads to monotonic closure of the gap via thermal fluctuation
induced suppression of (quasi-) long range angular correlation be-
tween the magnetic moments. Both the experimental and numerical
data are symmetrized and for the numerical calculations the results
correspond to W = 1.75t . The experimental data are extracted from
Ref. [40].

FIG. 10. Disorder-stabilized NFL metal in the disorder-
temperature (W -T ) plane depicted in terms of the σdc. The large
conductivity at intermediate disorder regime (AFM) attests the
metallic phase, while for the AF-MI and CAI regimes at weak and
strong disorder, respectively, the conductivity is strongly suppressed.
Generic features of disorder tuned IMT shown in this figure can
be compared with the experimental observations of applied electric
field controlled interaction tuned IMT in 2D TMD frustrated Mott
insulators [32].

low temperatures. Notably, the loss of magnetic correlations
is distinct from the IMT and gives rise to two different QCPs.

We establish the agreement of our results with the experi-
mental observations reported in Ref. [32] in terms of Fig. 10
(to be compared with Fig. 3(c) of Ref. [32]), wherein we map
out the thermal phase diagram in the W -T plane in terms
of the dc conductivity σdc. The generic features captured by
our calculations are in excellent agreement with those of the
experimental observations on 2D TMD. This allows us to
conclude that the numerical approach used in our work is
versatile and is suitable to capture the generic features of IMT
in 2D frustrated Mott insulators.

Note that the IMT and the emergent NFL metal are closely
related to the spatial inhomogeneity of the underlying phase.
The role of spatial inhomogeneity was brought into focus
by the advent of imaging techniques with nanoscale reso-
lution, the most compelling example being VO2 [83]. Near
field infrared scanning spectroscopy on VO2 thin films and
microcrystals showed spatial proliferation of metallic and in-
sulating “puddles” in presence of disorder, arising out of local
fluctuations [83–86]. The corresponding transport signatures
are expectedly nontrivial as the scattering properties now vary
locally.

Theoretical investigation of this rather complex phenom-
ena of IMT requires one to take into account the fluctuations
originating from disorder and thermal effects, a goal most of
the powerful numerical techniques fail to achieve. In a recent
work, an extension of DMFT technique (statistical-DMFT)
has been employed to address this issue on a square lattice, at
finite temperatures [24]. Geometric frustration further compli-
cates the problem since standard numerical techniques such as
DQMC cannot be used owing to the fermionic sign problem,
while the Hartree-Fock mean field theory by construction is
applicable at T = 0 only. Our work presented in this paper
provides an efficient numerical tool at reasonable compu-
tational expense. Access to large system sizes, real space
correlators and real frequency dependent properties provide
the edge to our approach over the existing ones.
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In conclusion, we for the first time have provided the
microscopic description of the disorder stabilized metal in
2D frustrated Mott insulators. Based on a nonperturbative
numerical technique, we have mapped out the phases and the
relevant thermal scales, exhibiting a disorder-induced Mott
insulator-metal transition. By analyzing the phases based on
the thermodynamic, spectroscopic, and transport signatures,
we have shown that the emergent metal is a non-Fermi liq-
uid, characterized by resilient quasiparticles and undergoes
thermal crossover to bad metallic phase. As a test case for
our approach, we selected Cu intercalated 1T-TaS2, which is
a 2D transition metal dichalcogenide Mott insulator. Our re-
sults are in excellent agreement with the existing experimental
observations on this material and are expected to serve as
benchmarks for future experiments on this and related class
of materials. Further, we demonstrated that the signatures of
IMT is 2D frustrated Mott insulators are fairly generic and is
well captured by our numerical approach.
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APPENDIX

1. Numerical approach

The Anderson-Hubbard model on a triangular lattice reads
as [8]

H =
∑
〈i j〉,σ

ti j (c
†
iσ c jσ + h.c) +

∑
i,σ

(Wi − μ)n̂iσ + U
∑

i

n̂i↑n̂i↓.

here, ti j = −t for the nearest neighbor hopping on an isotropic
triangular lattice. t = 1 is set as the reference energy scale.
U > 0 is the on-site repulsive Hubbard interaction. The
site dependent disorder is introduced in the system via Wi

which is randomly selected from an uniform distribution
[+W/2,−W/2]. We work at half filling and the chemical
potential μ is adjusted to achieve the same. In order to make
the model numerically tractable we decompose the interaction
term using Hubbard Stratonovich (HS) decomposition [56,57]
and thereby introduce two (bosonic) auxiliary fields viz. a
vector field mi(τ ) and a scalar field φi(τ ), which couples to
the spin and charge densities, respectively. The introduction of
these auxiliary fields aid in to capture the Hartree-Fock theory
at the saddle point, retains the spin rotation invariance and the
Goldstone modes. In terms of the Grassmann fields ψiσ (τ ),
we have

exp

[
U

∑
i

ψ̄i↑ψi↑ψ̄i↓ψi↓

]

=
∫

�i
dφidmi

4π2U
exp

[
φ2

i

U
+ iφiρi + m2

i

U
− 2mi.si

]
, (A1)

where the charge and spin densities are defined as, ρi =∑
σ ψ̄iσ ψiσ and si = (1/2)

∑
a,b ψ̄iaσabψib, respectively. The

corresponding partition function thus takes the form

Z =
∫

�i
dψ̄iσ dψiσ dφidmi

4π2U
exp

[
−

∫ β

0
L(τ )

]
, (A2)

where the Lagrangian L is defined as

L(τ ) =
∑

iσ

ψ̄iσ (τ )∂τψiσ (τ ) + H0(τ )

+
∑

i

[
φi(τ )2

U
+ (iφi(τ ) + Wi − μ)ρi(τ ) + mi(τ )2

U

− 2mi(τ ).si(τ )

]
, (A3)

where H0(τ ) is the kinetic energy contribution. The ψ integral
is now quadratic but at the cost of an additional integration
over the fields mi(τ ) and φi(τ ). The weight factor for the mi

and φi configurations can be determined by integrating out the
ψ and ψ̄ ; and using these weighted configurations one goes
back and computes the fermionic properties. Formally,

Z =
∫

DmDφe−Seff {m,φ}, (A4)

Seff = log Det[G−1{m, φ}] + φ2
i

U
+ m2

i

U
, (A5)

where G is the electron Green’s function in a {mi, φi} back-
ground.

The weight factor for an arbitrary space-time configuration
{mi(τ ), φi(τ )} involves computation of the fermionic determi-
nant in that background. The auxiliary field quantum Monte
Carlo with static path approximation (SPA) retains the full
spatial dependence in mi and φi but keeps only the �n = 0
mode. It thus includes classical fluctuations of arbitrary mag-
nitudes but no quantum (�n �= 0) fluctuations.

Following the SPA approach, we freeze φi(τ ) to its sad-
dle point value φi(τ ) = 〈ni〉U/2 = U/2 (at half filling). Note
that this approximation is valid strictly at half filling where
the charge fluctuations are suppressed, for large U . Away
from half filling, the charge fluctuations would be large
even for large U . The resulting model can be thought of as
fermions coupled to spatially fluctuating random background
of classical field mi. With these approximations the effective
Hamiltonian corresponds to a coupled spin-fermion model,
which reads as,

Heff =
∑
〈i j〉,σ

ti j[c
†
iσ c jσ + H.c.] +

∑
iσ

(U

2
+ Wi − μ

)
n̂iσ

− U

2

∑
i

mi.σi + U

4

∑
i

m2
i , (A6)

where the last term corresponds to the stiffness cost associated
with the now classical field mi and σi = ∑

a,b c†
iaσabcib = si.

The random background configurations of {mi} are gen-
erated numerically via Monte Carlo simulation and obey the
Boltzmann distribution,

P{mi} ∝ Trc,c† e−βHeff . (A7)

For large and random configurations the trace is computed
numerically, wherein we diagonalize Heff for each attempted
update of mi and converge to the equilibrium configuration

195146-8



TRANSPORT AND SPECTROSCOPIC SIGNATURES OF A … PHYSICAL REVIEW B 105, 195146 (2022)

FIG. 11. Comparison of indicators at the ground state and at finite temperatures as calculated on system sizes of L = 36 (dashed lines)
and 24 (solid lines). The panels correspond to, (a) Mott gap and magnetic structure factor peak at T = 0, (b) single particle DOS [N (ω)]
for different W/t at T = 0, (c) scaled optical conductivity [ωσ (ω)] in the low frequency regime for different W/t at T = 0, (d) temperature
dependence of magnetic structure factor peak at q = {2π/3, 2π/3} for selected W/t , (e) temperature dependence of single particle DOS [N (0)]
at the Fermi level for different W/t , and (f) temperature dependence of dc conductivity (σdc) at selected W/t .

using METROPOLIS algorithm. Evidently, the process is nu-
merically expensive and involves an O(N3) computational
cost per update (where N = L × L correspond to the system
size), thus the cost per MC sweep is N4. We cut down on
the computation by using traveling cluster algorithm, wherein
instead of diagonalizing the entire lattice for each attempted
update of mi we diagonalize a smaller cluster surrounding the
update site [87]. The computation cost now scales as O(NN3

c )
(where Nc is the size of a smaller cluster surrounding the
update site), which is linear in lattice size N . This allows us to
access large system sizes ∼40 × 40 in two dimensions, which
is essential to capture the inhomogeneity of the underlying
magnetic phase. The equilibrium configurations obtained via
the combination of Monte Carlo and METROPOLIS at different
temperatures are used to compute the different fermionic cor-
relators.

SPA does not take into account the effect of quantum
fluctuations. We do not expect a qualitative change in the re-
sults reported in this manuscript in case quantum fluctuations
are considered. For a clean system, a possible consequence
of taking into account the effect of quantum fluctuations
is the restoration of the translation invariance of the lat-
tice in the metallic phase. This is expected to make the
metallic phase perfectly conducting at T = 0 and above a
low coherence temperature, signatures of a highly resistive
metal would be observed. Inclusion of disorder in the sys-
tem eliminates such a possibility because the translation
symmetry of the lattice is anyway broken by disorder and
cannot be restored by quantum fluctuations. In the presence
of disorder, spatial fluctuations play a vital role at finite
temperatures.

Static path approximation has been used to investi-
gate several quantum many body phenomena, such as,
BCS-BEC crossover in superconductors [88], Fulde-Ferrell-
Larkin-Ovchinnikov (FFLO) superconductivity in solid state
systems and ultracold atomic gases [52], Mott transition
in frustrated lattices [49–51,89], d-wave superconductivity
[90], competition and coexistence of magnetic (AFM), and
d-wave superconducting orders [91], orbital selective mag-
netism relevant for iron superconductors [92], strain-induced
superconductor-insulator transition in flat band lattices [54],
heteromolecular ultracold atomic gases [53], etc. In many of
these problems the use of numerically exact techniques like
DQMC is not feasible due either to the sign problem or to the
system size restrictions (particularly for multiband systems).
Judicial approximations are thus essential and SPA is one
such approximation which can capture the ground state and
thermal properties of these strongly correlated systems with
reasonable accuracy. The technique however will and does
fall short in situations where the physics of the ground state
is almost entirely dictated by quantum fluctuations, such as,
quantum spin liquids, heavy fermion superconductors, etc.

2. Finite system size effect

The results discussed in the manuscript corresponds to
a system size of 24 × 24. The choice of the system size
is dictated by a balance between the computation cost and
stability of the results obtained. Any lattice based simulation
is however liable to be plagued by finite system size effects
and in order to ascertain the robustness of our results against
system sizes we have carried out the computation for selected
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FIG. 12. Numerical error for representative indicators at the ground state and at finite temperatures, as selected disorder potentials. The
error arising out of Monte Carlo sampling, disorder averaging and finite system size effects, are shown as separate panels, for the ground state
and finite temperature indicators.

disorder cross sections at a larger system size of 36 × 36.
In Fig. 11, we show for the key indicators, the comparison
between the results obtained for L = 24 and 36. We infer that
our results are robust against the finite system size effects,
both at the ground state and at finite temperatures.

In Fig. 12, we systematically show the numerical error for
the representative indicators at the ground state and at finite
temperatures, arising out of (a) Monte Carlo sampling, (b)
disorder averaging, and (c) finite system size effect. The data
presented in our manuscript are averaged over 200 Monte
Carlo configurations and 30 disorder realizations. In Fig. 12,
as the ground state indicator we show the disorder dependence
of the Mott gap (�/t), while as the finite temperature indicator
the temperature dependence of the magnetic structure factor
peak S(q) is presented at the selected disorder potential of
W = 0.5t and 1.5t . We have compared our results obtained
at L = 24 with those obtained at L = 36, so as to ascertain
the robustness of the thermodynamic phases and the phase
boundaries shown in the manuscript. In principle, even larger
system sizes can be accessed with our numerical approach but
that involves larger computation cost.

Our results for the ground state and finite temperature
indicators show that within our numerical scheme the largest
contribution to numerical error comes from the Monte Carlo
sampling, followed by the contribution from disorder aver-
aging. For both contributions, the errorbars are comparable
to the size of the data points and it can be further reduced
by averaging over a larger number of Monte Carlo sam-
ples and disorder realizations, respectively. Over the regime
of weak and intermediate disorder potential our results are

robust against finite system size effects. Figure 12 shows that
our choice of L = 24 is sufficiently large to eliminate errors
arising out of finite system sizes.

3. First order phase transition and hysteresis

We have shown in the main text that at the ground state
the disorder tuned Mott insulator-metal transition is weakly
first order in nature. The same has been depicted in term of
the Mott gap as determined from the single particle DOS (see
Fig. 2(a) in the main text). An additional confirmation of the
weak first order nature of this phase transition is obtained

FIG. 13. Weakly first order phase transition of the Mott gap
across the Mott insulator-metal transition. With increasing disorder
the gap closes at W = 1.05t while with decreasing disorder it closes
at W = 0.95t .
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from the hysteresis behavior that the Mott gap shows as a
function of increasing and decreasing disorder, as presented in
Fig. 13.

In order to verify the hysteresis of the spectral gap at
the Fermi level, we begin with the equilibrium configura-
tion of the classical fields in the clean limit at the low
temperature and subject it to a random disorder configura-
tion with disorder potential strength W . A random number
seed is used to generate this disorder configuration. The
strength of the disorder potential is then progressively in-
creased in steps of �W = 0.05t upto W = 3t , while keeping
the random number seed to be the same. A particular choice
of random number seed corresponds to a single disorder
realization. The process is repeated with different random
number seeds (thus different disorder realizations) and for

each realization the single particle DOS is calculated, which
are then averaged over the disorder realizations. The aver-
aged single particle DOS is used to determine the spectral
gap at the Fermi level, as a function of increasing disorder
strength.

Next, we consider the final equilibrium configuration of the
classical fields at W = 3t for a single disorder realization as
the input and progressively reduce the strength of the disorder
potential in steps of �W = 0.05t till it reaches the clean
limit. This process is repeated using the final equilibrium
configurations of the classical fields at W = 3t for different
disorder realizations. The disorder averaged single particle
DOS for different disorder strength is then calculated and the
corresponding spectral gap at the Fermi level is determined,
as a function of decreasing disorder strength.
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Rev. B 59, 6846 (1999).

[73] H. Park, K. Haule, and G. Kotliar, Phys. Rev. Lett. 101, 186403
(2008).

[74] A. Casey, H. Patel, J. Nyéki, B. P. Cowan, and J. Saunders,
Phys. Rev. Lett. 90, 115301 (2003).

[75] Y. Imry, Introduction to Mesoscopic Physics (Oxford University
Press on Demand, New York, 2002).

[76] N. D. Mermin and H. Wagner, Phys. Rev. Lett. 17, 1133 (1966).
[77] O. Gunnarsson, M. Calandra, and J. E. Han, Rev. Mod. Phys.

75, 1085 (2003).
[78] N. E. Hussey, K. Takenaka, and H. Takagi, Philos. Mag. 84,

2847 (2004).
[79] X. Deng, J. Mravlje, R. Žitko, M. Ferrero, G. Kotliar, and A.

Georges, Phys. Rev. Lett. 110, 086401 (2013).
[80] A. Pustogow, Y. Saito, A. Löhle, M. Sanz Alonso, A.
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