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Functionals of the meta-generalized gradient approximation (MGGA) are widely used nowadays in chemistry
and solid-state physics for the simulation of electronic systems such as molecules, solids, or surfaces. Due to
their dependency on the kinetic energy density, they are in principle more accurate than GGA functionals for
various properties (geometry, binding energy, electronic structure, etc.), while being nearly as fast since they
are still of the semilocal form. Thus, when an accuracy better than GGA is required, one may consider using a
MGGA instead of the much more costly hybrid functionals or methods such as the random-phase approximation
or GW . In this work, the self-consistent implementation of MGGA functionals in augmented plane wave based
methods is presented. Technical aspects of the implementation are discussed, and calculations of band gaps,
lattice constants, and magnetic moments are presented in order to validate our implementation. To test the
changes of the electron density due to a MGGA, the electric field gradient on transition-metal atoms is calculated.
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I. INTRODUCTION

Kohn-Sham (KS) density functional theory (DFT) [1,2]
is, in principle, an exact theory. However, in practice the
exchange-correlation (xc) term in the total energy functional,
Exc, is treated approximately since a usable exact expression
for the xc term has not been (and probably will never be)
developed. Various classes of approximations for the xc en-
ergy functional Exc and xc potential vxc exist, and most of
them belong to one of the rungs of Jacob’s ladder of DFT
[3,4]. Several hundreds of approximations have been proposed
so far [5–7], and which one to choose for the problem at
hand is not always obvious. The most simple approximation
(the first rung of Jacob’s ladder) for Exc is the local density
approximation (LDA) [2,8,9], where the xc energy density εxc

is a purely local functional of the electron density ρ, Exc =∫
εxc(ρ(r))d3r. At the second rung of Jacob’s ladder, there is

the generalized gradient approximation (GGA) [10,11], where
εxc depends not only on the electron density ρ, but also on its
first derivative ∇ρ. Functionals of the meta-GGA (MGGA)
type [12–14], at the third rung of Jacob’s ladder, depend
also on the noninteracting electronic kinetic energy density
(KED) τ and/or the Laplacian of the electron density ∇2ρ.
At the fourth rung there are the functionals using the exact
Hartree-Fock (HF) exchange, such as the hybrid functionals
[15–17]. Finally, the functionals at the fifth rung also use
the unoccupied Kohn-Sham orbitals (e.g., the random-phase
approximation [18,19]).

Climbing up Jacob’s ladder leads to functionals that
should, in principle, be more accurate, but also more com-
plicated to implement and computationally more expensive.
Actually, the functionals of the fourth and fifth rungs are much
more demanding in terms of computational time and memory.
The functionals of the second and third rungs, the so-called
semilocal functionals, are the most widely used, especially

in solid-state physics, where the GGA functionals have been
the standard since the 1990s [11,20]. The past decade has
seen a significant increase in popularity of MGGA [21] and
hybrid [22] functionals. MGGA functionals are universally
more accurate than GGAs; a MGGA can be quite accurate
for both molecules and solids at the same time, while this is
not possible with any GGA [23–27]. Hybrid functionals are
particularly interesting for properties related to the electronic
structure, such as the band gap [28–31].

The focus of the present work is on MGGA function-
als. More specifically, the self-consistent implementation of
KED-dependent MGGA functionals in augmented plane wave
(APW) based methods will be presented. For this purpose,
we made use of the WIEN2K code [32,33]. MGGA function-
als have been implemented in a certain number of codes
(see Refs. [12,34–47] for works reporting implementation
details). However, in the literature there is no report of the
self-consistent implementation of MGGAs within the APW
method [48–50]. We note that such an implementation is
available in the ELK APW code [51]. The approach used in the
ELK code differs significantly from ours, however. In their ap-
proach, the MGGA potential is added in a second-variational
step, whereas in our approach it is added in the first variation.

Here, our goal is to derive the novel equations that arise
from the KED-dependency in APW based methods, and to
show that they are correctly implemented. We discuss the re-
sults for the band gap, lattice constant, and magnetic moment.
As an application of MGGA functionals, the electric field
gradient (EFG) on transition-metal atoms is calculated [52].

The paper is organized as follows. Section II gives details
about the theory. Then, validation tests of the implementation
are presented in Sec. III, while Sec. IV discusses the effect of
self-consistency on the lattice constant. As an application of
MGGA functionals, Sec. V presents the results for the EFG
in systems with transition-metal atoms. The EFG is especially
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suited as a benchmark because of its sensitive dependence on
the electronic density ρ. Finally, Sec. VI summarizes the main
points of this work.

II. THEORY

A. APW based methods

In the all-electron full-potential APW based methods, the
unit cell is partitioned into two disjunct regions: nonover-
lapping atomic spheres centered at the nuclei with radii Rat,
and the interstitial region. Inside the spheres the orbitals, and
all associated quantities (electron density, potential, etc.), are
expanded in spherical harmonics Y�m; in the interstitial region,
they are expanded in plane waves.

Within the spheres, a second partitioning is performed in
low-energy core states and higher-energy valence (and semi-
core) states. The former are fully confined to the spheres
(they have a vanishing wave function at and beyond the
sphere boundary) and are obtained as atomiclike solutions of
the Dirac equation with a (spherical) effective KS potential
[53,54]. In this case, the variables can be separated in a radial
and angular part in the usual way [55]. The core orbitals
are thus given by radial functions multiplied by the spinor
spherical harmonics:

ψα
nκm(r) =

(
gnκm(r)ξκm

i fnκm(r)ξ−κm

)
, (1)

where n, κ , and m are the principal, relativistic, and mag-
netic quantum numbers, respectively. gnκm and fnκm are radial
functions (large and small components, respectively) and ξκm

are the spinor spherical harmonics. The core states are cal-
culated self-consistently, i.e., recalculated at each iteration of
the self-consistency cycle. For spin-polarized cases, the ef-
fective potential has two components, vKS = (v↑

KS v
↓
KS),

such that the relativistic single-electron wave function has
four components (large and small components for each spin).
Spin mixing of the relativistic states is neglected. Note that
the contribution from the core states to the KED is still de-
fined from the positive-definite form of the nonrelativistic
kinetic-energy operator [56]. This form must be used because
(nonrelativistic) MGGA xc functionals are parametrized in
terms of the nonrelativistic KED. For example, many MGGA
functionals use the iso-orbital indicator αiso = (τ − τW)/τTF

[where τW = |∇ρ|/(8ρ) and τTF = (3/10)(3π2)2/3ρ5/3 are
the von Weizsäcker [57] and Thomas-Fermi [58,59] KED,
respectively], assuming it has a lower bound of zero. For the
nonrelativistic case, this is a safe assumption, because the
KED τ = 1

2

∑
i

∇ψ∗
i · ∇ψi is positive-definite. For the rela-

tivistic KED associated with the operator cα · p̂ [55,60], this
is not guaranteed and this can lead to wrong results.

The valence states do extend over the whole unit cell
and are described by (linearized) augmented plane waves
[(L)APWs], depending on the case. As an illustration, the
case of LAPW can trivially be generalized to APW basis
functions, or functions describing semicore states [APW+lo,
(high-derivative) local orbitals (HDLOs), etc.] [49,50,61–63].

The LAPW basis functions are given by

φK(r) =

⎧⎪⎨
⎪⎩

∑
�m

[
AK

α�muα�(rα, Eα�)+
BK

α�mu̇α�(rα, Eα�)
]
Y�m, r ∈ Sα,

1√
�

eiK·r, r ∈ I,

(2)

where K = k + G is the sum of the wave vector k and the
reciprocal-lattice vector G, rα = r − Rα is the distance from
the nucleus α, and � is the volume of the unit cell. The
radial function uα� and its energy derivative u̇α� are con-
structed by integrating a spherical scalar-relativistic radial
equation with the (spherically averaged) effective KS poten-
tial vsp for a given energy parameter E� [64]. Thus, the uα�

are two-component functions, or four-component functions
for spin-polarized cases. The matching coefficients AK

α�m and
BK

α�m are determined by matching the value and slope of the
large component to the plane wave [it is assumed that the
small component is zero at the sphere boundary as the plane
waves are nonrelativistic (one- or two-component) functions].

The addition of the energy derivative u̇α� linearizes the ra-
dial basis with respect to the energy. This distinguishes LAPW
from Slater’s original APW method [65]. It is important to
note for the discussion below that the contribution of BK

α�mu̇α�

to the wave functions (and electron density) is a measure of
the quality of the basis set. It should be much smaller than
the contribution from AK

α�muα�; otherwise it is an indication
that the energy parameter Eα� or the atomic radius Rα

at may be
badly chosen.

An important addition to the basis set are local orbitals
(LOs) [66]; these are linear combinations of LAPW radial
functions with a third radial function Ci

α�muα�(rα, Eα
�i ) with

another (often semicore) energy parameter Eα
�i. Provided the

energy parameters are properly chosen (far enough apart),
multiple LOs, indexed i, could be added per atom and per az-
imuthal quantum number �. They are defined to be zero in the
interstitial region, and the coefficients Ai

α�m, Bi
α�m, and Ci

α�m
are chosen such that the linear combination is normalized and
has zero value and slope at the atomic sphere boundary.

Another linearization scheme is the APW+lo basis. It uses
the LO concept to eliminate the explicit energy dependence
of the APW basis functions. For a detailed discussion of this
approach, see Refs. [61,62].

However, all approaches boil down to linear combinations
of radial functions. For generality and simplicity of the no-
tation, in the following we will write basis functions using
φμ to indicate either an extended (L)APW or a local orbital
(LO/lo) basis function, and the associated (linear combination
of) radial functions simply as fμ�m; μ is a shorthand index for,
as applicable, the atom index α, lo index i, and wave number
K. Unless necessary, we will also mute the spin index σ

(however, all equations are given in the spin-polarized form),
the atomic index α, as well as the r and r̂ dependencies of
functions in most equations.

B. Meta-generalized gradient approximation

As mentioned in Sec. I, KED-dependent MGGA
functionals

Exc =
∫

cell
εxc(ρ↑, ρ↓,∇ρ↑,∇ρ↓, τ↑, τ↓)d3r (3)
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depend on the electron density

ρσ =
∑
nk

wσ
nk|ψσ

nk|2︸ ︷︷ ︸
ρval

σ

+
∑
αnκm

|ψασ
nκm|2

︸ ︷︷ ︸
ρcore

σ

, (4)

its first derivative ∇ρσ , and the noninteracting positive-
definite KED,

τσ = 1

2

∑
nk

wσ
nk∇ψσ∗

nk · ∇ψσ
nk︸ ︷︷ ︸

τ val
σ

+ 1

2

∑
αnκm

∇ψασ∗
nκm · ∇ψασ

nκm︸ ︷︷ ︸
τ core
σ

, (5)

where wσ
nk is the product of the k-point weight and occupation

number. Note that this positive-definite KED is different from
the KED that is derived from the sum of eigenvalues in all-
electron methods [56,67].

Since Eq. (3) depends on τσ , it is not an explicit func-
tional of the density ρσ , like LDA and GGA functionals.
Therefore, the xc potential vxc,σ , which is defined as the func-
tional derivative of Exc with respect to the density (vxc,σ =
δExc/δρσ ), cannot be calculated straightforwardly, but only
via the optimized effective potential (OEP) method [68]. The
OEP equations are often solved approximately by using the
Krieger-Li-Iafrate simplification [69] of the OEP method (see
Refs. [37,42,43]). Therefore, in most implementations, the
corresponding potential of Eq. (3) is calculated within the gen-
eralized KS [70] (gKS) framework by taking the functional
derivative with respect to the KS orbital ψσ

i (Ref. [34]):

v̂xc,σψσ
i = δExc

δψσ∗
i

=
(

∂εxc

∂ρσ

− ∇ · ∂εxc

∂∇ρσ

)
ψσ

i

− 1

2
∇ ·

(
∂εxc

∂τσ

∇ψσ
i

)
. (6)

In Eq. (6), the term in the large parentheses, vmult
xc,σ =

∂εxc/∂ρσ − ∇ · (∂εxc/∂∇ρσ ), has the same form as a GGA
potential vGGA

xc,σ = ∂εGGA
xc /∂ρσ − ∇ · (∂εGGA

xc /∂∇ρσ ) and is
multiplicative. The expanded formula for this term can be
found in Appendix A. The last term in Eq. (6) arises due
to the KED-dependency of Eq. (3) and consists of a non-
multiplicative operator v̂τ,σ = (−1/2)∇ · (vη,σ∇), where for
conciseness we define vη,σ = ∂εxc/∂τσ .

C. Hamiltonian matrix element

It is in principle straightforward to calculate the Hamilto-
nian matrix elements in a gKS approach, namely by applying
the operator v̂τ on a basis function φν and multiplying
on the left with another basis function φμ. In the LAPW
method, however, the basis functions themselves depend on
the potential, and the gKS approach cannot be applied to
the construction of the radial basis functions (nor to the core
electrons) because they are calculated by direct integration.

If a radial equation (relativistic or not) is integrated using a
nonmultiplicative potential, the solutions are in general not or-
thogonal. Therefore, we use an appropriate GGA xc potential
for this step.

We note that it may be possible to use an OEP (or an
approximation thereof) during this step, while keeping the
gKS scheme to compute the matrix elements. This lies outside
the scope of this paper, however.

This approach has some limitations. First, if the GGA
potential is not well-chosen, the quality of the (radial) basis
functions is diminished. In practice (as will be shown in
Sec. III) this is rarely an issue. A previous work has already
shown that the OEP vxc of SCAN only differs in small details
from the potential vxc of PBE [43]. If problems do occur due to
poor basis functions, this can be detected. In this case (which
can occur also in typical KS calculations, for example when
energy parameters are badly chosen) the charge contribution
coming from the linearizing term u̇α� becomes large. Our code
then produces a warning automatically. Examples of this will
be discussed in Sec. III.

Secondly, because the core and valence electrons are
treated using inconsistent potentials (which are not the func-
tional derivative of a single energy functional), the calculation
of forces is in principle not possible. Note that the valence
electrons are still treated fully consistently with the MGGA
potential in the gKS scheme.

The GGA xc potential for the core electrons and radial
functions fμ�m was chosen according to the variational prin-
ciple. In Ref. [71], the band gap of solids was calculated
non-self-consistently (from total-energy calculations) with a
MGGA, but using GGA orbitals. It was shown that the vari-
ationally optimal GGA orbitals (those giving the lowest total
MGGA energy) are also the ones that lead to the most correct
MGGA band gaps, which is rather expected. For the present
work, it was found that the best GGA potential to use in
the construction of the basis functions is the same as those
that were determined in Ref. [71] to be the best for non-self-
consistent MGGA calculations (and in the subsequent work
[72]), namely RPBE [73] (for TPSS [13] and SCAN [21]),
mRPBE [71] (for HLE17 [74]), and HCTH/407 [75] (for
TASK [76]).

Note that using only the multiplicative part of the MGGA
potential in this step is not possible. The contribution from
the nonmultiplicative part to the total potential in Eq. (6) is
so large that the remaining multiplicative part is a very poor
approximation, much worse than a standard GGA potential.
Ignoring the nonmultiplicative part in this step would intro-
duce large errors in the core density and the radial functions.

With the basis set fully determined, we can set up the
secular equation to solve the gKS eigenvalue problem Ĥψn =
εnψn. The overlap matrix S is unaffected by the choice of the
potential. It is natural in APW based methods to consider the
spherical part of the Hamiltonian separately from the non-
spherical part and the interstitial part. For a MGGA potential
in the gKS scheme, a third contribution is given by the matrix
elements of the KED-derived operator v̂τ :

Ĥ = ĤI + Ĥsp + vns + v̂ns,τ . (7)

In APW based methods, the contribution of the spherical part
Ĥsp to the matrix elements is fully determined by the energy
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parameters El and orthonormality of the radial functions. The
(atomic) nonspherical and KED-dependent contributions are
calculated through numerical integration. The first two terms
are discussed in the literature [49]; we only note that a cor-
rection must be added to the spherical part to account for
the difference between the GGA used to construct the radial
functions and the multiplicative part of the MGGA:

〈φμ|Ĥsp|φν〉 = 〈φμ|ĤGGA
sp |φν〉 + 〈φμ|vmult

sp − vGGA
sp |φν〉, (8)

where vmult
sp and vGGA

sp are the spherical components of the
multiplicative part of the potential and the auxiliary GGA
potential, respectively. The first term on the right-hand side
of Eq. (8) is still only dependent on the energy parame-
ters, whereas the second term is calculated by numerical
integration.

The KED-derived gKS contribution 〈φμ|v̂τ |φν〉 is evalu-
ated using integration by parts:

〈φμ|v̂τ |φν〉 = 1

2

[∑
α

∫
Sα

+
∫

I

]
vη∇φ∗

μ · ∇φνd3r

− 1

2

∑
α

∮
∂Sα

vηφ
∗
μ(∇φν ) · r̂ d� (9)

and their detailed form for APW based basis functions can be
found in Appendix B.

With the Hamiltonian and overlap matrices determined, the
secular equation can be solved. It provides the KS orbitals,
from which the electron density and the KED are determined,
closing the self-consistency loop.

D. Total energy

The total energy per unit cell is given by

Etot = Ts + 1

2

∫
cell

vCoul(r)ρ(r)d3r

− 1

2

∑
α

Zαvα
M(Rα ) + Exc, (10)

where Ts is the kinetic energy of the electrons, and

vCoul(r) =
∫

cell

ρ(r′)
|r − r′|d3r′ −

∑
β

Zβ

|r − Rβ | , (11)

vα
M(Rα ) =

∫
cell

ρ(r′)
|Rα − r′|d3r′ −

∑
β �=α

Zβ

|Rα − Rβ | (12)

are the Coulomb and Madelung potentials, respectively (Zα is
the charge of nucleus α). By using the sum of the eigenvalues,
Etot can be rewritten for a MGGA functional in the gKS
scheme as

Etot =
∑

ασnκm

εασ
nκm +

∑
σnk

wσ
nkε

σ
nk + EMGGA

xc

− 1

2

∫
cell

vCoul(r)ρ(r)d3r − 1

2

cell∑
α

Zαvα
M(Rα )

−
∑

σ

∫
cell

vGGA
xc,σ (r)ρcore

σ (r)d3r

−
∑

σ

∫
cell

vmult
xc,σ (r)ρval

σ (r)d3r

−
∑

σ

∫
cell

vη,σ (r)τ val
σ (r)d3r, (13)

where vGGA
xc,σ is the GGA potential used for the core electrons

(as well as for the calculation of the radial functions fμ�m).
Except for the addition of the last KED-derived term, and the
separation of the core and valence potentials, this expression
is equivalent to the one given by Weinert et al. [67] for the KS
scheme.

E. Computational details

As already mentioned, the WIEN2K code [32,33] is used
for the present study. In the self-consistent implementation of
MGGA functionals, the xc energy density εxc and its deriva-
tives with respect to ρσ and τσ are provided by the library of
xc functionals Libxc [5,6].

An overview of the required parameters to reach the same
convergence level for PBE, SCAN, HLE17, and TASK is
listed in Table I. Gmax is the cutoff for the Fourier coefficients
of quantities (density, KED, and potentials) in the interstitial
(and thus the size of the Fourier grids), whereas Rat

minKmax is
the product of the plane-wave basis cutoff and the smallest
atomic sphere in the system. Other parameters like the k-mesh
and cutoffs of the spherical harmonics expansions were found
to be unaffected by the choice between a MGGA or a GGA
functional.

It is clear that SCAN and TASK require a larger Fourier
cutoff Gmax. This applies to a lesser extent to HLE17. The re-
quired plane-wave cutoff is not significantly affected (though
there are some fluctuations), except for LiF. LiF is a special
case however, as it has no core states, and a convergence of
0.01 eV in the band gap (considering the predicted band gap
of 12.58 eV with TASK) is a quite strict convergence criterion.

On the basis of these results, a Gmax of 24 should be
safe for all or most MGGAs, compared to 12 for PBE (al-
though 14 is the default setting in WIEN2K). Because SCAN
is so numerically demanding, regularized versions have been
developed [77,78]. These should have better convergence be-
havior. Depending on the MGGA functional that is chosen
and the system under consideration, we expect that in most
cases a lower value can be used for Gmax. The choice for
basis set size (which is the most important parameter with
respect to computational time as it determines the size of the
Hamiltonian matrix) is not affected by MGGAs compared to
PBE.

In Table II, we list the timings for five systems. Three
of them—Al2O3, Si, and Zn—will be discussed below.
The other two systems have been chosen to include also
more computationally demanding cases. MoS2 is a well-
known transition-metal monolayer, and calculations including
MGGAs were published in Ref. [79]. The last system is a
supercell of Ge with an interstitial defect. It contains 129
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TABLE I. Parameters required to converge the total energy to 0.01 Ry, band gaps to 0.01 eV, EFG to 0.01 1021 V/m2, and magnetic
moment to 0.01μB. The column names G and K are short for the parameters Gmax and Rat

minKmax as defined in the text.

PBE TPSS SCAN TASK HLE17

Solid G K G K G K G K G K

Al2O3 12 8.0 12 8.0 20 8.0 20 8.5 12 8.0
LiF 12 6.0 16 7.0 16 6.0 20 8.0 16 7.0
Ru 12 9.0 12 8.5 16 9.0 16 9.0 12 9.0
Si 12 7.0 12 7.0 12 7.0 12 7.0 12 7.0
Zn 12 8.5 12 9.0 24 9.0 12 9.0 12 9.0
NiO 12 8.0 12 8.0 22 8.0 12 7.5 12 8.0
MoS2 10 7.0 10 7.0 10 7.0 10 7.0 14 7.0
Ge 12 8.0 12 8.0 12 8.0 12 8.0 12 8.0

atoms in the unit cell, and it was discussed in Ref. [80] (not
including MGGA calculations).

We show timings for PBE, PBE using the recommended
MGGA parameters, and SCAN. This way, the influence of
the parameters can be separated from the computational
complexity that is intrinsic to the MGGAs. For TPSS, TASK,
and HLE17 we show just the timing for the construction of the
potential and number of self-consistency iterations required,
as the other timings are indistinguishable.

The largest influence is obviously on the calculation of the
potential. The doubling of Gmax implies that the Fourier grid
will be eight times larger. Additionally, a second Fourier grid
must be stored in memory for the KED-dependent part of the
potential. This is reflected clearly in the timings, where one

sees a large jump when doubling Gmax using PBE. The addi-
tional complexity introduced by using a MGGA is a factor of
2–3, depending on the chosen functional. In general, HLE17
takes the longest to evaluate, followed by TPSS, SCAN, and
finally TASK. The lower relative complexity of TASK might
be explained by the fact that only the exchange part is a
MGGA (the correlation is taken from LDA). It is interesting
to note that for MoS2 the relative order of SCAN and TPSS is
reversed. This is probably caused by the presence of vacuum
regions in this case, combined with the piecewise definitions
of the functionals. It is hard to track down the exact cause,
however, due to the complexity of the definitions of the func-
tionals and the impact of compiler optimizations. Overall the
main impact comes from the parameter Gmax, for which we

TABLE II. Timings per iteration (in seconds), and number of iterations needed from an initial superposition of atomic densities, for four
benchmark systems using PBE, SCAN, TPSS, TASK, and HLE17. We performed all calculations sequentially (i.e., on a single core) on an
Intel i7-7820X CPU (eight cores @ 3.60 GHz), except the Ge (d) case, which was parallelized using MPI across all cores of two identical
machines. Rat

minKmax was chosen the same for all functionals and according to the values listed in Table I: 7.0 for Si and MoS2, 8.0 for Ge and
Al2O3, and 9.0 for Zn. The timings for one iteration have been separated into the calculation of the potential V , the setup and diagonalization
of the Hamiltonian matrix, and “other” (calculation of density, KED, mixing, and core states). For MoS2, spin-orbit coupling was included,
which explains the larger amount of time spent in “other.” The asterisk for the number of iterations for MoS2 using TASK signifies that this
case was restarted from a converged SCAN calculation.

Functional Step Si Zn Al2O3 MoS2 Ge (d)

V 1 <1 1 2 44
PBE H 2 7 172 38 882
(Gmax = 12) other 2 4 57 87 287

iter. no. 9 9 8 11 13

V 7 3 6 8 334
PBE H 2 7 176 38 874
(Gmax = 24) other 2 4 57 85 295

iter. no. 9 9 8 11 13

V 15 4 14 25 605
SCAN H 2 7 227 41 885
(Gmax = 24) other 2 4 56 82 297

iter. no. 9 10 12 11 15

TPSS V 19 6 17 23 626
(Gmax = 24) iter. no. 9 9 10 11 14

TASK V 13 4 11 18 581
(Gmax = 24) iter. no. 9 11 11 65∗ 15

HLE17 V 22 6 19 26 634
(Gmax = 24) iter. no. 9 11 11 11 17
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chose for the timings a very high value (compare with the
actual necessary Gmax as given in Table I). For very inten-
sive cases, it will often be possible to reduce this parameter
depending on the composition of the system and functional
used, e.g., after testing the convergence on a smaller system
with similar composition or physical features.

The setup and diagonalization are only modestly affected.
In fact, the diagonalization should be exactly as expensive, as
the Hamiltonian matrix has the same dimensions. The change
in this step comes almost entirely from the calculation of
the spherical terms [see Eq. (B14)], which takes about 50%
longer. The setup has a computational complexity of O(N2),
but for the diagonalization it is O(N3), thus the difference
between the timings for this step will tend to zero for larger
cases.

In the last category “other,” there are very small differ-
ences, which can be traced back to the construction and
mixing of the positive-definite KED τ (which we imple-
mented similarly to Ref. [56]).

The number of iterations needed was unchanged, or only
modestly increased. The exception was the calculation of
MoS2 with TASK, where 65 iterations were needed starting
from a converged PBE calculation (compared to the others,
which are started from a superposition of atomic densi-
ties). This shows that, in some cases, convergence with gKS
MGGAs can be tricky for 2D systems (and probably also
other systems including vacuum regions). The authors also
experienced this for the calculation presented in Ref. [79].
However, we did not observe such issues in bulk systems.

On the whole, we see that the computational expense of
a MGGA calculation using our implementation is not much
higher than that of a GGA calculation. On a few points,
there are probably still optimizations possible. Notably, the
mixing of the density in our code is done using a sophisti-
cated optimization scheme [81], whereas the KED is mixed
independently according to a simple ‘Pratt’ scheme, where
the current and previous KED are simply added with a fixed
non-adaptive proportion and scaled. Possibly an improved
mixing scheme could solve the slow convergence found for
some cases with vacuum regions.

III. VALIDATION OF THE IMPLEMENTATION

A. Band gap

To check the correctness of our implementation of the
MGGA potential, we consider the band gap of a set of solids.
By band gap, we mean the difference between the eigenvalues
εnk at the valence-band maximum (VBM) and the conduction-
band minimum (CBM):

E (g)KS
g = ε

(g)KS
CBM − ε

(g)KS
VBM , (14)

which is, here for MGGA functionals, applied in the gKS
framework. At this point, it is worth mentioning a few things
about the xc derivative discontinuity �xc [84,85]. �xc is de-
fined as

�xc = EI-A
g − EKS

g , (15)

where EI−A
g = I − A is the true band gap calculated as the

difference between the ionization potential I and electron
affinity A of the system, and EKS

g is calculated with Eq. (14)

when the potential is implemented in the KS framework so
that it is multiplicative. For solids, LDA and GGA function-
als lead to �xc = 0 (see Refs. [86,87]), which is the main
reason why LDA/GGA strongly underestimate the band gap
with respect to experiment [31,88] (note, however, that a few
less common GGA functionals [89–91] lead to much bet-
ter band gaps, although �xc is still zero). Functionals that
lead to a nonmultiplicative gKS potential, like MGGAs and
HF/hybrids, possess a nonzero xc derivative discontinuity
�xc [92]. With such nonmultiplicative gKS potentials, �xc

is included in EgKS
g (see Refs. [92–94]), and consequently

EgKS
g is usually in better agreement with the experimental

value of EI-A
g , as shown in numerous benchmark studies

[31,70,76,82,83,91,95,96]. It is also interesting to note that the
derivative discontinuity �xc is not included in the CBM-VBM
difference when the MGGA potential is implemented using
the OEP method, however �xc is in principle nonzero and can
be calculated [43].

Among the numerous proposed MGGA functionals [14],
HLE17 [74] and TASK [76] are some of the most accu-
rate for the band gap of solids [albeit they are slightly less
accurate than the modified Becke-Johnson (mBJ) MGGA po-
tential [97–99], as shown in Ref. [83]]. Therefore, they are of
particular interest for testing our implementation of MGGA
potentials. Also considered are the well-known TPSS [13]
and SCAN [21], the latter being very successful for total
energy calculations [100,101]. While TPSS leads basically to
no improvement with respect to PBE [11] for the band gap,
SCAN is clearly more accurate, but not as much as HLE17 or
TASK [83,102].

The results for the band gap of 30 solids obtained with
the WIEN2K code are shown in Table III. This set of solids
is the one that we used in Ref. [71] for the non-self-consistent
calculation of the band gap with MGGA functionals using the
total energy Etot. It is a subset of the much larger set of 473
solids built by Borlido et al. [82,83,103]. The results are com-
pared with the results from Refs. [82,83], which were obtained
with the VASP code [104] that uses the projector augmented
wave (PAW) formalism [105,106]. The agreement between
the two codes can be considered as satisfying, since in the
majority of cases the difference EWIEN2K

g − EVASP
g between the

two codes is below 0.05 eV. The mean absolute difference
(MAD) is 0.03 and 0.04 eV for TPSS and SCAN, respectively,
but slightly larger for HLE17 and TASK (0.06 and 0.07 eV,
respectively). The mean differences (MD) for all functionals
are much smaller, showing there is no systematic error. The
mean absolute percentage deviation (MAPD) for the MGGA
functionals varies between 1.4% and 2.4%, which is much
smaller than that for PBE. The MAPD of 4.2% of PBE, how-
ever, is dominated by the very large relative difference of 88%
for Ge. From such small MADs and MAPDs between WIEN2K

and VASP, we can conclude that the new implementation of the
MGGA potentials in WIEN2K is correct and accurate.

For AlSb, we did not use the result from Refs. [82,83] as
we found a significant discrepancy between the results. We
found a value of 2.15 eV (WIEN2K), compared to their result of
2.87 eV (VASP). Therefore, we recalculated this case ourselves
with VASP and found a value of 2.07 eV, in good agreement
with WIEN2K. Additionally, we confirmed that our VASP re-
sult can be reproduced using different pseudopotentials. Our
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TABLE III. Band gaps (in eV) calculated with MGGA functionals using the WIEN2K code at experimental lattice parameters. The columns
� show the difference with respect to the VASP result (EWIEN2K

g − EVASP
g ) from Refs. [82,83] (except AlSb, which we calculated ourselves; see

the text). For comparison, the PBE results are also shown.

Solid PBE � TPSS � SCAN � HLE17 � TASK �

Al2O3 6.20 0.01 6.35 0.04 7.08 0.04 7.12 0.17 8.70 −0.01
AlAs 1.47 0.04 1.53 0.04 1.77 0.04 2.53 0.04 2.49 0.05
AlN 4.14 −0.00 4.14 0.00 4.79 0.00 4.79 0.05 5.77 −0.08
AlP 1.59 0.01 1.66 0.02 1.91 0.01 2.73 −0.06 2.45 −0.01
AlSb 1.22 0.01 1.28 0.01 1.37 0.00 1.94 0.14 2.15 0.08
Ar 8.71 −0.01 9.37 0.06 9.63 0.13 10.90 0.06 13.21 −0.06
BeO 7.37 0.02 7.39 0.06 8.21 0.05 8.51 0.04 9.59 −0.04
BN 4.46 0.01 4.49 0.06 4.96 0.03 5.73 0.04 5.42 0.02
BP 1.25 −0.02 1.29 −0.02 1.53 −0.05 2.16 −0.07 1.48 −0.02
C 4.14 −0.01 4.17 −0.02 4.54 −0.03 5.01 0.01 4.33 −0.00
CaF2 7.28 0.00 7.76 0.03 7.88 0.05 9.38 0.04 10.45 0.03
CaO 3.67 0.04 3.79 0.04 4.24 0.08 4.54 0.03 5.16 −0.08
CdSe 0.71 −0.04 0.90 −0.00 1.11 0.04 1.67 −0.06 2.11 0.00
GaAs 0.52 −0.05 0.68 −0.00 0.78 −0.02 0.75 0.09 1.72 0.05
GaP 1.59 −0.05 1.64 −0.04 1.83 −0.05 2.22 0.02 2.37 −0.01
Ge 0.06 −0.05 0.18 0.01 0.18 0.04 0.00 0.00 0.89 0.02
InP 0.68 −0.03 0.82 0.00 1.04 −0.01 1.10 −0.02 1.87 −0.21
KCl 5.21 −0.00 5.73 0.01 5.84 0.06 6.91 −0.01 8.72 −0.04
Kr 7.26 −0.01 7.89 −0.00 8.03 −0.01 9.30 −0.01 11.37 −0.11
LiCl 6.33 0.00 6.57 0.02 7.28 0.10 7.79 0.02 9.50 0.04
LiF 9.08 0.00 9.25 −0.01 9.97 −0.01 10.81 −0.01 12.76 0.16
LiH 3.03 0.03 3.44 0.08 3.63 −0.01 4.75 0.13 5.48 0.05
MgO 4.71 0.00 4.83 0.03 5.58 0.05 5.70 0.09 7.25 −0.06
NaCl 5.11 0.01 5.49 0.04 5.89 0.04 6.78 0.07 8.66 −0.04
NaF 6.33 0.02 6.75 0.07 7.04 0.02 8.41 0.12 10.32 −0.04
Ne 11.58 −0.00 12.17 0.02 12.90 0.13 14.29 0.03 16.98 −0.01
Si 0.58 −0.04 0.66 −0.04 0.83 −0.04 1.56 −0.07 1.00 −0.02
SiC 1.36 0.01 1.38 0.06 1.68 −0.03 2.34 0.05 1.95 −0.03
ZnO 0.82 0.02 0.76 0.03 1.18 0.04 2.22 −0.16 2.04 −0.04
ZnS 2.12 −0.03 2.28 −0.01 2.63 0.00 3.18 −0.11 3.77 −0.02

MD 0.00 −0.02 −0.02 −0.02 0.04
MAD 0.02 0.03 0.04 0.06 0.07
MAPD 4.2 % 1.4 % 2.1 % 2.1 % 2.4 %

WIEN2K result is also independent of various parameters such
as the choice of LAPW or APW+lo basis, putting the Sb 4s
and 4p orbitals in core or valence, the sphere size, as well
as the choice of the local GGA potential (as indicated in
Table IV).

In a recent study [103], the band gaps of the aforemen-
tioned 473 solids were calculated with three DFT codes,
namely WIEN2K, VASP, and ABINIT [107], and compared. The
goal was to estimate the error in the band gap induced by using
an inconsistent pseudopotential (PP) or PAW-setup, like, for
instance, using a LDA or PBE PP/PAW-setup for a calculation
with another functional. The WIEN2K results were used as ref-
erence. When a consistent PP/PAW-setup is used, the MAD
between WIEN2K and VASP/ABINIT is 0.02–0.03 eV, which is
very small. However, the MAD increases up to ∼0.1 eV when
a LDA or PBE PP/PAW-setup is used for a calculation with a
very different functional like HLE16 [91], Sloc [90], or mBJ.
Considering this, the MADs obtained here for the MGGAs
are very reasonable, including HLE17 and TASK, which are
by construction very different from more standard functionals
like TPSS or SCAN.

As discussed in Sec. II B, the MGGA potential is not imple-
mented in the atomic codes that are used to calculate the core
orbitals and the radial functions of the basis set. Thus, a GGA
potential has to be used instead. This may lead to a suboptimal
core density and/or basis set in the spheres. However, the
variational principle guarantees that the lowest total energy
corresponds to the best core density and basis set. Following
these principles, the optimal GGA potential is RPBE for TPSS
and SCAN, mRPBE for HLE17, and HCTH/407 for TASK
[71]. To illustrate the effect of the GGA potential used in the
atomic codes on the band gap, the calculations were repeated
by using the PBE GGA potential instead, and Table IV shows
the difference with respect to the results in Table III. The
effect is absolutely negligible in the case of the TPSS and
SCAN functionals. With TASK and HLE17, differences in the
range 0.1–0.2 eV are obtained for some cases. For ZnS with
TASK and for a number of cases with HLE17 it was necessary
to improve the flexibility of the basis set by adding HDLOs
(indicated with an asterisk in Table IV). For these cases, a
warning occurs because the radial basis functions inside the
atomic spheres are inaccurate. This warning is given when the
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TABLE IV. Influence on MGGA band gaps of the chosen GGA potential (PBE or the optimal one) to calculate the core electrons and radial
functions fμ�m. The optimal potential is RPBE for TPSS and SCAN, mRPBE for HLE17, and HCTH/407 for TASK. A positive value means
that the band gap with the optimal GGA potential is smaller. For entries with as asterisk, we needed to add additional basis functions (in the
form of HDLOs) to properly converge the calculations (see the text and Sec. II A for details). The values are in eV.

Solid TPSS(PBE-RPBE) SCAN(PBE-RPBE) HLE17(PBE-mRPBE) TASK(PBE-HCTH/407)

Al2O3 −0.01 −0.01 0.01 0.00
AlAs −0.00 −0.00 0.05 −0.02
AlN −0.00 −0.00 −0.03 0.00
AlP −0.00 −0.00 0.08 0.00
AlSb −0.00 0.00 −0.02 −0.01
Ar −0.01 −0.01 0.15 −0.00
BeO −0.00 −0.01 0.01∗ −0.00
BN −0.00 −0.00 0.03 −0.01
BP −0.00 −0.00 0.07 0.01
C −0.00 −0.00 0.01 −0.00
CaF2 −0.02 −0.02 0.14∗ 0.13
CaO −0.01 −0.01 0.06∗ 0.03
CdSe −0.00 −0.00 0.05∗ 0.01
GaAs −0.00 −0.01 0.02∗ 0.01
GaP −0.00 −0.00 0.04∗ 0.01
Ge −0.01 −0.00 0.00 −0.01
InP −0.01 −0.00 −0.02∗ −0.00
KCl −0.01 −0.01 0.01∗ 0.02
Kr −0.01 −0.01 0.12 0.05
LiCl −0.01 −0.01 0.06 0.02
LiF −0.02 −0.02 0.02∗ 0.05
LiH 0.00 0.00 −0.00 −0.00
MgO −0.01 −0.01 0.02∗ 0.02
NaCl −0.01 −0.01 0.02∗ 0.02
NaF −0.02 −0.02 0.00∗ 0.06
Ne −0.01 −0.01 0.15∗ 0.14
Si −0.00 −0.00 0.09 0.01
SiC −0.00 −0.00 0.06 −0.01
ZnO 0.01 0.00 0.12∗ 0.22
ZnS 0.00 0.00 0.17∗ 0.11∗

linearizing term u̇� of the basis function contributes a larger
fraction of the charge density than expected (more than a few
percent). When the radial basis functions are accurate, the
radial solution u� (or linear combinations thereof) will be very
close to the KS orbitals, such that the contribution from the
linearizing term stays small. We would like to stress that these
warnings are given automatically and are a standard warning
(in the WIEN2K code) that is used to diagnose badly chosen
parameters (like atomic sphere size or energy parameters) or
ghost bands.

As mentioned above, Ref. [71] reports band gaps cal-
culated non-self-consistently with MGGA functionals. The
orbitals (and thus the electron density) were generated by a
GGA potential and then plugged into the total MGGA energy
Etot to calculate the band gap with EI-A

g = I (N ) − A(N ) =
[Etot(N − 1) − Etot(N )] − [Etot(N ) − Etot(N + 1)]. By doing
so, the agreement with the self-consistent VASP results is quite
accurate provided that the optimal GGA orbitals are used.
However, this method may be more cumbersome than the
self-consistent implementation considered here. It may also
be less accurate when the orbitals found using the GGA po-
tential differ strongly from the self-consistent MGGA ones,
which can be seen in the variational energies. Additionally,

the agreement with VASP is not as good as when the calcula-
tions are done self-consistently. Indeed, non-self-consistently
the MADs with respect to VASP results are (in eV) 0.06 (for
TPSS), 0.10 (for SCAN), 0.10 (for HLE17), and 0.20 (for
TASK). These MADs are larger than those from Table III that
are in the range 0.03–0.07 eV.

In summary, the band gaps obtained with our self-
consistent implementation of the MGGA functionals in the
WIEN2K code are in excellent agreement with the results ob-
tained with the VASP code. This gives us confidence about the
reliability of the implementation in terms of correctness and
accuracy.

B. Magnetism

In addition to the electronic band structure, magnetism is
another property that can also be used to check the correctness
of the implementation of the MGGA potential. In a previous
work [72], the spin magnetic moment μS of ferromagnetic
(FM) and antiferromagnetic (AFM) solids was calculated with
numerous MGGA functionals. However, due to the unavail-
ability of the self-consistent MGGA implementation, μS was
calculated using the fixed spin-moment (FSM) [108] and
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TABLE V. Spin magnetic moment μS in FM (in μB and per formula unit) and AFM (in μB and inside the atomic volume of the transition-
metal atom defined according to the Bader volume) solids calculated with MGGA functionals using the WIEN2K code. The columns � show
the difference with respect to the value from Ref. [72] calculated without the self-consistent MGGA potential, but with the FSM (for FM
solids) or C-shift (for AFM solids) method, and a negative value means that the value from the FSM/C-shift method is larger. For comparison,
the PBE results are also shown.

Solid PBE TPSS � SCAN � HLE17 � TASK �

FM
Fe 2.22 2.23 0.00 2.60 −0.03 2.67 0.00 2.76 0.01
Co 1.62 1.65 0.00 1.77 −0.02 1.72 0.00 1.84 0.01
Ni 0.64 0.66 0.00 0.77 0.01 0.65 0.00 0.78 0.02
AFM
MnO 4.40 4.42 0.01 4.52 −0.01 4.63 0.01 4.63 0.00
FeOa NA 3.49 NA 3.57c NA 3.63c 0.00 3.68c NA
FeOb 3.48 3.51c −0.01 3.60 −0.02 3.65 0.00 3.69 −0.01
CoO 2.45 2.51 0.01 2.61 0.01 2.64 0.01 2.65 −0.02
NiO 1.37 1.46 0.00 1.61 0.01 1.56 0.00 1.60 0.00

aSolution with a band gap.
bSolution with no band gap.
cPredicted ground state.

C-shift methods for FM and AFM systems, respectively. In
both methods, the total energy Etot [Eq. (13)] is minimized
with respect to the magnitude of the moment μS (which is
varied within a certain range), and the value of μS at the mini-
mum of Etot is the value that should in principle correspond to
the value calculated self-consistently. In Ref. [72], the orbitals
were calculated using the optimal GGA potentials (the same
as those used in the present work), and it was shown that in
some cases it is of importance to use the optimal potential
(instead of the standard PBE) in order to mitigate the error
due to the non-self-consistent procedure.

Here, we compare the magnetic moments from Ref. [72]
with those obtained self-consistently. Such a comparison was
already done in Ref. [72] for TPSS and SCAN in the case
of MnO, FeO, CoO, and NiO, however the self-consistent
results were obtained with other codes (VASP [104] and GPAW

[40,109]). Table V shows the WIEN2K self-consistent values
of μS for FM metals (Fe, Co, and Ni) and AFM insulators
(MnO, FeO, CoO, and NiO) systems, and the value in the
columns � indicates the difference with respect to the results
obtained with the FSM/C-shift methods [72]. Note that the
atomic magnetic moments on the transition-metal atoms in the
AFM solids are defined according to the Bader volume from
the quantum theory of atoms in molecules, as implemented
in the CRITIC2 code [110,111]. The agreement between the
two ways of calculating μS is excellent, which again should
demonstrate that the MGGA potential is implemented cor-
rectly into the WIEN2K code. The largest difference, obtained
for Fe with SCAN, is only −0.03μB (the negative sign indi-
cates that the FSM value from Ref. [72] is larger). Compared
to the C-shift method, the current self-consistent implemen-
tation has the large advantage of not needing to rely on the
additional variational procedure to find the magnetic moments
μs for each atomic sphere, a process that would be especially
complicated and expensive for a supercell calculation (e.g.,
surface or a system with a defect).

In the particular case of FeO, an important point should be
noted. Depending on the functional, two different solutions

can be stabilized. They differ in the occupation of the Fe 3d
orbitals, one corresponding to a metallic character and the
other to a state with a band gap. With LDA and most common
GGAs, only the metallic state can be obtained. Both solutions
can be obtained with GGAs having a large enhancement factor
like AK13 [89] and (probably most) MGGAs. Table V shows
the FeO results for both solutions. It is possible to obtain the
metallic and nonmetallic states with the MGGAs in the case
of self-consistent calculations. To obtain the nonmetallic state
for FeO, we had to “manually” populate the correct spin-down
a1g instead of the e′

g orbital (for instance with a properly
occupied density matrix in a GGA+U calculation) to open
the gap [112], after which the MGGAs would converge and
correctly predict this state as the ground state. When resum-
ing a self-consistent cycle from a PBE calculation or from a
superposition of atomic densities, we obtain a gapless state
with all MGGAs considered here. This is not the case for CoO,
where the MGGAs would converge to the correct gapped state
independent of the starting point of the self-consistency cycle.
Therefore, only one solution can be found for AFM CoO.

Despite several attempts, only the metallic state can be
obtained with the C-shift method for TPSS, SCAN, and
TASK. This example of FeO shows the limitations of using
the FSM/C-shift method instead of doing the self-consistent
calculation. Finally, it is interesting to note that the ground
state is the nonmetallic state with SCAN, HLE17, and TASK,
but the metallic one with TPSS. In the case of CoO, all
four MGGAs lead to a nonmetallic ground state, while PBE
predicts a metallic ground state. HLE17 yields the largest gap
of 1.55 eV, followed by SCAN (1.16 eV), TASK (0.51 eV),
and TPSS (0.42 eV). All of these values are still smaller than
the experimental value of 2.5 ± 0.3 eV [113].

Finally, a few words should be said about the comparison
with experiment. As shown in Ref. [72], as well as in other
works [101,102,114–117], SCAN and TASK lead to mag-
netic moments that are clearly larger than experiment for FM
metals, while TPSS is rather similar to PBE (i.e., a very slight
overestimation) and HLE17 is quite irregular. For the AFM
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TABLE VI. Equilibrium lattice constant (in Å) of solids calculated self-consistently (SC) or non-self-consistently (NSC) with MGGA
functionals. Indicated in parentheses is the GGA potential that is used for calculating the core electrons and radial functions fμ�m (for SC
calculations) or for calculating the orbitals plugged into the MGGA functional (for NSC calculations). For comparison, the experimental
values are 4.205 (Na), 6.043 (Cs), 5.412 (Si), 4.905 (Pb), 3.599 (Cu), 5.569 (NaCl), 5.640 (GaAs), 4.334 (FeO), and 2.659 (a) and 4.863 (c)
(Zn) [118–120].

TPSS SCAN

SC(RPBE) SC(PBE) NSC(RPBE) NSC(PBE) SC(RPBE) SC(PBE) NSC(RPBE) NSC(PBE)

Na 4.241 4.242 4.237 4.237 4.213 4.211 4.205 4.207
Cs 6.280 6.279 6.275 6.264 6.238 6.235 6.230 6.226
Si 5.458 5.458 5.457 5.457 5.435 5.436 5.433 5.435
Pba 4.983 4.983 4.984 4.984 4.972 4.972 4.978 4.974
Pbb 4.983 4.983 4.983 4.983 4.976 4.976 4.979 4.975
Cu 3.576 3.576 3.577 3.576 3.558 3.558 3.556 3.557
NaCl 5.702 5.703 5.704 5.700 5.583 5.583 5.580 5.583
GaAs 5.711 5.711 5.711 5.711 5.658 5.658 5.653 5.657
FeOc 4.281 4.281 NA NA 4.274 4.273 NA NA
FeOd 4.274 4.274 4.274 4.274 4.259 4.259 4.268 4.269
Zn (a) 2.639 2.639 2.640 2.638 2.574 2.574 2.576 2.574
Zn (c) 4.727 4.727 4.725 4.733 4.988 4.989 4.971 4.975

HLE17 TASK

SC(mRPBE) SC(PBE) NSC(mRPBE) NSC(PBE) SC(HCTH/407) SC(PBE) NSC(HCTH/407) NSC(PBE)

Na 4.049 4.050 4.044 4.048 4.740 4.741 4.617 4.624
Cs 6.087 6.093 6.079 6.090 7.547 7.549 7.094 7.180
Si 5.257 5.256 5.255 5.249 5.531 5.534 5.519 5.523
Pba 4.870 4.869 4.871 4.863 5.143 5.146 5.147 5.140
Pbb 4.870 4.870 4.870 4.860 5.143 5.147 5.144 5.138
Cu 3.510 3.510 3.510 3.485 3.601 3.597 3.600 3.591
NaCl 5.575 5.570 5.574 5.540 6.273 6.272 6.188 6.267
GaAs 5.553 5.552 5.552 5.540 5.755 5.760 5.750 5.747
FeOc 4.169 4.166 NA NA 4.383 4.393 NA NA
FeOd 4.151 4.148 4.149 4.150 4.365 4.374 4.362 4.360
Zn (a) 2.584 2.588 2.584 2.578 2.617 2.615 2.607 2.605
Zn (c) 4.655 4.687 4.655 4.627 5.131 5.131 5.131 5.125

aWith the 4 f and 5s subshells treated in the core.
bWith the 4 f and 5s subshells treated in the valence.
cSolution with a band gap.
dSolution with no band gap.

insulators, SCAN and TASK improve with respect to PBE,
which strongly underestimates the atomic magnetic moment.
Again, TPSS is similar to PBE, while HLE17 is irregular.

IV. LATTICE CONSTANT: EFFECT OF
SELF-CONSISTENCY

This section presents the results for the equilibrium lattice
constant of selected solids: Na, Cs, Si, Pb, Cu, NaCl, GaAs,
FeO (both states with and without a band gap), ZnO, and Zn.
As in Sec. III A for the band gap, the purpose is to illustrate the
influence of the GGA potential for calculating the core orbitals
and radial functions fμ�m. The results [see columns “SC”
(self-consistent) in Table VI] show that using either PBE or
the corresponding optimal potential has very little influence.
The largest difference is found in the c lattice constant of
Zn with HLE17, where the difference between SC(mRPBE)
and SC(PBE) reaches 0.03 Å. This is an outlier, because the
second largest differences reach only around 0.005 Å, and

they are obtained for Cs (with HLE17), NaCl (with HLE17),
GaAs (with TASK), and FeO (with TASK). Thus, as in the
case of the band gap, the choice of the GGA potential for
the core electrons and radial functions (either the standard
PBE or the variationally optimal one) is unimportant in the
vast majority of cases. Note that two sets of calculations were
done for Pb: with the 4 f and 5s subshells treated either in the
core (thus with a GGA potential) or in the valence (thus with
the MGGA potential). The results are basically the same. This
confirms again that the treatment of the core electrons with a
suitable GGA potential is a good approximation.

Also shown in Table VI are the equilibrium lattice con-
stants obtained non-self-consistently (“NSC” columns) using
the orbitals generated either from the PBE potential or the
optimal GGA one. For the insulating state of FeO, such a
calculation is not possible (see the discussion in Sec. III B),
and this is indicated with “NA” (not available) in Table VI.
Such a NSC procedure for calculating the lattice constant,
bulk modulus, or cohesive energy with MGGA functionals has
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TABLE VII. Comparison of various functionals to experiment for the c/a ratio (in Å) and the unit cell volume (in Å3) of hcp Zn. For the
MGGA functionals, the values of SCF calculations using the optimal GGA for core and radial functions are used.

LDA PBE TPSS SCAN Expt.a

c/a 1.844 1.902 1.791 1.937 1.829
vol. 27.12 30.49 28.51 28.62 29.77

aReference [120].

been used in previous works (see, e.g., Refs. [121,122]). The
GGA potential to generate the orbitals has a larger influence
in some cases. This is expected since the GGA potential is
applied to all electrons, and not only to the core electrons
as for SC calculations. The influence of the GGA potential
on the lattice constant reaches 0.08 Å for Cs and NaCl, both
with TASK. With TPSS and SCAN the GGA potential has
a small influence, while non-negligible differences are seen
with HLE17.

To obtain these results for Cu with HLE17 (PBE), Zn with
TASK (NSCF on PBE and HCTH/407), and FeO with HLE17
(both GGAs), it was necessary to add HDLOs to the basis
set in order to reduce the linearization error [50]. Without
these additional basis functions, the WIEN2K code generated
the same warnings as described in Sec. III A; the variational
energy was higher and the result was much farther away
from the proper one obtained with HLE17 (mRPBE). This
shows again that in some cases, the addition of HDLOs can
mitigate the use of a less-than-optimal GGA potential for the
construction of the radial basis functions.

Comparing now the SC and NSC results, very large differ-
ences are obtained in the case of the TASK functional. For Na,
Cs, and NaCl, the differences are about 0.1, 0.5, and 0.09 Å,
respectively. With TPSS and SCAN, the differences between
the NSC and SC results are very small. In the vast majority
of cases, using the orbitals generated from the optimal GGA
potential (instead of the PBE one) leads to the best agreement
with the SC results. Clear exceptions are Na, Cs, and NaCl
with TASK.

As a side comment, we mention that SCAN is one of the
most accurate functionals for the lattice constant of solids,
while TPSS is slightly less accurate and shows a (moderate)
tendency to overestimate the values [121,122]. The two other
functionals provide inconsistent results. While it is quite ac-
curate in some cases (Zn and GaAs), HLE17 leads to some
large underestimations [Na, Zn (c)] [74], while TASK leads to
huge overestimations (Na, Cs), as shown in Table VI.

For the particular case of Zn, it is interesting to compare the
results of the generally better-performing MGGAs (HLE17
and TASK severely over- and underbind, respectively) with
the LDA and PBE functionals in Table VII. Compared to
LDA, all three functionals improve upon the underestimation
of the volume. However, both PBE and SCAN sacrifice the
accurately predicted c/a ratio of LDA. TPSS does yield more
accurate values for both the c/a ratio and the unit-cell volume.

We finish by comparing in Table VIII our SCAN lattice
constants with the results from Refs. [122] and [123] that were
obtained with the FHI-AIMS [124] (non-self-consistently using
PBE orbitals) and VASP (self-consistently) codes, respectively.
The agreement with the FHI-AIMS code is excellent, while
sizable differences occur with VASP, in particular for NaCl.

V. APPLICATION: ELECTRIC FIELD GRADIENT

As a final application of the MGGA functionals, we dis-
cuss the calculation of the EFG [52]. We consider here
the transition-metal atom in the elemental metals and Cu-
compounds listed in Table IX. These are the same systems that
we considered in a previous work [125], where we showed
that among a plethora of methods, the GLLB-SC potential
[126,127] leads overall to the best agreement with experiment.
The screened hybrid functional HSE06 [22,128] was shown
to be also rather good overall in comparison to the other
methods. From the results shown in Table IX, it is clear that
GLLB-SC is still the most accurate method for EFG calcula-
tions. It is close to the experimental value in all but one case,
which is CuO.

For all other methods (which includes both the GGAs
and the MGGAs) the results are mixed. We find for each of
them three or four cases that have a large disagreement with
experiment. The errors are not very systematic. For example,
SCAN overestimates the EFG for Cd, but it underestimates the
EFG of Cu2O. One trend that can be observed is that SCAN
always leads to similar or larger values for the EFG compared
to its “predecessors” PBE and TPSS. This suggests that the
ground-state density with SCAN has an increased asphericity.

CuO and Cu2O are systems for which the standard LDA
and PBE functionals lead to qualitatively wrong results, with
values that are between two and four times smaller than ex-
periment. It was shown [125,129] that HSE06 (for CuO and
Cu2O) and GLLB-SC (for Cu2O) substantially improve the
results. A few other semilocal methods also improve the pre-
dicted EFG value for Cu2O [125]. The results of the present
work show that SCAN and TASK are accurate only for one or
the other (CuO for SCAN and Cu2O for TASK), while HLE17
leads to reasonable EFG values for both compounds.

VI. SUMMARY

In summary, the self-consistent implementation of MGGA
functionals into the WIEN2K code, which is based on an
all-electron APW based method, has been presented. The
formalism has been discussed in detail, and a comparison
with results from the literature for the band gap of 30 solids
shows very good agreement between the implementations.
Magnetism has also been considered, and the magnetic mo-
ments obtained self-consistently are basically the same as
those obtained non-self-consistently with the FSM/C-shift
method, thus again showing that the new self-consistent im-
plementation is reliable.

Then, the effect due to self-consistency on the lattice con-
stant was revealed to be rather minor for the TPSS, SCAN,
and HLE17 functionals, but very large in some cases like Cs
or NaCl with the TASK functional. Finally, the EFG has been
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TABLE VIII. Comparison of the SCAN equilibrium lattice constants (in Å) calculated with different codes.

Solid WIEN2K-SC(RPBE) FHI-AIMSa VASPb

Na 4.211 4.207 4.193
Cs 6.235 NA 6.227
Si 5.436 5.433 5.429
Cu 3.558 3.558 3.566
NaCl 5.583 5.585 5.563
GaAs 5.658 5.656 5.659

aReference [122].
bReference [123].

considered as an application. It has been shown that some of
the MGGAs are quite accurate for CuO and Cu2O, which are
very difficult cases for standard GGAs.

A technical but rather important point concerned the GGA
potential that is used to calculate the core states and radial
components of the basis functions. A choice for the GGA
potential has to be made, and it is recommended to use the
one that is, for a given MGGA, the variationally optimal one.
However, we have shown that using the standard PBE GGA
potential leads to the same results in the vast majority of cases.

Thus, this new implementation of MGGA functionals is
accurate (since they are implemented in an all-electron code)
and leads to reliable results. It uses the gKS scheme and
is computationally barely more expensive as other common
semilocal methods like LDA or GGAs. Finally, we also men-
tion that the implementation has recently been used for the
calculation of the band gap of 2D materials in Refs. [79,130].
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APPENDIX A: MULTIPLICATIVE PART OF THE
MGGA POTENTIAL

The developed expression of ∇ · (∂εxc/∂∇ρσ ) in Eq. (6)
can be obtained by applying the chain rule. Where ξ = (σ, σ ′)

is a shorthand index, it is given by

∇ · ∂εxc

∂∇ρσ

=
↑↓∑

σ ′σ ′′
(1 + δσσ ′ )

∂εxc

∂γσσ ′
ρσ ′′γσ ′σ ′′

+
↑↓∑
σ ′

↑↑,↑↓,↓↓∑
ξ

(1 + δσσ ′ )
∂εxc

∂γσσ ′
γξ∇ρσ ′ · ∇γξ

+
↑↓∑
σ ′

(1 + δσσ ′ )
∂εxc

∂γσσ ′
∇2ρσ ′

+
↑↓∑

σ ′σ ′′
(1 + δσσ ′ )

∂εxc

∂γσσ ′
τσ ′′∇ρσ ′ · ∇τσ ′′ , (A1)

where δσσ ′ is the Kronecker delta. γσσ ′ = ∇ρσ · ∇ρσ ′ is the
contracted density gradient that needs to be provided to Libxc
[5,6], along with the electron density ρσ and the KED τσ . The
output provided by Libxc is the exchange-correlation energy
density εxc and its (partial) derivatives. Note that due to the
τσ -dependency of εxc, there is an additional term [the last one
in Eq. (A1)] compared to the GGA case.

APPENDIX B: DERIVATION OF THE MATRIX
ELEMENT 〈φμ|v̂τ|φν〉

The KED-derived matrix element is evaluated using inte-
gration by parts. When φν is an APW+lo basis function, a
surface term must be included due to the discontinuity of the

TABLE IX. EFG (in 1021 V/m2) on a transition-metal atom in elemental metals and CuO, Cu2O, and Cu2Mg calculated with MGGA
functionals at experimental lattice constants. For comparison, results from Ref. [125] obtained with the PBE, GLLB-SC, and HSE06 methods
are also shown. The error bars of the experimental values are calculated from the uncertainty in the quadrupole moment and quadrupole
coupling constants when available. The values that show large errors are underlined.

Method Ti Zn Zr Tc Ru Cd CuO Cu2O Cu2Mg

PBE 1.73 3.49 4.19 −1.61 −1.46 7.54 −2.83 −5.54 −5.70
TPSS 1.69 3.33 4.20 −1.60 −1.38 7.36 −3.74 −5.60 −5.69
SCAN 1.75 4.38 4.37 −2.03 −1.66 9.47 −7.15 −6.41 −5.70
HLE17 1.70 3.50 3.83 −0.93 −0.73 7.44 −6.33 −8.59 −4.76
TASK 1.76 4.77 4.72 −1.66 −1.42 10.33 −3.03 −9.56 −5.78
GLLB-SC 1.62 3.72 4.42 −1.66 −1.26 8.05 −4.65 −9.99 −5.58
HSE06 1.5 4.4 4.5 −2.0 −1.3 9.4 −8.9 −8.3 −6.3
Expt.a 1.57(12) 3.40(35) 4.39(15) 1.83(9) 0.97(11) 7.60(75) 7.55(52) 10.08(69) 5.76(39)

aReference [125].
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gradient ∇φν across the sphere boundary [61],

〈φμ|v̂τ |φν〉 = 1

2

[∑
α

∫
Sα

+
∫

I

]
vη∇φ∗

μ · ∇φνd3r

− 1

2

∑
α

∮
∂Sα

vηφ
∗
μ(∇φν · r̂)d�. (B1)

We consider the spherical term (volume integral over the
sphere Sα), the surface term (integral over the sphere boundary
∂Sα), and the interstitial term separately.

1. Spherical term

In the spheres, all quantities like the basis functions and the
potentials are expanded in spherical harmonics, allowing for
a separation of variables. The gradient of the basis functions
φμ = ∑

�m fμ�mY�m is most conveniently expressed using vec-
tor spherical harmonics [131,132]:

∇φμ =
∑
�m

√
�

2� + 1

{
∂

∂r
+ � + 1

r

}
fμ�mY�−1

�m

−
√

� + 1

2� + 1

{
∂

∂r
− �

r

}
fμ�mY�+1

�m . (B2)

The vector spherical harmonics can be defined in different
bases; for our purpose, the spherical basis

ê+1 = −1√
2

(êx + iêy), (B3)

ê0 = êz, (B4)

ê−1 = 1√
2

(êx − iêy) (B5)

is convenient. The vector spherical harmonics are then

YL
JM =

−1,0,1∑
γ

CJ M
L M−γ 1 γYLM−γ êγ , (B6)

where Cε ζ

α β γ δ are Clebsch-Gordan coefficients. The dot prod-
uct of two vector spherical harmonics with differing quantum
numbers is given by

Y∗L1
J1M1

· YL2
J2M2

=
∑

μ

CJ1 M1
L1 M1−μ 1 μCJ2 M2

L2 M2−μ 1 μ

×Y ∗
L1M1−μYL2M2−μ. (B7)

Then, the dot product of the gradients of two basis func-
tions of Eq. (B2) can be partitioned in four terms each
involving a dot product of vector spherical harmonics, co-
efficients involving � and m, and radial integrals with four
contributions. The angular integrals of a product of three
spherical harmonics can be performed analytically and are
given by the Gaunt coefficients GL M

�1 m1 �2 m2
:

GL M
�1 m1 �2 m2

=
∫

Y ∗
LMY�1m1Y�2m2 d�. (B8)

The four associated radial parts each have four terms.
These are performed numerically, and are given by

R−− = ILM[ f ∗′
1 f ′

2r2] + (�1 + 1)ILM[ f ∗
1 f ′

2r] + (�2 + 1)ILM[ f ∗′
1 f2r] + (�1 + 1)(�2 + 1)ILM[ f ∗

1 f2], (B9)

R−+ = ILM[ f ∗′
1 f ′

2r2] + (�1 + 1)ILM[ f ∗
1 f ′

2r] − �2ILM[ f ∗′
1 f2r] − �2(�1 + 1)ILM[ f ∗

1 f2], (B10)

R+− = ILM[ f ∗′
1 f ′

2r2] − �1ILM[ f ∗
1 f ′

2r] + (�2 + 1)ILM[ f ∗′
1 f2r] − �1(�2 + 1)ILM[ f ∗

1 f2], (B11)

R++ = ILM[ f ∗′
1 f ′

2r2] − �1ILM[ f ∗
1 f ′

2r] − �2ILM[ f ∗′
1 f2r] + �1�2ILM[ f ∗

1 f2], (B12)

where f1 = fμ�1m1 , f2 = fν�2m2 , and ILM is the integrated product with the angular component of the KED-derived part of the
potential,

ILM[g] =
∫ Rat

0
(vη )LM (r)g(r)dr. (B13)

The parentheses (· · · )LM indicate the LM component of the spherical harmonics expansion, i.e., vη = ∑
LM

(vη )LMYLM .

Putting together the four radial and angular parts with their coefficients results in the following expression for a single sphere:∫
S
vη∇φ∗

μ · ∇φνd3r =
∑
{ξ}

1√
(2�1 + 1)(2�2 + 1)

× (√
�1�2R−−C�1 m1

�1−1 m1−γ 1 γC�2 m2
�2−1 m2−γ 1 γ G�1−1 m1−γ

L M �2−1 m2−γ

−
√

�1(�2 + 1)R−+C�1 m1
�1−1 m1−γ 1 γC�2 m2

�2+1 m2−γ 1 γ G�1−1 m1−γ

L M �2+1 m2−γ

−
√

�2(�1 + 1)R+−C�1 m1
�1+1 m1−γ 1 γC�2 m2

�2−1 m2−γ 1 γ G�1+1 m1−γ

L M �2−1 m2−γ

+
√

(�1 + 1)(�2 + 1)R++C�1 m1
�1+1 m1−γ 1 γC�2 m2

�2+1 m2−γ 1 γ G�1+1 m1−γ

L M �2+1 m2−γ

)
. (B14)

To obtain the result for all atoms in the unit cell, this expres-
sion is multiplied by a phase factor ei(K′−K)·Rα and summed
over the atomic indices α.

The spherical terms are implemented similarly to the non-
spherical corrections in APW based methods. The main points
are these. A list of quantum numbers obeying the Gaunt
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selection rules should be constructed, otherwise the loop over
six �, m combinations becomes too expensive. For the po-
tential lattice, spherical harmonics are used to exploit the
point symmetry of the atomic sites. Secondly, one should
note that the radial integrals R±± are only dependent on
the azimuthal numbers of the basis functions �1 and �2;
the m-dependent factor enters only through the matching
coefficients AK

�m, BK
�m which do not depend on the radial

coordinate.

2. Interstitial term

The interstitial term is much simpler to evaluate since the
gradient of the basis function is simply given by ∇φK =
iKφK. The result is then∫

I
vη∇φ∗

μ · ∇φνd3r = 1

�

∫
cell

�(r)vη(r)K · K′ei(K′−K)·rd3r

= K · K′(�vη )G′−G, (B15)

where the parentheses (· · · )G indicate the Fourier expansion
coefficients, and

�(r) =
{

0, r ∈ Sα,

1, r ∈ I (B16)

is the step function. The notation (θvη )G′−G indicates that
the step function is multiplied in direct space, avoiding an
expensive convolution sum in reciprocal space [49].

3. Surface term

The surface term is nonzero for APW(+lo) basis functions
with a discontinuous gradient across the sphere boundary.
Inside the sphere, one has

lim
r→R−

at

∇φμ(r) · r̂ =
∑
�m

f ′
μ�mY�m

∣∣∣∣
r=Rat

, (B17)

whereas in the interstitial, by using the Rayleigh expansion,

lim
r→R+

at

∇φμ(r) · r̂ =
∑
�m

4π il j′l (Kr)Y ∗
�m(K̂)Y�m(r̂)

∣∣∣∣
r=Rat

,

(B18)

where the prime indicates the radial derivative. We can then
define the radial part of the expansion as

gν�m(r) = 4π il j′l (Kνr)Y ∗
�m(K̂ν ). (B19)

The resulting surface integral can then be performed
analytically:∮

∂Sα

vηφ
∗
μ(∇φν · r̂)d�

= R2
at

∑
{ξ}

(vη )LMG�1 m1
L M �2 m2

×
(

f ∗
μ�1m1

f ′
ν�2m2

− g∗
μ�1m1

g′
ν�2m2

)∣∣∣∣∣
r=Rat

, (B20)

where we used the spherical harmonics addition theorem, and∑
{ξ} signifies the sum over all angular numbers. Note that

the surface term is not Hermitian. In the implementation, it is
explicitly made Hermitian.

The surface term is generally very small, and it has a
negligible effect on all the calculations considered in this
work. We verified this by comparing well-converged LAPW
and APW+lo calculations, and noting that the difference in
all cases was negligible. For the vast majority of cases, the
same is true when comparing APW+lo calculations including
or excluding the surface term.

We have noticed that in a few cases, numerical problems
arise with our implementation of the surface term. We could
not point out a single cause for these problems, but they occur
for the functionals with a larger MGGA enhancement factor
(like HLE17 or TASK) when using a large plane-wave cutoff.
Cases with a larger asphericity in the density and potential
(like Si) are also more strongly affected. Additionally, due
to the nature of the APW basis functions, the potential itself
becomes discontinuous. This occurs in both the multiplicative
and the nonmultiplicative parts and is a consequence of the
functions only being matched in value and not in slope at the
sphere boundary. Choosing smaller sphere sizes also helped
mitigate these numerical issues.

Because calculations excluding the surface term are numer-
ically more reliable, we chose not to include this surface term
in the APW+lo calculations for the present work.
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