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Dynamic transition from insulating state to η-pairing state in a composite non-Hermitian system
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The dynamics of Hermitian many-body quantum systems has long been a challenging subject due to the com-
plexity induced by the particle-particle interactions. In contrast, this difficulty may be avoided in a well-designed
non-Hermitian system. The exceptional point (EP) in a non-Hermitian system admits a peculiar dynamics: the
final state being a particular eigenstate, coalescing state. In this work, we study the dynamic transition from a
trivial insulating state to an η-pairing state in a composite non-Hermitian Hubbard system. The system consists of
two subsystems, A and B, which are connected by unidirectional hoppings. We show that the dynamic transition
from an insulating state to an η-pairing state occurs by the probability flow from A to B: the initial state is
prepared as an insulating state of A, while B is left empty. The final state is an η-pairing state in B but empty in
A. Analytical analyses and numerical simulations show that the speed of relaxation of the off-diagonal long-range
order pair state depends on the order of the EP, which is determined by the number of pairs and the fidelity of
the scheme is immune to the irregularity of the lattice.
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I. INTRODUCTION

Experimental advances in atomic physics, quantum optics,
and nanoscience have made it possible to realize artificial sys-
tems. It is fascinating that some of them are described by the
Hubbard model [1] to a high degree of accuracy [2,3]. Then
one can experimentally realize and simulate the physics of the
model. The Hubbard model is a simple lattice model with
particle interactions and has been intensely investigated in
various contexts ranging from quantum phase transition [4,5]
to high temperature superconductivity [6–8]. Direct simula-
tions of such a simple model is not only helpful to solve
important problems in condensed matter physics, but also
to the engineering design of quantum devices. Importantly,
the availability of experimental controllable Hubbard sys-
tems provides an unprecedented opportunity to explore the
nonequilibrium dynamics in interacting many-body systems.

Very recently, it has been demonstrated that nonequilib-
rium many-body dynamics provides an alternative way to
access a new exotic quantum state with energy far from the
ground state [9–16]. It makes it possible to design interacting
many-body systems that can be used to prepare some desirable
many-body quantum states in principle. Unlike traditional
protocols based on a cooling down mechanism, quench dy-
namics has a wide range of potential applications, since it
provides many ways to take a system out of equilibrium, such
as applying a driving field or pumping energy or particles in
the system through external reservoirs [17–19]. In the recent
work Ref. [20], a scheme has been proposed to realize quan-
tum mold casting, i.e., engineering a target quantum state on
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demand by the time evolution of a trivial initial state. The
underlying mechanism is pumping fermions from a trivial
subsystem to the one with topological quantum phase. In this
work, we extended this approach to interacting many-body
systems.

In general, the time dynamics of Hermitian many-body
quantum systems has long been an elusive subject, due to the
complexity induced by the particle-particle interactions. The
main obstacle is that the evolved state is not easily predictable
in most cases. Nevertheless, this difficulty may be avoided in
a well-designed non-Hermitian system, since the exceptional
point (EP) in a non-Hermitian system admits a peculiar dy-
namics: the final state being a particular eigenstate, coalescing
state [21–25]. The key point is the exceptional dynamics,
which allows particles pumping from the source subsystem
to the central subsystem, realizing the dynamical prepara-
tion of many-body quantum states. In the present work, we
study the dynamic transition from a trivial insulating state
to an η-pairing state in a composite non-Hermitian Hubbard
system. The system consists of two subsystems, A and B,
which is connected by unidirectional hoppings. Based on the
performance of the system at EP, a scheme that produces a
nonequilibrium steady superconductinglike state is proposed.
Specifically, for an initial state with fully filled in A, but empty
in B, unidirectional hoppings can drive it to the resonant
coalescing state that favors superconductivity manifested by
the off-diagonal long-range order (ODLRO). Such a dynam-
ical scheme can be realized no matter what the shapes of
the two sublattices of the composite system. Therefore, our
finding is distinct from the previous investigations [13–15],
and provides a quantum casting mechanism for generating
superconductivity through nonequilibrium dynamics. On the
other hand, the remarkable observation from our work can
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FIG. 1. The system consists of two subsystems, A and B, which are connected by unidirectional hoppings. A is an interaction-free system
with trivial flat band, while B is a Hubbard system, which supports η-pairing eigenstates. At t = 0, A is fully filled as a trivial insulating state
and B is empty. When the unidirectional hoppings switch on, the probability flows from A to B. After a long time, subsystem A becomes
empty and subsystem B is in an η-pairing state, a condensation of bound pairs.

trigger further studies of both fundamental aspects and po-
tential applications of composite non-Hermitian many-body
systems.

The rest of this paper is organized as follows. In Sec. II, we
present the model and its properties relating to η operators,
or η symmetry. Section III is devoted to a doublon effective
Hamiltonian which captures the physics in a fixed energy
shell. In Sec. IV, we present the Jordan form with high-order
EP based on the effective Hamiltonian. In Sec. V, numerical
simulations are performed to estimate the efficiency of our
scheme in various values of correlation strengths. Section VI
concludes this paper. Some nonessential details of our calcu-
lation are placed in Appendices.

II. MODEL AND η OPERATORS

We consider a composite non-Hermitian system, described
by the Hamiltonian

H = HA + HB + HAB, (1)

with Hermitian terms

HA = U

2

Na∑
i=1

(a†
i,↑ai,↑ + a†

i,↓ai,↓),

HB =
∑

σ=↑,↓

Nb∑
i, j=1

(Ji jb
†
i,σ b j,σ + H.c.) + U

Nb∑
i=1

b†
i,↑b†

i,↓bi,↓bi,↑,

(2)

and the non-Hermitian term

HAB =
∑

σ=↑,↓

Na∑
i=1

Nb∑
j=1

κi jb
†
j,σ ai,σ , (3)

where ai,σ and b j,σ are fermion operators with spin- 1
2 po-

larization σ =↑,↓ in lattices Na and Nb, respectively. The
parameters Ji j (i, j ∈ Nb, i �= j) and κi j (i ∈ Na, j ∈ Nb) are
intra- and intercluster hopping strengths, and taken to be real
in this paper. Here both HA and HB are Hermitian, describing
the source system and the central system, respectively. HA is
an interaction-free system with trivial full flat band, while HB

is a standard Hubbard model, which is restricted to be the
bipartite lattice. In particular, the key features of the setup

are as follows: (i) HAB is non-Hermitian, representing uni-
directional tunnelings between two subsystems HA and HB.
(ii) The on-site potential of a pair of fermions in HA is iden-
tical to the on-site repulsion in HB, but a little difference will
not affect the scheme since the EP dynamics can be extended
to the near-EP dynamics [20]. The schematic of the system is
presented in Fig. 1.

We define two η operators for two subsystems:

η
†
A =

Na∑
i=1

η
†
A,i =

Na∑
i=1

αia
†
i,↑a†

i,↓, (4)

η
†
B =

Nb∑
i=1

η
†
B,i =

Nb∑
i=1

βib
†
i,↑b†

i,↓, (5)

where αi = ±1 can be taken arbitrarily, since there are no
tunnelings between any two sites in the subsystem A, while
βi = 1 and −1, for the different sublattice i belongs to in the
bipartite lattice B. It can be shown that both operators satisfy

[HA, η
†
A] = Uη

†
A, [HB, η

†
B] = Uη

†
B, (6)

which can be utilized to construct the eigenstates of HA, HB,
HA + HB,

|n〉A = 1√
�A,n

(η†
A)n|Vac〉, (7)

|m〉B = 1√
�B,m

(η†
B)m|Vac〉, (8)

where �A,n = (n!)2Cn
Na

and �B,m = (m!)2Cm
Nb

are normaliza-
tion factors.

HA|n〉A = nU |n〉A, HB|m〉B = mU |m〉B (9)

and

(HA + HB)|n〉A|m〉B = (n + m)U |n〉A|m〉B. (10)

We can find that the set of eigenstates |n〉A|m〉B are degenerate
for fixed m + n.

In general, an η-pairing state can be regarded as the
condensation of bound pair fermions as hard-core boson.
However, state |n〉A is trivial since it is just one of multifold
degenerate eigenstates. In addition, fully filled state |Na〉A and
|Nb〉B are insulating states and can be easily prepared. The
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desirable states are |Na〉A|m〉B and |0〉A|m〉B with 1 < m < Nb,
since both states possess ODLRO in subsystem B.

III. DOUBLON EFFECTIVE HAMILTONIAN

Like most interacting many-body systems, the exact solu-
tion of H is rare although states |n〉A|m〉B are eigenstates of
HA + HB. In order to capture the physics of our scheme, we
will consider the problem in an energy shell. In the Hermitian
system, one can employ the perturbation method to get the
effective Hamiltonian. However, the corresponding theory has
not been well established for the non-Hermitian system, espe-
cially for the unidirectional hopping perturbation. In the two
Appendices, we have illustrated how to obtain the effective
Hamiltonian of a non-Hermitian system from two perspec-
tives. Appendix A provides an accurate effective Hamiltonian
of a two-site non-Hermitian system from the time evolution
operator, while Appendix B obtains the effective Hamiltonian
of an arbitrary-sized non-Hermitian system for large U limit
from parameters approaching the EP.

In this work, our aim is the dynamics for a special initial
state, with subsystem A being fully occupied. It motivates
us to consider pure doublon states in subsystem B, which
has the same energy shell as that of the initial state. We
take the parameter κi j as a constant κδi j for simplicity. For
a subspace spanned by a set of basis of the doublon state
{|	B

D(n)〉, n ∈ [1, Nb]}, the effective Hamiltonian can be writ-
ten as

H eff
B =

Nb∑
i, j=1

−4J2
i j

U

(
ηB,i · ηB, j − 1

4

)
+ U

Nb∑
i=1

(
1

2
+ ηz

B,i

)
,

(11)
in the case of U � |Ji j |. Here a doublon state is

|	B
D (n)

〉 = b†
j1,↑b†

j1,↓b†
j2,↑b†

j2,↓ . . . b†
jn,↑b†

jn,↓|Vac〉, (12)

with jn ∈ [1, Nb], and the pseudospin operator is defined as
ηB, j = (η+

B, j/2 + η−
B, j/2, η+

B, j/2i − η−
B, j/2i, ηz

B, j ) with η+
B, j =

β jb
†
j,↑b†

j,↓ and ηz
B, j = (nB, j,↑ + nB, j,↓ − 1)/2. Similarly, for

a subspace spanned by a set of basis of the doublon state
{|	A

D (n)〉, n ∈ [1, Na]}, which means n lattice sites in sub-
system A are occupied by two particles with opposite spin
orientation, the effective Hamiltonian can be written as

H eff
A = U

Na∑
i=1

(
1

2
+ ηz

A,i

)
, (13)

and corresponding operators obey the Lie algebra, i.e.,
[η+

A,i, η
−
A, j] = 2ηz

A, jδi j and [ηz
A,i, η

±
A, j] = ±η±

A, jδi j .
Now, we turns to establish the effective Hamiltonian of the

non-Hermitian term HAB. Unlike the Hermitian term, there
is no unquestioned perturbation theory for the non-Hermitian
perturbation, especially near the EP. In this work, we present
the effective Hamiltonian H eff

AB from two perspectives. In the
Appendices, we show that, for the given initial state with full
filling A lattice and empty B lattice, the dynamics obeys the

effective Hamiltonian

H eff = H eff
A + H eff

B + H eff
AB (14)

with

H eff
AB = 4κ2

U

∑
i

η−
A,iη

+
B,i, (15)

where

η−
A,i = (−1)iai,↓ai,↑, η+

B,i = (−1)ib†
i,↑b†

i,↓. (16)

It is clear that H eff
AB is still a non-Hermitian term which de-

scribes a unidirectional hopping of a doublon or magnon from
the point of view of spin wave.

Defining a total pseudospin operator

ηz =
Na∑

i=1

ηz
A,i +

Nb∑
j=1

ηz
B, j, (17)

we note that ηz is conservative for the Hamiltonian H eff due
to the commutation relation

[ηz, H eff ] = 0, (18)

which ensures that the Hilbert space of H eff can be de-
composed into many invariant subspaces labeled by the
eigenvalues of ηz, i.e., 2ηz = −Na − Nb, −Na − Nb + 1,...,
Na + Nb − 1, Na + Nb. In this work, we only focus on the
subspace with ηz = (Na − Nb)/2 (Na < Nb), which contains
the initial state with fully filling A sublattices and empty B
sublattices, i.e.,

∏Na
i=1 a†

i,↑a†
i,↓|Vac〉.

IV. JORDAN FORM WITH HIGH-ORDER EP

In the above, we know that there are many degener-
ate eigenstates for HA + HB, which may become coalescing
states when the proper non-Hermitian term is added [26].
For non-Hermitian operators, when the EP appears, there
are eigenstates that coalesce into one state, leading to an
incomplete Hilbert space [21–24]. Mathematically, it relates
to the Jordan block form in the matrix [27–30]. Remarkably,
the peculiar features around the EP have sparked tremen-
dous attention to the classical and quantum photonic systems.
The corresponding intriguing dynamical phenomena include
asymmetric mode switching [31], topological energy trans-
fer [32], robust wireless power transfer [33], and enhanced
sensitivity [34–37] depending on their EP degeneracies. Many
works have been devoted to the formation of the EP and
corresponding topological characterization in both theoretical
and experimental aspects [38–40]. In this work, we employ
the EP dynamics to prepare states with ODLRO. We start with
the Jordan form with high-order EP.

Considering two degenerate eigenstates |A〉 and |B〉 of the
Hermitian Hamiltonian HA + HB, where

|A〉 = |Na〉A|0〉B = 1√
�A,Na

(η†
A)Na |Vac〉, (19)

|B〉 = |0〉A|Na〉B = 1√
�B,Na

(η†
B)Na |Vac〉, (20)

we have

H |B〉 = NaU |B〉, H†|A〉 = NaU |A〉, (21)
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FIG. 2. Schematic illustration of (a1) a six site composite non-Hermitian system with four filled particles and (a2) a nine site composite
non-Hermitian system with six filled particles concerning the following numerical simulations. The parameters are κ = 1, (a1)–(c1) Na = 2,
Nb = 4, Ji j = 0.75, 1.17, 0.68, 1.02; (a2)–(c2) Na = 3, Nb = 6, Ji j = 0.75, 1.17, 0.68, 1.02, 0.87, 0.61, 0.72. (b1) and (b2) are plots of fidelity
F (t ) defined in Eq. (37). Three typical values of t are taken and indicated in the panels. The numerical data oscillate at small U values and the
optimal U occurs around U = 5. (c1) and (c2) show the scaling law of probability P defined in Eq. (36) as a function of t for different values
of U . Different colored dots represent the numerical data, which are fitted by different colored solid lines (c1) ln P = 3.99 ln t − 3.96, ln P =
3.97 ln t + 4.77, ln P = 3.98 ln t + 2.67, ln P = 3.99 ln t − 1.81, ln P = 4.00 ln t − 5.76 and (c2) ln P = 7.20 ln t − 11.40, ln P = 6.61 ln t −
5.56, ln P = 5.44 ln t + 4.66, ln P = 6.45 ln t − 5.80, ln P = 6.00 ln t − 9.26 from U = 0.1 to U = 10, respectively.

due to the facts

HAB|0〉A|Na〉B = 0, (HAB)†|Na〉A|0〉B = 0. (22)

It means that two states |A〉 and |B〉 are mutually biorthogonal
conjugate and 〈A|B〉 is the biorthogonal norm of them. On the
other hand, we have

〈A|B〉 = 0. (23)

The vanishing norm indicates that state |B〉 (|A〉) is the coa-
lescing state of H (H†), or Hamiltonians H and H† get an EP.

However, it is a little hard to determine the corresponding
Jordan block form and the order of the EP. In the following,
we estimate the order in large U limit. At first, the above anal-
ysis for two states |A〉 and |B〉 is applicable for the effective
Hamiltonian H eff . This means that there is an EP in the invari-
ant subspace with ηz = (Na − Nb)/2, and dimension CNa

Na+Nb
.

The order of such an EP is determined by the correspond-
ing Jordan block. Second, when we consider a complete
set of degenerate eigenstates of the Hermitian Hamiltonian
HA + HB in this subspace, which are denoted as {|n〉A|m〉B}
(n ∈ [0, Na], Na � Nb) with fixed m + n = Na, the effective
Hamiltonian can be expressed as an (Na + 1) × (Na + 1) ma-
trix M with nonzero matrix elements

(M )Na+1−n,Na−n

= 〈Na − n|B〈n|AH eff |n + 1〉A|Na − n − 1〉B

= 4κ2

U

Na − n

Nb

√
(n + 1)(Nb − Na + n + 1) (24)

with n = [0, Na − 1], and

(M )Na+1−n,Na+1−n

= 〈Na − n|B〈n|AH eff |n〉A|Na − n〉B

= NaU (25)

with n = [0, Na]. It is obviously an (Na + 1) -order Jordan
block, satisfying

[(M − NaUI )Na ]i j =
Na−1∏
n=0

4κ2

U

Na − n

Nb

×
√

(n + 1)(Nb − Na + n + 1)δNa+1,1. (26)

where I is the unit matrix. In other words, matrix (M − NaUI )
is a nilpotent matrix, i.e.,

(M − NaUI )Na+1 = 0. (27)
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FIG. 3. The plot of F (t ), which is obtained by exact diagonaliza-
tion of the original Hamiltonian for the finite system. The parameters
are Na = 2, Nb = 4, κ = 1, U = 20, Ji j = J . Several typical values
of J are taken and indicated in the panels.

Taking Na = Nb = 4, for example, the matrix has the form

M = 2κ2

U

⎛
⎜⎜⎜⎝

0 0 0 0 0
2 0 0 0 0
0 3 0 0 0
0 0 3 0 0
0 0 0 2 0

⎞
⎟⎟⎟⎠ + 4UI, (28)

which possesses a single eigenvector (0 0 0 0 1)T .
The dynamics for any states in this subspace is governed

by the time evolution operator

U (t ) = e−iMt = e−iNaUt
Na∑

l=0

1

l!
[−i(M − NaUI )t]l . (29)

It indicates that for the initial state |	(0)〉 = |A〉, we have

|	(t )〉 = e−iMt |A〉
= e−iNaUt (1 f1 . . . fq . . . fNa )T , (30)

where the elements

fq =
√

Aq
Na

Aq
Nb

(−4iκ2t

UNb

)q

, q ∈ [1, Na] (31)

Aq
Na

= Na!

(Na − q)!
, Aq

Nb
= Nb!

(Nb − q)!
, (32)

and

||	(t )〉| =
√√√√1 +

Na∑
q=1

| fq|2 ≈ | fNa | (33)

at large t � UNb
κ2 . Setting the target state as

|	target〉 = |B〉, (34)

we have the fidelity

F (t ) = |〈	target|	(t )〉|
||	(t )〉| = | fNa |

||	(t )〉| ≈ 1, (35)

which indicates that state |	target〉 becomes dominant in the
evolved state |	(t )〉 at large t � UNb

κ2 . The increasing behavior
of ||	(t )〉| obeying ||	(t )〉|2 ∝ t2Na within the large t region
is also a dynamic demonstration for the order of the Jordan
block. This analytical analysis shows that the speed of relax-
ation of the ODLRO pair state depends on the order of the
EP, which is determined by the number of pairs. Furthermore,
we would like to address two points. (i) The non-Hermitian
effective Hamiltonian H eff

AB is obtained from the simplest
case with Na = Nb = 1 in Appendix A. Its validity for large
systems is illustrated in Appendix B for the large U limit
and from the perspective of parameters approaching the EP.
(ii) The power behavior of ||	(t )〉| requires large t . However,
in practice, F (t ) may approach unity before this time domain.

V. DYNAMIC TRANSITION

The above analysis provides a prediction about the dy-
namic transition from an insulating state to an η-pairing state
in a composite non-Hermitian system. The composite system
consists of two parts (or two layers): one is a trivial sys-
tem (source system) constructed by a set of isolated sites,
while the other is a Hubbard model (central system), which
supports η-pairing eigenstates. Initially, two subsystems are
separated and the source system is fully filled by electrons,
being in an insulating state, while the central system is empty.
The decoupling between two subsystems can be achieved
in two ways, i.e., the prequench Hamiltonian can be set by
(a) taking the chemical potential on a source system far from
the resonant energy of the central system; and (b) switching
off the tunneling terms between two subsystems directly un-
der the resonant condition. The postquench Hamiltonian is
then HA + HB + HAB. According to our analysis, both quench
dynamics should result in a steady superconducting state,
realizing the dynamic transition from an insulating state to an
η-pairing state.

We perform numerical simulations on a finite system with
the following considerations. (i) The analysis based on the
effective Hamiltonian in last section only predicts the re-
sults for large U within a large time domain. The efficiency
of the scheme should be estimated from numerical simu-
lations of the original Hamiltonian. (ii) The existence of
η-pairing eigenstates is independent of the distribution of
the hoppings for B sublattices. The evolved states |	(t )〉 for
initial states |2〉A|0〉B and |3〉A|0〉B in two finite systems are
computed by exact diagonalization. We focus on the Dirac
probability

P(t ) = ||	(t )〉|2, (36)

and the fidelity

F (t ) = 1√
P

|〈	target|	(t )〉|, (37)

with the target states being |0〉A|2〉B and |0〉A|3〉B, respec-
tively. The lattice geometry and numerical results are plotted
in Fig. 2. We plot the fidelity as a function of U for three
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FIG. 4. Schematics of the composite non-Hermitian system with different initial states. (a), (b), and (c) present three typical configurations,
in which two doublons are located in different sites of system A. The analytical analysis based on the perturbation method in large U limit
indicates that the final states after a long time are the same. Numerical simulations for finite U and a small-size system support this conclusion.

typical instants. We find that there exists an optimal U ≈ 5,
at which the fidelity gets the maximal value. We also plot
the probability lnP(t ) as a function of lnt to demonstrate
the EP dynamic behavior. From the results of linear fitting,
it can be seen that the slope of the line deviates from the
predicted value for the cases with small U , especially for
larger systems. This indicates that the speed of relaxation
of the pair state depends on the order of the EP and the
fidelity of the scheme is immune to the irregularity of the
lattice. We estimated the relation of the hopping strength
and the efficiency of the scheme from numerical simulations
of the original Hamiltonian in Fig. 3. Within a certain range of
parameters, the increase of the hopping strength will improve
the efficiency of the scheme.

VI. SUMMARY AND DISCUSSION

In summary, we have extended the scheme of quantum
casting to interacting many-body systems. Unlike the previous
work Ref. [20] on noninteracting systems, the present scheme
does not require the scan on the chemical potential of the
source system. Our findings offer a method for the efficient
preparation of correlated states and are expected to be
necessary and insightful for quantum engineering. The key
point is the exceptional dynamics, which allows particles
pumping from the source subsystem to the central subsystem,
realizing the dynamical preparation of many-body quantum
states. It is due to the resonance between the initial state and
the target state. Accordingly, there is a class of initial states
(see Fig. 4) evolving to the same final state after a long time.
Numerical simulations for finite U and a small-size system
support this conclusion. In this sense, such a scheme can be
applied to other interacting many-body systems. On the other
hand, considering a quench process with the prequench
Hamiltonian being HA + HB, and the postquench
Hamiltonian being HA + HB + HAB, the Loschmidt echo
|L|2 = |〈	(0)|	(t )〉|2 should turn to zero after a long time
for a finite system. It may predict an asymptotic dynamic
quantum phase transition (DQPT) [19] in thermodynamic
limit, i.e., |L|2 decays rapidly, rather than vanishes at a finite
instant in a standard DQPT. The final answer depends on the
scaling behavior of |L|2, which is an open question at the
present stage.
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APPENDIX A

In this Appendix, we present a derivation of the effective
Hamiltonian in the doublon subspace for the tunneling term
between two subsystems A and B. We will obtain the effective
Hamiltonian from the time evolution operator rather than the
perturbation method due to the concern with the availability
of it for a non-Hermitian system at exceptional point.

Consider a two-site Hamiltonian

Hconn =
∑

σ=↑,↓
κb†

σ aσ + Ub†
↑b†

↓b↓b↑ + U

2
(a†

↑a↑ + a†
↓a↓),

(A1)

which describes the connection between any two sites among
A and B subsystems. We neglect the subscripts of the op-
erators for the sake of simplicity. We start from the matrix
representation of the Hamiltonian in the invariant subspace
spanned by the basis set

|1〉 = |↑↓〉A|0〉B = a†
↑a†

↓|Vac〉,
|2〉 = |0〉A|↑↓〉B = b†

↑b†
↓|Vac〉,

|3〉 = |↑〉A|↓〉B = a†
↑b†

↓|Vac〉,
|4〉 = |↓〉A|↑〉B = a†

↓b†
↑|Vac〉 (A2)

which is

h =

⎛
⎜⎜⎝

U 0 0 0
0 U κ −κ

κ 0 U
2 0

−κ 0 0 U
2

⎞
⎟⎟⎠, (A3)

which contains a 2 × 2 Jordan block for nonzero U . The
solution of the matrix consists of three eigenvectors |φc〉, |φ3〉,
and |φ4〉, with eigenvalues U , U/2, and U/2, respectively. The
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explicit form of the vectors is

|φa〉 =

⎛
⎜⎜⎝

1
0
2κ
U− 2κ

U

⎞
⎟⎟⎠, |φc〉 =

⎛
⎜⎝

0
1
0
0

⎞
⎟⎠,

|φ3〉 =

⎛
⎜⎜⎝

0
− 2κ

U
1
0

⎞
⎟⎟⎠, |φ4〉 =

⎛
⎜⎜⎝

0
2κ
U
0
1

⎞
⎟⎟⎠, (A4)

where |φc〉 is the coalescing vector and |φa〉 is the correspond-
ing auxiliary vector, satisfying

(h − UI )|φa〉 = |φc〉, (A5)

where I is the unit matrix. We would like to point out that
in the case of U = 0, h contains a 3 × 3 Jordan block. The
solution of the matrix consists of two eigenvectors |φc〉 and
|φ4〉, with the same eigenvalue 0. The explicit form of the
vectors is

|φa〉 =

⎛
⎜⎝

1
0
0
0

⎞
⎟⎠, |φc〉 =

⎛
⎜⎝

0
1
0
0

⎞
⎟⎠, |φ4〉 =

⎛
⎜⎝

0
0
1
1

⎞
⎟⎠, (A6)

where |φc〉 is the coalescing vector and |φa〉 is the correspond-
ing auxiliary vector. In this work, we only focus on the case
with nonzero U . However, one should consider the effect of
three-order EP when U is very small. Then the time evolution
operator in such a invariant subspace can be obtained as

e−iht = e−itU

⎛
⎜⎜⎝

1 0 0 0
− 4itκ2

U − 8κ2

U 2 � 1 2κ
U � − 2κ

U �
2κ
U � 0 e

itU
2 0

− 2κ
U � 0 0 e

itU
2

⎞
⎟⎟⎠, (A7)

where � = 1 − eitU/2. The time evolution of the trivial initial
state |φa〉 can be expressed as

|	(t )〉 = e−iht |φa〉 = e−itU

⎛
⎜⎜⎝

1
− 4itκ2

U − 8κ2

U 2 �
2κ
U− 2κ

U

⎞
⎟⎟⎠. (A8)

We find that

〈2|	(t )〉 = −e−itU 4κ2

U

[
it + 2

U
(1 − eitU/2)

]
, (A9)

which can be valued within finite time scale as

〈2|	(t )〉 ≈ −e−itU 4κ2

U

{
it, large U
U
4 t2, small U .

(A10)

Note that the switching of powers of the variable t is due to
the cancellation of the linear t term in the small U limit. It is
in accordance with the above analysis about the order of the
Jordan block. In the large U limit, U � κ , e−iht reduces to a

diagonal-block form

e−iht ≈ e−itU

⎛
⎜⎜⎝

1 0 0 0
− 4itκ2

U 1 0 0
0 0 eitU/2 0
0 0 0 eitU/2

⎞
⎟⎟⎠. (A11)

Then in the doublon subspace spanned by a†
↑a†

↓|Vac〉 and

b†
↑b†

↓|Vac〉, the effective Hamiltonian is

H eff
conn = 4κ2

U
b†

↑b†
↓a↓a↑ + UI2. (A12)

APPENDIX B

In this Appendix, we obtain the effective Hamiltonian of
the tunneling term HAB with arbitrary size for the large U
limit from the perspective of parameters approaching the EP.
At first, we add a unidirectional tunneling term λa†

l,σ bl,σ and
take the parameter κi j as a constant κδi j for simplicity. The
new tunneling between the two subsystems HA and HB reads

H ′
AB =

∑
σ=↑,↓

∑
l

(κb†
l,σ al,σ + λa†

l,σ bl,σ ). (B1)

We introduce a set of canonical operators

c̄l,σ =
√

λ

κ
a†

l,σ , cl,σ =
√

κ

λ
al,σ ,

d̄l,σ = b†
l,σ , dl,σ = bl,σ , (B2)

which obey the commutative relations

{cl,σ , c̄l ′,σ ′ } = δll ′δσσ ′, {c̄l,σ , c̄l ′,σ ′ } = {cl,σ , cl ′,σ ′ } = 0,

{dl,σ , d̄l ′,σ ′ } = δll ′δσσ ′, {d̄l,σ , d̄l ′,σ ′ } = {dl,σ , dl ′,σ ′ } = 0.

(B3)

The transformation in Eq. (B2) is essentially a similarity
transformation with singularities at λ = 0 and κ = 0, beyond
which it allows us to rewrite the Hamiltonian in the form

H ′
AB =

∑
σ=↑,↓

∑
l

[
√

λκ d̄l,σ cl,σ +
√

λκ c̄l,σ dl,σ ]. (B4)

So far, H ′
AB has become a Hermitian Hamiltonian, which al-

lows us to employ the perturbation method to get the effective
Hamiltonian

(H ′
AB)eff = − 8

U

∑
l

(
− κ2η−

A,lη
+
B,l

2

− λ2η+
A,lη

−
B,l

2
+ λκηz

A,lη
z
B,l − λκ

4

)
. (B5)

Although the above solution is only true for nonzero λ, one
can extrapolate the approximate solution at λ = 0 by taking
λ → 0. In the limit of zero λ, we have H ′

AB → HAB and
(H ′

AB)eff → H eff
AB.
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