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Angular momentum invoked band inversions in mirror symmetry protected topological states
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The notion of a band inversion provides an intuitive physical paradigm for understanding the electronic band
topology. Here we study the general band inversion mechanism, which exploits local atomic orbitals and lattice
symmetry, in mirror protected topological crystalline insulators (TCIs). Based on low-energy effective theory
analysis, we find that for these mirror protected TCIs, the topological invariant (i.e., the mirror Chern number
CM ) is determined by the difference of total magnetic quantum numbers mj of orbitals involved in the band
inversion: |CM | = |�mj |. This angular-momentum criterion is further verified by the atomic tight-binding model
calculations in two-dimensional (2D) crystalline, quasicrystalline, and disordered lattices. Moreover, such an
angular momentum invoked band inversion (AMBI) is also extendable to 3D lattices and gives rise to topological
semimetals with Dirac points in the bulk and double Fermi arcs on surfaces. As a concrete material example, we
further predict that the Ba monolayer is an AMBI-induced TCI by first-principles calculations. In addition, we
also show that a large number of previously proposed TCI materials satisfy the AMBI mechanism. Our findings
not only provide an alternative understanding of mirror protected band topology but also offer useful guidance
for designing or engineering mirror protected TCI materials.
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I. INTRODUCTION

Topological states of matter are among the most intrigu-
ing research topics of condensed matter physics during the
past decade [1–3]. Topological states usually differ from con-
ventional ones in that they are characterized by a nontrivial
bulk topological invariant associated with certain symmetry
class and manifest special topological edge or surface states
due to the bulk-boundary correspondence [4,5]. For example,
topological insulators (TIs), which are topologically protected
by time-reversal symmetry, are classified by a binary-valued
Z2 topological invariant and manifest as insulting in the bulk
and conductive on the boundary [6,7]. So far, TIs have been
theoretically predicted and experimentally verified in various
2D materials, such as HgTe/CdTe quantum wells [8], and
3D compounds like the Bi2Se3 family of materials [9]. In
addition to time-reversal symmetry protected TIs, topologi-
cal states can also arise from generic crystalline symmetries,
which give rise to the so-called topological crystalline insu-
lators (TCIs) [10,11]. Although many TCI phases depending
on different crystal symmetries have been proposed [12–18],
yet those relying on mirror symmetry [19] are of particular
interest, as they have been experimentally observed in IV-VI
semiconductors, such as SnTe material class [20–24], and
theoretically predicted in various 2D and 3D systems [25–39].
These TCIs, which are characterized by a mirror-related topo-
logical invariant, namely, the mirror Chern number CM [40],
manifest also with topological boundary states but only at
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those surfaces/edges that preserve the underlying mirror sym-
metry.

An intuitive physical picture to understand topological
states is that the nontrivial band topology usually involves an
inverted band order between occupied and unoccupied Bloch
states at high-symmetry k points of the Brillouin zone (BZ)
[41–43]. Such band inversion usually marks the transition
from normal states to some kinds of topological states. In
general, the type of band inversion can be indicated by the
eigenvalues of spatial symmetry operators of inverted bands.
For example, according to the Fu-Kane parity criterion for
nonmagnetic materials with inversion symmetry [44], the Z2

indices are determined by simple combinations of the par-
ities (i.e., inversion eigenvalues) of the occupied bands at
time-reversal invariant momentum. Therefore band inversions
between states with opposite parity around the Fermi level
play a key role in the realization of the quantum spin Hall
(QSH) effect and 3D topological insulators [8,45].

In practical material calculations based on the density
functional theory or tight-binding models, band inversions
are usually characterized by an exchange of orbital com-
ponents between conduction and valence bands around the
high-symmetry k point, and sometimes exhibit an M-shape
or W-shape band dispersion in the vicinity of that point [46].
These typical features of band inversions not only provide sig-
nificant hints for computational seeking topological materials
(even for systems without inversion symmetry), but also offer
a useful guidance for engineering topological phase transi-
tions by chemical doping, strain, or external fields [47–49].
Recently, a comprehensive theory of symmetry-based indi-
cator [50–52] has been established to diagnose underlying
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band topology of crystalline materials. Consequently, band
inversions characterized by different crystalline symmetry
eigenvalues imply the existence of different types of TCI
phases [12,53]. In this work, we study this type of band inver-
sion, with a particular focus on the orbital symmetry which
directly relates to its orbital angular momentum. Such a band
inversion is expected to signal TCI phases in both crystalline
and noncrystalline systems as long as the essential symmetry
under concern is preserved.

Specifically, we provide a generic approach to analyze
mirror protected TCIs from the perspective of band inver-
sion invoking the angular momentum of the inverted states,
which dubbed angular momentum invoked band inversions
(AMBIs). We derive a generic low-energy effective theory of
AMBI and prove that the mirror Chern numbers of the TCIs
induced by AMBIs are determined by the difference of total
magnetic quantum number mj of the inverted states: |CM | =
|�mj |. Such AMBI-induced TCIs and the angular-momentum
criterion of CM are numerically demonstrated in both 2D crys-
tals and structurally disordered lattices preserving the mirror
plane. We further extend the AMBI mechanism to 3D and find
that topological Dirac semimetals can be induced by AMBIs.
Finally, we discuss material implementations of TCIs that
exhibit AMBIs, validating our proposed formula in realistic
materials that are experimentally accessible.

II. ANGULAR-MOMENTUM INVOKED BAND INVERSION

We particularly focus on 2D planar systems with the time-
reversal symmetry T and the in-plane mirror symmetry Mz:
z → −z. Mirror protected TCIs are identified by a nonzero
mirror Chern number CM , which is defined as the half differ-
ence between the Chern number for the two mirror subspace:
CM = (C+ − C−)/2. To determine CM , we should first divide
occupied Bloch states into two mirror subspaces and then cal-
culate the Chern number for each subspace separately. Since
the mirror operation can be expressed as the combination of
inversion I and twofold rotation C2z, the representation of the
mirror operator under the orbital basis |l, ml〉 and spin basis
|s = 1

2 , ms = ± 1
2 〉 (i.e., spin up and down states |↑ ↓〉) are

M̂orb
z = (−1)l e− i

h̄ L̂zπ = (−1)l+ml , (1)

M̂spin
z = e− i

h̄ Ŝzπ = −2i

h̄
Ŝz = −iτz, (2)

where L̂z (Ŝz) is the z component of orbital (spin) angular
momentum operators L (S), τz is the third Pauli matrix for spin
degree of freedom, and i = √−1. Consequently, the mirror
operator under |LS〉 = |l, ml〉 ⊗ |s, ms〉 is

M̂z = M̂orb
z M̂spin

z = −i(−1)l+ml τz. (3)

Noting that the mirror eigenvalue of state |l, ml〉 is determined
by the modulo-2 value of (l + ml ), we thus divide atomic
orbitals into two classes accordingly. As shown in Fig. 1,
orbitals with even (odd) l are inversion I-symmetric (anti-
symmetric), and orbitals are Mz-symmetric (antisymmetric) if
their (l + ml ) are even (odd). For convenience, we divide our
discussion of band inversions into two types: orbitals with the
same (type-I) or opposite mirror eigenvalues (type-II).

FIG. 1. Atomic orbitals with different angular momentum l and
magnetic quantum number ml are divided into two groups according
to their eigenvalues of in-plane mirror operator M̂z. Orbitals in the
red (green) dashed-line box are used to illustrate the mirror protected
TCI with |CM | = 1 (|CM | = 2) which are induced by type-I (type-II)
AMBI between orbitals with the same (opposite) mirror eigenvalues.

We start by introducing the general band inversion from a
low-energy perspective. Without loss of generality, let’s con-
sider a band inversion between conduction and valence bands
at the � point (i.e., k = 0). A four-band low-energy model
(including spin degree of freedom) is sufficient to consider the
band inversion for orbitals with different angular momentum.
Firstly, we consider the type-I band inversions that involve
orbitals with the same mirror eigenvalues. The mirror operator
M̂z under these bases is equivalent to the spin operator Ŝz

up to an inessential factor, indicating that CM is equal to the
spin Chern number Cs = (C↑ − C↓)/2, which is defined as the
half difference between the Chern numbers for the two spin
subspaces of the occupied bands [54–56]. As the division of
mirror subspace is consistent with spin subspace, the effective
Hamiltonian is block-diagonal for mirror and spin subspace
simultaneously,

H (k) =
(

h(k) 0
0 h∗(−k)

)
, (4)

h(k) = ε(k)I2×2 + d(k) · σ, (5)

where I2×2 is a 2 × 2 identity matrix and σ = (σx, σx, σx ) are
the Pauli matrices for orbital degree of freedom. Here h(k)
is the two-band Hamiltonian in the subspace with certain spin
and mirror eigenvalues. Since the overall dispersion term ε(k)
doesn’t affect the topological invariant, we neglect it hereafter,
unless otherwise specified. In the spin up subspace, for a band
inversion between orbitals |l1, ml,1〉 ⊗ |↑〉 and |l2, ml,2〉 ⊗ |↑〉,
we can expand h(k) to the leading order of k near the � point,

heff (k) = d(k) · σ = εσz + δ(k�ml+ σ− + k�ml− σ+), (6)

where ε and δ are the energy difference and coupling
strength of the two bands, k± = kx ± iky and σ± = (σx ±
iσy)/2. �ml = ml,1 − ml,2 is the difference of the orbital mag-
netic quantum number. The Chern number of the two-band
subspace Hamiltonian (6) is given by |C| = | 1

4π

∫
d2k(∂kx d̂

× ∂ky d̂ ) · d̂| = |�ml |, where d̂ = d(k)/|d(k)|. Since the two
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blocks in Eq. (4) are connected by time-reversal symmetry
T , the opposite mirror/spin subspace is spanned by the ba-
sis of |l1,−ml,1〉 ⊗ |↓〉 and |l2,−ml,2〉 ⊗ |↓〉 and h∗(−k) has
an opposite Chern number. Due to the equivalence between
M̂z (∼σ0τz ) and Ŝz (∼τz ), we find that the difference in ml

is the same as that in mj , i.e., �ml = �mj . Here mj is the
magnetic quantum number for the z component Ĵz of total
angular momentum J. Finally, the topological invariant of the
total Hamiltonian is

|CM | = |Cs| = |�ml | = |�mj |. (7)

Given the fact that the spin Chern number Cs can also formu-
late the Z2 classification of TIs via Z2 = (Cs mod 2), Eq. (7)
implies that a TCI with an odd-number CM in this case is
also a TI protected by time-reversal symmetry T . Therefore
topological edge states of a TCI with an odd-number CM are
robust against nonmagnetic perturbations that break the mirror
symmetry, as long as the energy gap does not close.

Secondly, we consider the type-II band inversions between
orbitals with opposite mirror eigenvalues. The mirror sub-
space composed of states with opposite spins is no longer
consistent with the spin subspace. To achieve nonzero Chern
numbers within a mirror subspace (and thus lead to TCIs with
nonzero CM), spin mixing terms, such as spin-orbit coupling
(SOC), are required in the Hamiltonian. Because the intrinsic
SOC operator, which is expressed as L · S = L̂zŜz + (L̂−Ŝ+ +
L̂+Ŝ−)/2, does not vanish only between orbitals with �l = 0
and |�ml | = 1. We, therefore, just need to consider band
inversions in this situation.

Without loss of generality, we choose |ml,1 = ±m1〉 and
|ml,2 = ±(m1 + 1)〉 which have opposite mirror eigenvalues
as basis (m1 � 0), and the effective Hamiltonian shares a
similar block-diagonal form as Eq. (4), except that h(k) is
now a four-band mirror-polarized subspace Hamiltonian un-
der the basis of |±m1〉 ⊗ |↑〉 and |±(m1 + 1)〉 ⊗ |↓〉. For
convenience, we rearrange the basis to the |ml , mj〉 repre-
sentation with the conservation of total angular momentum,
which reads

|±m1〉 ⊗ |↑〉
|±(m1 + 1)〉 ⊗ |↓〉

}
⇒

⎧⎪⎪⎨
⎪⎪⎩

|m1, m1 + 1
2

〉
|m1,−m1 + 1

2

〉
|m1 + 1,−m1 − 3

2

〉
|m1 + 1, m1 + 1

2

〉 . (8)

There are only two possible AMBIs that lead to the nontrivial
topology. One is between |m1 + 1, m1 + 1

2 〉 and |m1,−m1 +
1
2 〉. We project the subspace Hamiltonian h(k) to the two
states, which yields

heff (k) = εσz + λδ(k�mj

+ σ− + k
�mj

− σ+), (9)

where �mj = (m1 + 1/2) − (−m1 + 1/2) = 2m1 and λ rep-
resent the strength of SOC. Equation (9) is pedagogically
derived in Appendix. Accordingly, the band inversion in-
duced Chern number in the mirror subspace is |C| = �mj ,
and the mirror Chern number of the full Hamiltonian is
|CM | = �mj . Similarly, for the other possible band inversion
between |m1, m1 + 1

2 〉 and |m1 + 1,−m1 − 3
2 〉, we also arrive

at |CM | = �mj = (m1 + 1
2 ) − (−m1 − 3

2 ) = 2m1 + 2. As an
example, let’s consider the special case of m1 = 0, the only

TABLE I. Possible orbital combinations for AMBIs.

type (�l, |�ml |) atomic orbitals |CM |
I (1,1) s vs px + py 1

pz vs dxz + dyz

dz2 vs px + py

px + py vs dx2−y2 + dxy 1,3
(2,2) s vs dx2−y2 + dxy 2
(0,2) dz2 vs dx2−y2 + dxy

II (0,1) pz vs px + py 2
dz2 vs dxz + dyz

dxz + dyz vs dx2−y2 + dxy 2,4

nontrivial band inversion occurs between |0,± 1
2 〉 and |1,∓ 3

2 〉
which leads to a TCI with |CM | = 2.

The above analysis demonstrates that for both type-I and
type-II AMBIs, the mirror Chern number CM of AMBI-
induced TCIs is simply determined by the difference of total
magnetic quantum number mj between states involved in the
band inversion:

|CM | = |�mj |. (10)

Therefore one can extract the topological invariant of a ma-
terial by performing orbital analysis for its electronic band
structures. Table I lists all possible combinations of orbitals
for nontrivial AMBIs.

Despite a similar dependence of the mirror Chern number
CM on angular momenta of inverted orbitals, there are still
significant differences between the type-I and type-II AMBIs.
The spin conservation symmetry and mirror symmetry play
the same role in the type-I AMBI, revealing the close link
between the QSH state and the aforementioned type-I AMBI-
induced TCI state. Therefore, even if the mirror symmetry is
broken, the type-I AMBI mechanism can still be applicable
to signal nontrivial Z2 topology. However, when there is a
certain spin-mixing effect between the inverted orbitals, the
type-II AMBI is supposed to be considered and the mirror
symmetry is indispensable to protect the topology.

Before proceeding, we have a few remarks. First, the anal-
ysis can be directly generalized to 3D with mirror symmetry,
where topological surface states appear at surfaces preserving
the essential mirror symmetry. Secondly, it is straightforward
to generalize to systems with multiple AMBIs at the same
or different k points of the BZ, and the total mirror Chern
number is just the contribution of all AMBIs. In addition to the
mirror symmetry Mz, other lattice symmetries which may lead
to extra constraints to the low-energy Hamiltonian, are not
considered in the above analysis. Therefore, for crystals with
different spatial symmetries, AMBI may also induce topolog-
ical semimetals with nodal points or lines that are protected by
other lattice symmetries. Moreover, noting that the topological
property will not change as long as the energy gap does not
close during any adiabatic process, we expect that the AMBI-
induced TCI can also persist in certain noncrystalline systems
with mirror symmetry. Finally, although the above analysis is
based on the single-electron picture, it can straightforwardly
generalize to TCIs with strong electron interactions. When
the effect of electron interactions is considered, the original
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integer Z classification of noninteracting TCIs (indexed by the
mirror Chern number CM), is reduced to Z4 in 2D and Z8 in
3D [57,58]. Therefore the topological invariant of interacting
TCIs in 2D and 3D are CM modulo 4 and 8, respectively.

III. METHOD

To numerically study the effect of AMBIs on the band
topology, we consider a general tight-binding Hamiltonian

H =
∑
iμs

ε
μs
i c†

iμsciμs +
∑
〈i j〉

∑
μν,s

tμν (ri j )c
†
iμsc jνs

+
∑

i

∑
μν

∑
ss′

λ
μν
i 〈μs|L · S|νs′〉c†

iμsciνs′ , (11)

where c†
iμs(ciμs) is electron creation (annihilation) operator on

the μ orbital with spin s(=↑↓) at the ith site. εμs
i is the on-site

energy and tμν (ri j ) is the Slater-Koster hopping integral which
depends on orbital types and the intersite vector ri j [59]. L
and S are the orbital and spin angular momentum operators,
respectively. λ

μν
i is the SOC strength [60].

As a concrete material example, we study the electronic
structure and band topology of the Ba monolayer. We carry
out first-principles calculations within the framework of
density functional theory as implemented in the Vienna ab ini-
tio simulation package [61]. The projector augmented-wave
method [62] and the Perdew-Burke-Ernzerhof-type exchange-
correlation functional [63] are used in our calculations. The
plane-wave energy cutoff is set to 600 eV, and the BZ is
sampled by a Monkhorst-Pack k-point mesh of 8 × 8 × 1.
The topological properties are calculated using a tight-binding
Hamiltonian based on Wannier functions [64,65], which are
constructed by projecting bulk Bloch wave functions into s, p
and d orbitals of Ba.

To obtain the mirror Chern number, we divide the occupied
states in the mirror-invariant plane of the BZ into two separate
sets according to their mirror eigenvalues and calculate their
respective Chern numbers. Numerically, the Chern number is
calculated using a gauge-invariant formula

C = 1

2π

∑
k∈BZ

Tr[Fmn(k)], (12)

where Fmn(k) = −2Im〈∂kx um(k)|∂ky un(k)〉 is the non-
Abelian Berry curvature defined in the discretized BZ [66],
|un(k)〉 is the cell-periodic part of the Bloch wave function
of the nth occupied band, and Tr denotes a trace over all
occupied bands.

Alternatively, one can also determine the Chern number
by tracing the evolution of the Wannier charge center (WCC)
using the Wilson loop method. A Wilson loop is an arbitrary
closed k-point loop in the BZ, evaluated around which the
occupied Bloch functions acquire a total Berry phase θ (w),
with w being the loop index. One can define a series of parallel
Wilson loops w to fully cover the 2D BZ. Then, the evolution
of θ (w) along these parallel Wilson loops gives information
on the band-structure topology on the 2D BZ [67,68]. For a
2D crystal, we define Wilson loops along the kx direction with

FIG. 2. [(a)–(c)] TCI with CM = 1 in a square lattice due to an
AMBI between dz2 and (px, py) orbitals. [(d)–(f)] TCI with CM = −2
in a triangular lattice due to an AMBI between dz2 and (dxz, dyz) or-
bitals. The parameters used in (a)–(c) are εdz2 = 0.3, εpx ,py = −1.55,
Vppσ = 0.4, Vppπ = −0.1, Vpdσ = −0.4, Vpdπ = 0.1, Vddσ = −0.1,
Vddπ = 0.1, Vddδ = −0.1, and λ = 1 eV. The parameters used in
(d)–(f) are εdz2 = −0.35, εdxz ,dyz = −0.65, Vddσ = −1.2, Vddπ =
0.3, Vddδ = −0.1, and λ = 0.3 eV. [(a) and (d)] Orbital-resolved
bulk band structures. [(b) and (e)] Edge spectrum of ribbon struc-
tures where the topological edge states are marked in red. [(c) and
(f)] Mirror-graded Berry curvatures associated with +i (−i) mir-
ror eigenstates in the first BZ of the square (triangular) lattice,
respectively.

fixed ky,

D(ky) = Pexp

(
−i

∫
Cky

A(k)dkx

)
, (13)

where Cky is a contour with fixed ky which goes across the
BZ in kx, A(k) is the Berry connection of occupied bands
and P is the path-ordering operator. The WCCs are identified
as the phases θm(ky) ∈ [0, 2π ) of the mth eigenvalues λm(ky)
of D(ky), i.e., θm(ky) = −Im ln λm(ky). Within the periodic
evolution of ky, the sum of WCCs will wind [0, 2π ) an integer
times, which gives the Chern number.

IV. RESULTS

A. AMBI-induced TCI in 2D periodic lattices

We first consider an atomic-basis model with a type-I
AMBI between dz2 (l = 2, ml = 0) and degenerate px,y (l =
1, ml = ±1) orbitals in a square lattice. Since all these orbitals
are Mz-symmetric, the mirror Chern number should be |CM | =
|�ml | = 1, according to Eq. (7). As shown in Fig. 2, the
orbital-resolved band structure exhibits a clean signature of
d-p band inversion around the � point, indicating its nontrivial
topology. To identify the TCI state, we calculate the mirror
Chern number by integrating mirror-graded Berry curvature
associated with positive/negative mirror eigenstates over the
2D BZ [see Fig. 2(c)] and find CM = 1, which is consistent
with the above analysis of AMBI. Due to the bulk-edge corre-
spondence, the nonzero mirror Chern number also guarantees
the existence of topological edge states in the bulk gap, as
displayed in Fig. 2(b).

Next, we construct another model in a triangular lat-
tice to realize a type-II AMBI between dz2 (l = 2, ml = 0)
and degenerate dxz,yz (l = 2, ml = ±1) orbitals, which have
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opposite mirror eigenvalues. Such a subgroup of d orbitals
can be separated from the rest by crystal field splitting [69].
The AMBI would induce a TCI with the mirror Chern number
|CM | = |�mj | = 2. Our numerical calculations show that the
d-d band inversion in the bulk bands [see Fig. 2(d)] gives
rise to the mirror Chern number of CM = −2, confirming our
derived criterion in Eq. (10). As shown in Fig. 2(d), the exis-
tence of two pairs of topological edge states is also consistent
with the calculated mirror Chern number, lending additional
support to our identification of the AMBI-induced TCI state.

To validate the generality of AMBI, we systemically carry
out the tight-binding calculations for all possible combina-
tions of orbitals listed in Table I. With properly selected
parameters, a total of 11 kinds of AMBIs can be realized
and the obtained mirror Chern numbers agree with the above
analysis from the total angular momentum of the states in-
volved in the band inversion. As the underlying physics of
our proposed TCIs are dominated by AMBI at the � point,
the topological nature should be robust against any mirror
symmetry-preserved perturbations as long as the bulk gap
does not close. Therefore it is expected that the AMBI-
induced TCIs are also applicable to various crystalline lattices
and certain noncrystalline lattices with the essential mirror
symmetry. To verify this hypothesis, we consider the AMBI
in two kinds of noncrystalline lattices without translational
symmetry, quasicrystals and amorphous lattices.

B. AMBI-induced TCI in 2D quasicrystals and
amorphous lattices

We construct the quasicrystalline lattices based on the
rhombic Penrose tiling which have fivefold rotational sym-
metry but lack translational symmetry [70–73]. Based on a
similar tight-binding model used in Figs. 2(a)–2(c), we can
realize an AMBI between dz2 and px,y in the quasicrystalline
lattice. We first estimate the bulk energy gap of the Penrose-
tiling quasicrystal by calculating a series of quasicrystal
approximants which are periodic approximations of the qua-
sicrystal [74–76]. We then calculate the energy spectrum of
a finite pentagonal sample of the Penrose-tiling quasicrystal,
as shown in Fig. 3(a). Remarkably, the energy spectrum of
a finite sample is quasicontinuous in the bulk gap region.
The states residing inside the bulk gap are localized on the
boundary of the finite quasicrystal sample. As an example,
we plot the spatial distribution of a typical in-gap state in
Fig. 3(b). We also study other finite quasicrystal samples with
different boundary geometries, and find that the edge states
robustly remain on the boundary regardless of their detailed
shapes. This implies that the system should be a topologically
nontrivial state. To verify that the system is an AMBI-induced
TCI, we further calculate the real-space topological invariant,
the mirror Bott index Bm, which enables the identification of
the mirror Chern number in noncrystalline systems [77]. The
calculated Bm = 1 for the quasicrystalline system in Figs. 3(a)
and 3(b), confirms the AMBI-induced TCI in the quasicrystal.
For comparison, we also examine the topologically trivial
state in quasicrystal by tuning the parameter εdz2 to 2.1 eV,
which drives the quasicrystal into a trivial state with Bm = 0.
It is found that the in-gap edge states vanish in the trivial
quasicrystal, confirming the topological origin of the in-gap

FIG. 3. [(a) and (b)] TCI in a Penrose-tiling quasicrystal with
2146 sites due to an AMBI between dz2 and (px, py) orbitals
and [(c) and (d)] TCI in an amorphous system due to an AMBI
between dz2 and (dxz, dyz) orbitals. The amorphous system is con-
structed from a 40 × 40 supercell of the triangular lattice by
introducing random atomic displacement away from its equilibrium
position for each atom. The parameters used in (a) and (b) are
εdz2 = 0.7, εpx ,py = −2.3, Vppσ = 0.34, Vppπ = 0.34, Vpdσ =
−0.34, Vddσ = −0.44, Vddδ = −0.08, and λ = 1.0 eV. The param-
eters used in (c) and (d) are εdz2 = −0.35, εdxz ,dyz = −0.65, Vddσ =
−1.2, Vddπ = 0.3, Vddδ = −0.1, and λ = 0.3 eV. [(a) and (c)] En-
ergy levels near the Fermi level. The eigenvalues with PBC and those
with OBC are marked in blue and red, respectively. [(b) and (d)] The
real-space distribution of one of the in-gap edge states [marked as
green star in (a) and (c)].

edge states of the above Penrose-tiling quasicrystal with an
AMBI.

After that, we investigate the effect of the in-plane struc-
tural amorphization which breaks translational symmetry of
the 2D lattice [78–80]. As an illustrative example, we start
from a 40 × 40 supercell of the perfect 2D triangular lattice
studied in Figs. 3(d)–3(f) and assign random atomic displace-
ment δ = (d cos θ, d sin θ ) away from its equilibrium position
for each atom, where θ is a random azimuth angle uniformly
distributed in the interval [0, 2π ). The amplitude d of atomic
displacements are uniformly distributed in the range [0, 0.3a)
with a being the lattice constant. As shown in Fig. 3(c), the
disordered system with a periodic boundary condition (PBC)
shows an energy gap, indicating that it is still an insulator.
However, a set of states appears in the gap region when an
open boundary condition (OBC) is applied, implying that
the system with edges becomes metallic. The spatial distri-
bution of these in-gap states in Fig. 3(d) confirms that they
are localized edge states. We further identify the TCI state
by calculating the mirror Bott index Bm. For the disordered
system in Figs. 3(c) and 3(d), we find that the mirror Bott
index Bm = −2, indicating that it is indeed a TCI.

C. AMBI-induced topological semimetals in 3D

Given the vase interest enjoyed by the three-dimensional
topological crystalline insulators such as SnTe, we also
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FIG. 4. Topological Dirac semimetal in the 3D simple cubic lat-
tice due to AMBI between dz2 and dxz,yz. The parameters used here
are εdz2 = 4.2, εdxz,yz = −2.8, Vddσ = −2.4, Vddπ = 0.9, Vddδ =
−0.2, and λ = 0.6 eV. (a) The calculated bulk band structure of the
cubic lattice. The inset shows the first BZ with high-symmetry k
points. (b) The distribution of −i mirror-graded Berry curvature in
the kz = 0 plane of the first BZ. (c) Surface band structure of the
(010) surface where the surface states are marked in red. The inset
shows the surface BZ with the projection of the bulk Dirac points
(Db) and surface Dirac points (Ds). (d) Fermi Surface of the (010)
surface where double Fermi arcs connecting two projected bulk Dirac
points (Db).

investigate the possibility of generalizing the AMBI mecha-
nism to 3D. As an example, we consider a model in the simple
cubic lattice with an AMBI between dz2 and degenerate dxz,yz

orbitals. As shown in Fig. 4(c), although there is an AMBI
around the � point, the band orders are not inverted at other
high-symmetry k points of the BZ. Remarkably, the conduc-
tion and valence bands cross along the �-Z line, forming a
Dirac point. This is because of the high symmetry of the
cubic lattice. As two bands along this line belong to different
irreducible representations of the space group, they can cross
each other without opening a gap. The existence of gapless
Dirac points indicates that the system becomes a topological
Dirac semimetal [81–84]. To reveal its topological nature,
we calculate the mirror-graded Berry curvature and mirror
Chern number in both the kz = 0 and kz = π planes where
the band structures are fully gapped. As shown in Fig. 4(b),
the mirror-graded Berry curvature is strongly concentrated in
the vicinity of the � point in the kz = 0 plane, which justifies
our analysis of band inversions from orbital components of
bands. However, there is no significant distribution of Berry
curvature in the kz = π plane. We calculate the mirror Chern
numbers by numerically integrating the mirror-graded Berry
curvature for all occupied bands over the entire 2D BZ with
fixed kz, and find that CM = −2 and 0 for the kz = 0 and
kz = π planes, respectively.

One of the most important consequences of Dirac
semimetal is the existence of topological surface states and
Fermi arcs on the surface [47,48]. Due to the nonzero mirror
Chern number, the 3D Dirac semimetal supports 2D sur-
face Dirac cones when a surface parallel to the kz axis is

introduced, and the number of 2D Dirac cones on one surface
is given by |CM | = 2. We calculate the (010) surface states
of the cubic lattice, as shown in Figs. 4(c) and 4(d). As
expected, two 2D surface Dirac cones appear on the kx axis
and are symmetrical about the � point [one of them is shown
in Fig. 4(c)]. As shown in Fig. 4(d), the Fermi surface of
the (010) surface is composed of four pieces of Fermi arcs,
which connect the two projections of bulk Dirac points. As the
number of surface Dirac cones is two, the number of surface
Fermi arcs is also doubled as compared with conventional
Dirac semimetals with only two pieces of Fermi arcs. It is
worth noting that the number of the Fermi arcs on the surface
of the 3D Dirac semimetal is solely determined by the mirror
Chern number on the kz = 0 (or kz = π ) plane irrespective
of the energy dispersion around the 3D Dirac point. This
is clearly distinct from Weyl semimetals where the number
of Fermi arcs is determined by local dispersion around the
Weyl point (which determines the topological charge) and the
number of Weyl point pairs in the first BZ [85]. Therefore
Dirac semimetals with different numbers of Fermi arcs can be
realized by different kinds of AMBIs.

The existence of Fermi arcs, which stem from the bulk
3D Dirac points, identifies the nontrivial topological nature
of the AMBI-induced Dirac semimetal. In addition to the 3D
topological Dirac semimetal studied here, it is also possible to
obtain a 3D TCI or weak TI, as both the kz = 0 and kz = π

planes can have nonzero mirror Chern numbers of |CM | = 1
or 2 when AMBIs occur at both planes.

D. Material example: Ba monolayer

Finally, we study the Ba monolayer as a concrete material
example of AMBI-induced TCIs. Although previous works
show that both the pure alkali earth metal of Ba and barium
compounds (e.g., stannides, germanides, and silicides) are
topological nodal line semimetals with nontrivial drumhead
surface states [86–88], the 2D monolayer of Ba has not been
studied yet. Here we perform the first-principles calculations
for the Ba monolayer in square planar lattice with an opti-
mized lattice constant a = 4.5 Å. As shown in Fig. 5(a), the
conduction and valence bands near the Fermi level almost
cross with each other along the M-X line with a small energy
gap of Eg = 30 meV. Moreover, the irrelevant conduction
band near the gap can be pushed up by a tensile strain which
can be introduced by the epitaxial growth on substrates with
lattice mismatch. Remarkably, the orbital-contribution analy-
sis shows that the bulk bands show an AMBI around the M
point between states dominated by (s, dz2 ) and (dx2−y2 , dxy),
implying the nontrivial band topology. As listed in Table I,
such AMBI leads to a nonzero mirror Chern number of
|CM | = 2.

To determine the mirror Chern number, we then apply
the Wilson loop method to calculate the evolution of the
WCCs of occupied bands with opposite mirror eigenvalues.
Specifically, we define Wilson loops along the kx direction
with fixed ky. All the occupied bands at k points in the 2D
BZ are classified into two groups according to their mirror
eigenvalues. Taking those that have ±i mirror eigenvalues, the
evolution of Berry phases along the periodic ky direction can
be obtained as the mirror-graded WCC, and the mirror Chern
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FIG. 5. (a) The orbital-resolved band structure of Ba monolayer.
The red markers denote s, dz2 orbitals and the blue markers denote
dx2−y2,xy orbitals. The inset shows the high-symmetry k points in
the first BZ. (b) Flow chart of the sum of the mirror-graded WCCs
obtained by the Wilson-loop calculation for occupied bands with ± i
mirror eigenvalues in the 2D BZ. (c) The band structure of the Ba
nanoribbon where edge states are marked by green dots. (d) The
partial charge density (red) of edge states in a nanoribbon of the Ba
nanoribbon (green). The black dashed rectangle is the supercell used
for first-principles calculations.

number is simply given by its winding number. As shown
in Fig. 5(d), we find CM = −2 by tracing the evolution of
the mirror-graded WCCs, consistent with the analysis from
AMBI. Consequently, if we consider an open edge of the
Ba monolayer, nontrivial helical edge states will appear. As
shown in Fig. 5(b), topological edge states reside inside the
gap, and merge to bulk around X̄ . The spatial charge distribu-
tion of edge states displayed in Fig. 5(c) confirms that they are
localized at two edges. All these results consistently demon-
strate that the Ba monolayer is indeed an AMBI-induced TCI.

E. Discussion

Before ending the section, we would like to discuss the
band inversion in various TCI materials that are proposed
previously. It is found that various TCI materials satisfy

the AMBI mechanism, some of which even exhibit multiple
AMBIs in the BZ, as listed in Table II. This implies the
practicability of our proposed AMBI mechanism. For exam-
ple, the cubic perovskite nitride ThTaN3 is a TCI with the
mirror Chern number of CM = 2 [89]. By analyzing the orbital
components of bands near the Fermi level, we found that there
are two AMBIs around the � point: one AMBI is between the
Ta-dxy and N-px,y orbital and the other AMBI occurs between
Ta-dxz,yz and N-pz orbitals. As each AMBI contributes to a
mirror Chern number of 1 according to Table I, the total mirror
Chern number of ThTaN3 is CM = 2, which agrees with the
results from the first-principles calculation.

Another TCI material with multiple AMBIs is the famous
SnTe class of IV-VI semiconductors [19,33,90,91]. Based on
first-principles calculations, it is found that band inversions
between the antibonding state (L+

6 with even parity) of Te-px,y

and the bonding state (L−
6 with odd parity) of Sn-pz orbitals

occur at different L points in 3D bulk of SnTe. Similar band
inversions also appear in X and Y points of 2D thin films
of SnTe class of materials. Different from the simplified ef-
fective model discussed in Sec. II, the orbitals involved in
the band inversion are from Sn and Te atoms, respectively.
Therefore the inverted bonding and antibonding states have
opposite parities but share the same mirror eigenvalues. Con-
sequently, these band inversions belong to type-I and each
AMBI contributes to the mirror Chern number by |�ml | = 1.
By counting AMBIs in a 2D mirror plane of the BZ for 3D
systems or in the entire BZ for 2D systems, we obtain the
total mirror Chern number of |CM | = 2 for both 3D bulk [19]
and 2D films [33,90] of the SnTe class of materials.

Lastly, we emphasize that although the mirror symmetry
seems an important prerequisite for the analysis of AMBIs,
the type-I AMBI mechanism can be generalized to analyze
the band topology of materials without mirror symmetry. For
instance, Zhang et al. [97] proposed the realization of the QSH
state in a buckled honeycomb lattice via a band inversion
between px,y and pz at � point. According to Table II, such
a band inversion is of type-II, which would give rise to a
TCI with |CM | = 2 if the mirror symmetry is preserved in the
lattice. This discrepancy arises from the buckled structure

TABLE II. Overview of mirror protected TCI materials. The orbitals involved in AMBIs, the position of AMBI in the BZ, the mirror Chern
number and the type of AMBI are listed.

material orbitals k point(s) CM type

ThTaN3 [89] Ta-dxy vs N-px,y, Ta-dxz,yz vs N-pz � 2 I
SnTe [19] Sn-pz vs Te-px,y L1, L2 −2 I
AB (A = Ge, Pb, Sn and B = S, Se, Te) monolayer [33,90] A-pz vs B-px,y X, Y −2 I
PbPo monolayer [91] Pb-pz vs Po-px,y X, Y 2 I
TlM (M = S and Se) (110) monolayer [36] Tl-pz vs S/Se-px,y X, Y −2 I
Na3Bi monolayer [37] Bi-s vs Bi-px,y � −1 I
OsC16 [92] C-pz vs Os-dxz,yz K −1 I
HgTe/HgSe planar monolayer [93] Hg-s vs Te/Se-px,y � 1 I
NpSb monolayer [94] Sb-px,y vs Np-dx2−y2 � 1 I
Na2MnPb monolayer [95] Mn-dz2 vs Pb-px,y � 1 I
Pt3Sn (001) [96] All-py,z vs Pt-dyz � −1 I
Pt3Sn (11̄0) [96] Pt-dxy vs Pt-dxz,yz � −2 II
Bi3STe2 [96] Bi-pz vs Bi-px,y � 2 II
Ba monolayer [this work] Ba-s, dz2 vs Ba-dx2−y2,xy M −2 I
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which allows extra hopping terms that are forbidden in planar
structures with the mirror symmetry. In the buckled hon-
eycomb lattice without mirror symmetry, the mirror Chern
number is no longer well defined, but the spin Chern number
Cs is still determined by |�ml | = 1, indicating the topologi-
cally nontrivial QSH state.

V. CONCLUSION

In this paper, we discussed band inversions in terms of
angular momenta for mirror protected topological states. We
discussed in detail how the angular momentum of orbitals
characterizing the band inversion influence the mirror Chern
number CM of TCIs. In particular, we showed that the mirror
Chern number can be determined easily from the knowledge
of the AMBI analysis for states at high-symmetry k points in
the BZ. Using this method, we deduced that AMBI-induced
topological states can be realized in various crystalline or
disordered lattices based on model study and first-principles
calculations.

There remain a number of further issues which need to
be understood better. Although our work mainly focuses on
nonmagnetic systems with time-reversal symmetry T , the
AMBI is generally applicable to magnetic topological states,
thus providing interesting future research directions. Beyond
the mirror protected TCI phases, the similar AMBI analysis
of topological states protected by other symmetry (such as
the rotational, inversion and nonsymmorphic symmetry, or
the combinations of time-reversal and spatial symmetries) is
still ongoing. In addition, the recently discovered higher-order
topological states, which stem from the double band inver-
sion mechanism [98–101], may also be diagnosed by similar
AMBI analysis. It will be of interest to provide a better un-
derstanding of these topological insulating and semimetallic
states which are triggered by band inversion mechanisms.
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APPENDIX: DERIVATION OF EQ. (9)

Similar to the analysis of Eq. (6), one can expand h(k) to
the leading order of k near the � point,

h(k) =

⎛
⎜⎜⎝

ε′
1 δ1k

2m1− 0 λ

δ1k
2m1+ ε1 0 0

0 0 ε′
2 δ2k

−2m1−2
−

λ 0 δ2k
−2m1−2
+ ε2

⎞
⎟⎟⎠, (A1)

where λ is the spin-orbit coupling constant. Other entries in
the nondiagonal block of Hamiltonian (A1) vanish for the
conservation of spin angular momentum.

To obtain an effective model for the band inversion be-
tween |m1 + 1, m1 + 1

2 〉 and |m1,−m1 + 1
2 〉 orbitals, one can

perform the analysis based on the standard perturbation the-
ory, where the contributions from other states are treated as
perturbations. This is reasonable since other bands are as-
sumed to be far away from the inverted bands, and a small
gap opened by λ is enough to ensure the topological property
theoretically. Consequently, the reduced two-band effective
Hamiltonian up to the first order of perturbation is

h(0)
eff (k) =

(
ε2 0
0 ε1

)
.

According to the perturbation theory, the matrix element of
the second order term reads

h(2)
aa′ = 1

2

∑
b

h′
abh′

ba′

(
1

εa − εb
+ 1

εa′ − εb

)
,

where h′
ab are elements in the Hamiltonian (A1). Here indices

a and a′ correspond to the reduced part and b corresponds to
the perturbation part. Up to the leading order of k near �,
the second order perturbation term of the reduced two-band
effective Hamiltonian heff (k) is

h(2)
eff (k) = 1

2

(
1

ε2 − ε′
1

+ 1

ε1 − ε′
1

)
λδ1(k�mj

+ σ− + k
�mj

− σ+),

where �mj = (m1 + 1/2) − (−m1 + 1/2) = 2m1.
Finally, by neglecting an overall dispersion term which

does not affect the band topology, one obtains the rescaled
effective Hamiltonian

heff (k) = εσz + λδ(k�mj

+ σ− + k
�mj

− σ+).
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