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Observation of non-Hermitian aggregation effects induced by strong interactions
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Non-Hermiticity greatly expands existing physical laws beyond the Hermitian framework, revealing various
phenomena with unique properties. To date, most exotic non-Hermitian effects, such as exceptional points
and non-Hermitian skin effects, have been discovered in single-particle systems. The interplay between non-
Hermitian and particle interactions is expected to be a more fascinating but much less explored area. Here, we
report an experimental simulation of a strongly correlated non-Hermitian few-body system and reveal a type of
non-Hermitian skin state toward effective boundaries in Hilbert space induced by strong interactions. Such an
interaction-induced non-Hermitian effect represents the aggregation of bosonic clusters with nonidentical occu-
pations in the periodic lattice, and we call it the non-Hermitian aggregation effect. By mapping the eigenstates
of three correlated bosons to modes of the designed three-dimensional electric circuit, the interaction-induced
non-Hermitian aggregation effects in Hilbert space are verified by measuring the spatial impedance response.
Our finding not only discloses a physical effect in the non-Hermitian system but also suggests a flexible platform
to further investigate other non-Hermitian correlated phases in experiments.
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I. INTRODUCTION

Exploring physical phenomena in strongly correlated
quantum systems is one of the most difficult challenges in
modern physics, where particle interactions could play key
roles in the formation of various correlated quantum phases
[1–5]. Especially from an experimental perspective, early ef-
forts on interaction quantum physics have mainly focused on
the Hermitian system. Recent developments in non-Hermitian
physics have opened exciting opportunities to exhibit exotic
behaviors beyond the Hermitian framework [6–30]. One rep-
resentative example is the non-Hermitian skin effect [14–19],
where the energy eigenvalues and corresponding eigenstates
are changed in a nonlocal way with distant boundary con-
ditions. Following the discovery of non-Bloch eigenstates
related to non-Hermitian skin effects, various intriguing phe-
nomena, such as the modified bulk-boundary correspondence
[14–23] and non-Hermitian critical behavior [24], have been
proposed. Subsequently, the experimental observation of non-
Hermitian skin effects has been realized in a variety of
nonconservative systems [25–28], providing versatile plat-
forms for exploring unconventional wave phenomena and
giving rise to many applications in the field of the non-
Hermitian sensor [29] and topological wave funneling [30].

Compared with the single-particle system, the interaction
non-Hermitian system may show more exotic features. Mo-
tivated by the development of non-Hermitian single-particle
physics, there have been emerging theoretical interests in de-
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veloping phenomena originating from the interplay between
non-Hermitian and particle correlations [31–39]. It has been
pointed out in a recent work that many-body skin states could
locate toward effective boundaries in Hilbert space for the
periodic lattice [40]. Those effective boundaries are induced
by the species-dependent asymmetric hopping for the periodic
many-body system, while it is still unclear what skin-like
effects could appear in the non-Hermitian system with strong
interactions. In addition, despite their central importance, it re-
mains challenging to simulate these correlated non-Hermitian
phases in experiments [41], even for few-body cases. In this
case, a newly accessible and fully controllable platform is
expected to simulate correlated non-Hermitian systems.

In this paper, we demonstrate that strong interaction can
create effective boundaries in Hilbert space and induces a
type of non-Hermitian skin state. Based on the analytical
derivations and numerical simulations, it is found that these
interaction-induced non-Hermitian skin states represent the
aggregation of bosonic clusters with nonidentical occupations
in the periodic lattice. In experiments, using a three-boson sys-
tem as an illustration, we map the corresponding eigenstates
to modes of the designed circuit lattice, and the non-Hermitian
few-body aggregation effect is verified by measuring the spa-
tial impedance response.

II. INTERACTION-INDUCED NON-HERMITIAN
AGGREGATION EFFECTS

We consider correlated bosons with asymmetric hoppings
on a one-dimensional (1D) chain under the periodic boundary
condition (PBC). The lattice length is L, and the number of
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FIG. 1. Interaction-induced non-Hermitian aggregation effects in
Hilbert space. (a). The three-dimensional (3D) configuration space
for the probability amplitude of three bosons. (b). Illustration of wave
vectors parallel/perpendicular to both one-dimensional (1D) and
two-dimensional (2D) effective boundaries. (c). Schematic diagram
of wave vectors parallel/perpendicular to the effective boundary in
the N-boson subspace with two bosonic clusters.

bosons is N. The system can be described by the nonreciprocal
1D Bose-Hubbard Hamiltonian as

H = −
∑

l

[J+a+
l+1al + J−a+

l al+1] + 0.5U
∑

l

nl (nl − 1),

(1)
where a+

l (al ) and nl = a+
l al are the creation (annihilation)

and particle number operators, respectively. Here, J± define
asymmetric hopping strengths along positive and negative
directions, and U corresponds to the onsite interaction en-
ergy. We start to consider a simple case with N = 3. The
three-boson solution can be expanded in Hilbert space as
|ψ〉 = 1√

6

∑L
m,n,q=1 cmnqa+

ma+
n a+

q |0〉, where |0〉 is the vacuum
state, and cmnq is the probability amplitude of the first, sec-
ond, and third bosons at sites m, n, and q. Substituting the
Hamiltonian and |ψ〉 into the stationary Schrödinger equation
H |ψ〉 = ε|ψ〉, we obtain the eigenequation with respect to
cmnq as

εcmnq = −J+ (cm+1,n,q + cm,n+1,q + cm,n,q+1)

− J− (cm−1,n,q + cm,n−1,q + cm,n,q−1)

+ U (δmn + δmq + δnq)cmnq. (2)

To illustrate the distribution of probability amplitude for
three bosons at different energy scales, we divide the con-
figuration space of cmnq into three subspaces, as shown in
Fig. 1(a). Without loss of generality, the lattice length is set
as L = 10. Red dots on the diagonal line of the configura-
tion space (m = n = q) correspond to the subspace with three
bosons located at the same lattice site, where the eigenenergy
and dimension are ε ∼ 3U and 1D, respectively, as illus-
trated by the inset enclosed with a red frame. Blue dots on

the diagonal plane (m = n �= q, m = q �= n, and n = q �=
m) represent the subspace with two bosons locating at the
same lattice site, as shown in the inset with a blue frame,
where the effective energy is ε ∼ U and the dimension is
two-dimensional (2D). Black dots correspond to the subspace
with three bosons located at different lattice sites, as pre-
sented in the inset with a black frame, and the corresponding
energy scale and configuration dimensions are ε ∼ 0 and
three-dimensional (3D), respectively. When the onsite inter-
action is extremely strong (U � J±), the energy mismatch
between these three subspaces becomes very large, making
the higher-energy subspace perform like a potential barrier
embedding in the lower-energy subspace with higher dimen-
sionality [42–45]. In this case, the 2D (1D) subspace with
energy being ε ∼ U (ε ∼ 3U ) can be regarded as the effective
boundary for the 3D (2D) subspace with ε ∼ 0 (ε ∼ U ).

To clarify the distribution of probability amplitude toward
these effective boundaries, hopping strengths perpendicular to
these boundaries should be analyzed. As shown in Fig. 1(b),
we plot wave vectors parallel/perpendicular to the effective
2D (and 1D) boundary in the 3D (and 2D) subspace. Here,
km, kn, and kq represent wave vectors of three bosons in
the periodic lattice. In this case, wave vectors parallel and
perpendicular to the effective 2D boundary (m = n �= q) in the
3D subspace can be expressed as k‖(m=n),⊥(m=n) = km ± kn.
Moreover, k‖(m=n=q) and k⊥(m=n=q), which are in the form of
k‖(m=n=q), ⊥(m=n=q) = k‖(m=n) ± kq, correspond to wave vec-
tors parallel and perpendicular to the effective 1D boundary
(m = n = q) in the 2D subspace.

Using these predefined wave vectors, we first formulate
hopping amplitudes in the 3D subspace perpendicular to 2D
effective boundaries. For this purpose, the three-boson Bloch
Hamiltonian is expressed in the form of a Hatano-Nelson
chain [46] in the direction perpendicular to the 2D boundary
(m = n �= q) as

H
(
k⊥(m=n)

) = J±
m exp(±ikm) + J±

n exp(±ikn)exp
[±ik⊥(m=n)

]
.

(3)

Here, the ± notation represents two terms written in a com-
bined form. For instance, the term J±

n exp(±ikn) corresponds
to two added terms as J+

n exp(+ikn) + J−
n exp(−ikn). Here, J±

i
are the asymmetric hoppings along the direction of ±ki with
i = m or n. Also, J±

⊥(m=n) = J±
m exp[±ik‖(m=n)]exp[∓ik‖(m=n)]

corresponds to the effective hopping in the direction of
±k⊥(m=n). If the effective hopping strengths are unbalanced,
the boundary-induced localization of probability amplitudes
could appear that is like nonreciprocal single-particle systems
with open boundaries. Following direct analytical derivations
(see Appendix A for details), the requirement for symmetric
hopping amplitudes |J+

⊥(m=n)| = |J−
⊥(m=n)| can be expressed as

(J+
m )2 + (J−

n )2 = (J−
m )2 + (J+

n )2 and J+
m J−

n = J−
m J+

n . Ensured
by the identical principle of bosons, this requirement always
holds; that is, the balanced hopping strengths along ±k⊥(m=n)

are satisfied. Hence, the probability amplitude in the 3D sub-
space is in the form of extended states perpendicular to the 2D
effective boundary.

Then we focus on the 2D subspace sustaining the 1D effec-
tive boundary. In this case, we derivate the three-boson Bloch
Hamiltonian perpendicular to the 1D effective boundary
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(m = n = q) in the 2D subspace (with m = n �= q) as

H
(
k⊥(m=n=q)

) = J±
‖(m=n)exp

[±ik‖(m=n)
] + J±

q exp(±ikq)

= J±
⊥(m=n=q)exp

[±ik⊥(m=n=q)
]
, (4)

where J±
⊥(m=n=q) = J±

‖(m=n)exp[±ik‖(m=n=q)] +
J∓

q exp[∓ik‖(m=n=q)] are effective hopping strengths along
±k⊥(m=n=q). It is noted that the symmetric hopping
amplitudes along ±k⊥(m=n=q) require the following equations
to be satisfied (see Appendix A):

∑
i=m,n (J+

i )2 + (J−
q )2 =∑

i=m,n (J−
i )2 + (J+

q )2, J+
m J+

n = J−
m J−

n , and J−
m,nJ+

q = J+
m,nJ−

q .
With the identical principle of bosons, we always have
|J+

⊥(m=n=q)| �= |J−
⊥(m=n=q)| in the 2D subspace. In this case, the

asymmetric hopping strength perpendicular to the effective
1D boundary could make the probability amplitudes of the
three bosons concentrate on this boundary. This phenomenon
is like the non-Hermitian skin effect in single-particle
systems with open boundaries. However, the strong
interaction-induced non-Hermitian skin state in Hilbert space
represents the aggravation of two bound bosons (doublon)
and an isolated boson in the periodic lattice. Hence, we call
this phenomenon the non-Hermitian aggregation effect.

In the following, we generalize non-Hermitian aggrega-
tion effects to N-boson systems. The subspace possessing
two bosonic clusters is considered, where P bosons (la-
beled from N1 to NP) are located at one lattice site and O
bosons (labeled from N1+P to NO+P) are located at another
lattice site with (P, O) ∝ {1, . . . , N}. In this case, the cor-
responding effective boundary could be the subspace with
(P + O) bosons located at the same lattice site and the
remaining bosons stay on the original sites. Like the three-
boson case, wave vectors parallel/perpendicular to such an
effective boundary in an N-boson subspace are illustrated in
Fig. 1(c). Here, k‖(N1=···=NP ) and k‖(N1+P=···=NO+P ) represent
center-of-mass wave vectors of bosonic clusters possessing
P and O bosons, respectively. In this case, wave vectors
parallel and perpendicular to the effective boundary can
be expressed as k‖(N1=···=NO+P ), ⊥(N1=···=NO+P ) = k‖(N1=···=NP ) ±
k‖(N1+P=···=NO+P ).

In this N-boson subspace, the Bloch Hamiltonian perpen-
dicular to the effective boundary is expressed as

H
[
k⊥(N1=···=NO+P )

] = J±
⊥(N1=···=NO+P )exp

[±ik⊥(N1=···=NO+P )
]
,

(5)
where J±

⊥(N1=···=NO+P ) = J±
‖(N1=···=NP )exp[±ik‖(N1=···=NO+P )] +

J∓
‖(N1+P=···=NO+P )exp[∓ik‖(N1=···=NO+P )] are the effective hopping

strengths along ±k⊥(N1=···=NO+P ). Following detailed deriva-
tions (see Appendix B for details), we find that the asymmetric
hopping strength |J+

⊥(N1=···=NO+P )| �= |J−
⊥(N1=···=NO+P )| along the

direction of ±k⊥(N1+P=···=NO+P ) can only exist when the particle
numbers of two bosonic clusters are different (P �= O). In this
case, the interaction-induced skin state could appear in the
subspace sustaining nonidentical occupations. If the PBC is
used for the lattice, the system can be described by the Bloch
Hamiltonian, which could be used to derive the effective
hopping strength perpendicular to the wall in Hilbert space,
regardless of the length for the 1D lattice and the value of P
and O. In this case, the aggregation of two bosonic clusters
with different amounts of bosons should also exist in the
non-Hermitian many-body system with different densities.

Meanwhile, whether the ground state could exhibit the
non-Hermitian aggregation effect depends on the density of
the many-body system. When the density is <1, no more than
one boson locates at a single lattice site for the ground state
in the strong interaction limit. In this case, the aggregation
of two isolated bosons cannot appear for the ground state.
Moreover, if the density equals an integer (n), the identical
occupation of n bosons should exist for the ground state in
the strong interaction limit. Also, the aggregation of bosonic
clusters with identical occupations cannot appear for the
ground state. Meanwhile, if the density is >1 and not equal
to integers, the bosonic clusters with unbalanced occupation
numbers should exist in the ground state for the strong
interaction limit. Hence, the non-Hermitian aggregation
effect should exist in the ground state of many-body systems
when the density is >1 and not equal to integers. In addition,
it is worth noting that the above-proposed skin states in
Hilbert space only appear with PBCs (see Appendix C for
numerical results with open boundary conditions).

To demonstrate the predicted non-Hermitian aggregation
effect induced by strong interactions, we calculate complex
energy spectra and profiles of density of state for the 1D
three-boson system. The parameters are set as J+ = −1,
J− = 0, U = 50, and L = 10. Figures 2(a)–2(c) present the
complex energy spectra for the three subspaces proposed
above. To quantify the localization degree of associated
eigenstates, we calculate the participation ratio (PR) PR =∑

i=[1, nd ] |ϕi|−4/nd , with nd being the number of eigenstates
in the d-dimensional subspace. It is noted that PR is relatively
large for extended states, while it approaches zero for local-
ized states. In this case, we can see that only the eigenstates in
the 2D subspace exhibit significant localizations.

Then we calculate the normalized density of states in each
subspace ψd (m, n, q) = ∑

i=[1, nd ] |ϕi(m, n, q)|2/M, as plot-
ted in Figs. 2(d)–2(f). The denominator M corresponds to
the maximum value for the sum of all eigenstates in the d-
dimensional subspace M = ∑

i=[1, nd ] |ϕi(mmax, nmax, qmax)|2.
It is clearly shown that the density of states in 3D and 1D sub-
spaces are both in the form of extended states. Only the den-
sity of states in the 2D subspace is strongly localized around
the 1D effective boundary. These results clearly indicate that
the interaction-induced skin effect in the Hilbert space of the
three bosons could only appear in the 2D subspace toward
the 1D effective boundary. Moreover, we also numerically
prove that the localization strength of three-body skin states
also depends on the interaction strength and lattice size (see
Appendix C). It is found that the localization strength of
skin states saturates with increasing the interaction strength or
lattice size. Except for the three-boson system, both analytical
and numerical results for the four- and five-body cases are also
provided in Appendix D. We can see that the non-Hermitian
aggregation also appears in these few-body systems.

III. SIMULATING THE INTERACTION-INDUCED
NON-HERMITIAN ADDREGATION EFFECTS

BY CIRCUIT NETWORKS

The direct observation of interaction-induced non-
Hermitian aggregation effect requires the control of
nonreciprocal hopping and interaction strengths, which
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FIG. 2. Results of interaction-induced non-Hermitian aggregation effects for three bosons. (a)–(c) Results of the complex energy spectra
of the three-boson system in three subspaces. The color close to blue (red) corresponds to the localized (extended) eigenstates quantified by
the participation ratio (PR). (d)–(f) Illustrations of the profiles of normalized density of states in three subspaces.

are hard to realize in quantum systems. In this part, we
propose an analog method to construct a circuit lattice
to simulate three-body skin states in Hilbert space. It is
known that the few-body configuration space can be mapped
to the high-dimensional lattice [42–45]. In this case, the
configuration state of the three bosons in Fig. 1(a) can be
regarded as the 3D lattice modes in the single-particle region.
With such an analogy, the probability amplitude of the 1D
three-boson model cmnq is directly mapped to that of the
single particle located at the lattice site (m, n, q) in 3D space.
The nonreciprocal hopping along a certain direction of the
mapped 3D lattice represents the asymmetric hopping of one
boson in the 1D lattice. The onsite potential at three diagonal
planes (m = n, m = q, and n = q) of the mapped 3D lattice
can mimic the onsite interaction. In this case, the behavior of
the three correlated bosons in the 1D lattice can be effectively
simulated by a single particle in the mapped 3D lattice.

Based on the similarity between the circuit Laplacian and
the lattice Hamiltonian [47–59], the mapped 3D lattice can
be realized by electric circuits. As displayed in Fig. 3(a),
we select two planes (m, n, q = 7, the green frame, and
m = n, q, the blue frame) to illustrate the design. Figures
3(b) and 3(c) present the circuit structure at these two planes.
The black, blue, and red nodes correspond to three-boson
states in 3D, 2D, and 1D subspaces. To fulfill the nonre-
ciprocal coupling of adjacent circuit nodes, the capacitor C1

is parallelly connected with a one-way coupling capacitor,
which is realized by a capacitor C2 in series with a negative
impedance converter with current inversion (INIC) [as shown
in Fig. 3(d)]. The particle interaction can be simulated with
suitable groundings, where the capacitor CU (3CU ) is selected
for extra grounding on the diagonal planes (line) of blue (red)
nodes, as presented in Fig. 3(d). The inductor (Lg) is used
to link each node to the ground. Moreover, circuit nodes at
boundaries are connected end-to-end to realize the PBC. In
this case, the circuit eigenequation possesses the same form as
the stationary Schrödinger equation of the three bosons (see

Appendix E), where the voltage Vmnq at circuit node (m, n,
q) corresponds to the three-boson probability amplitude cmnq.
The eigenenergy of the three bosons is directly related to the
eigenfrequency of the designed circuit as ε = f0

2/ f 2 − 6 with
f0 = 1/2π

√
C1Lg. Other parameters are J± = (C1 ± C2)/C1

and U = CU /C1.

To experimentally observe the three-body skin effects, we
fabricate the designed 3D circuit, as shown in Fig. 3(e). Ten
printed circuit boards (PCBs) are applied with a single PCB
containing 10 × 10 nodes in the mn plane. Enlarged views
of the front and back sides of a single PCB are shown in
the right insets. We can see that adjacent circuit nodes are
connected through the capacitor C1 (the black circle) and a
parallelly connected one-way capacitor, which is consistent
with a capacitor C2 (the red circle) and a negative INIC (the
blue block). The grounding capacitor CU on the diagonal plane
is marked by the green block, and the grounding inductor Lg is
enclosed by the yellow block. Here, the values of C1, C2, CU ,
and Lg are taken as 1 nF, 1 nF, 10 nF, and 3.3 μH. Fig-
ures 3(f)–3(h) present measured impedances of three nodes
along the direction of k⊥(m=n,q=1) in the 3D subspace, where
the selected circuit nodes are labeled by (8,3,1), (7,4,1), and
(6,5,1) in Fig. 3(a). We note that impedance peaks of three
circuit nodes all appear from 0.8 to 1.5 MHz, matching the
corresponding eigenenergy (ε ∼ 0) of three bosons in the 3D
subspace. It is shown that peak values of these circuit nodes
are nearly identical. This indicates that no non-Hermitian
aggregation effect appears in the 3D subspace toward the 2D
effective boundary. Moreover, in Figs. 3(j)–3(k), we plot mea-
sured impedances of three circuit nodes along the direction
of k⊥(m=n=q) in the 2D subspace [(8,8,3), (7,7,4), and (6,6,5)
marked by blue dots]. It is shown that significant impedance
peaks only exist from 0.6 to 0.8 MHz, and the peak value
increases as circuit nodes approach the 1D effective bound-
ary, which is in accordance with the theoretical prediction in
Fig. 2(e). Figure 3(l) displays the measured impedance of a
circuit node at (4,4,4) in the 1D subspace. It is shown that

195131-4



OBSERVATION OF NON-HERMITIAN AGGREGATION … PHYSICAL REVIEW B 105, 195131 (2022)

FIG. 3. Experimental simulations of three-body non-Hermitian aggregation effects by circuits. (a) The scheme of two planes (m, n, q = 7)
and (m = n, q) in the three-dimensional (3D) circuit. (b) and (c) present the circuit structures of these two planes. (d) The ground setting of
different circuit nodes and the structure of the one-way coupling capacitor. (e) Photograph image of the fabricated circuit. Insets plot enlarged
views of front and back sides of a single printed circuit board (PCB). The measured impedances of circuit nodes along k⊥(m=n,q=1) in the 3D
subspace for (f)–(h), along k⊥(m=n=q) in the two-dimensional (2D) subspace for (i)–(k), and in the one-dimensional (1D) subspace at (4,4,4)
for (l).

the peak value appears ∼0.46 MHz, which is consistent with
eigenenergies of 3U. All experimental results are in accor-
dance with circuit simulations (see Appendix F). The wider
peaks than that of the numerical results are mainly due to
the larger lossy effect. Approximate results clearly prove the
appearance of interaction-induced non-Hermitian aggregation
effects in the 2D subspace toward the 1D effective boundary.

IV. CONCLUSIONS

In conclusion, we have demonstrated that strong interac-
tion can induce non-Hermitian aggregation effects in periodic
lattices. Direct analytical derivations indicate that the non-
Hermitian aggregation effect should appear in subspaces
sustaining clusters with different amounts of bosons. In ex-
periments, we map three-boson states to modes of the 3D
circuit to simulate the interaction-induced skin states in
Hilbert space. It is also interesting to investigate other prop-
erties of few-body non-Hermitian aggregation effects based
on the designed circuit simulator, such as critical phenom-
ena and competition with disorder-induced localizations. Our
proposal provides a flexible platform to investigate and visual-
ize interesting phenomena related to particle interactions and
non-Hermitian physics.

Note added. We became aware of a theoretical work [60]
that is focused on the skin cluster in non-Hermitian systems.
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APPENDIX A: ANALYTICAL DERIVATION OF
REQUIREMENTS FOR NON-HERMITIAN AGGREGATION

EFFECTS OF THREE BOSONS

In this appendix, we provide a detailed derivation of the
requirement of interaction-induced skin states in three-boson
subspaces with different dimensions. First, we explore the 3D
subspace with three bosons located at different lattice sites,
and the associated effective boundaries correspond to the state
with only two bosons occupying the same lattice site. In this
case, we express the three-boson Bloch Hamiltonian (with
m �= n �= q) in the form of a single-particle Hatano-Nelson
chain perpendicular to the 2D boundary (m = n �= q) as

H
(
k⊥(m=n)

) = J±
m exp(±ikm) + J±

n exp(±ikn)

= J±
⊥(m=n)exp

[±ik⊥(m=n)
]
, (A1)

where J±
⊥(m=n) = J±

m exp[±ik‖(m=n)] + J∓
n exp[∓ik‖(m=n)] are

the effective hopping along ±k⊥(m=n) with km,n = k‖(m=n) ±
k⊥(m=n). If |J+

⊥(m=n)|�= |J−
⊥(m=n)|, skin states could exist toward
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this effective 2D boundary. To judge the relationship between |J+
⊥(m=n)| and |J−

⊥(m=n)|, we square both terms as∣∣J+
⊥(m=n)

∣∣2 = {
J+

m exp
[
ik‖(m=n)

] + J−
n exp

[−ik‖(m=n)
]}{

J+
m exp

[−ik‖(m=n)
] + J−

n exp
[
ik‖(m=n)

]}
= (J+

m )2 + (J−
n )2 + J+

m J−
n exp

[−2ik‖(m=n)
] + J+

m J−
n exp

[
2ik‖(m=n)

]
, (A2)∣∣J−

⊥(m=n)

∣∣2 = {
J−

m exp
[−ik‖(m=n)

] + J+
n exp

[
ik‖(m=n)

]}{
J−

m exp
[
ik‖(m=n)

] + J+
n exp

[−ik‖(m=n)
]}

= (J−
m )2 + (J+

n )2 + J−
m J+

n exp
[−2ik‖(m=n)

] + J−
m J+

n exp
[
2ik‖(m=n)

]
. (A3)

Comparing coefficients of different powers of exp[ik‖(m=n)], we find that the requirements of |J+
⊥(m=n)| = |J−

⊥(m=n)| can be
expressed as

(J+
m )2 + (J−

n )2 = (J−
m )2 + (J+

n )2, J+
m J−

n = J−
m J+

n . (A4)

Based on the identical principle of bosons, it is easy to know that Eq. (A4) is always satisfied. Hence, no skin state exists in
this 3D subspace toward the 2D effective boundary.

Then we consider the 2D subspace of two bosons located at the same lattice site (m = n �= q), and the effective boundary
corresponds to the 1D subspace with all three bosons occupying the same lattice site (m = n = q). We express the corresponding
Bloch Hamiltonian perpendicular to the effective 1D boundary (m = n = q) as

H
[
k⊥(m=n=q)

] = J±
m exp (±ikm) + J±

n exp (±ikn) + J±
q exp (±iq)

= {
J±

m exp
[±ik⊥(m=n)

] + J±
n exp

[∓ik⊥(m=n)
]}

exp
[±ik‖(m=n)

] + J±
q exp (±iq)

= J±
‖(m=n) exp

[±ik‖(m=n)
] + J±

q exp (±iq)

= {
J±
‖(m=n) exp

[±ik‖(m=n=q)
] + J∓

q exp
[∓ik‖(m=n=q)

]}
exp

[±ik⊥(m=n=q)
]

= J±
⊥(m=n=q) exp

[±ik⊥(m=n=q)
]
. (A5)

Squaring both terms of |J±
⊥(m=n=q)|, then we get∣∣J+

⊥(m=n=q)

∣∣2 = (J+
m )2 + J+

m J+
n

{
exp

[−2ik⊥(m=n)
] + exp

[
2ik⊥(m=n)

]} + (J+
n )2 + (J−

q )2

+ {
J+

m exp
[
ik⊥(m=n)

] + J+
n exp

[−ik⊥(m=n)
]}

J−
q exp

[
2ik‖(m=n=q)

]
+ {

J+
m exp

[−ik⊥(m=n)
] + J+

n exp
[
ik⊥(m=n)

]}
J−

q exp
[−2ik‖(m=n=q)

]
, (A6)∣∣J−

⊥(m=n=q)

∣∣2 = (J−
m )2 + J−

m J−
n

{
exp

[
2ik⊥(m=n)

] + exp
[−2ik⊥(m=n)

]} + (J−
n )2 + (J+

q )2

+ {
J−

m exp
[−ik⊥(m=n)

] + J−
n exp

[
ik⊥(m=n)

]}
J+

q exp
[−2ik‖(m=n=q)

]
+ {

J−
m exp

[
ik⊥(m=n)

] + J−
n exp

[−ik⊥(m=n)
]}

J+
q exp

[
2ik‖(m=n=q)

]
. (A7)

Comparing coefficients of different powers of exp[ik‖(m=n=q)], we find that the requirements for realizing |J+
⊥(m=n=q)| =

|J−
⊥(m=n=q)| can be expressed as

(J+
m )2 + (J+

n )2 + (J−
q )2 = (J−

m )2 + (J−
n )2 + (J+

q )2, J+
m J+

n = J−
m J−

n , and J+
m,nJ−

q = J−
m,nJ+

q . (A8)

Based on the identical principle of bosons, we conclude that Eq. (A8) cannot be satisfied, meaning skin states could exist in
this 2D subspace toward the effective 1D boundary. In addition, in the Hermitian limit of three-boson system with J+

m = J−
m ,

J+
n = J−

n , J+
q = J−

q , we can see that Eq. (A8) is always satisfied, making the asymmetric coupling strength along the interaction-
induced effective wall disappear. In this case, the strong interaction-induced aggregation effects cannot exist in the Hermitian
system.

APPENDIX B: ANALYTICAL DERIVATION OF REQUIREMENTS FOR NON-HERMITIAN AGGREGATION
EFFECTS OF N BOSONS

In this appendix, we generalize the interaction-induced non-Hermitian aggregation effects to the N-boson system. For
universality, we consider the subspace with two bosonic clusters located at different lattice sites, where P bosons (marked
from N1 to NP) are located at one lattice site and O bosons (marked from N1+P to NO+P) are located at another lattice site. Here,
we have (P, O) ∝ {1, . . . , N}.
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First, we consider the system under the restriction of P = O. In this case, we express the N-boson Bloch Hamiltonian
perpendicular to the effective boundary, which corresponds to the state with P + O bosons located in the same lattice, as

H
[
k⊥(N1=···=NO+P )

] = J±
⊥(N1=···=NO+P )exp

[±ik⊥(N1=···=NO+P )
]
, (B1)

where J±
⊥(N1=···=NO+P ) = J±

‖(N1=···=NP )exp[±ik‖(N1=···=NO+P )] + J∓
‖(N1+P=···=NO+P )exp[∓ik‖(N1=···=NO+P )] are the effective hopping

strengths along ±k⊥(N1=···=NO+P ). Moreover, the hopping amplitudes J±
‖(N1=···=NP ) and J±

‖(N1+P=···=NO+P ) are expressed as

J±
‖(N1=···=NP ) = J±

N1
exp

[±ik⊥(N1=N2 )
]

exp
[±ik⊥(N1=N2=N3 )...

]
exp

[±ik⊥(N1=···=NP )
]

+ J±
N2

exp
[∓ik⊥(N1=N2 )

]
exp

[±ik⊥(N1=N2=N3 )...
]

exp
[±ik⊥(N1=···=NP )

]
+ J±

N3
exp

[∓ik⊥(N1=N2=N3 )
]

exp
[±ik⊥(N1=N2=N3=N4 )...

]
exp

[±ik⊥(N1=···=NP )
]

+ J±
N4

exp
[∓ik⊥(N1=N2=N3=N4 )

]
exp

[±ik⊥(N1=N2=N3=N4=N5 )...
]

exp
[±ik⊥(N1=···=NP )

]
+ · · · + J±

(NP−1) exp
[∓ik⊥(N1=···=NP−1 )

]
exp

[±ik⊥(N1=···=NP )
]

+ J±
NP

exp
[∓ik⊥(N1=···=NP )

]
, (B2)

J±
‖(NP+1=···=NP+O ) = J±

NP+1
exp

[±ik⊥(NP+1=NP+2 )
]
. . . exp

[±ik⊥(NP+1=···=NP+O )
]

+ J±
NP+2

exp
[∓ik⊥(NP+1=NP+2 )

]
exp

[±ik⊥(NP+1=NP+2=NP+3 )...
]

exp
[±ik⊥(NP+1=···=NP+o)

]
+ J±

NP+3
exp

[∓ik⊥(NP+1=NP+2=NP+3 )
]

exp
[±ik⊥(NP+1=NP+2=NP+3=NP+4 )...

]
exp

[±ik⊥(NP+1=···=NP+O )
]

+ J±
NP+4

exp
[∓ik⊥(NP+1=NP+2=NP+3=NP+4 )

]
exp

[±ik⊥(NP+1=NP+2=NP+3=NP+4=NP+5 )...
]

× exp
[±ik⊥(NP+1=···=NP+O )

]
+ · · · + J±

NP+O−1
exp

[∓ik⊥(NP+1=···=NP+O−1 )
]

exp
[±ik⊥(NP+1=···=NP+O )

]
+ J±

NP+O
exp

[∓ik⊥(NP+1=···=NP+O )
]
. (B3)

In this case, the following expressions must be satisfied to make |J+
⊥(N1=···=NO+P )|= |J−

⊥(N1=···=NO+P )|:∑
i=[N1, NP]

(J+
i )2 +

∑
j=[NP+1,NP+o]

(J−
j )2 =

∑
i=[N1, NP]

(J−
i )2 +

∑
j=[NP+1,NP+O]

(J+
j )2,

J+
i J+

j + J−
k J−

l = J−
i J−

j + J+
k J+

l with i �= j ∝ [N1, Np], k �= l ∝ [NP+1, NP+O],

J−
i J+

k = J+
i J−

k with i ∝ [N1, NP], k ∝ [NP+1, NP+O]. (B4)

Under the limitation of identical principle of bosons, Eq. (B4) is always satisfied. Hence, the non-Hermitian aggregation
effects cannot appear in the subspace toward the effective boundary with P = O.

Then we focus on the N-boson system with P �= O. Similarly, referring to Eqs. (B1)–(B3), the requirement of symmetric
hopping strengths with P < O can be expressed as∑

i=[N1, NP]

(J+
i )2 +

∑
j=[NP+1,NP+o]

(J−
j )2 =

∑
i=[N1, NP]

(J−
i )2 +

∑
j=[NP+1,NP+O]

(J+
j )2,

J+
i J+

j + J−
k J−

l = J−
i J−

j + J+
k J+

l with i �= j ∝ [N1, NP], k �= l ∝ [NP+1, NP+P],

J+
k J+

l = J−
k J−

l with k ∝ [NP+1, NP+P] and l ∝ [NP+P+1, NP+O],

J−
i J+

k = J+
i J−

k with i ∝ [N1, NP], k ∝ [NP+1, NP+O]. (B5)

Using the exchange symmetry of the multiboson wave function, Eq. (B5) can be rewritten as∑
i=[N1, NP]

(J+
i )2 +

∑
j=[NP+1,NP+o]

(J−
j )2 =

∑
i=[N1, NP]

(J−
i )2 +

∑
j=[NP+1,NP+O]

(J+
j )2,

J+
i J+

j + J−
k J−

l = J−
i J−

j + J+
k J+

l with i �= j ∝ [N1, NP], k �= l ∝ [NP+1, NP+O],

J+
k J+

l = J−
k J−

l with k �= l ∝ [NP+1, NP+O],

J−
i J+

k = J+
i J−

k with i ∝ [N1, NP], k ∝ [NP+1, NP+O]. (B6)
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FIG. 4. Numerical results of three bosons in the one-dimensional
(1D) chain with open boundaries. (a)–(c) Results of the complex
energy spectra of the three-boson system in three subspaces with
different energies and dimensions. The blue color corresponds to the
localized eigenstates quantified by the PR. (d)–(f) Illustrations of the
profiles of normalized density of states in three subspaces.

Under the limitation of the identical principle of bosons,
we know that Eq. (B6) cannot be satisfied. Hence, interaction-
induced skin states in Hilbert space (non-Hermitian aggrega-
tion effects) can appear in the subspace toward the effective
boundary with nonidentical occupation P �= O.

APPENDIX C: NUMERICAL RESULTS OF THE
THREE-BOSON SYSTEM WITH OPEN BOUNDARIES

AND DIFFERENT INTERACTION STRENGTHS
AND LATTICE SIZES

In this appendix, we give more numerical results and
discussion on the interaction-induced non-Hermitian aggrega-
tion effects with different boundaries conditions, interaction
strengths, and lattice sizes.

At first, we show that the interaction-induced non-
Hermitian aggregation effect could only appear in the
three-boson lattice with PBCs. Under open boundary con-
ditions, like the single-particle case, all correlated bosons
accumulate at physical boundaries. To further illustrate this
phenomenon, we calculate the complex energy spectra and
profiles of density of states for the 1D three-boson system with
open boundaries, as shown in Fig. 4. It is clearly shown that
the eigenstates in each subspace are strongly localized around
the zero-dimensional corner.

Then we study the influence of onsite interaction strengths
on non-Hermitian aggregation effects. As shown in Figs. 5(a)–
5(d), we numerically calculate the complex energy spectra
and the profile of the density of states for the 1D three-boson
system with the interaction strength being U = 40, 20, 10,
and 5. Other parameters are set as J+ = −1, J− = 0, and
L = 10. Like the result shown in the main text, the skin state in
Hilbert space only appears in the 2D subspace with different
interaction energies. Moreover, based on the calculated PR
and ψd (m, n, q), we can see that the localization in Hilbert
space is significantly influenced by the interaction energy,
where the localization degree of skin states in the 2D subspace
decreases with the interaction energy becoming weaker. This
is because the coupling strength of probability amplitudes in
different subspaces increases with decreasing the onsite in-
teraction energy, making the effective boundary much fuzzier
than the case with the strong interaction. To further quantify
the localization for the skin state in Hilbert space with differ-
ent interaction strengths, we calculate the average PR of all
eigenmodes in the 2D energy sector [around U in Fig. 2(b)],
where two bosons locate at a single site and the remaining
one locates at another site, as shown in Fig. 5(e). Here, we set
L = 10. We can see that the average PR approaches a constant
with increasing the interaction energy.

FIG. 5. (a)–(d) present the complex energy spectra and the profile of the density of states for the one-dimensional (1D) three-boson system
with the interaction strength being U = 40, 20, 10, and 5, respectively. Other parameters are set as J+ = −1, J− = 0, and L = 10. (e) The
calculated the average participation ratio (PR) of all eigenmodes in the energy sector [around U in Fig. 2(b)] with different interaction strengths.
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FIG. 6. (a)–(d) present the complex energy spectra and the profile of the density of states for the one-dimensional (1D) three-boson system
with lattice sizes of L = 15, 20, 25, and 30, respectively. Other parameters are set as J+ = −1, J− = 0, and U = 50. (e) The calculated the
average participation ratio (PR) of all eigenmodes in the energy sector [around U in Fig. 2(b)] with different lattice sizes.

Finally, we give numerical results of three bosons with
different lattice sizes. As shown in Figs. 6(a)–6(d), we numer-
ically calculate the complex energy spectra and the profile of
the density of states for the 1D three-boson system with lattice
lengths of L = 15, 20, 25, and 30. Other parameters are set as
J+ = −1, J− = 0, and U = 50. Like the results shown in the
main text, the skin effect always appears in the 2D subspace
with different lattice lengths. To quantify the localization for
the skin state in Hilbert space with different lattice sizes, we
calculate the average PR of all eigenmodes in the 2d energy
sector (around U), as shown in Fig. 6(e). Here, we set U = 50.
It is found that the localization strength of skin states (aver-
aged PR) saturates with increasing the lattice size, indicating
the exponential decay of skin states in the Hilbert space.

APPENDIX D: ANALYTICAL AND NUMERICAL RESULTS
OF THE FOUR- AND FIVE-BOSON SYSTEMS

To further prove the analytical results of the N-body
bosonic system discussed above, in the following, we will
give both numerical and analytical results of two examples,
which contain subspaces with P = O > 1 and P �= O > 1,
respectively. First, a simple case with N = 4 is considered, and
we focus on the 2D subspace with P = O = 2. In this case,
the four-boson Bloch Hamiltonian (with m = n �= q = p) can
be expressed in the form of a single-particle Hatano-Nelson
chain perpendicular to the effective 1D boundary (m = n =
q = p) as

H
[
k⊥(m=n=q=p)

] = J±
m exp (±ikm) + J±

n exp (±ikn) + J±
q exp (±iq) + J±

p exp (±ip)

= {
J±

m exp
[±ik⊥(m=n)

] + J±
n exp

[∓ik⊥(m=n)
]}

exp
[±ik‖(m=n)

]
+ {

J±
q exp

[±ik⊥(q=p)
] + J±

p exp
[∓ik⊥(q=p)

]}
exp

[±ik‖(q=p)
]

= J±
‖(m=n) exp

[±ik‖(m=n)
] + J±

‖(q=p) exp
[±ik‖(q=p)

]
= {

J±
‖(m=n) exp

[±ik‖(m=n=q=p)
] + J∓

‖(q=p) exp
[∓ik‖(m=n=q=p)

]}
exp

[±ik⊥(m=n=q=p)
]

= J±
⊥(m=n=q=p) exp

[±ik⊥(m=n=q=p)
]
. (D1)

Squaring both terms of |J±
⊥(m=n=q=p)|, then we get∣∣J+

⊥(m=n=q=p)

∣∣2 = (J+
m )2 + (J+

n )2 + (J−
q )2 + (J−

p )2 + J+
m J+

n

{
exp

[−2ik⊥(m=n)
] + exp

[
2ik⊥(m=n)

]}
+ J−

q J−
p

{
exp

[−2ik⊥(p=q)
] + exp

[
2ik⊥(p=q)

]} + {
J+

m exp
[
ik⊥(m=n)

] + J+
n exp

[−ik⊥(m=n)
]}

× {
J−

q exp
[
ik⊥(q=p)

] + J−
p exp

[−ik⊥(q=p)
]}

exp
[
2ik‖(m=n=q=p)

] + {
J+

m exp
[−ik⊥(m=n)

] + J+
n exp

[
ik⊥(m=n)

]}
× {

J−
q exp

[−ik⊥(q=p)
] + J−

p exp
[
ik⊥(q=p)

]}
exp

[−2ik‖(m=n=q=p)
]
, (D2)
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∣∣J−
⊥(m=n=q=p)

∣∣2 = (J−
m )2 + (J−

n )2 + (J+
q )2 + (J+

p )2 + J−
m J−

n

{
exp

[−2ik⊥(m=n)
] + exp

[
2ik⊥(m=n)

]}
+ J+

q J+
p

{
e
[−2ik⊥(p=q)

] + exp
[
2ik⊥(p=q)

]} + {
J−

m exp
[
ik⊥(m=n)

] + J−
n exp

[−ik⊥(m=n)
]}

× {
J+

q exp
[
ik⊥(q=p)

] + J+
p exp

[−ik⊥(q=p)
]}

exp
[
2ik‖(m=n=q=p)

] + {
J−

m exp
[−ik⊥(m=n)

] + J−
n exp

[
ik⊥(m=n)

]}
× {

J+
q exp

[−ik⊥(q=p)
] + J+

p exp
[
ik⊥(q=p)

]}
exp

[−2ik‖(m=n=q=p)
]
. (D3)

The requirements for realizing the relationship of |J+
⊥(m=n=q=p)| = |J−

⊥(m=n=q=p)| can be expressed as

(J+
m )2 + (J+

n )2 + (J−
q )2 + (J−

p )2 = (J−
m )2 + (J−

n )2 + (J+
q )2 + (J+

p )2,

J+
m J+

n + J−
q J−

p = J−
m J−

n + J+
q J+

p , J+
m,nJ−

q,p = J−
m,nJ+

q,p. (D4)

Based on the identical principle of bosons, we know that
Eq. (D4) is always satisfied. Hence, no skin states exist in the
four-boson subspace with P = O = 2.

We numerically calculate the complex energy spectra and
PR of the 1D four-boson system. The parameters used are set
as J+ = −1, J− = 0, U = 50, and L = 9. Figures 7(a)–7(e)
present the energy spectra of five subspaces with different
energies and dimensions. The first subspace [in Fig. 7(a)] cor-
responds to the state with all four bosons located at different
lattice sites, and the associated eigenenergy is approximately
ε ∼ 0. The second subspace [in Fig. 7(b)] corresponds to
the state with only two bosons located in the same lattice,
and the associated eigenenergy is approximately ε ∼ U . The
third subspace [in Fig. 7(c)] corresponds to the state with two
bosons located at the same lattice site and the other two bosons
located at another lattice site. In this case, the associated
eigenenergy is approximately ε ∼ 2U . The fourth and fifth

subspaces [in Figs. 7(d) and 7(e)] correspond to states with
three and four bosons located at the same lattice site, and the
corresponding eigenenergies are approximately ε ∼ 3U and
ε ∼ 6U , respectively. As clearly shown in Figs. 7(a) and 7(c),
the PR does not exhibit localization behavior with identical
occupations of four bosons. Hence, there is no skin effect in
subspaces with P = O = 1 and P = O = 2. Moreover, when
the subspace sustains different bosonic clusters (nonidentical
occupations), as shown in Fig. 7(b) (P = 1 and O = 2) and
Fig. 7(d) (P = 1 and O = 3), the interaction-induced skin
state in Hilbert space could appear.

Then we give another example of the five-boson system,
where a 2D subspace with P = 2 and O = 3 exists. In this
case, the five-boson Bloch Hamiltonian in the 2D subspace
(m = n �= q = p = o) could be expressed in the form of a
single-particle Hatano-Nelson chain perpendicular to the ef-
fective 1D boundary (m = n = q = p = o) as

H
[
k⊥(m=n=q=p=o)

] = J±
m exp(±ikm) + J±

n exp(±ikn) + J±
q exp[±iq] + J±

p exp(±ip) + J±
o exp(±io)

= {
J±

m e
[±ik⊥(m=n)

] + J±
n exp

[∓ik⊥(m=n)
]}

exp
[±ik‖(m=n)

]
+ ({

J±
q exp

[±ik⊥(q=p)
] + J±

p exp
[∓ik⊥(q=p)

]}
exp

[±ik⊥(q=p=o)
]

+ J±
o exp

[∓ik⊥(q=p=o)
])

exp
[±ik‖(q=p=o)

]
= J±

‖(m=n) exp
[±ik‖(m=n)

] + J±
‖(q=p=o) exp

[±ik‖(q=p=o)
]

= {
J±
‖(m=n) exp

[±ik‖(m=n=q=p=o)
] + J∓

‖(q=p=o) exp
[∓ik‖(m=n=q=p=o)

]}
exp

[±ik⊥(m=n=q=p=o)
]

= J±
⊥(m=n=q=p=o) exp

[±ik⊥(m=n=q=p=o)
]
. (D5)

Squaring both terms of |J±
⊥(m=n=q=p=o)|, then we get∣∣J+

⊥(m=n=q=p=o)

∣∣2 = (J+
m )2 + (J+

n )2 + (J−
q )2 + (J−

p )2 + (J−
o )2 + J+

m J+
n

{
exp

[−2ik⊥(m=n)
] + exp

[
2ik⊥(m=n)

]}
+ J−

q J−
p

{
exp

[−2ik⊥(p=q)
] + exp

[
2ik⊥(p=q)

]}
+ J−

q J−
o

(
exp

{−[
2ik⊥(q=p=o) + k⊥(q=p)

]} + exp
[
2ik⊥(q=p=o) + k⊥(q=p)

])
+ J−

p J−
o

(
exp

{−[
2ik⊥(q=p=o) − k⊥(q=p)

]} + exp
[
2ik⊥(q=p=o) − k⊥(q=p)

])
+ J+

m J−
q

(
exp

{
i
[
k⊥(m=n) + k⊥(q=p) + k⊥(q=p=o)

]}+ exp
{−i

[
k⊥(m=n) + k⊥(q=p) + k⊥(q=p=o)

]})
+ J+

m J−
p

(
exp

{
i
[
k⊥(m=n) − k⊥(q=p) + k⊥(q=p=o)

]}+ exp
{−i

[
k⊥(m=n) − k⊥(q=p) + k⊥(q=p=o)

]})
+ J+

m J−
o

(
exp

{
i
[
k⊥(m=n) − k⊥(q=p=o)

]} + exp
{−i

[
k⊥(m=n) − k⊥(q=p=o)

]})
+ J+

n J−
q

(
exp

{
i
[−k⊥(m=n) + k⊥(q=p) + k⊥(q=p=o)

]}
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+ exp
{−i

[−k⊥(m=n) + k⊥(q=p) + k⊥(q=p=o)
]}) + J+

n J−
p

(
exp

{
i
[−k⊥(m=n) − k⊥(q=p) + k⊥(q=p=o)

]}
+exp

{−i
[−k⊥(m=n) − k⊥(q=p) + k⊥(q=p=o)

]})
+ J+

n J−
o

(
exp

{
i
[−k⊥(m=n) − k⊥(q=p=o)

]} + exp
{−i

[−k⊥(m=n) − k⊥(q=p=o)
]})

, (D6)∣∣J−
⊥(m=n=q=p=o)

∣∣2 = (J−
m )2 + (J−

n )2 + (J+
q )2 + (J+

p )2 + (J+
o )2 + J−

m J−
n

{
exp

[−2ik⊥(m=n)
] + exp

[
2ik⊥(m=n)

]}
+ J+

q J+
p

{
exp

[−2ik⊥(p=q)
] + exp

[
2ik⊥(p=q)

]}
+ J+

q J+
o

(
exp

{−[
2ik⊥(q=p=o) + k⊥(q=p)

]} + exp
[
2ik⊥(q=p=o) + k⊥(q=p)

])
+ J+

p J+
o

(
exp

{−[
2ik⊥(q=p=o) − k⊥(q=p)

]} + exp
[
2ik⊥(q=p=o) − k⊥(q=p)

])
+ J−

m J+
q

(
exp

{
i
[
k⊥(m=n) + k⊥(q=p) + k⊥(q=p=o)

]}+ exp
{−i

[
k⊥(m=n) + k⊥(q=p) + k⊥(q=p=o)

]})
+ J−

m J+
p

(
exp

{
i
[
k⊥(m=n) − k⊥(q=p) + k⊥(q=p=o)

]}+ exp
{−i

[
k⊥(m=n) − k⊥(q=p) + k⊥(q=p=o)

]})
+ J−

m J+
o

(
exp

{
i
[
k⊥(m=n) − k⊥(q=p=o)

]} + exp
{−i

[
k⊥(m=n) − k⊥(q=p=o)

]})
+ J−

n J+
q

(
exp

{
i
[−k⊥(m=n) + k⊥(q=p) + k⊥(q=p=o)

]}+ exp
{−i

[−k⊥(m=n) + k⊥(q=p) + k⊥(q=p=o)
]})

+ J−
n J+

p

(
exp

{
i
[−k⊥(m=n) − k⊥(q=p) + k⊥(q=p=o)

]}+ exp
{−i

[−k⊥(m=n) − k⊥(q=p) + k⊥(q=p=o)
]})

+ J−
n J+

o

(
exp

{
i
[−k⊥(m=n) − k⊥(q=p=o)

]} + exp
{−i

[−k⊥(m=n) − k⊥(q=p=o)
]})

. (D7)

Hence, the requirements for realizing the relationship of |J+
⊥(m=n=q=p=o)| = |J−

⊥(m=n=q=p=o)| can be expressed as

(J+
m )2 + (J+

n )2 + (J−
q )2 + (J−

p )2 + (J−
o )2 = (J−

m )2 + (J−
n )2 + (J+

q )2 + (J+
p )2 + (J+

o )2,

J+
m J+

n + J−
q J−

p = J−
m J−

n + J+
q J+

p ,

J+
q J+

o = J−
q J−

o ,

J+
p J+

o = J−
p J−

o ,

J+
m,nJ−

q,p,o = J−
m,nJ+

q,p,o. (D8)

In this case, based on the identical principle of bosons, we
know that Eq. (D8) cannot be satisfied. Hence, skin states exist
in the 2D subspace with P = 2 and O = 3.

To prove the five-boson analytical result, we numerically
calculate the complex energy spectra and PR of the 1D five-
boson system. The parameters used are set as J+ = −1, J− =
0, U = 50, and L = 6. Figures 8(a)–8(g) present the energy
spectra of seven subspaces. The first subspace [in Fig. 8(a)]
corresponds to the state with all five bosons located at dif-
ferent lattices, and the associated eigenenergy is ∼0. In this
case, the identical occupation makes the skin state unable to
appear. The second subspace [in Fig. 8(b)] corresponds to
the state with only two bosons located in the same lattice,
and the associated eigenenergy is ∼U . In this case, there
is an unbalanced bosonic cluster (P = 1 and O = 2), and
the skin state could appear toward the effective boundary;
that is, three bosons are located at the same site. The third
subspace [in Fig. 8(c)] corresponds to the state with a pair
of two-boson clusters located at different lattice sites, where
the associated eigenenergy is ∼2U . In this case, there are
unbalanced bosonic clusters (P = 1 and O = 2), and the skin
state exists in this subspace. The fourth subspace [in Fig. 8(d)]
corresponds to the state with only three bosons located at the
same site, and the associated eigenenergy is ∼3U . In this case,
there are unbalanced bosonic clusters (P = 1 and O = 3),

and the skin state can also appear. The fifth subspace [in
Fig. 8(e)] corresponds to the state with three bosons located
at the same lattice site and the other two bosons located at
another lattice site, where the associated eigenenergy is ∼4U .

FIG. 7. (a)–(e) present the complex energy spectra and PR for
five subspaces of the one-dimensional (1D) four-boson system,
where the associated parameters are set as J+ = −1, J− = 0, U =
50, and L = 9.
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FIG. 8. (a)–(g) present the energy spectra of seven subspaces for the one-dimensional (1D) five-boson system with used parameters set as
J+ = −1, J− = 0, U = 50, and L = 6.

In this case, there are unbalanced bosonic clusters (P = 2 and
O = 3), and the skin state appears. The sixth and seventh
subspaces [in Figs. 8(f) and 8(g)] correspond to states with
four and five bosons located at the same lattice site, and the
associated eigenenergies are ∼6U and 10U , respectively. The
sixth subspace possesses unbalanced bosonic clusters (P = 1
and O = 4), and the skin state could appear. From the above
numerical calculations, we can conclude that all subspaces
with unbalanced bosonic clusters (nonidentical occupations)
can exhibit skin effects, which is consistent with the analytical
prediction.

APPENDIX E: DETAILS FOR THE DERIVATION OF THE
CIRCUIT EIGENEQUATION

In this appendix, we give a detailed derivation of the
circuit eigenequation and the correspondence between the de-
signed 3D circuit lattice and the 1D three-body Bose-Hubbard
Hamiltonian. Ensured by the PBC, each circuit node (m, n, q)
is connected with six adjacent nodes, where a capacitor C1

and a one-way capacitor C2 [being positive (negative) along
the m (−m), n (−n), and q (−q) directions] are parallelly
connected to realize nonreciprocal coupling between linked
circuit nodes. Moreover, each circuit node is grounded by an
inductor (Lg), and the extra capacitor CU is grounded on the
circuit nodes within diagonal planes (m = n �= q, m = q �=
n, and n = q �= m) to realize the effective onsite interaction.
In this case, circuit nodes on the diagonal line (red nodes,
m = n = q) are grounded by three CU . Carrying out Kirch-
hoff’s law on the circuit node (m, n, q), we obtain the following
equation:

Imnq = iω−1

{[
− 1

Lg
+ ω2CU (δmn + δmq + δnq)

]
Vmnq

+ (C1 ± C2)[(Vmnq − Vm±1,n,q ) + (Vmnq − Vm,n±1,n)

+ (Vmnq − Vm,n,q±1)]

}
, (E1)

where Imnq and Vmnq are the net current and voltage of node
(m, n, q), and the voltage on the circuit node (m, n, q) is in the
form of Vmnqeiωt .

We assume that there is no external source, so that the
current flowing out of the node is zero. In this case, Eq. (E1)
becomes(

f 2
0

f 2
− 6

)
Vmnq = −C1 ± C3

C1
(Vm±1,n,q + Vm,n±1,q + Vm,n,q±1)

+ CU

C1
(δmn + δmq + δnq)Vmnq, (E2)

with f0 = 1/2π
√

C1Lg. We provide the following identifica-
tion of tight-binding parameters in terms of circuit elements:

J± = C1 ± C3

C1
, U = CU

C1
, ε = f 2

0

f 2
− 6, (E3)

where J±, U , and ε correspond to the asymmetric hopping
strength, the onsite interaction energy, and the eigenenergy of
the 1D three-body Bose-Hubbard model. In this case, Eq. (E2)
becomes

εcmnq = −J± (cm±1,n,q + cm,n±1,q + cm,n,q±1)

+ U (δmn + δmq + δnq)cmnq, (E4)

with cmnq corresponding to Vmnq. This equation is consistent
with the eigenequation of cmnq [Eq. (3) in the main text] for
the nonreciprocal 1D Bose-Hubbard model of three bosons.
Hence, our designed electric circuits can become an ideal
platform for simulating interaction-induced skin effects in the
Hilbert space of three bosons.

APPENDIX F: NUMERICAL RESULTS OF CIRCUIT
IMPEDANCE RESPONSES

In this appendix, we perform circuit simulations using
LTSpice software to illustrate the interaction-induced skin
effect in Hilbert space. Here, the values of C1, C2, CU , and
Lg are taken as 1 nF, 1 nF, 10 nF, and 3.3 μH. To test
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FIG. 9. Numerical results of designed three-dimensional (3D) electric circuits. (a)–(c) The impedance responses of three circuit nodes
located in the 3D subspace along k⊥(m,n,q=1). (d)–(f) The impedance responses of three circuit nodes in the two-dimensional (2D) subspace
along k⊥(m=n=q). (g) The simulated impedance responses of a circuit node in the one-dimensional (1D) subspace at (4,4,4).

whether skin effects exist in the 3D subspace toward the 2D
effective boundary, impedance responses of different circuit
nodes along the direction of k⊥(m=n,q) should be analyzed.
Here, we select three circuit nodes in the 3D subspace along
k⊥(m=n,q=1), where the positions of these circuit nodes are
labeled by (8,3,1), (7,4,1), and (6,5,1) in Fig. 3(a) of main text.
Figures 9(a)–9(c) display numerical results of the calculated
impedance (with respect to the ground) of these circuit nodes
in three frequency ranges, which correspond to the eigenener-
gies of three bosons in different subspaces (ε ∼ 3U, U , and
0), respectively. It is clearly shown that impedance peaks of
the three circuit nodes all appear in the frequency range from
0.8 to 1.5 MHz, matching the corresponding eigenenergy of
three bosons in the 3D subspace with ε ∼ 0. Moreover, we
note that the peak values of these circuit nodes are nearly
identical. This indicates that no skin effect appears in the
3D subspace toward the 2D effective boundary, which is in
accordance with the theoretical prediction.

Next, the impedance responses of different circuit nodes
along the direction of k⊥(m=n=q) are calculated to prove the
existence of skin effects in the 2D subspace toward the
1D effective boundary. Figures 9(d)–9(f) present simulated
impedance responses of three selected circuit nodes, which
are located at (8,8,3), (7,7,4), and (6,6,5), as marked by
blue dots in Fig. 3(a) of the main text. Impedance peaks
appear at a frequency of ∼0.69 MHz, which matches the
eigenenergy of three bosons in the 2D subspace (ε ∼ U ).
Importantly, it is clearly shown that peak values increase
as circuit nodes approach the effective 1D boundary. This
phenomenon demonstrates the appearance of skin states in
the 2D subspace toward the 1D effective boundary. Finally,
the impedance response of a circuit node in the 1D subspace
at (4,4,4) is calculated, as shown in Fig. 9(g). We find that
good consistency is obtained between the frequency of the
impedance peak (∼0.46 MHz) and the three-boson eigenen-
ergy in the 1D subspace (ε ∼ 3U ).
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