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The norms or expectation values of infinite projected entangled-pair states (PEPS) cannot be computed
exactly, and approximation algorithms have to be applied. In the last years, many efficient algorithms have been
devised—the corner transfer matrix renormalization group (CTMRG) and variational uniform matrix product
state (VUMPS) algorithm are the most common—but it remains unclear whether they always lead to the same
results. In this paper, we identify a subclass of PEPS for which we can reformulate the contraction as a variational
problem that is algorithm independent. We use this variational feature to assess and compare the accuracy of
CTMRG and VUMPS contractions. Moreover, we devise a new variational contraction scheme, which we can
extend to compute general N-point correlation functions.

DOI: 10.1103/PhysRevB.105.195140

I. INTRODUCTION

Tensor networks provide excellent variational states for
approximating strongly-correlated ground states of generic
quantum lattice systems. This can be brought back to their
special entanglement properties, which are characteristic for
low-energy states of local Hamiltonians. The class of matrix
product states (MPS) [1] and projected entangled-pair states
(PEPS) [2] are the most versatile examples for simulating
one-dimensional (1D) and two-dimensional (2D) systems, re-
spectively. They have a built-in control parameter, the bond
dimension D. For gapped systems, tensor networks are be-
lieved to yield essentially exact ground states as long as the
bond dimension is chosen large enough [3], whereas for gap-
less systems, a finite-entanglement scaling gives access to the
critical data [4–12].

For tensor networks to be useful for simulating realistic
models, we need to be able to compute expectation values
and perform variational optimizations efficiently. In the case
of MPS, the density-matrix renormalization group [13] and
its extensions [1] provide efficient numerical schemes that
are used for simulating 1D quantum systems with high ac-
curacy. For PEPS, the situation is less clear. First of all, the
computation of expectation values can only be done approxi-
mately [14] and often requires large computational resources.
Here a second control parameter enters, the environment bond
dimension χ . There are different algorithms for performing
this approximate evaluation (see below), and it is a priori not
clear that they give identical results for the same value of χ .
Secondly, the different algorithms for optimizing the PEPS
tensors can give rise to different results: The most widely-used
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PEPS algorithms rely on imaginary-time evolution with local
truncations, where either the environment is approximated in a
mean-field fashion (simple update) [15] or fully taken into ac-
count (full update) [16]. It is only by the advent of variational
optimization methods for PEPS [17,18] that it was realized
that even the full-update algorithm does not necessarily find
the optimal PEPS tensors. As a result, it proved crucial to use
PEPS results from variational optimization when extrapolat-
ing finite-D results for critical models [9,10,12].

In this paper, we show that under certain symmetry condi-
tions on the PEPS tensors, the problem of contracting a PEPS
can be turned into a variational problem itself. This implies
that we can determine the approximate energy expectation
value, as well as other observables, for a given value of the
environment bond dimension χ , independently of the algo-
rithm that is actually used for computing it. This solves some
of the ambiguities in the practice of PEPS optimization, since
it implies that we can formulate a variational principle for a
PEPS class of states at a certain bond dimension by specifying
the environment bond dimension χ . Moreover, this variational
characterization allows us to use variational MPS algorithms
for PEPS contractions and evaluating correlation functions.
Finally, it allows us to compare the accuracy of different,
possibly nonvariational, contraction schemes.

The paper is organized as follows. We first review (Sec. II)
the different contraction algorithms that are currently used
in PEPS simulations, and motivate the use of an algorithm-
independent characterization of the environment. In the next
section (Sec. III), we give symmetry constraints on the
PEPS such that the transfer matrix becomes Hermitian. Then
(Sec. IV) we show that this allows us to formulate a vari-
ational principle for the PEPS contraction, and we describe
variational algorithms for finding the environment. We go
on (Sec. V) with a new algorithm for computing two-point
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functions, using MPS techniques that resemble state-of-the-
art methods for evaluating spectral functions in quantum spin
chains. In Sec. VI, we benchmark these variational contraction
and summation algorithms, and compare with other estab-
lished methods.

II. REVIEW OF CONTRACTION ALGORITHMS

Let us first review the PEPS construction, and the most
common contraction algorithms. A PEPS can be directly de-
fined on an infinite lattice by repeating a unit cell of tensors. In
the simplest case, the unit cell consists of just a single tensor
A and the state can be represented diagrammatically as1

(1)

The four virtual indices of the PEPS tensors are contracted,
whereas the physical index represents the physical degree of
freedom. The state is thus parametrized by a single five-leg
tensor A, where the bond dimension D of the four virtual
indices can be increased to enlarge the variational class of
states.

The first step in dealing with these infinite PEPSs consists
of normalizing the state, i.e., we want to compute the norm

n(A, Ā) = 〈�(Ā)|�(A)〉 (2)

directly in the thermodynamic limit. We can represent this
norm as an infinite tensor network

(3)

with the double-layer tensor O obtained by the contraction of
the tensor A with its conjugate

(4)

Similarly, a local expectation value is represented as

(5)

1Here it is understood that the PEPS tensor network encodes the
expansion coefficients of the state in the basis of spin configurations.

where the dashed lines indicates the location of a local opera-
tor squeezed between the two layers.

In practical PEPS algorithms, there are two approaches
for computing such infinite tensor networks. The first one
is based on the corner-transfer matrix renormalization group
(CTMRG) [19–25], which finds a local environment in the
form of

(6)

where the C and T tensors2 represent the infinite network sur-
rounding this site; the dimension of the legs of these tensors is
χ . The environment tensors are found numerically by iterating
a real-space renormalization step until convergence: in each
step (i) an O tensor is absorbed into the environment tensors
and (ii) the bond dimension of the tensors is truncated to χ .
There are different prescriptions for this truncation step, and
they vary both in stability of the algorithm and accuracy of
the results. The expectation value of a larger local operator is
computed by enlarging the same environment in a trivial way,
e.g.,

(7)

The second approach relies on finding approximate MPS
for representing the fixed point of the one-dimensional trans-
fer matrix,

(8)

This fixed-point equation is written as

(9)

where χ is now the bond dimension of the boundary MPS.
Different algorithms can be used to find the approximate
fixed point such as the density-matrix renormalization group
[26], a variant of the time-evolving block decimation [27] or
the variational uniform MPS (VUMPS) algorithm [28–31].
Once such a boundary MPS is found from both directions
parametrized by M and M̃ tensors,3 the local environment is

2For generic PEPSs, the four C and T tensors are, in fact, different.
3In general there is no simple relation between M and M̃, but in

many cases, the spatial symmetries of the PEPS allow to relate them
in a simple way (see below).
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found as

(10)

Again, larger environments can be found straightforwardly.
Evaluating nonlocal expectation values such as correlation

functions can be done as well. For a two-point correlation
function on the same row or column in the lattice, this is easily
done by extending CTMRG environment,

(11)

or taking the boundary MPS

(12)

More general two-point correlation functions can be com-
puted by extending boundary MPS to include corners, giving
rise to corner-shaped environments [28] or by a summation
routine based on the CTMRG scheme [17].

This review makes clear that there is a plethora of different
types of environments and algorithms for contracting a given
PEPS with a certain environment bond dimension χ . It is
expected that they give different results for computing local
expectation values, and it is not even clear that they all con-
verge to the same result in the χ → ∞ limit. In the following
sections, we aim at partially solving these ambiguities.

III. SYMMETRIES AND THE TRANSFER MATRIX

Imposing symmetry constraints on the PEPS tensors is a
powerful tool for restricting the variational space and making
algorithms more efficient. A first class of constraints involves
on-site symmetries of the state: imposing that a PEPS wave
function is invariant under a global on-site symmetry action
can be imposed on the level of the local PEPS tensor. This way
of constraining the PEPS tensor has been used successfully
to simulate ground states with (Abelian) U(1) symmetries
[32,33] and (non-Abelian) SU(2) [34–36] or SU(N ) [37–39]
symmetries.

Here we are interested in a second class of constraints, in-
volving spatial symmetries of the PEPS wave function. Again,
we can impose symmetry constraints on the level of the local
PEPS tensor. One type of spatial symmetry that is often useful
is rotation invariance of the PEPS tensor,

(13)

leading to a global state that is rotation invariant. A second
spatial symmetry is reflection, which is typically combined

with time-reversal symmetry,

(14)

where the bar denotes complex conjugation of the tensor
elements. Note that an explicit breaking of reflection and
time-reversal symmetry separately often leads to chiral wave
functions [40,41]. The interplay between internal symmetries
and spatial symmetries leads to nontrivial classes of PEPS
wave functions [42].

Here we are interested in the latter symmetry, and in the
relation with the transfer matrix. Indeed, if we take the Her-
mitian conjugate of the transfer matrix

(15)

we see that this is invariant when the symmetry condition in
Eq. (14) is imposed on the A tensor. So this symmetry implies
that the transfer matrix is Hermitian, but the Hermiticity re-
quirement can be met by a more general condition. Indeed,
under the condition

(16)

with U a unitary matrix and X an invertible matrix, the transfer
matrix is hermitian by construction.

This hermiticity condition can be extended to larger unit
cells, where we require that the transfer matrix of a full unit
cell is hermitian. This requirement can be illustrated in the
case of a PEPS with a two-by-two unit cell,

(17)

Indeed, if we require

(18)

(19)
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and similar conditions on A3 and A4, then the two-row transfer
matrix

(20)

is Hermitian.

IV. VARIATIONAL CONTRACTION

In the previous section, we have explained under what
conditions the PEPS transfer matrix is Hermitian. In this
section, we show why this feature is extremely useful for
characterizing and finding a boundary MPS.

A. Single-row transfer matrix

The norm of a PEPS n(A, Ā) can be interpreted as an
infinite product of transfer matrices and, therefore, reduces to
an infinite power of the leading eigenvalue. The corresponding
eigenvalue equation is given by

T |�〉 = �|�〉, (21)

where � scales exponentially with the number of sites in
the x direction, i.e., � ∝ λNx . In analogy with transfer-matrix
approaches in statistical mechanics [29], we can associate a
free-energy density to the norm of the infinite PEPS as

f (A, Ā) = − lim
Nx,Ny→∞

1

NxNy
ln n(A, Ā)

= − ln λ. (22)

Since the transfer matrix is a Hermitian operator, the above
eigenvalue equation can be reformulated as a variational prob-
lem

|�〉 = arg min
|�〉

(
− 1

Nx
ln

( 〈�|T |�〉
〈�|�〉

))
. (23)

We can now solve the eigenvalue equation variationally by ap-
proximating the fixed point as an infinite MPS, parametrized
by a single tensor M

(24)

The variational characterization of the MPS tensor is given by
the following variational optimization problem:

M = arg min
M

(
− 1

Nx
ln �(M, M̄ )

)
(25)

with

�(M, M̄ ) =
( 〈�M̄ |T |�M〉

〈�M̄ |�M〉
)

. (26)

Diagrammatically, the numerator is represented as an infinite
channel

(27)

which scales as � ∝ λNx . The value λ is determined as the
leading eigenvalue of the channel operator

(28)

Given this variational characterization of the boundary
MPS, we can use gradient-based optimization techniques to
find it. The gradient of the objective function in Eq. (25) is
given by

g = 2∂M̄

(
− 1

Nx
ln �(M, M̄ )

)

= − 2

Nx

1

�

〈∂M̄�M̄ |(T − �)|�M〉
〈�M̄ |�M〉 . (29)

Diagrammatically, the gradient is given by

(30)

assuming the MPS is normalized. We can now use efficient
optimization techniques over MPS manifolds [43] to optimize
the boundary MPS, exploiting the gauge degrees of freedom
in the MPS ansatz.

Instead of using gradient-based techniques, we can re-
formulate the variational characterization in Eq. (25) as a
fixed-point equation, and, starting from a random MPS, iterate
this equation until it converges to the variational optimum.
This procedure is known as the VUMPS algorithm [30,44].
First, we bring the MPS into center-gauged form as

(31)

where Ml and Mr are related to the original MPS tensor via
a gauge transform and satisfy the left- and right-canonical
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gauge condition

(32)

and are related via the matrix C

(33)

In this MPS representation, the condition of a vanishing gra-
dient is equivalent to the fixed-point equation for Mc

(34)

and a similar equation for the matrix C is easily derived:

(35)

These equations [Eqs. (32)–(35)] fully characterize the varia-
tionally optimal boundary MPS; in Refs. [30,31] the iterative
scheme is explained in detail.

B. Two-row transfer matrix

Suppose we have a PEPS with a two-by-two unit cell (the
more general case of a two-by-N unit cell is treated sim-
ilarly), giving rise to a two-row transfer matrix T = T2T1.
As explained above, we parametrize the PEPS such that the
two-row transfer matrix is Hermitian, i.e., we have T †

2 = T1.
We characterize the fixed point of this two-row transfer matrix
as

T1|�1〉 = �1|�2〉,
T2|�2〉 = �2|�1〉. (36)

in terms of two normalized states |�1〉 and |�2〉. Under the
Hermiticity condition, |�1〉 can be characterized variationally
as the state which optimizes the eigenvalue of the two-row
transfer matrix

|�1〉 = arg min|�1〉

(
− 1

Nx
ln

〈�1|T2T1|�1〉
〈�1|�1〉

)
. (37)

Here, however, we can go one step further. The eigenvectors
|�1〉 and |�2〉 are, in fact, the left and right leading singular
vectors of the matrix T1, and we can use the variational char-
acterization for singular vectors to reformulate the optimality

condition as

|�1〉, |�2〉 = arg min
|�1〉,|�2〉

(
− 1

Nx
ln �

)
, (38)

with

� = 〈�2|T1|�1〉〈�1|T2|�2〉
〈�1|�1〉〈�2|�2〉 . (39)

The Hermiticity condition T †
2 = T1 ensures that this cost

function is real.
We can now approximate the fixed point as a set of two

MPSs, which we also take to have a two-site unit cell and are,
therefore, each described by two MPS tensors

|�1〉 ≈ |�M11,M12〉, |�2〉 ≈ |�M21,M22〉. (40)

The above cost function can be expressed as (with �1 = �̄2)

� = �1�2, (41)

with

(42)

Again, we can use optimization techniques over MPS mani-
folds to optimize these two MPSs efficiently.

Analoguously to the above case of a one-row transfer ma-
trix, we can switch to a center-gauge representation for the
MPSs and derive fixed-point equations for the MPS tensors.
Here, we find

(43)

for the center-site MPS tensors (the other three equations fol-
low similarly). These equations constitute the multisite
version of the VUMPS algorithm, which was explained in detail
in Ref. [45]. Starting from a set of random MPSs, the VUMPS

fixed-point equations can be iterated in order to find the opti-
mal MPSs.

C. More than two rows

Let us now consider the case of a three-row transfer matrix,
with the Hermiticity conditions T = T †

1 T2T1 and T †
2 = T2.

The fixed point is given by

T1|�1〉 = �1|�2〉,
T2|�2〉 = �2|�3〉,
T †

1 |�3〉 = �3|�1〉, (44)
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and the state |�1〉 can be characterized variationally as

|�1〉 = arg min
|�1〉

(
− 1

Nx
ln

〈�1|T †
1 T2T1|�1〉

〈�1|�1〉
)

. (45)

Here, however, we cannot take the step of reformulating this
as a variational principle where we optimize all layers simul-
taneously,

|�1〉, |�2〉, |�3〉 �= arg min
|�1〉,|�2〉,|�3〉

(
− 1

Nx
ln �

)
(46)

with

� = 〈�2|T1|�1〉〈�3|T2|�2〉〈�1|T †
1 |�3〉

〈�1|�1〉〈�2|�2〉〈�3|�3〉 , (47)

as this cost function is not real, since it is not guaranteed that
|�3〉 and |�2〉 are proportional.

In order to still obtain a boundary MPS algorithm, we in-
stead start from the set of equations in Eq. (44). Assuming the
first state can be approximated by an MPS, |�1〉 ≈ |�{M1}〉,
we can find an MPS for the second state by applying the
operator T1 to |�{M1}〉 and approximating the result by an MPS
with smaller bond dimension. This approximation |�{M2}〉 can,
again, be characterized by a variational principle, where we
now optimize the (normalized) fidelity

{M2} = arg max{M2}
|〈�{M2}|T1|�{M1}〉|2

〈�{M2}|�{M2}〉
, (48)

and we have similar equations for the {M1} and {M3} tensors.
In Ref. [46], it was shown that these optimization problems
can be reformulated in center-gauge representation to obtain
fixed-point equations characterizing each set of MPS tensors
{Mi}. This naturally leads to a variational boundary MPS
algorithm consisting of a power method with a variational
optimization of the individual fidelities in each step.

If one instead solves all these fixed-point equations si-
multaneously by optimizing over all MPS at once, this gives
rise to a single set of equations which is similar to the ones
we have given for one- and two-row transfer matrices [45].
Thus, by resorting to a method which optimizes all eigenvalue
equations [Eq. (44)] simultaneously, we essentially find the
VUMPS fixed-point equations that would follow had Eq. (46)
been a valid variational principle. Given that this is not the
case, and there is no variational principle underlying those
fixed point equations, we expect that iterating the multisite
VUMPS fixed-point equations will, in general, not always work
for transfer matrices with three or more rows, even if the total
transfer operator is Hermitian. In Appendix B, we provide a
detailed diagnostic of this issue.

We conclude by noting that the computational complexity
of this multisite VUMPS algorithm scales linearly in Lx and Ly,
where Lx is the MPS unit-cell size and Ly is the number of
rows in the transfer matrix.

V. SUMMATION OF TWO-POINT FUNCTIONS

Besides the norm and local expectation values, nonlocal
two-point functions—or N-point functions, in general—are
often relevant observables of a given PEPS wave function.
In Ref. [28] an extension of the boundary-MPS approach

was introduced for computing the most general two-point and
three-point functions, and in Ref. [17], the CTMRG approach
was extended to perform the same task; finally, in Ref. [47],
a method was introduced for summing two-point functions
using generating functions. In this section, we propose a dif-
ferent scheme that works for generic N-point functions by
translating standard MPS algorithms to this context.

A. Static structure factor

Let us focus on a generic momentum-resolved two-point
function, or static structure factor, of the form

s(	k) =
∑
mn

ei(kxm+kyn)〈�(A)|Sm,nS0,0|�(A)〉, (49)

with Sm,n a local operator acting on site (m, n), which requires
resumming an infinite number of two-point correlators. We
assume that we have found a normalized boundary MPS,
which we can bring into center-gauged form

(50)

and that we have normalized the PEPS.
The first contribution to the structure factor is the one

where both operators act on the same site, which can be easily
computed as a local expectation value

(51)

where, as before, the dashed lines indicate the presence of
the local operators. We can introduce the left- and right fixed
points of the channel operator,

(52)

and

(53)

such that this expectation value is given by the network con-
traction

(54)

Summing contributions where the two operators live on the
same row of the lattice is also straightforward. Indeed, all
these contributions can be grouped under an expression of the
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form

(55)

The infinite series can be taken explicitly, and we find

(56)

Summing up contributions where the two operators live on
different lines is less straightforward. Indeed, these all have
the form

(57)

with a power of the transfer matrix in between the two opera-
tors. If we call the state

(58)

where the operator acts on site i, the above diagram can be
denoted as

〈�M (S j )|T n−1|�M (Si )〉, (59)

with n the vertical distance between the two operators. Sum-
ming up all these different contributions amounts to

sxy(	k) =
∑
mn

ei(kxm+kyn)〈�M (Sm)|T n−1|�M (S0)〉

=
∑

m

eikxm〈�M (Sm)|eiky (1 − eikyT )−1|�M (S0)〉. (60)

This expression is very similar to a frequency-resolved dy-
namical correlation function for a 1D spin chain, typically of

the form

S(q, ω) =
∫

dt eiωt
∑

m

eiqm〈�0|Sm(t )S0(0)|�0〉

=
∑

m

eiqm〈�0|Sm(ω − (H − E0))−1S0|�0〉,
(61)

where |�0〉 would be the ground state of the spin-chain
Hamiltonian H with ground-state energy E0. Many different
approaches exist in the MPS literature to compute the latter
overlap explicitly, including Lanczos methods [48,49] the cor-
rection vector approach [50–53], Chebyshev expansion [54],
etc. A more straightforward approach consists of time evolv-
ing the state according to the spin-chain Hamiltonian, and
transforming the time-dependent correlator back to frequency
space [55–59]. Here, in order to evaluate Eq. (60), we take
the discretized version of the latter approach, i.e., we take the
state |�M (O0)〉 and sequentially apply the transfer matrix. In
order to keep the problem tractable, we represent the state as
a window MPS.

A window MPS [60–62] is an MPS with a finite window
of nontranslation-invariant tensors, embedded in a translation-
invariant MPS to the left and the right of this window. Such
an MPS is given by

(62)

and represents a local perturbation of the infinite MPS.
Approximating the initial state as a finite-window MPS

can be done in a simple variational step. Indeed, we can
approximate it as a window MPS with a single site as

(63)

where the tensor N1 is found by solving the variational prob-
lem

Nopt
1 = arg max

N1

|〈�M (N1)|�M (S0)〉|2
〈�M (N1)|�M (N1)〉 . (64)

Working in the center gauge reduces the norm to the identity

(65)

so that differentiating the above variational objective function
gives the solution for N1,

(66)

We can continue to represent the state

T n|�M (S0)〉 (67)
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as a finite-window MPS by iterating the same procedure. In
every step, we start from a window MPS with tensors Ñi,
apply the transfer matrix and approximate the state again as a
window MPS with new tensors Ni. Every approximation step
is done variationally, i.e., we optimize the objective function

Nopt
i = arg max

Ni

|〈�M (Ni )|T |�M (Ñi )〉|2
〈�M (Ni )|�M (Ni )〉 . (68)

We can efficiently solve this optimization problem by a
sweeping algorithm, where we sequentially optimize the win-
dow tensors separately. Optimizing a single tensor Ni is done
by bringing the window MPS in center gauge around site i,
and optimizing as we did above. After we have found a new
window MPS representing the state (67), we can evaluate all
contributions to sxy(	k) from that row, and proceed to the next
row.

In the case of unitary time evolution according to a spin-
chain Hamiltonian, one is severely limited due to the growth
of entanglement in the time-evolved state. Here this is not the
case, since the transfer matrix is an operator with a spectral
gap4; as a result, the evolved state will converge again to the
fixed-point MPS after a number of iterations. At that point, the
contributions to the structure factor have become negligible,
and we can terminate the algorithm.

The size of the window-MPS is a tunable parameter: We
expect that the effect of applying the operator will grow in size
as layers of the transfer matrix are applied, very similar to the
spreading of correlations in the unitary real-time evolution of
a quantum spin chain. In Sec. VI we will investigate the effect
of the window size on the accuracy.

B. Energy gradient

The motivation behind the first PEPS summation algo-
rithms [17,18] was finding an efficient method for evaluating
the gradient of the PEPS energy objective function, which
can be used in gradient-based PEPS optimization routines. In
Appendix A, we explain in detail how our new summation
scheme can be extended for evaluating the gradient of a pla-
quette interaction term.

We should note that, besides summation schemes, the idea
of backwards differentiation can be used to evaluate the en-
ergy gradient [33,63] efficiently. One important advantage of
the latter approach is that it computes the gradient of the
energy function at a given value of environment χ , and can
therefore be used to perform a gradient optimization of a
PEPS with a fixed value of χ . Such a finite-χ optimization
might be interesting to study finite-χ effects; these can be
used for simulating critical systems, where a finite-χ scaling
behavior can be expected [12].

In contrast, the approximate summation schemes do not
exactly provide the gradient for a given value of χ : only in
the infinite-χ limit can one expect that the energy and gradient

4The gap in the transfer matrix is directly related to the correlation
length of the PEPS. The latter is finite for generic variational PEPS,
but there are fine-tuned PEPS wave functions that exhibit critical
correlations. For the latter PEPSs, a summation scheme is expected
to converge more slowly.

FIG. 1. The log-norm of the PEPS wave function at J2 = 0 (blue)
and J2 = 0.5 (red) as a function of boundary MPS bond dimension
χ . We have rescaled the PEPS tensor such that λχ=500 = 1 exactly,
and do not show results below a cutoff of 10−10 because they contain
numerical noise.

evaluation become fully compatible. Therefore the summation
approach can only be used in a PEPS optimization in the
infinite-χ regime—i.e., the regime where χ is chosen large
enough such that finite-χ effects are negligible.

VI. BENCHMARKS

In order to benchmark and compare different contraction
schemes, we take optimized PEPS tensors for the J1-J2 model
on the square lattice, after a sublattice rotation with J2 = 0 and
J2 = 1/2, each time with bond dimension D = 5. After a sub-
lattice rotation, we can represent the ground state by a PEPS
with a single-site unit cell. We have imposed both rotation
invariance and reflection/time-reversal symmetry [Eqs. (13)
and (14)] on the PEPS tensors. The latter symmetry implies
that we can use our variational contraction schemes.

We have optimized these PEPS tensors by a gradient-based
quasi-Newton optimization, where we have applied the gradi-
ent evaluation from Sec. A. We find energies e = −0.669376
and e = −0.495912 respectively, which are comparable to the
results in Ref. [33].

A. Variational contraction

First of all, we explicitly demonstrate the variational nature
of the contraction by computing the leading eigenvalue of the
PEPS transfer matrix, obtained using an optimized boundary
MPS with increasing bond dimension χ . In Fig. 1, one imme-
diately observes that f = − ln(λ) monotonically decreases as
the bond dimension is increased. The value for the unfrus-
trated PEPS (J2 = 0) decreases significantly faster than for
the frustrated case (J2 = 1/2), which points to the fact that the
frustrated ground state is more correlated than the unfrustrated
one and therefore requires a larger value of χ for the same
accuracy.

Next, we assess the performance of a direct optimization
of the variational cost function in Eq. (25) by comparing
with the VUMPS algorithm. In Fig. 2, we plot the norm of the
gradient [Eq. (30)] after each iteration as a function of the wall
time. For the VUMPS algorithm, each iteration consists of (i)
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FIG. 2. The convergence of the boundary MPS with the VUMPS

algorithm and by direct variational optimization. We plot the norm
of the gradient in Eq. (30) for each iteration, as a function of the wall
time.

computing left- and right environments [Eqs. (52) and (53)],
(ii) solving the eigenvalue equations for Mc and C [Eqs. (34)
and (35)], and (iii) finding new Ml and Mr ; the two first
steps are the most expensive ones. For the direct optimization,
we use a quasi-Newton scheme for optimizing over isometric
tensor networks [43]; each iteration consists of an evaluation
of the cost function and the gradient, which again requires
computing the left- and right environments [Eqs. (52) and
(53)]. As compared to VUMPS, the direct optimization strat-
egy does not require solving the eigenvalue equations for Mc

and C, so each iteration is faster by roughly a factor of 1.5
(the eigenvalue equation for C is not that costly, typically).
As VUMPS is a fixed-point method, it can take larger steps
in each iteration, allowing to converge much faster initially
than a direct-optimization strategy. In the tail of the optimiza-
tion, however, the manifold optimization clearly outperforms
VUMPS fixed-point iterations, and converges more quickly.
A hybrid strategy that switches between the two algorithms
would be optimal.

One might wonder how well the boundary MPS should be
converged in order to obtain accurate local PEPS expectation
values. In Fig. 3, we have plotted the error in the energy
expectation value for the J1-J2 Hamiltonian during the process
of optimizing the boundary MPS. From this plot, it is clear that
pushing the norm of the gradient to very small values is often
not necessary in practice.

B. Comparing boundary MPS and CTMRG

We can now compare the accuracy of boundary-MPS and
CTMRG contractions for evaluating local expectation values
of PEPS wave functions. For the boundary MPS, we use a di-
rect variational optimization as outlined above. For CTMRG,
due to the symmetries of the PEPS tensor we can choose
between the directional CMTRG [25] and the symmetric
CTMRG [19]. Here we choose the former, because it can be
applied more generally. Both schemes are slightly different,
also for symmetric tensors, because in the directional scheme
the growing of the environment is done in an asymmetric way
and the projectors are constructed from a product of C tensors.

FIG. 3. The error in evaluating the local energy of the PEPS as a
function of the norm of the gradient during the process of optimizing
the boundary MPS; we plot this for three different values of χ for the
J2 = 1/2 PEPS. The error is defined as the absolute difference with
the fully optimized boundary MPS.

Nonetheless, we find that these differences are very small, and
that both give rise to the same expectation values.

In Fig. 4, we have plotted the energy expectation value
for the two optimized PEPSs as a function of the environ-
ment bond dimension χ , evaluated with a boundary-MPS and
a CTMRG environment. For a nearest-neighbour Hamilto-
nian (J2 = 0) the energy can be evaluated by a single-row
boundary-MPS or a one-by-two CTMRG environment; in the
top panel of Fig. 4, we observe that both approaches yield
the same values. For a next-nearest-neighbour Hamiltonian
(J2 = 1/2) evaluating the energy from the boundary MPS re-
quires a two-step process [Eq. (A4)] or a two-by-two CTMRG
environment [Eq. (7)]. For small values of χ the boundary-
MPS contraction is slightly more precise, but both methods
clearly converge to the same value for larger χ .

Note that the energy converges a lot slower for the frus-
trated PEPS, and therefore requires a larger value of χ for the
same accuracy. This is in agreement with the result in Fig. 1.

C. Structure factor

Finally, we benchmark our new summation scheme based
on the window-MPS approach to compute the static spin
structure factor of the PEPS wave function

sα (	k) =
∑
x,y

ei(kxx+kyy)〈�(A)|Sα
(x,y)S

α
(0,0)|�(A)〉. (69)

The window-MPS approach has two control parameters, the
MPS bond dimension and the window size. In Fig. 5, we
plot the value of the structure factor as a function of the
window size, for five different values of χ . We observe that
a larger value of N is needed to converge the result as χ is
lower. This can be understood from the fact that a larger-χ
MPS contains longer-range correlations, and that a local op-
eration can influence the state over a larger region—therefore,
a small window can represent a larger perturbation when its
bond dimension is higher. We also observe that the result for
small χ does not converge to the correct result, as the initial
boundary MPS does not carry the correct correlations—this is
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FIG. 4. The value for the energy expectation value as a function
of χ , computed with the variational MPS and CTMRG environments
for J2 = 0 (top) and 1/2 (middle). We also plot the relative error
of the energy expectation value at J2 = 1/2 with respect to the
converged value at χ = 500 (bottom).

analogous to simulating the time evolution of a local operator
on a ground-state MPS with a too small bond dimension.

We can now compare our new summation scheme with the
corner-environment approach [28] and CTMRG summation
[17,64]. Figure 6 shows that all three approaches converge to
the same result, but with a clear difference in accuracy for
smaller values of χ . We observe that all schemes approach the
converged value from below, but we have no good a priori rea-
son to expect that this is always the case—the window-MPS
scheme takes variational steps, but the summed-up structure

FIG. 5. The value of the structure factor as a function of window
size, for different values of χ .

factor is not a variational quantity itself, in contrast to the
norm of the PEPS wave function in Fig. 1. The window-MPS
approach, which exploits variational principles through its
evaluation of all contributions to the structure factor, is clearly
the most accurate; for summing the contributions of each row,
however, it requires us to perform a number of optimization
sweeps. The CTMRG summation is less accurate, but only
comes with little extra computational cost compared to the

FIG. 6. The value of the structure factor as a function of χ ,
computed with the window-MPS approach with window size N = 10
(blue), the CTMRG resummation scheme (red) and the channel en-
vironments (yellow). J2 = 0 (top) and 1/2 (bottom).
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standard CTMRG scheme (one needs to keep track of separate
environment tensors for the norm and the summed operator
terms). The corner environment, finally, is the least accurate,
but evaluating the structure factor just requires contracting a
single one-dimensional tensor network and, therefore, comes
at almost no cost on top of a boundary-MPS contraction.
Choosing the summation scheme, therefore, depends a lot
on the application, the required accuracy and the available
computational resources.

VII. DISCUSSION AND OUTLOOK

In this paper, we have identified a subclass of PEPS wave
functions for which the transfer matrix is a Hermitian oper-
ator. This has allowed us to formulate the contraction as a
variational problem, yielding an optimality condition that is
independent of the algorithm that is actually used in practice.
We have used this feature to compare state-of-the-art contrac-
tion algorithms such as the CTMRG and VUMPS algorithms,
showing that they give comparable results for e.g. evaluating
the energy of a PEPS. In addition, we have formulated a new
scheme for computing general N-point functions, which is
significantly more accurate as compared to existing alternative
schemes. It would be instructive to compare our scheme to the
generating-function approach of Ref. [47].

We believe that our new scheme will prove very useful
in future PEPS methods and applications that go beyond
ground-state properties. Indeed, a recent method for comput-
ing excitation spectra on top of a PEPS [28,64–66] relies
heavily on summing two- and three-point functions. In ad-
dition, the time-dependent variational principle for uniform
time evolution will require summing up two-point functions:
the tangent vector that dictates the TDVP flow equations [31]
takes on a similar form as the energy gradient (see Ap-
pendix A). Finally, the idea of using window MPS in PEPS
calculations will prove useful to simulate local dynamics
against a uniform background—simulating the response of the
action of a local operator on the ground state for obtaining
spectral functions.

For the Hermitian subclass of PEPS, we can unambigu-
ously define the variationally optimal PEPS at a certain bond
dimension D and contracted with an environment bond dimen-
sion χ . In Ref. [12], this feature was exploited to formulate a
scaling hypothesis in terms of a single effective length scale
that results from both finite-D and finite-χ effects.

Given the power of this subclass of PEPS, the question
naturally arises under what conditions such a restriction can
safely be imposed on the PEPS ansatz. One important re-
striction concerns the fact that the transfer matrix only has
real eigenvalues. In the case of MPS, the eigenvalues of the
transfer matrix are directly related to the wavevector of the
dominant correlations in the state and, indirectly, to the min-
ima of the quasiparticle dispersion relation on top of this state
[67]. This implies that a ground state with dominant incom-
mensurate correlations is expected to be poorly described by
our subclass of PEPS—critical states with an incommensurate
filling would satisfy this condition. It would be very interest-
ing to track the limitations of the Hermitian subclass of PEPS
for these systems, and what this implies for the contraction of
their PEPS ground-state approximations.

In this paper, we have only looked at PEPS on a square
lattice, and it would be interesting to generalize the construc-
tion to other lattices such as the triangular or the kagome
lattice. Also, we would like to investigate the case of highly
nontrivial PEPS unit cells, which represent, e.g., stripe phases
in the Hubbard model with a commensurate filling [68,69] or
complicated magnetization patterns [70] in spin systems in an
external magnetic field.
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APPENDIX A: THE ENERGY GRADIENT
AS A TWO-POINT FUNCTION

In this Appendix, we write out the expressions for evaluat-
ing the energy and the gradient for a given PEPS tensor, based
on the summation scheme from Sec. V. We consider plaque-
tte interactions on the square lattice. The energy expectation
value is then given by

(A1)

but evaluating this expression requires computing the fixed
points of the two-row channel. We propose a different contrac-
tion technique, based on the window-MPS approach. We split
up the Hamiltonian into two parts, and apply a first layer of the
above diagram and approximate it by introducing a two-site
tensor P as

(A2)

Finding the optimal tensor P is straightforward since the cost
function is linear in P. We find

(A3)

The energy expectation value is then obtained as

(A4)
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The gradient is then computed in a similar fashion as
the structure factor. Indeed, the gradient for the energy
expectation value

g = 2∂Ā
〈�(Ā)|H |�(A)〉
〈�(Ā)|�(A)〉 (A5)

= 2
〈∂Ā�(Ā)|H − e(A, Ā)|�(A)〉

〈�(Ā)|�(A)〉 (A6)

is an infinite sum where in each term one differentiates with
respect to one tensor in the bra layer. The first terms are the
ones where the differential is on the Hamiltonian

(A7)

Then we continue in the same row, with the term

(A8)

Finally we have all the terms of the form

(A9)

which can, again, be computed similarly to an out-of-time
correlator using a finite-window MPS. Indeed, denoting the
Hamiltonian MPS as

(A10)

and the MPS with the differential

(A11)

we find

g2 =
∞∑

n=1

〈�∂ (M )|T n−1|�H (M )〉 (A12)

= 〈�∂ (M )|(1 − T )−1|�H (M )〉. (A13)

This correlator is most easily computed by a finite-window
MPS, i.e., we sequentially apply the transfer matrix and ap-
proximate the state as

T n|�H (M )〉 ≈ |�(M; {Ni})〉 (A14)

and compute the overlaps

〈�∂ (M )|�(M; {Ni})〉. (A15)

APPENDIX B: VARIATIONAL CHARACTERIZATION
OF BOUNDARY MPS METHODS FOR MULTI-ROW

TRANSFER MATRICES

In this Appendix, we give a detailed explanation of varia-
tional principles and contraction routines for larger unit cells.
Such an explanation is intended to complement the discussion
in Ref. [45], where it was missed that the multisite VUMPS

algorithm might not converge for unit cells with more than
two rows.

1. Discussion

The VUMPS fixed point equations [Eqs. (32)–(35)] are
derived through the projection of the eigenvalue equa-
tion Eq. (21) onto the tangent space to the manifold of MPS,

PM (T |�M〉 − �|�M〉) = 0, (B1)

where PM is the projector onto the tangent space of the
MPS manifold at the point parameterized by M. For the
case of a transfer matrix with a one-by-one unit cell where
the tensor parametrizing T is Hermitian, the solution of
Eq. (B1) directly corresponds to the variational optimum of
a real-valued objective function representing the free-energy
density Eq. (23). Thus the VUMPS algorithm for a transfer
matrix with a one-by-one Hermitian unit cell gives an efficient
method for obtaining the approximate leading eigenvector in
a variationally optimal way.

For transfer matrices with a nontrivial unit cell, the cost
of a naive application the VUMPS algorithm would scale ex-
ponentially with the size of the unit cell. It is therefore
desirable to work with a variational algorithm that directly
takes into account the nontrivial structure of the unit cell. One
such algorithm is the multisite generalization of the VUMPS

algorithm put forward in Ref. [45]. In this approach, one
finds the approximate boundary MPS for an n-row Hermi-
tian transfer matrix T = Tn . . . T2T1, where T †

i = Tn−i+1, in
the following way. Instead of directly finding a single MPS
|�{M}〉 which satisfies T |�{M}〉 = �|�{M}〉, one formulates a
recursive eigenvalue problem in terms of a set of MPSs |�{Mi}〉
that satisfy

T1|�{M1}〉 = �1|�{M2}〉,
T2|�{M2}〉 = �2|�{M3}〉, (B2)

· · ·
Tn|�{Mn}〉 = �n|�{M1}〉,

where � = ∏n
i=1 �i. The appropriate fixed point equa-

tions for a multirow boundary MPS algorithm are obtained
by projecting each of these equations onto the tangent space
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at the appropriate point on the MPS manifold,

P{Mi+1}(Ti|�{Mi}〉 − �i|�{Mi+1})〉) = 0. (B3)

Whereas in the case of a single-row transfer matrix this
tangent-space criterion is in direct correspondence with the
variational optimum of a real-valued cost function, this is
no longer necessarily the case when dealing with larger unit
cells. For a two-row transfer matrix, there is no issue, as the
conditions [Eqs. (B3)] still correspond to the variational op-
timum of Eq. (38). However, for transfer matrices with three
or more rows this characterization in terms of optimizing the
free-energy density breaks down, as mentioned in Sec. IV C.

The conditions [Eqs. (B3)] can however still be charac-
terized in terms of an optimality criterion: they are in direct
correspondence with the variational optimum of the normal-
ized fidelity between consecutive MPS. Specifically, if

{Mi+1} = arg max
{Mi+1}

|〈�{Mi+1}|Ti|�{Mi}〉|2
〈�{Mi+1}|�{Mi+1}〉

, (B4)

then Eq. (B3) must hold. This variational characterization in
terms of the normalized fidelity naturally leads to a multirow
boundary MPS algorithm in the form of a power method,
as originally described in Sec. A 2 of Ref. [45]. Start with
some initial MPS |�{M (0)

1 }〉 and consecutively apply the in-
dividual transfer matrix layers Ti, each time approximating
the resulting MPS by some other MPS of a given bond di-
mension by variationally optimizing the normalized fidelity
Eq. (B4) [46]. This procedure is repeated until convergence
is reached, where the result will then correspond to the fixed
point characterized by [Eqs. (B2)]. In Appendix B 2, we argue
that this different variational characterization of the multirow
algorithm in terms of an optimal normalized fidelity is com-
patible with the characterization in terms of optimizing the
free-energy density, for systems that are sufficiently gapped,
by considering the example of the two-dimensional classical
Ising model. Note that the computational complexity of this
power method is again linear in both linear dimensions of the
unit cell Lx and Ly.

The algorithm proposed in Ref. [45], however, goes beyond
this power method. The multisite VUMPS algorithm does not
optimize [Eqs. (B4)] sequentially for one MPS at a time, but
in fact iteratively solves a global fixed-point equation which is
obtained by writing down all eigenvalue equations [Eqs. (B2)]
in their tangent space projected form simultaneously, thereby
optimizing over all MPS at once. This gives rise to a more
efficient algorithm compared to the simple power method. As
the conditions [Eqs. (B3)] are contained within the solution
of this global fixed point equation, if the multisite VUMPS

algorithm converges then the result is guaranteed to be optimal
in the sense of the normalized fidelity.

An important point, however, is that the multisite algorithm
may not converge for certain transfer matrices with three
or more rows. This is caused by the fact that the algorithm
optimizes over all MPS at the same time in order to solve
a single global fixed point equation, instead of optimizing
each fidelity individually as is actually implied by the tangent
space conditions [Eqs. (B3)]. As stated in Sec. IV C, this
phenomenon is related to the fact that the multisite VUMPS

fixed point equations can actually be related to an invalid

variational principle of the form Eq. (46) in this case. So
while the more efficient multisite VUMPS algorithm usually
converges in which case the obtained solution automatically
satisfies [Eqs. (B3)] in an optimal way, the algorithm can fail
in which case the more robust power method should be used
to obtain the desired fixed point.

2. Numerical results for the 2D Ising model

We now provide some numerical results in support of this
discussion. The model we study is the classical ferromagnetic
Ising model on the infinite two-dimensional square lattice
with Hamiltonian

H = −J
∑
〈i, j〉

sis j . (B5)

The corresponding partition function

Z =
∑
{si}

e−βH (B6)

can be written as the contraction of a 2D tensor network,

(B7)

where the black dots represent δ tensors

(B8)

and Boltzmann weights

(B9)

are place on each bond. Instead of the conventional way of
simulating this model using a single-row transfer matrix, we
will resort to a three-row transfer matrix here. Our approach
is inspired by problems for which the use of a two-by-two
unit cell transfer matrix is required, either explicitly or as a
result of breaking translational invariance. For these models it
often occurs that, while the total partition function has reflec-
tion and time-reversal symmetry, the corresponding transfer
matrix unit cell is non-Hermitian and the variational charac-
terization of boundary MPS contraction is therefore not valid.
This occurs, for example, for certain classical lattice gauge
theories in two spatial dimensions. In such cases, the partition
function can often be transformed into an equivalent partition
function with a larger Hermitian three-by-three unit cell by
means of an identity for δ tensors, which in the current case
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reads

(B10)

Here the black dots on the far left and right of the right-hand
side represent three-leg δ tensors just as in Eq. (B8) and

(B11)

Applied to Eq. (B7), this gives rise to a partition function with
a Hermitian three-by-three unit cell, indicated by the dashed
square,

(B12)

If we absorb the bond matrices into the sites symmetrically
this gives a Hermitian three-row transfer matrix,

(B13)

where the bond and plaquette tensors of the unit cell are
defined as

(B14)

Given this three-row transfer matrix, we now illustrate the
points made in the above discussion.

We approximate the leading eigenvector of Eq. (B13) as
a boundary MPS by directly using multisite algorithms, as
well as by blocking the unit cell and employing the single-
site VUMPS algorithm. In the following, we will use the term
“single-row error” to denote the deviation of the boundary
MPS with respect to the constraint Eq. (B1) where all rows
of the transfer matrix are blocked, indicating its distance from
the variational optimum of the free-energy density (25). The
term “multirow error” will be used to denote the deviation
with respect to the set of constraints [Eqs. (B3)], indicating
its distance from the variational optimum of the normalized

FIG. 7. Multi- and single-row error at each iteration using the
power method (top) and the multisite VUMPS algorithm (bottom) for
determining the boundary MPS of Eq. (B13), at T = 0.95 Tc.

fidelity [Eqs. (B4)]. We set J = 1 in Eq. (B5) and consider
a temperature range around the critical temperature Tc =
2/ ln(1 + √

2)). Using a bond dimension of χ = 50 for the
boundary MPS, we apply the power method described above,
the multisite VUMPS algorithm [45] as well as the single-site
VUMPS algorithm for the blocked unit cell [30] and analyze
the results.

FIG. 8. Multi- and single-row error at each iteration using the
single-site VUMPS algorithm for determining the boundary MPS of
(B13) when blocking all layers, at T = 0.95 Tc.
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FIG. 9. Multirow error at each iteration using the multisite
VUMPS algorithm (top) and the power method (bottom) for determin-
ing the boundary MPS of (B13) at T = Tc.

In order to motivate the validity of the variational char-
acterization in terms of an optimal fidelity per site, we take
the MPS obtained with the multirow power method and the
multisite VUMPS algorithm at each iteration and use it to com-
pute the single-row error with respect to the blocked transfer
matrix. The results are shown in Fig. 7, for T = 0.95 Tc. The
superior efficiency of the multisite VUMPS algorithm over the
power method is immediately apparent here. Conversely, we
take the MPS obtained with the single-site VUMPS algorithm
for the blocked transfer matrix and use it to compute the
multirow error with respect to the multirow transfer matrix
by splitting the state into a three-site unit cell MPS by means
of SVD. The result is shown in Fig. 8 for T = 0.95 Tc. We
see that both variational characterizations are compatible at a
sufficient distance from criticality, i.e., if one characterization

FIG. 10. Increase of the multisite error after 40 additional mul-
tisite VUMPS iterations starting from the power method result for a
temperature range (.95 : .00125 : 1.05) · Tc. The dashed vertical line
indicates T = Tc. Differences smaller than 10−10 are ignored since
these are tainted by numerical noise.

is used to optimize the boundary MPS then the other charac-
terization is automatically optimized as well.

As stated above, the multisite VUMPS algorithm [45] can
suffer from stability issues for certain transfer matrices with
three or more rows. In order to illustrate this, we monitor the
multirow error for the first 50 iterations when determining
the boundary MPS of Eq. (B13) at T = Tc using both the
multisite VUMPS algorithm and the multirow power method.
The result is shown in Fig. 9. It can clearly be seen from the
top panel that the behavior of the deviation with respect to
Eq. (B3) is entirely erratic after a few iterations of the multisite
VUMPS algorithm: the algorithm becomes unstable and will
not converge. In contrast, this behavior does not occur when
using the power method: the error measure keeps decreasing
with the number of iterations and the algorithm will converge.

To further illustrate this instability, we take the fixed point
obtained after 200 iterations of the power method and use this
as the input for the multisite VUMPS algorithm. The increase
of the deviation with respect to [Eqs. (B3)] for the multisite
VUMPS result after 40 additional iterations compared to the
power method result is shown in Fig. 10. It can clearly be
seen that the multisite VUMPS algorithm becomes unstable in a
finite temperature region around the critical temperature. Our
simulations suggest that the size of this window is largely
independent of the MPS bond dimension, while its position
shifts very slightly towards lower temperatures when the bond
dimension is increased.
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