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Edge magnetism in zigzag transition metal dichalcogenide nanoribbons is studied using a three-band tight-
binding model with local electron-electron interactions. Both mean field theory and the unbiased, numerically
exact determinant quantum Monte Carlo method are applied. Depending on the edge filling, mean field theory
predicts different phases: gapped spin dimer and antiferromagnetic phases appear for two specific fillings, with
a tendency towards metallic edge-ferromagnetism away from those fillings. Determinant quantum Monte Carlo
simulations confirm the stability of the antiferromagnetic gapped phase at the same edge filling as mean field
theory, despite being sign-problematic for other fillings. The obtained results point to edge filling as yet another
key ingredient to understand the observed magnetism in nanosheets. Moreover, the filling dependent edge
magnetism gives rise to spin-polarized edge currents in zigzag nanoribbons which could be tuned through a
back gate voltage, with possible applications to spintronics.
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I. INTRODUCTION

Transition metal dichalcogenides (TMDs) are prominent
members of the 2D materials family [1] with numerous
prospective technological applications [2–4]. While mono-
layer graphene is gapless and its bilayer counterpart has a
tunable, but small gap of the order of a tenth of an eV [5],
TMD monolayers are semiconducting, with intrinsic band
gaps in excess of 1 eV [6]. Since the direct band gap lies in the
visible frequency range, these semiconducting analogues of
graphene are promising for optoelectronic applications [7–9].
TMDs are also promising in the rapidly growing fields of spin-
and valleytronics [10–14], where it is particularly important to
manipulate the electronic spin and valley degrees of freedom
[15].

The presence of one-dimensional edges is a distinctive
feature of any 2D material. The reduced dimensionality gives
rise to unique properties which are not present in the bulk.
Zigzag graphene nanoribbons (zGNRs) are known examples
where low energy edge states appear. In the tight-binding
picture, these correspond to bands close to the Fermi en-
ergy that become flatter and flatter as the width of the
ribbon is increased. In Ref. [16], mean field theory (MFT)
was used to study electron-electron interactions in zGNRs,
revealing the possibility of spontaneous magnetic order at
the edges. Subsequent studies unraveled the rich physics of
these edge-states, supporting the existence of the magnetic
phase predicted using MFT, and unveiling electronic proper-
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ties such as half-metallicity [17–23]. Despite the successful
fabrication of graphene nanoribbons [24,25], the observation
of magnetized zigzag edges is limited to the detection of
spin-split edge bands using scanning tunneling microscopy
[26]. Long-range magnetic order remains elusive [27], and
zGNR fabrication alternatives [28] as well as new strate-
gies to enhance edge magnetism are currently being explored
[29].

Similarly to graphene, TMDs can also be synthesized in
the form of nanoribbons, as recently demonstrated through a
variety of methods [30–35]. However, contrary to graphene,
there is ample experimental evidence of edge-magnetic or-
dering on few-layer TMD nanostructures [36–43]. In ultrathin
MoS2 and WS2 nanosheets, ferromagnetic order sets in even
at room temperature [36–40]. The onset of magnetic order has
been attributed to the presence of zigzag edges and/or struc-
tural defects such as grain boundaries or vacancies related
to the synthesis process. The ferromagnetic behavior found
in few-layer MoS2 nanomeshes [41] supports the idea that
the zigzag edge contribution is dominant: on one hand, the
dependence on interpore distance mimics the dependence on
the zigzag nanoribbon width; on the other, ferromagnetism is
absent in samples without annealing, where the proportion of
as-grown defects compared to zigzag edges is higher. Con-
trasting with exfoliated nanosheets, for which clear signs of
ferromagnetism are observed, pristine TMDs, such as MoS2

in its three-dimensional form, are diamagnetic [41]. More-
over, mono/bilayer MoS2 nanosheets show enhanced room
temperature ferromagnetism attributed to an increased density
of zigzag edges and/or defects [43], while bulk monolayers
are only spin-valley polarized upon doping [44].
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On the theory side, extensive work based on density func-
tional theory (DFT) calculations have predicted both metallic
behavior and ferromagnetism at the edges of zigzag TMD
nanoribbons (zTMDNRs) [45–54]. These calculations indi-
cate that the energy difference between ferromagnetic and
antiferromagnetic spin ordering at the edges is around tens of
meV [52,54]. Such a small energy difference casts some doubt
on what is the thermodynamically stable phase and also indi-
cates that magnetic ordering in zTMDNRs may be sensitive
to external perturbations, such as a back gate voltage, which
in turn changes the edge filling. A realistic tight-binding
parametrization with a mean field decoupling of the Hubbard
interaction was recently used to test the stability of edge
magnetism against disorder in zigzag MoS2 nanoribbons [54].
However, the sensitivity to the filling of the edge was not con-
sidered. In zGNRs and also phosphorene nanoribbons, edge
magnetism has been studied using the unbiased, numerically
exact determinant Quantum Monte Carlo (DetQMC) method
[55–59]. The results for zGNRs further support the emergence
of edge-magnetic order from electron-electron interactions
and it is possible to make a direct comparison between De-
tQMC and MFT results. The DetQMC method overcomes the
limitations of the approximate local or semi-local functionals
used in DFT calculations [60], and also the typical overesti-
mation of long-range order in MFT [56]. To the best of our
knowledge, unbiased, numerically exact approaches have not
yet been applied to study the magnetism of zTMDNRs.

In this work, we study the magnetism of zTMDNRs us-
ing MFT and DetQMC [61–63], based on a widely used
three-band tight-binding model [64,65], to which we add
electron-electron interactions. Within a minimal intraorbital
Hubbard model, we find evidence for the existence of mag-
netic order at the zigzag edges from both MFT and DetQMC,
analogously to zGNRs. MFT provides evidence for the ex-
istence of a metallic ferromagnetic phase and two gapped
phases with antiferromagnetic order, depending on the edge
filling. This result is confirmed within MFT using a more
elaborate model—suitable for transition metal atoms—which
considers multiorbital interactions. The DetQMC results cor-
roborate the existence of one of the gapped phases predicted
with MFT for a specific edge filling. For other edge fillings,
the DetQMC algorithm suffers from the sign problem and a
direct comparison with MFT is not possible.

The remainder of this paper is organized as follows. In
Sec. II, we present our minimal model. We also give a brief
overview of the MFT and DetQMC methods in the context of
the used minimal model. In Sec. III, we present our MFT and
DetQMC results separately, closing the section with a critical
comparison of the two methods. Conclusions are presented in
Sec. IV.

II. MODEL AND METHODS

Group 6 TMDs contain transition metals M = Mo, W, and
chalcogens X = S, Se, Te, in a 1:2 proportion, and thus have
the chemical formula MX2. In the monolayer form, M atoms
are arranged in a triangular lattice, sandwiched between two
layers of X atoms. The most common stacking structure—
shown in the left panel of Fig. 1—is denoted trigonal prismatic
(2H). In this work, we consider the planar honeycomb lattice

FIG. 1. (Left) Schematic for the structure coordination in the
trigonal prismatic (2H) phase of a TMD. (Right) Projection of the 2H
structure onto the xy plane, yielding a honeycomb lattice. Hopping
terms directly involving the X atoms are neglected in our model.
Thus we identify only the relevant nearest M neighbors by the vectors
Ri=1,2,...,6. This lattice represents part of the nanoribbon with a width
of 5 M atoms we shall consider later. Each row of the ribbon is
defined as a set of M atoms for which y is constant.

corresponding to the 2H unit cell depicted in the top-down
view of the right panel of Fig. 1.

We consider a minimal intraorbital Hubbard model based
on the three-band tight-binding model of Ref. [64]:

H =
∑

〈i, j〉,σ,
α,β

c†
i,α,σ Kαβ (Ri j )c j,β,σ + U

∑
i,α

ni,α,↑ni,α,↓, (1)

where 〈i, j〉 are nearest-neighbor sites on the triangular (M
atom) lattice, c†

i,α,σ , c†
j,β,σ are electron creation operators on

lattice sites i and j, M atom orbitals α, β = dz2 , dxy, dx2−y2

and spin σ =↑,↓, n = c†c is the number operator and U
is the Hubbard interaction. We use the hopping parameters
Kαβ (Ri j ) obtained with the generalized-gradient approxima-
tion in Ref. [64]. To mimic the geometry of the nanoribbon,
we consider periodic boundary conditions (PBCs) along
the longitudinal (x) direction and open boundary conditions
(OBCs) along the transverse (y) direction (see right panel of
Fig. 1). In order to capture potential multiorbital effects, one
needs to go beyond our minimal Hubbard model by adding the
following terms to the Hamiltonian of Eq. (1): an interorbital
on-site interaction term (U ′), a Hund term (J) and a pair-
hopping term (J ′),

Hinterorb. = U ′

2

∑
i,α �=β
σ,σ ′

ni,α,σ ni,β,σ ′ , (2)

HHund = J

2

∑
i,α �=β
σ,σ ′

c†
i,α,σ c†

i,β,σ ′ci,α,σ ′ci,β,σ , (3)

Hpair hopp. = J ′

2

∑
i,α �=β
σ �=σ ′

c†
i,α,σ c†

i,α,σ ′ci,β,σ ′ci,β,σ . (4)

Assuming rotational invariance, out of the four parameters
characterizing the on-site interaction, only two are indepen-
dent. For d orbitals, the following relation holds: J ′ = J =
(U − U ′)/2 [66]. Despite the lack of full rotational symmetry
in TMDs, deviations from this relation are not severe [67], and
we still use it here.
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FIG. 2. Band structures of the three-band tight-binding model,
i.e., Eq. (1) with U = 0, for various infinitely long zTMDNRs with
a width of 64 M atoms.

In Fig. 2, we show the energy bands obtained with the
noninteracting three-band tight-binding model for zTMDNRs
with a width of 64 M atoms. The two in-gap, spin-degenerate
bands at around 1 eV correspond to states localized at the M
and X terminated edges. It should be noted that the minimal
model considered here correctly reproduces the edge bands
derived from dz2 , dxy, and dx2−y2 orbitals [64,65].

TMDs have a sizable spin-orbit coupling (SOC) ranging
from several tens to a few hundreds of meV [64]. Yet, as
we shall see later, the minimum Hubbard interaction required
for magnetic ordering is approximately an order of magnitude
larger than the SOC energy scale. Thus, while SOC is a crucial
feature of the real material, it can be safely neglected for our
purposes. This relatively weak SOC (compared to U required
for magnetic ordering) further justifies the use of the rota-
tionally invariant Coulomb interaction vertex of Eqs. (2)–(4).
Another important remark is that SU(2) spin-rotation symme-
try is broken by SOC and the Mermin-Wagner theorem does
not apply [68]. Therefore edge-magnetic ordering at finite
temperature is not ruled out in TMDNRs.

A. Mean field theory

The Gibbs-Bogolyubov-Feynman inequality states that the
variational grand potential �V —computed with a quadratic
mean field Hamiltonian HMF—is an upper bound on the
grand potential � computed with a corresponding interacting
Hamiltonian H:

� � �MF + 〈H − HMF〉MF ≡ �V , (5)

where �MF = −kBT log Tr{e−β(HMF−μNe )} is the mean field
grand potential, T is the temperature and β = (kBT )−1, Ne is
the total electron number operator and 〈. . . 〉 is a thermody-
namical average with respect to HMF. The chemical potential
μ is set by fixing the electron density.

FIG. 3. Folded band structure of the three-band tight-binding
model, i.e., Eq. (1) with U = 0, for a MoS2 nanoribbon with a
width of 20 M atoms and a doubled unit cell in the longitudinal
direction. The bands corresponding to bulk states are faded. The
dashed horizontal lines indicate band fillings where two types of
antiferromagnetic order develop.

Starting from the mean field Hamiltonian family

HMF = HTB + U
∑
i,α,σ

ni,α,σ fi,α,−σ , (6)

where HTB is the three-band tight-binding Hamiltonian and
fi,α,σ (〈n〉) is a variational field, we apply the variational prin-
ciple of Eq. (5) to find the HMF that best approximates the
model Hamiltonian of Eq. (1). The variational field f that
minimizes �V is obtained by self-consistently solving the set
of mean field equations fi,α,σ (〈n〉) = 〈ni,α,σ 〉∀i, α, σ .

To simplify the mean field analysis, we assume that the
mean field Hamiltonian of Eq. (6) has translational symmetry
along the longitudinal direction. A discrete Fourier transform
decouples the mean field Hamiltonian into a set of effective
one dimensional chains in the transverse direction, one for
each longitudinal quasimomentum k. The choice of period-
icity in the longitudinal direction restricts the self-consistent
fields, and consequently the types of magnetic ordering that
can be obtained by minimizing �V . Let p be the number of M
atom columns in the unit cell. Taking p = 1 only allows para-
magnetic or ferromagnetic solutions, while p = 2 also allows
alternating spins (i.e., ferrimagnetic or antiferromagnetic so-
lutions). In order to capture more complex forms of magnetic
ordering one has to consider larger periods. In particular, to
detect the spin dimers we shall encounter later, one has to set
p = 4. Upon taking a unit cell with p > 1, the first Brillouin
zone is reduced by a factor of p and energy bands fold p
times. In Fig. 3, we highlight the bands of the three-band
tight-binding model with p = 2. The bands labeled M and
X correspond to the M and X terminated edges, respectively.
The green and yellow lines indicate band fillings where—as
we shall see later—gaps will be opened due to the Hubbard
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term in MFT. These gaps correspond to edge-dimer (AF2) and
edge-antiferromagnetic phases (AF1).

In order to study the effect of the multiorbital terms of
Eqs. (2)–(4), we further simplify our MFT approach by using
a minimal set of variational fields. This set is obtained by
making educated assumptions following the results obtained
with the thorough MFT analysis of the intraorbital Hamilto-
nian of Eq. (6). Firstly, we assume that the mean field solution
is such that the bulk magnetization 〈Ŝz

i,α〉 ≡ 〈ni,α,↑ − ni,α,↓〉
(for i, α on every row other than the two edge rows) vanishes.
Then, we assume that magnetic order is primarily sensitive
to electron spin. Thus we ignore any orbital dependence.
Finally, we compare the value of �V in Eq. (5) for the fol-
lowing phases: paramagnetic, (anti)ferromagnetic on each of
the edges—labeled as Ferro-X , Ferro-M, AF-X , AF-M—or
on both—labeled as Ferro-MX , AF-MX .

B. Determinant Quantum Monte Carlo

DetQMC is commonly used to simulate interacting models
of 2D nanostructures [55,56,58,59,69–72]. It is based on the
Hubbard Stratonovich transformation, which allows one to
map the Hubbard model onto a Hamiltonian of independent
fermions coupled to a binary auxiliary field. Averages of
quantum operators 〈A〉 are evaluated by employing impor-
tance sampling over configurations of the auxiliary field. Each
field configuration contributes to the expectation value with a
weight that can be negative, leading to the fermion-sign prob-
lem. For sign-problematic models, the distribution of the sign
variable is such that the variance of QMC estimators increases
exponentially with the system size and the inverse temperature
[73,74]. In our case, a strong Hubbard interaction U deems
the model severely sign-problematic. The severity of the sign
problem also varies with the chemical potential. The average
of the sign distribution 〈sign〉 is a good measure of the severity
of the sign problem for a given set of parameters β,μ,U, N
(the latter being the total number of sites × orbitals). As
〈sign〉 → 0, the sign problem becomes more severe and the
QMC estimators are no longer reliable.

We measure the Ŝz spin-spin correlator between sites i and
j with DetQMC:

C(Ri, R j ) =
∑
α,β

〈(ni,α,↑ − ni,α,↓)(n j,β,↑ − n j,β,↓)〉. (7)

Notice that we use the following definition throughout: Ŝz =
n↑ − n↓. Translational invariance and mirror symmetry are
used to maximize the amount of information extracted from
the measured values of the observable C(Ri, R j ). The discrete
Fourier transform of the spin-spin correlator, known as the
magnetic structure factor,

S(q) = 1

N

∑
i, j

eiq·(R j−Ri )C(Ri, R j ), (8)

is used to carry out finite-size scaling analysis and probe
the system for long-range order in the thermodynamic limit.
Peaks at q = (0, 0) and q = (π/a, π/a), where a is the lattice
constant, correspond to ferromagnetic and antiferromagnetic
order, respectively. Other types of order yield different peaks.

We inspect the TMD nanoribbon for edge magnetism by
restricting the sum in Eq. (8) to the rows corresponding to the
M and X edges. If Nx is the ribbon length, and setting qx = π

to study antiferromagnetic order, the structure factor for row y
can be written as

Srow(π, y) = 1

Nx

Nx−1∑
xi,x j=0

(−1)|xi−x j |C(xi, y, x j, y). (9)

In practice, for finite-size systems, we aim to obtain an
estimate of the correlation length ξ and compare it with Nx.
When ξ � Nx, we are sufficiently close to the thermodynamic
limit to identify an ordered phase. Due to translational invari-
ance, we have that C(xi, y, x j, y) = C(|xi − x j |, y). Defining
x ≡ |xi − x j |, we hypothesize that

(−1)x

Nx
C(x, y) = f

(
x

ξ

)
+ m2

s (y), (10)

where m 2
s (y) is the row-dependent staggered magnetization

and f is an integrable, monotonically decreasing function.
Then, we may evaluate whether or not an ordered phase ap-
pears by testing the consistency of our hypothesis.

Replacing Eq. (10) in Eq. (9), we obtain

Srow(π, y) =
Nx−1∑
x=0

(
f

(
x

ξ

)
+ m 2

s (y)

)
. (11)

If ξ � Nx, the quantity (−1)xC(x, y)/Nx becomes constant at
long distances and converges to the squared staggered magne-
tization. Defining A ≡ ∑

x f (x/ξ ), we obtain

Srow(π, y)

Nx
= A

Nx
+ m2

st (y). (12)

Equation (12) can be used to obtain an estimate of the stag-
gered magnetizations in the thermodynamic limit. We start
by considering a temperature that is low enough to find signs
of magnetic ordering, but high enough to avoid convergence
problems (see Fig. 11). Then, we simulate systems with vary-
ing longitudinal length Nx, and use Eq. (12) to extrapolate to
the thermodynamic limit.

III. RESULTS

A central aspect of the present work is the study of mag-
netic instabilities in zTMDNRs as a function of electron
occupation of the edge bands. To be specific, we define the
edge filling, νedge, as the fraction of electrons filling edge
bands relative to the total number of available edge states
within the noninteracting three-band tight-binding model, i.e.,
νedge ∈ [0, 1]. Defining the spin-dependent electron density as
〈nσ 〉 = N−1 ∑

i,α〈ni,α,σ 〉, where N is the total number of sites
× orbitals, such that 〈nσ 〉 ∈ [0, 1], we may write the electron
density as 〈n〉 = 〈n↑〉 + 〈n↓〉, which then ranges from 0 to 2.
After simple algebra, the edge filling can be written in terms
of the electron density as

νedge = 3Ny

4
〈n〉 − 1

2
(Ny − 1), (13)

where Ny is the width of the ribbon. For example, charge
neutrality in this model corresponds to 〈n〉 = 2/3, which cor-
responds to νedge = 1/2, i.e., half-filling of the edge.
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FIG. 4. Mean field magnetic ordering for U = 2.94 eV at zero
temperature for varying edge filling. The size of the circles indicates
the magnitude of the local spin density. Red corresponds to spin-up
and grey to spin-down. Left to right: ferromagnetic phase on both
edges (FMX ); dimer phase (AF2); ferromagnetic phase on the M edge
(FM ); antiferromagnetic phase (AF1).

A. Mean field theory: intraorbital interaction

We start by presenting MFT results for the intraorbital
Hubbard-U model given by Eq. (1). Only results for MoS2

parameters are shown, but we found similar results for other
TMDs of the family (see Appendix A).

Long-range edge-magnetic order emerges as the intraor-
bital Hubbard interaction U is increased. The type of magnetic
ordering depends on the edge filling νedge. In particular, two
gapped phases emerge: a spin-dimer phase (AF2) at νedge =
1/2 and an edge-antiferromagnetic phase (AF1) at νedge =
3/4. These two edge fillings are indicated by dashed lines in
Fig. 3. Both below νedge = 1/2 and between the two gapped
phases, MFT predicts edge-ferromagnetic order. As can be
seen in Fig. 3, for νedge > 3/4 bulk conduction bands start to
be populated and the physics is no longer edge dominated.

On the basis of the free edge bands shown in Fig. 3, we can
see that the gapped antiferromagnetic phases AF1 and AF2
are associated with the nesting vectors Qa = π and Qa =
π/2, respectively. Nesting favors gap opening instabilities
such as these two types of antiferromagnetic ordering. For
other generic fillings, a splitting of the spin-up and spin-down
bands is preferred, which in turn induces Stoner-like edge-
ferromagnetism. The three different types of edge-magnetic
phases are shown in Fig. 4, where the profile of the local
magnetization can be seen along the rows of the ribbon. At
the edges, it is higher in magnitude, decreasing rapidly and
eventually vanishing in the bulk.

The U -T phase diagrams for the antiferromagnetic (AF1)
and dimer (AF2) phases are shown in Fig. 5. It can be seen
that these gapped phases exist at and below room temper-
ature at the mean field level. Although this stability might
be overestimated in MFT, it suggests that DetQMC calcula-
tions are worth doing for this model. Moreover, even though
the Coulomb repulsion parameters are largely unknown for
TMDs, the modest values of the Hubbard interaction obtained
are well within current parameter estimates [75]. Let us also
mention that, due to the asymmetry between the two edges,
the critical U for magnetic order to develop is different for
each of the two edges. In particular, for the AF1 phase only
the X edge is magnetized in the phase diagram of Fig. 5 (right

FIG. 5. U -T mean field phase diagrams at: half edge filling (left);
three-quarter edge filling (right). As indicated, blueish regions corre-
spond to the paramagnetic phase. A ribbon of width Ny = 5 M atoms
was used.

panel). The M edge becomes polarized only for U � 2.8 eV,
as will be clear below.

In Fig. 6, we show the mean field band structures for the
two gapped phases AF1 and AF2 and two representative edge-
ferromagnetic phases. Both AF1 and AF2 band structures
show an interaction-induced band gap (right panels). The AF2
phase (top right) occurs at νedge = 1/2 and, correspondingly,
half of the edge-bands are filled (in this case, since p = 4,
this corresponds to 4 out of 8 spin-degenerate bands). The
AF1 phase (bottom right) occurs at νedge = 3/4. Since now
we take p = 2, this corresponds to 3 out of 4 spin-degenerate
edge bands. For the two representative edge-ferromagnetic
phases (left panels), we took p = 2 to accommodate the

FIG. 6. Mean field band structure for edge fillings of νedge = 0.23
(top left - FMX ), νedge = 0.5 (AF2), νedge = 0.60 (FM ) and νedge =
0.75 (AF1). We used U = 2.94 eV and T = 0, and a ribbon width
of 10 M atoms. Spin-up bands are in dashed-red and spin-down in
dotted-blue. Unoccupied bands are faded and the horizontal green
line marks the Fermi energy. Ferromagnetic phases (left panels)
are characterized by spin-splitting of edge bands and present edge
metallicity (absence of a gap). In the FMX phase, both edges are
polarized while in the FM phase only the M edge is magnetized. The
antiferromagnetic phases AF1 and AF2 (right panels) are insulating.
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FIG. 7. Comparison between ribbons with widths
Ny = 5, 10, 20 M atoms at T = 0. (Top) Staggered magnetization
mst and electron density 〈n〉 profiles as the row position y is
changed for U = 2.94 eV. Results for Ny = 10 and Ny = 20 are
indistinguishable. (Bottom) mst vs U at the X edge (blue) and M
edge (orange).

possibility of (anti)ferrimagnetic ordering, but we consistently
obtained ferromagnetism (other types of magnetic ordering or
paramagnetism were also energetically excluded). At νedge =
0.23 (top left), both edges become magnetized since the
spin-degeneracy of all edge bands is lifted. For νedge = 0.60
(bottom left), the bands corresponding to the X edge remain
spin-degenerate, unlike the ones corresponding to the M edge.
Thus only the M edge becomes magnetized.

The phases we have obtained are independent of the width
of the ribbon. To illustrate this, we consider the AF1 phase at
νedge = 3/4. In Fig. 7, we show the staggered magnetization
mst and the electron density 〈n〉 (top and middle panels) as a
function of the row position y for two different ribbon widths
Ny = 10 and Ny = 20 M-atoms. The results are numerically

indistinguishable. On the bottom panel of Fig. 7, we show the
variation of mst with U at T = 0 for the ribbon widths Ny =
5, 10, 20.

As pointed out earlier, edge-antiferromagnetism is more
robust on the X edge for the three Ny values considered,
consistently appearing for lower critical values of U compared
to the M edge. The differences in the critical values of U
for different Ny are related to the change in 〈n〉 required to
keep νedge fixed as Ny is changed, according to Eq. (13). It
is reasonable to assume that systems with larger widths would
behave similarly. In fact, for the system with the smaller width
of 5 M atoms, the edge staggered magnetizations are the same
as those depicted on the top panel of Fig. 7. The fact that
there is no significant qualitative change justifies the use of a
system with Ny = 5 M atoms for the DetQMC calculations in
Sec. III C (it becomes too computationally expensive to simu-
late larger systems using DetQMC due to the sign problem).

To close this section, we note that the edge physics behind
the magnetism we find in Fig. 4 is the result of two competing
mechanisms: gap opening instabilities and Stoner-like edge-
ferromagnetism. The winning mechanism depends on the
edge filling, which is set via the Fermi energy. If the two Fermi
points of the noninteracting system are connected through a
wave vector which spans an integer fraction of the Brillouin
zone (dashed green and yellow lines of Fig. 3), the addition of
a mean field intraorbital Hubbard interaction induces a nesting
instability which opens a gap (see right panels of Fig. 6). Other
fillings favor Stoner-like edge-ferromagnetism (see left panels
of Fig. 6), with metallic edges and spin-split edge bands.

On the other hand, entropy gain due to thermal fluctuations
tends to counteract magnetic ordering. This is illustrated in
Fig. 5, where we observe that the critical Hubbard interaction
required for magnetic ordering increases as the temperature is
increased. The critical Hubbard interaction depends slightly
on the width (see bottom panel of Fig. 7), converging rapidly
for wider ribbons. Once the system becomes magnetic, the
order parameters coincide regardless of the width (see top
panel of Fig. 7), which is consistent with edge-dominated
physics.

B. Mean field theory: multiorbital interaction

In Fig. 8, we show the mean field phase diagrams for the
multiorbital Hamiltonian, which includes both the minimal
intraorbital model and the terms of Eqs. (2)–(4). As stated in
Sec. II A, we assume a smaller set of mean field parameters
by assuming that only the edges get magnetized. This is a
justified approach based on the results of the previous sec-
tion (in particular, the top panel of Fig. 7). The results obtained
with multiorbital interactions are compiled in Fig. 8, where
we show phase diagrams in the plane U versus U ′ at T = 0,
obtained with a ribbon of width Ny = 16.

We start by focusing on the AF1 phase at νedge = 3/4.
In Fig. 8(a), we consider J = J ′ = 0 and assume both edges
are simultaneously magnetized. It is clear that the interorbital
term U ′ counteracts the tendency for antiferromagnetic order
since the critical U value required for the onset of AF1 phase
increases as U ′ is increased. Figure 8(b) shows the effect
of including J and J ′, now allowing for edge magnetization
independently on each edge. According to Sec. II A, we con-
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FIG. 8. U ′-U phase diagrams at T = 0 for the multiorbital case,
obtained for a ribbon width Ny = 16 at the edge fillings νedge = 75%
[(a) and (b)], νedge = 62.5% (c), and νedge = 65% (d). On (a), we
consider J = J ′ = 0 and assume that both edges become polarized
simultaneously. On the remaining panels, we have J = J ′ = (U −
U ′)/2. Dark-blue regions are paramagnetic, and the labels in the
remaining phases stand for ferromagnetic on the X edge (Ferro-X ),
on the M edge (Ferro-M), or on both edges (Ferro-MX ), and anti-
ferromagnetic on the X edge (AF-X ), on the M edge (AF-M), or on
both edges (AF-MX ).

sider J = J ′ = (U − U ′)/2. It can be seen that the X edge
becomes polarized first, in agreement with the results of the
previous section. When U ′ = 0 and J = J ′ = U/2, one can
see that the critical U for the onset of X -edge magnetization
(AF-X ), as well as for the onset of magnetization on both
edges (AF-MX ), is lower than the case when U ′ = J = J ′ = 0
shown in Fig. 7 (bottom panel). This indicates that J and J ′
favor magnetic order. Similarly to the case of panel 8(a), as
U ′ increases, the critical value of U for the onset of antiferro-
magnetism increases.

We now consider two representative edge fillings between
νedge = 1/2 and νedge = 3/4. In Fig. 8(c) we set νedge =
62.5%. Two ferromagnetic phases can be seen, one on both
edges (Ferro-MX ) and the other solely on the M edge (Ferro-
M). Even though ferromagnetic phases appear for lower
values of U , antiferromagnetic phases eventually appear as U
is increased. Yet, the interorbital interaction U ′ still suppresses
magnetic ordering quite significantly. The edge filling νedge =
65% is considered in Fig. 8(d). Ferromagnetism becomes
more prominent on the phase diagram, with a ferromagnetic
phase on the X edge (Ferro-X ) appearing. Moreover, the
tendency for the interorbital interaction to suppress magnetic
ordering is weakened, with the Ferro-X and AF-X phases
still surviving even as U ′ approaches U . Notably, the Ferro-
X phase becomes favorable for lower values of U as U ′ is
increased.

FIG. 9. (Top) Average sign obtained in the Monte Carlo sam-
pling for varying Nx and U at fixed temperature T = 267 K, for
MoS2 nanoribbons of 5 M atoms of width for electron densities
corresponding to νedge ≈ 0.75 (error bars are negligibly small). (Bot-
tom) Chemical potential used in the DetQMC algorithm to obtain the
required edge filling for each system size (other parameters are kept
the same as on the top panel).

C. Determinant Quantum Monte Carlo

We now turn to the DetQMC approach (see Appendix B for
specific details about our implementation). For our minimal
Hubbard model, the method is severely limited by the sign
problem, with the average sign going to zero in most regions
of interest of the phase diagram. Notwithstanding, we are able
to confirm the appearance of the AF1 phase predicted with
MFT.

On the top panel of Fig. 9, we show the average sign for
some of the parameters (Nx,U ) we use throughout this sec-
tion. The width is Ny = 5 M atoms. According to Eq. (13), the
electron density corresponding to νedge = 3/4 is 〈n〉 = 11/15.
For each system size Nx in the longitudinal direction, we
fix the chemical potential so as to approximate this electron
density, measured with DetQMC, as closely as possible. On
the bottom panel of Fig. 9, we show the chemical potential
required in order to obtain 〈n〉QMC ≈ 11/15. Note that it ini-
tially grows with the system size, but then tends to stabilize.
This is already apparent for Nx = 16.

On the top panel of Fig. 10, we show the spin-spin
correlator along the edges measured with DetQMC. For
νedge ≈ 0.75—for which the AF1 phase appears in MFT—our
DetQMC results show that the spin-spin correlator has an al-
ternating pattern that signals antiferromagnetic ordering. The
staggered pattern corresponds to a peak at π in Srow(q, y) com-
puted for the edges of the ribbon (y = 0, y = Ny − 1), shown
on the bottom panel of Fig. 10. This peak is considerably
more pronounced on the edges than on the other rows of the
ribbon, indicating a tendency towards edge-antiferromagnetic
ordering. The sharper peak for the X edge compared to the M
edge confirms that antiferromagnetism is more robust on the
former.
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FIG. 10. Evidence for the AF1 phase obtained with DetQMC
for MoS2 nanoribbons, with U = 2.76 eV and T = 267 K. (Top)
Spin-spin correlations for a 10 × 5 ribbon for edge filling νedge =
0.75 ± 0.01, measured with respect to the leftmost site of the X (M )
edge. The size of the circles indicates the magnitude of the cor-
relations (stronger on the X edge). Red corresponds to a positive
correlation and blue to a negative correlation. (Bottom) Magnetic
structure factor per row, normalized to its maximum value (q = π ,
at the X edge). Here, we consider a 22 × 5 MoS2 ribbon with
νedge = 0.745 ± 0.008. The error bars are negligibly small.

In Fig. 11, we show that as the Hubbard interaction U
(top panels) or the inverse temperature β (bottom panels)
increase, the spin-spin correlations at the X edge increase in
magnitude. As can be seen on the bottom panels, for T =
267 K the behavior of the spin-spin correlations does not differ
significantly from those of the system at lower temperature
T = 237 K. As the temperature increases, the average sign
gets closer to 1, yielding less statistical fluctuations. Thus,
in the remainder of this section, we fix T = 267 K since
it gives statistically relevant results which are already suffi-
ciently close to the zero temperature limit. Note that, taking
the semiconducting bulk gap 	 ∼ 1 eV in 2D TMDs as an
estimate for the bandwidth of edge states, we obtain β	 ∼ 43
at T = 267 K, which is well within typical values used to
simulate ground state properties with DetQMC.

FIG. 11. Spin-spin correlators between even and odd sites, along
the X edge of MoS2 nanoribbons measured with DetQMC for νedge ≈
0.75. On the top panels, we vary the Hubbard interaction U and
fix the temperature T = 267 K for a 20 × 5 ribbon. On the bottom
panels, we vary T and fix U = 2.94 eV for a 12 × 5 ribbon.

By varying the longitudinal dimension of the ribbon, Nx,
we are able to extrapolate the value of the staggered magneti-
zation to the thermodynamic limit using the method outlined
in Sec. II B. In Fig. 12, we show finite-size scaling data for
U = 2.76 eV. On the top panel, one can see that the q = π

peak of Srow(q, yX ) sharpens as Nx increases. On the bottom
panel, it is seen that the staggered spin-spin correlation on the
X edge tends to a constant as the system size is increased,
which signals antiferromagnetic ordering.
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FIG. 12. (Top) Magnetic structure factor Srow(q, yX ) normalized
to the peak Srow(π, yX ) for nanoribbons with a width Ny = 5 M
atoms and U = 2.76 eV at T = 267 K for νedge ≈ 0.75. The q = π

peak sharpens as Nx increases. (Bottom) Spin-spin correlations cor-
responding to the curves on the top panel with additional data shown.
We use Nx = 10, . . . , 26 in steps of 2. The error bars are smaller than
the symbols. The green curves are fits to the DetQMC data using
functions that decrease as a power law.

We find that the spin-spin correlations decay algebraically,
indicating quasi long-range order. To fit the results, we use the
power law:

(−1)x〈Sz
0Sz

x〉 =
(

x

ξ

)1−η

+
(

Nx − x

ξ

)1−η

+ constant, (14)

where ξ and η are respectively the correlation length and the
critical exponent, with ξ = ξeven, ξodd and η = ηeven, ηodd de-
pending on whether x is odd or even. By fitting to the DetQMC
data for Nx = 26, we find the correlation lengths: ξeven =
0.225 ± 0.003 and ξodd = 0.605 ± 0.003. These are consis-
tent with our scaling hypothesis in Eq. (10) since ξeven/odd �
Nx. We also find the critical exponents ηeven = 2.343 ± 0.008
and ηodd = 3.06 ± 0.02.

FIG. 13. (Top) DetQMC results for Srow(π, y)/Nx , with y = yedge,
as a function of 1/Nx , for nanoribbons with a width of Ny = 5 M
atoms at T = 267 K and νedge ≈ 3/4. Red circles are for X edge and
blue triangles for M edge. The lines are fits to the data using Eq. (12).
Dashed lines are extrapolations to the thermodynamic limit (we
repeat the extrapolation illustrated on this panel for varying Hubbard
interaction U to produce the bottom panel). (Bottom) Comparison
between the staggered magnetizations on the X edge obtained with
MFT (circles) and DetQMC (triangles) as a function of U . MFT
results are for Ny = 5 and T = 0.

D. Comparison between MFT and DetQMC

We close this section with a critical comparison of the
results obtained from MFT and DetQMC at νedge = 3/4,
where the AF1 phase shows up. In order to obtain the stag-
gered magnetization based on the DetQMC results, we plot
Srow(π, y)/Nx for y = yedge as a function of 1/Nx, and use
Eq. (12) to extrapolate to the thermodynamic limit. Represen-
tative results are shown on the top panel of Fig. 13.

Notice that although we observe antiferromagnetic cor-
relations at the M edge with DetQMC, these do not signal
magnetic ordering in the thermodynamic limit: the blue
dashed line on the top panel intersects the y-axis approxi-
mately at zero. It is possible that antiferromagnetism on the
M edge appears for higher values of U similarly to what we
observed with MFT. However, we cannot confirm this sus-
picion because the sign problem becomes too severe beyond
U = 3.13 eV (at which point our DetQMC simulations show
no sign of antiferromagnetic order on the M edge).
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On the bottom panel of Fig. 13, we compare the extrapo-
lated staggered magnetization obtained with DetQMC to the
MFT results. We considered the same ribbon width Ny = 5 in
MFT but used T = 0. As expected, DetQMC predicts a higher
critical interaction, Uc,QMC ≈ 2.33 ± 0.02 eV, compared to
the MFT result, Uc,MFT = 1.387 ± 0.004 eV. The agreement
becomes better if we consider wider ribbons and/or T > 0
in the MFT calculation. Qualitatively, the MFT and DetQMC
results are similar in the sense that edge-antiferromagnetic or-
dering is established for values of the interaction that are of the
same order of the band gap Uc ∼ 	, with MFT overestimating
long-range ordering. DetQMC unveils quasi-long-range order,
with algebraic behavior of the spin-spin correlations.

IV. DISCUSSION AND CONCLUSIONS

We have used MFT and DetQMC to probe edge-
magnetism in zTMDNRs via a minimal three-band Hubbard
model. Three main questions have been addressed. (1) How
does changing the edge filling affect the phase diagram? (2)
What is the effect of multiorbital interactions? (3) Can we
use the numerically exact DetQMC approach to probe edge
magnetism in TMD nanoribbons in spite of the well known
sign problem?

To answer the first question, we considered an intraor-
bital Hubbard U interaction, which we treated at the mean
field level. We found two gapped phases: an edge-dimer
phase (AF2), when the edges are half filled, and an edge-
antiferromagnetic phase (AF1) at three-quarter edge filling.
For other edge fillings, there is a tendency towards edge-
ferromagnetism. As shown in Fig. 6, the ferromagnetic phases
are metallic and the edge magnetization depends on the edge
filling. Such magnetic edge states give rise to spin-polarized
edge currents which could be tuned by changing the Fermi
level through a back gate voltage. In particular, when the
gapped phases are reached, these currents are suppressed.
Similar behavior has been explored in zTMDNRs in the pres-
ence of magnetic proximity effect produced by ferromagnetic
[76,77] and antiferromagnetic [78] substrates. Our results in-
dicate that intrinsic magnetism could also be used to induce
spin-polarized edge currents.

The second question has been answered by considering
not only the intraorbital Hubbard U interaction, but also an
interorbital interaction term U ′, as well as Hund J and pair-
hopping J ′ terms, characteristic of transition metal atoms.
Within MFT, we obtained rich phase diagrams shown in
Fig. 8, which corroborate and further complement the phases
obtained with the simpler intraorbital Hubbard U interac-
tion. Generically, the interorbital U ′ term tends to suppress
the magnetic phases, while J and J ′ tend to enhance them.
However, there are fillings for which U ′ stabilizes the ferro-
magnetic phase in a large portion of the phase diagram, as
shown in Fig. 8(d).

As far as the third question is concerned, we have success-
fully applied DetQMC to the intraorbital Hubbard U model
for zTMDNRs, finding that edge magnetism strongly depends
on the edge filling. In particular, at three-quarter edge filling–
where the AF1 phase appears at mean field level–DetQMC
has only a moderate sign problem and accurate results
can be obtained. We have found edge-antiferromagnetic

quasi-long-range order with spin-spin correlations behaving
algebraically, reinforcing the AF1 phase predicted by MFT.
The extrapolated staggered magnetization from DetQMC is
consistent with the MFT result, as shown in Fig. 13. Even
though in MFT long-range order is slightly overestimated,
DetQMC and MFT agree that antiferromagnetism is more
robust on the X edge.

Let us point out that the dependence of edge magnetism on
edge filling that we found might be relevant when interpreting
experimental results. Often, the density of zigzag edges is
used to explain how the ferromagnetic response varies be-
tween different nanosheet samples. Our results point to the
edge filling as yet another key ingredient, since structural
defects or chemisorbed adatoms may effectively change the
filling of the edge. Finally, an important aspect for further
study is the impact of a magnetic substrate—which induces
magnetic exchange fields as considered in Refs. [76–78]—on
the edge magnetism of zTMDNRs. The methods we use in this
work could be used to determine whether the edge magnetism
we have found survives the presence of a substrate, and
whether phase transitions can be induced by tuning the cou-
pling to the substrate. Searching for edge magnetism at twin
grain boundaries in 2D TMDs [79] and at 1D interface-states
in TMD heterostructures [80] is another interesting direction.
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APPENDIX A: EFFECT OF EDGE BANDWIDTH
ON EDGE MAGNETISM

In this Appendix, we discuss the impact of using different
TMDs in our calculations, therefore changing the edge band-
width, i.e., the portion of the spectrum corresponding to edge
bands. Using different TMDs has only a slight impact on the
edge-magnetic ordering because the edge bandwidth is similar
(∼1 eV) among group 6 TMDs, as we show in Fig. 2.

We obtain the edge antiferromagnetic phases AF2 and
AF1, respectively at νedge = 0.5 and 0.75 for all the TMDs
we considered. For other edge fillings, we find edge ferro-
magnetism. Even though there are slight differences in the
specific values of the order parameters on each edge between
the TMDs, our general qualitative conclusions do not change.
We illustrate this for the AF1 phase in the top panel of Fig. 14.
Notice that for MoSe2 and MoTe2 the two edges have the same
value of the staggered magnetization. This is because these
two TMDs have the narrowest edge bandwidths. Thus, for this
specific Hubbard-U , the magnetizations are likely already sat-
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FIG. 14. (Top) Variation of the mean field staggered magneti-
zations at the M edge (orange) and the X edge (blue) for the AF1
phase for different TMD nanoribbons, all of them with a width of 5
M atoms and with U = 2.94 eV. (Bottom) Example of the gapped
AF2 (left) and AF1 (right) phases obtained with mean field theory at
νedge = 0.5 for a WSe2 nanoribbon with a width of 5 M atoms and
considering U = 2.94 eV. We also recover the edge ferromagnetic
phases for νedge �= 0.5 and 0.75 shown in Fig. 4 for all TMDs in the
family, but we omit them here for the sake of brevity.

urated, i.e., they have already reached their maximum value.
On the bottom panel of Fig. 14, we show an example of the
aforementioned edge antiferromagnetic phases for WSe2.

APPENDIX B: DETERMINANT QUANTUM
MONTE CARLO METHOD

This Appendix contains a brief description of our imple-
mentation of the DetQMC method that was used throughout
this work and is publicly available in Ref. [81]. Extensive
details and bench-marking of the implementation are also
available in Ref. [82]. In order to enable the reader to repro-
duce our results, we focus on the aspects that are most relevant
to this work. In particular, we provide details on how to write
the spin correlation operator in terms of the Green’s functions,
which are the main object of DetQMC simulations. In the-
ory, expectations of quantum observables can be computed
directly from the partition function. Unfortunately, it is not
possible to obtain an explicit closed form expression for the
latter for the interacting systems in this work. Thus DetQMC
makes use of Monte Carlo sampling to compute expectations
of the spin correlation operator.

In the path integral formulation, with discretized imaginary
time, the partition function contains a product of exponential
functions of a sum of noncommuting operators. This product
can be approximated by using the Trotter breakup. Dividing
the imaginary time interval [0, β] into L equal subintervals
of smaller width 	τ = β/L, and using the inverse of the
Baker-Campbell-Hausdorff formula, whilst keeping only the
first order term in 	τ , we obtain

Z = Tr

[
L−1∏
l=0

e−	τHTB e−	τHl
U

]
+ O(	τ 2), (B1)

where HTB is the three-band tight-binding Hamiltonian and
Hl

U is the intraorbital Hubbard term defined in the Hilbert
space of the lth imaginary time slice. The parameter 	τ−1 can
be regarded as a high-energy cutoff, and it must be larger than
all other energy scales in the problem for the approximation
to be valid.

Let us define the so called Hubbard Stratonovich (HS)
binary field h as a (L × N )-dimensional, spin-1/2 field com-
prised of binary variables. The interaction term is eliminated
by use of the discrete HS transformation for U > 0 [61,74].
Since [ni,α,σ , n j,β,σ ′ ] = 0 ∀i, j, α, β, σ, σ ′, we have

e−	τHU =
∏
i,α

e−U	τ (ni,α,↑−1/2)(ni,α,↓−1/2). (B2)

We will recast Eq.(B2) in terms of the local electronic
spin ni,α,↑ − ni,α,↓, yielding a noninteracting quadratic term.
Let C = 1

2 e− U	τ
4 and ν = arcosh(e

U	τ
2 ). Introducing the binary

variables h̃i,α = ±1, the discrete HST

e−U	τ (ni,α,↑−1/2)(ni,α,↓−1/2) = C
∑
h̃i,α

eνh̃i,α (ni,α,↑−ni,α,↓ ), (B3)

allows one to write the exponential of the Hubbard term as
a trace over the field at imaginary time slice l [74]. In prin-
ciple, a more complicated transformation could allow one to
simulate the model with interorbital, Hund and pair-hopping
terms. However, it would require three spin-1 fields [83],
thereby significantly increasing the computational cost, which
is already quite high due to the sign problem. Moreover, such
a transformation would likely lead to a more severe sign
problem [84], increasing the computational cost even more
or impeding simulations altogether. For the sake of simplic-
ity and to avoid excessive computational cost, we have only
included the intraorbital term in our simulations.

Let us define HU,σ = ∑
i,α νh̃i,αni,α,σ = σνc†

σU (̃h)cσ ,

with U (̃h) ≡ diag(̃hi,α ). Now, define HS fields for each imag-
inary time slice h̃l , which in turn specifies U l and Hl

U,σ .
Including the trace over the field and exchanging it with the
fermionic trace in Eq.(B1), we obtain

Z = CNLTrhTr

⎡⎣L−1∏
l=0

e−	τHTB,↑eH
l
U,↑︸ ︷︷ ︸

Bl,↑(h̃l )

e−	τHTB↓eH
l
U,↓︸ ︷︷ ︸

Bl,↓(h̃l )

⎤⎦, (B4)

where all operators are now quadratic in the fermion op-
erators. For the latter, the trace over the electronic degrees
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of freedom may be taken explicitly [63], turning the many-
fermion problem into a single-particle problem:

Z = CNLTrh

[∏
σ

det[I +
0∏

l=L−1

Bl,σ (̃hl )]

]
. (B5)

To multiply the chains of B-matrices in a numerically sta-
ble manner, we use QR decompositions with partial pivoting
[63,74,85]. The determinant can be calculated in O(LN3)
flops for a matrix whose size is polynomial in the number
of sites N , leading to a naive O(L2N4) algorithm. To sample
configurations of h, we use single spin-flip dynamics. The
acceptance/rejection scheme of the Metropolis algorithm is
implemented using a rank-one update of the matrices I +

∏0
l=L−1 Bl,σ (̃hl ) [74], which reduces the complexity of the

algorithm to order O(LN3). Using Wick’s theorem, we may
write any observable in terms of the matrix elements of the
Green’s function for a fixed configuration of the HS field,
which in turn is given by Gσ (h) = [I + ∏0

l=L−1 Bl,σ (̃hl )]−1

[63,74]. We use the Green’s function—the fundamental ob-
ject of DetQMC—to sample configurations of the field h
and to measure spin correlations. We do so by averaging the
spin correlation operator over uncorrelated configurations of
the HS field h to obtain an estimator of 〈Sz

i,αSz
j,β〉, the spin

correlation between site/orbital pairs i, α and j, β. For each
configuration, we measure the observable 〈Sz

i,αSz
j,β〉h, defined

in terms of Gσ (h) as

〈
Sz

i,αSz
j,β

〉
h

=
{∑

σ

(
Gσ

(iα)(iα)(h)Gσ
( jβ )( jβ )(h) − Gσ

(iα)(iα)(h)G−σ
( jβ )( jβ )(h)

)
(iα) �= ( jβ )∑

σ Gσ
(iα)(iα)(h) − 2G↑

(iα)(iα)(h)G↓
(iα)(iα)(h) (iα) = ( jβ )

. (B6)

A final remark must be made about computational effort.
These simulations are plagued by the sign problem—which
exponentially increases the variance of our estimators—
deeming them very computationally intensive. In order to give
the reader a concrete idea of just how intensive these simula-
tions are, we compared two of the points shown in Fig. 9:
we fixed Nx = 20 and compared the data points shown for
U = 2.76, 2.94 eV . Since the average sign for U = 2.94 eV
(〈sign〉 = 0.2963 ± 0.0007) is lower than for U = 2.76 eV
(〈sign〉 = 0.470 ± 0.002), we expected to need more CPU

hours in the case of the former in order to obtain similar
accuracy to the case of the latter. This expectation was con-
firmed: 2930 CPU hours were required in order to obtain
an error of 	n = 0.005 in the electron density 〈n〉 for U =
2.76 eV, whilst 26093 CPU hours (almost 9 times more) were
required in order to obtain an error of 	n = 0.003 for U =
2.94 eV. The data points Nx = 20, U = 2.76 and 2.94 eV
were chosen to illustrate the computational cost because they
were some of the most statistically demanding parts of this
study.
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