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Kondo effect in Lieb’s minimal ferrimagnetic system on the T-shaped bipartite lattice
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The minimal ferrimagnetism by Lieb’s theorem emerges on the T-shaped bipartite lattice composed of four
sites, which can be realized experimentally, just as Nagaoka ferromagnetism has been demonstrated experimen-
tally using a quartet quantum dot [J. P. Dehollain et al., Nature (London) 579, 528 (2020)]. In this paper, the
Kondo effect on this ferrimagnetism is theoretically studied. The magnetic moment S = 1 is screened in two
steps by the Kondo effect and the series conductance gs is strongly suppressed to gs � 0, while the parallel
conductance gp has the maximum value gp � 4e2/h. The robustness of these properties against a parameter
change toward reducing the Lieb’s ferrimagnetism is also discussed, showing the scenarios for entanglement of
the degrees of freedom toward the ground state.
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I. INTRODUCTION

Itinerant magnetism has been one of the intriguing and
challenging topics in condensed matter physics, especially
in strongly correlated electron systems. For example, a reli-
able general theory predicting magnetic transition temperature
for various magnetic materials has yet to be realized. Alter-
nately, there are some exact theories predicting the existence
of magnetism in the Hubbard models (see, e.g., a textbook
on this topic [1], and the references therein). The Lieb’s
theorem for ferrimagnetism in the half-filled and repulsive
Hubbard model on bipartite lattice is one such theory [2,3]
and has been examined in many different material systems;
for example, honeycomb lattice structures such as graphene
[4–10]. By definition, a bipartite lattice is connected and
composed of two sublattices A and B, where any bond con-
necting sites is in different a sublattice. The Lieb’s theorem
states that the ground state of the half-filled and repulsive
Hubbard model on bipartite lattice has the magnetic moment
S = |NA − NB|/2 and is unique up to the spin degeneracy.
Here NA and NB are the number of lattice points in sublattice
A and B, respectively. According to this theorem, the mini-
mal (and nontrivial [11]) Lieb’s ferrimagnetism emerges on
the T-shaped bipartite lattice composed of four lattice points
decomposed into NA = 3 and NB = 1 and has the magnetic
moment S = 1, which we focus on in this paper. Such a
small lattice can be experimentally realized as a quantum-dot
array using recent nanotechnology. Actually, a controllable
quartet quantum-dot plaquette has been fabricated and the
Nagaoka ferromagnetism in the Hubbard model on the pla-
quette lattice has been demonstrated experimentally [12].
Similarly, an experimental realization of the minimal Lieb’s
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ferrimagnetism mentioned above would be possible in the
near future. Incidentally, the Kondo effect, a screening of
a magnetic moment in an itinerant electron system by the
many-body effect, has been investigated using a quantum-
dot array connected to leads as itinerant electron reservoirs
[13–21]. When the minimal Lieb’s ferrimagnetism is real-
ized experimentally, it would be interesting and challenging
to investigate the Kondo effect on such an intriguing mag-
netism. In this paper, we theoretically investigate the Kondo
effect on the minimal Lieb’s ferrimagnetism on the T-shaped
lattice connected to reservoirs. Using the numerical renor-
malization group (NRG) calculation and the local Fermi
liquid theory, we predict the two-step Kondo screening of
the ferrimagnetic moment, and the strongly suppressed and
perfect conductivity through the T-shaped lattice under the
Kondo screening, respectively, for two kinds of configuration.
The robustness of these properties against a parameter per-
turbation toward reducing the Lieb’s ferrimagnetism is also
predicted.

This paper is organized as follows. In Sec. II, the model
and the formulation we use in this paper are presented. We
show our results in Sec. III. First of all, we investigate the
isolated Hubbard model on the T-shaped lattice in Sec. III A.
After showing the reliability of our method in Sec. III B,
we present our main results in Sec. III C. The robustness of
our findings against parameter perturbations is discussed in
Sec. III D. Section IV is devoted to the Conclusion.

II. MODEL AND FORMULATION

The model we consider is a Hubbard model on the
T-shaped bipartite lattice decomposed into the sublattice
A = {1, 3, 4} and B = {2}, which connects two reservoirs at
the left (L) and right (R) by the symmetrical tunneling matrix

2469-9950/2022/105(19)/195120(7) 195120-1 ©2022 American Physical Society

https://orcid.org/0000-0001-8687-8225
https://orcid.org/0000-0001-9130-7187
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevB.105.195120&domain=pdf&date_stamp=2022-05-12
https://doi.org/10.1038/s41586-020-2051-0
https://doi.org/10.1103/PhysRevB.105.195120


MASASHI TOKUDA AND YUNORI NISHIKAWA PHYSICAL REVIEW B 105, 195120 (2022)

FIG. 1. Schematic picture of (a) series and (b) parallel
configurations.

elements v, as illustrated in Fig. 1(a). The Hamiltonian H is
given by H = HT + Hres + Hhyb with

HT =
∑

σ,i∈A, j∈B

ti jd
†
iσ d jσ +

∑
i,σ

(εd,iniσ + Uini↑ni↓), (1)

Hres =
∑
ν,k,σ

ενkc†
νkσ

cνkσ , (2)

Hhyb = v(d†
1σψLσ + H.c.) + v(d†

4σψRσ + H.c.), (3)

where diσ annihilates an electron with spin σ at the site i in
the T-shaped lattice, characterized by the intersite hopping
matrix elements ti j between site i ∈ A and j ∈ B, the on-site
energy εd,i, and the intrasite repulsion Ui. Here niσ ≡ d†

iσ diσ

is the number operator of the electron with spin σ at the site
i. The necessary condition for the emergence of the Lieb’s
ferrimagnetic state is a half-filled repulsive Hubbard model
on a bipartite lattice, so that the symmetry of the lattice
is not a main factor for emerging the Lieb’s ferrimagnetic
state. Therefore, for simplicity we assume εd ≡ εd,1 = εd,2 =
εd,4, ε3 ≡ εd,3t ≡ t12 = t24, t3 ≡ t23, and U ≡ U1 = U2 = U4

throughout this paper and set mainly εd = ε3, t = t3, and
U = U3 unless otherwise stated. In the reservoir at ν(= R, L),
c†
νkσ

creates an electron with energy ενk corresponding to
a one-particle state φνk (r) and ψνσ = ∑

k φνk (rν )cνkσ is the
field operator of the conduction electron in the reservoir at
rν where the conduction electrons in the reservoir mix with
the electrons in the site labeled by i = 1 (for ν = L) or
i = 4 (for ν = R). We assume that the hybridization strength
� ≡ πv2 ∑

k |φνk (rν )|2δ(ω − ενk ) is a constant independent
of the frequency ω and ν, and take the Fermi energy μ to
be μ = 0. Hence, assuming that the conduction electron in
the reservoir has a flat-band structure with half bandwidth D,
we have � = πv2/(2D). Our system has inversion symmetry,
so that the even and odd parities are good quantum numbers.
Therefore, it is convenient to introduce the even-parity orbitals
a1σ , a2σ , a3σ and the odd-parity orbital b1σ as follows:

a1σ = d1σ + d4σ√
2

, a2σ = d2σ , a3σ = d3σ , (4)

b1σ = d1σ − d4σ√
2

. (5)

The retarded Green’s functions for a1σ and b1σ play an impor-
tant role for calculating the conductance through the T-shaped
lattice and the averaged electron number in the lattice because
the orbitals d1σ and d4σ connect to the reservoirs. Due to the
inversion symmetry, at the zero temperature and Fermi energy,
each of these two retarded Green’s functions is determined by
a single real parameter, κe or κo. The parameter κp (p = e, o)

is defined by

κp = detKp

� detKp,11
. (6)

Here, Kp ≡ −[h(0)
p + Re�+

p (0)], where h(0)
p is the matrix com-

posed of the hopping integrals among the p-parity orbitals,
�+

p (ω) is the self-energy with the p parity, and Kp,11 is the
matrix obtained by deleting the first row and column cor-
responding to the orbital a1σ or b1σ from the matrix Kp.
These real parameters determine the phase shifts δe and
δo corresponding to the angles of these two Green’s func-
tions in the complex plane as follows: δe = arctan(−1/κe),
δo = arctan(−1/κo). These two phase shifts δe and δo of the
quasiparticles with even and odd parity characterize a local
Fermi-liquid behavior of the whole system described by H.
The conductance gs in the two-terminal series configuration
illustrated in Fig. 1(a) and the averaged electron number
n ≡ 〈G| ∑i,σ niσ |G〉 in all sites of the ground state |G〉 are
represented [22,23] as follows:

gs = 2e2

h
sin2(δe − δo), (7)

n = 2

π
(δe + δo). (8)

From the same phase shifts, we can calculate the conduc-
tance gp in the four-terminal parallel configuration illustrated
in Fig. 1(b) as follows:

gp = 2e2

h

(
sin2 δe + sin2 δo

)
. (9)

We perform NRG calculation to determine δe and δo. In
the NRG approach, a sequence of the Hamiltonian HN is
introduced, by carrying out the logarithmic discretization with
the control parameter 
 for the continuous conduction bands
of the electron reservoirs, and transforming the discretized
electron reservoirs as

HN = 
(N−1)/2
(
HT + HNRG:hyb + H(N )

NRG:res

)
, (10)

HNRG:hyb = v
∑

σ

(d1σ f †
0,Lσ + d4σ f †

0,Rσ + H.c.), (11)

H (N )
NRG:res = D

1 + 1/


2

∑
ν=R,L

∑
σ

N−1∑
n=0

ξn

−n/2

× ( fn,νσ f †
n+1,νσ + H.c.), (12)

where fn,νσ annihilates an electron with spin σ at site
n in the ν-discretized electron reservoir, v = √

2D�A
/π,

A
 = 1
2 (1 + 1/
)/(1 − 1/
) log 
, and

ξn = 1 − 1/
n+1

√
1 − 1/
2n+1

√
1 − 1/
2n+3

. (13)

We keep the lowest 3600 eigenstates during the NRG iter-
ation process and set 
 = 6 in our NRG calculations.

We can deduce δe and δo via κe and κo from the fixed-point
eigenenergies of the NRG calculation [22,23] as follows:

κp = v2

�D
lim

N→∞
D
(N−1)/2gN (ε∗

p ). (14)
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Here, ε∗
p is the quasiparticle energy with the p parity ob-

tained from the NRG fixed-point eigenenergies, and gN is the
Green’s function for one of the isolated discretized electron
reservoirs.

We have confirmed that the numerical results for the fixed-
point eigenvalues can be mapped onto the energy spectrum of
the free quasiparticles in all parameter sets we have examined,
which justifies the assumption of the local Fermi liquid we
have made in our formulation.

Using the NRG flow, we can calculate the impurity
(T-shaped lattice) entropy as a function of the discretized
temperature TNnrg ≡ τ
−(Nnrg−1)/2D corresponding to the num-
ber Nnrg of NRG iterations [24]. [Here τ = O(1) is a fitting
constant.]

III. RESULTS

A. Results for the isolated Hubbard model
on the T-shaped lattice

Firstly, we investigate the isolated Hubbard model on the
T-shaped lattice before connecting the electron reservoirs,
clarifying the spin state S and the electron occupation number
N in the model parameter space. In Fig. 2(a), we show the
phase diagram of S and N on the model parameter plane
spanned by (2εd + U )/t and U/t . At the half-filled state
N = 4, we confirm that the ground state with S = 1 is realized
for any positive value of U in our system [25], as is predicted
by Lieb’s theorem. The region of N = 4 and S = 1 becomes
wider as U increases. From the phase diagram of N , we
easily realize that the phase diagram of N − 4, the electron
occupation number from the half-filled state, is antisymmetric
with respect to the line 2εd + U = 0 (the white dashed line)
in the phase diagram. This is because our system has the
electron-hole symmetry. As a result, the phase diagram of S
is symmetric with respect to the line. Along the line U = 0
in the phase diagram, the value of N changes by increments
of two, while S = 0 because two electrons with up and down
spin occupy the energy level crossing the Fermi energy at the
same time.

Next, we examine the minimal Lieb’s ferrimagnetic state in
more detail. The basis vectors that span the N = 4 and S = 1
states including the minimal Lieb’s ferrimagnetic state can be
classified into two types, namely, S state and D state. A basis
vector that consists of only single occupied sites belongs to

FIG. 2. (a) The spin quantum number and the electron occupa-
tion number of the ground state of the isolated Hubbard model on
the T-shaped lattice as functions of (2εd + U )/t and U/t . (b) The
probabilities PS and PD plotted as functions of U/t . Examples of S
and D states are presented in this figure.

FIG. 3. The spin correlations between two sites in sublattice A
(blue circle) and between site i in sublattice A and site j(= 2) in
sublattice B (red inverted triangle) plotted as functions of U/t .

the S state and a basis vector that has a doubly occupied site
belongs to the D state. Some examples of the S and D states
are presented inside Fig. 2(b). A so-called ferrimagnetic state
where the spins on each sublattice are in ferromagnetic order
and two spins on the different sublattices are antiparallel, is
a superposition state of the basis vectors belonging to the S
state. The ground state |Giso〉 of the isolated Hubbard model
with N = 4, S = 1 (and Sz = 1) is a superposition state of the
basis vectors belonging to the S and D states. To estimate
how close the ground state is to the so-called ferrimagnetic
state, we calculate two probabilities PS ≡ 〈Giso|P̂S|Giso〉 and
PD ≡ 〈Giso|P̂D|Giso〉, where P̂S (P̂D) is the projection operator
to the subspace spanned by the basis vectors belonging to the
S state (D state). The results are shown in Fig. 2(b). The value
of PD decreases as U increases because the doubly occupied
state is unfavorable due to the intrasite repulsion U . As a
result, PS increases as U increases because of the constraint
condition PS + PD = 1.

Lastly, we investigate how the spins align in the ground
state |Giso〉 by calculating the spin correlations 〈Giso|Si ·
S j |Giso〉 between site i and site j as functions of U . The results
are shown in Fig. 3, where the blue circles and the red inverted
triangles represent the results for the spin correlation between
two sites in sublattice A (the intrasublattice spin correlation),
and the spin correlations between site i in sublattice A and site
j(= 2) in sublattice B (the intersublattice spin correlation),
respectively. These results show that the spins in sublattice A
ferromagnetically align and two spins on the different sub-
lattices are in antiferromagnetic order. As U is increased,
the values of the intra- and intersublattice spin correlations
saturate to 1

4 and − 5
12 = −0.4166 . . ., respectively. These sat-

uration values can be explained as follows. In the limit of
large U , the ground state |GU=∞

iso 〉 is a superposition state of
the basis vectors belonging to the S state only, as shown in
Fig. 2(b) and is expressed by

∣∣GU=∞
iso

〉 =
√

9
12 d†

1↑d†
3↑d†

4↑d†
2↓|0〉 −

√
1

12 (d†
1↓d†

3↑d†
4↑d†

2↑|0〉
+ d†

1↑d†
3↓d†

4↑d†
2↑|0〉 + d†

1↑d†
3↑d†

4↓d†
2↑|0〉), (15)
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where |0〉 is the vacuum state. Using this expression, we
obtain the two saturation values, 〈GU=∞

iso |S1 · S3|GU=∞
iso 〉 = 1

4

and 〈GU=∞
iso |S1 · S2|GU=∞

iso 〉 = − 5
12 .

From these calculations, it is found that a sizable value of
U (
 t ) is required to regard the ground state as a so-called
ferrimagnetic state (we mainly set U/t = 4).

B. Results for noninteracting system

Henceforward, we investigate the Hubbard model on the
T-shaped lattice connected to the electron reservoirs. For
U = 0, changing the value of εd , we calculate gs, gp, δe, and
δo by using our method and compare the calculated results
with the exact results in Fig. 4. The exact expressions of κe

and κo for U = 0 are easily obtained from Eq. (6) because
�+

e (0) = �+
o (0) = 0 and

Ke =
⎛
⎝

εd

√
2t 0√

2t εd t
0 t εd

⎞
⎠, Ko = (εd ). (16)

Then we obtain the exact expressions of δe and δo for
U = 0 as follows:

δe = arctan
{−�

(
ε2

d − t2
)
/
[
εd

(
ε2

d − 3t2
)]}

, (17)

δo = arctan(−�/εd ). (18)

It is found that the agreement between the results by our
method and the exact results are remarkably consistent
even for a rather large value of the discretization parameter

 = 6. Therefore, the effect of the NRG discretization on
these quantities is negligible and our method for calculating
these quantities is reliable.

Two conductances gs and gp have large values when the
electron occupation number n = 2(δe + δo)/π changes by two
because a pair of electrons with up and down spins from the
reservoir occupy the energy level of the impurity resonating
with the Fermi level.

FIG. 4. Two kinds of conductance gs, gp and the phase shifts
δe, δo obtained using our method are compared with the exact results
for U = 0. Here �/t = 0.1. For NRG, we use 
 = 6 and t/D = 0.1.

FIG. 5. Temperature dependencies of the impurity entropy for
several values of U calculated using NRG energy spectrum. Inset:
The U3/U dependencies of the impurity entropy.

C. Kondo effect

We next investigate how the Lieb’s ferrimagnetic moment
S = 1 at the half-filled state [εd/t = −U/(2t )] is screened by
the Kondo effect. We show the impurity entropy as a function
of the temperature, varying the values of U in Fig. 5. In the
high temperature region, the values of the impurity entropy
for all the values of U shown in the figure are log(256)
because all degrees of freedom 256 = 28 of the four sites
appear in this region. Decreasing the value of TNNRG from the
high temperature region, we observe the log(3) plateau due to
the Lieb’s ferrimagnetism S = 1 on the T-shaped lattice. This
degree of freedom is screened by the Kondo effect in the low
temperature region via the log(2) plateau and the Kondo tem-
perature, which is the screening temperature required to reach
the singlet states, decreases as the value of U increases. There-
fore, the magnetic moment in the Lieb’s ferrimagnetism on the
T-shaped lattice is not screened in one step by the conduction
electrons from the two symmetrically connected reservoirs
but is completely screened in two steps with different energy
scales. In the first Kondo screening [log(3) → log(2)], the
reduced degrees of freedom f1 is f1 � 1(= 3 − 2). Therefore,
the partial magnetic moment of the Lieb’s ferrimagnetic state
with S = 1 screened in the first Kondo screening cannot corre-
spond to any positive integer or half-integer magnetic moment
s1 because 2s1 + 1 = f1 ⇐⇒ s1 = 0. To give some insights
into the screening mechanism, we consider the distribution
of the S = 1 moment on the T-shaped lattice. The two-step
Kondo screening becomes more significant for large U and
small � as shown in Figs. 5 and 6. Therefore, it is reasonable
to consider the momentum distribution in large U and small
� limit. In the limit, the ground state of the isolated Hubbard
model on the T-shaped lattice with S = 1, Sz = 1 is given by
Eq. (15). Using these assumptions, we can calculate the mo-
mentum distribution mi ≡ 〈GU=∞

iso | 1
2 (d†

i↑di↑ − d†
i↓di↓)|GU=∞

iso 〉
for each site i of the T-shaped lattice as follows; m1 = m3 =
m4 = 5

12 and m2 = − 3
12 . The results show that the momentum

is mainly distributed among sites 1, 3, and 4. When the reser-
voirs connect to the T-shaped lattice, site 1 and site 4 directly
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FIG. 6. � dependence of the impurity entropy for U/t = 4.

couple to the reservoirs. Therefore, the partial moments on
these two sites can be screened directly by the conduction
electrons at the first step. In contrast, site 3 does not connect
to the reservoirs directly and thus the partial moment on site
3 has to be screened indirectly by the conduction electron
through site 2, which corresponds to the second step of the
Kondo screening. To confirm the discussion mentioned above,
we increase the value of U3, which is the intrasite repulsion
of site 3 (the most internal site from the reservoirs), from
U3 = U , keeping the relation 2ε3 + U3 = 0 for the half-filled
state. The results are shown in the inset of Fig. 5. The shape
of the curve of the impurity entropy from the high temper-
ature region to the beginning of the log(2) plateau via the
log(3) plateau is almost insensitive to U3/U , while the length
of the log(2) plateau becomes longer as the value of U3/U
increases. Then the Kondo temperature decreases as the value
of U3/U increases. From these facts, we can confirm that
the second screening process corresponds to the screening of
the partial magnetic moment distributed on the most internal
site 3.

We consider the dependence of the two-step Kondo screen-
ing on the hybridization �, for U/t = 4. The impurity entropy
for the intermediate coupling � = 0.2 retains the structure
observed in the weak coupling � = 0.1. For the large hy-
bridization � = 0.3, the charge transfer between the T-shaped
lattice and the reservoir brings the system into a mixed-
valence regime and the typical structures are smeared out.
The Kondo temperature is sensitive to the value of � and
it increases with �. This is because the large hybridization
makes the resonance peaks broad and it reduces effectively
the correlation effects.

To investigate behaviors of two conductances gs and gp

under the Kondo screening of the Lieb’s ferrimagnetism
emerging at the half-filled state shown above, we calculate
gs, gp and δe, δo as functions of εd and show the results in
Fig. 7. Around the half-filled state εd/t = −2[= −U/(2t )],
the value of gs is strongly suppressed gs � 0 in spite of the ex-
istence of the Kondo screening, while the value of gp reaches
its maximum value gp � 4e2/h because δe and δo respectively
have 3π/2 and π/2 plateaus around the half-filled state. One

FIG. 7. Two kinds of conductance gs, gp, the electron occupation
number n in the T-shaped lattice, and the phase shifts δe and δo plotted
as functions of εd/t for U/t = 4.

possible reason for this is as follows. There is a possibility of a
residual antiferromagnetic correlation between site 2 and site
3 resulting from the Lieb’s ferrimagnetic state, which prevents
conductivity in the series configuration, but causes perfect
conductivity in the parallel configuration. This is because
the antiferromagnetic coupling between sites 2 and 3 blocks
the branch path for conductivity in the parallel configuration.
Increasing the value of εd from the half-filled state, we can
see the region where the value of n transitions from 4 to 2 via
3. In this region, the graph of gs has a double-peak structure
because of the dip structure in the behavior of δo. This inter-
esting behavior will be investigated elsewhere because, in this
paper, we focus on the Kondo effect on the minimal Lieb’s
ferrimagnetism emerging at the half-filled state. Around the
region where n � 1, we can see the typical Kondo plateau of
both conductances gs and gp, which is principally caused by
the even-parity states.

D. Robustness against parameter perturbation
toward reducing the ferrimagnetism

Finally, we study in more detail the behaviors of both
conductance gs and gp at the half-filled state mentioned above,
by setting t �= t3 and reducing the value of t3/t . At t3/t = 0,
our system is decoupled into the half-filled three-site Hubbard
chain connected to two electron reservoirs and the isolated
site 3 occupied by one electron. In this case, the spin S = 1/2
on the half-filled three-site Hubbard chain is screened by the
Kondo effect in the ground state, which gives conductivities
in both configurations (gs � 2e2/h, gp � 2e2/h) [22] and we
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FIG. 8. Two kinds of conductance gs and gp plotted as functions
of t3/t with discontinuities at t3/t = 0. Inset: Temperature dependen-
cies of the impurity entropy for t3/t = 0.01 and 0.1 compared with
the result for t3/t = 1.

have the residual impurity entropy log(2) by the degrees of
the freedom of the spin S = 1/2 on the isolated site 3. The
question arises as to the t3/t dependence of two conductances.
To answer this question, we calculate gs and gp as functions
of t3/t and show the results in Fig. 8. We find that the val-
ues of gs and gp for t3/t > 0 keep the constant values at
t3/t = 1 and change discontinuously only at t3/t = 0. There-
fore, the behaviors of gs and gp at the half-filled state are
robust against the parameter perturbation toward reducing the
Lieb’s ferrimagnetism. We investigate this robustness from
t3/t dependence of the impurity entropy as a function of the
temperature. For t3/t = 0.1 and 0.01, the impurity entropies
are plotted as functions of the temperature and are compared
with the result for t3/t = 1 in the inset of Fig. 8. The value
of U is fixed at U/t = 4. We find that the Kondo temperature
decreases as the value of t3/t decreases. For 0.1 < t3/t < 1,
we confirmed that as the temperature decreased, the value of
the impurity entropy decreases from the value log(256) and
directly reaches the log(3) plateau corresponding to the Lieb’s
ferrimagnetic state (an entanglement state of four sites), and
converges to zero via the log(2) plateau by forming the Kondo
singlet state (an entanglement state of four sites and two
reservoirs). Therefore, the scenario for the entanglement of
the degrees of freedom [log(3) → log(2) → 0] from the high
temperature region toward the ground state for 0.1 < t3/t < 1
is the same as for t3/t = 1. For t3/t = 0.1, we can see the
short log(4) plateau in the high temperature region which
stems from the degrees of freedom of the spin S = 1/2 on
the half-filled three-site Hubbard chain and the spin S = 1/2
on site 3 regarded as isolated from the Hubbard chain in
this temperature region (a separable state of the composite
system of the 3-site Hubbard model and site 3). But as the
temperature slightly decreases from this region, we observe
the log(3) plateau due to the Lieb’s ferrimagnetic state, which
is finally screened in two steps by the Kondo effect in the
same manner as the previous results. We confirmed that this
scenario for entanglement [log(4) → log(3) → log(2) → 0]
from the high temperature region toward the ground state

for t3/t = 0.1 is the same as for 0.01 < t3/t � 0.1. Alter-
natively, for t3/t = 0.01, the value of the impurity entropy
directly decreases from the log(4) plateau to the log(2) plateau
without via the log(3) plateau as the temperature decreases
from the high temperature region. This is because the spin
S = 1/2 on the half-filled three-site Hubbard chain is at first
screened by the Kondo effect (an entanglement state of the
composite system of the three-site Hubbard chain and two
reservoirs) and the spin S = 1/2 on site 3 remains and gen-
erates the log(2) plateau. Therefore, it is suggested that we
have gs � 2e2/h, gp � 2e2/h in the temperature region with
the log(2) plateau. However, as the temperature decreases
further, the spin S = 1/2 on site 3 is screened by electrons
in the rest of the system coming through the renormalized
hopping matrix element t̃3. The impurity entropy finally con-
verges to zero, reaching the nonmagnetic ground state. This
scenario for entanglement [log(4) → log(2) → 0] from the
high temperature region toward the ground state is expected
for 0 < t3/t � 0.01.

The two-step Kondo screening for 0 < t3/t < 0.01 relates
to that seen in side-coupled double quantum-dot systems
[26–31] in the following aspects. The side-coupled double
quantum-dot system consists of quantum dot A connected to
two reservoirs and quantum dot B connecting or interacting
only with quantum dot A. The 1/2 spin on dot A and the 1/2
spin on dot B behave independently in the high temperature
region. As the temperature is decreased, screening of the 1/2
spin on dot A is first observed, followed by a subsequent
screening of the 1/2 spin on dot B. Meanwhile, the two-step
Kondo screening for t3/t > 0.01 is intrinsically different from
the Kondo screening mentioned above. This is because Lieb’s
ferrimagnetic state, which is an entangled spin-triplet state be-
tween site 3 and sites 1, 2, and 4, is quenched for t3/t > 0.01.

From these facts, we find that the t3/t-independent ground
state for t3/t > 0, resulting from the t3/t-dependent scenarios
for the screening of the degrees of freedom in high tempera-
ture regions, causes the robustness of the behaviors of gs and
gp at the half-filled state.

IV. CONCLUSION

In summary, we investigated the Kondo effect on the min-
imal Lieb’s ferrimagnetism on the T-shaped lattice connected
to electron reservoirs by using a reliable method. We found
that the Lieb’s ferrimagnetic moment S = 1 is screened in
two steps by the Kondo effect. Here we estimate one of our
Kondo temperatures in units of Kelvin using recent experi-
mental values. In our calculations, Kondo temperatures are
scaled by D and we set t/D = 0.1. The value of t can be
controlled from the μeV to sub-meV in recent experiments
[12,32]. This range corresponds to D being on the order of
meV ∼ 10 K. Therefore, even in the first step of the Kondo
screening, the Kondo temperature estimated from Fig. 5 for
U/t = 2 is to the order of 1 μK. Therefore, the Kondo tem-
peratures are very low in the present case because we chose
a relatively small �/t and a larger U/t . However, the Kondo
temperature rises as �/t increases and U/t decreases, which
would make the value of the Kondo temperature an accessible
value in experiments, as shown in Figs. 5 and 6. In spite
of the existence of the Kondo screening, we found that the
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conductance gs is strongly suppressed gs � 0 while the con-
ductance gp has the maximum value gp � 4e2/h. For these
behaviors, we proposed one possible reason which should be
confirmed by further calculations, where the spin correlations
among the sites of the T-shaped lattice connected to the reser-
voirs would be clarified. We also discussed the robustness of
these behaviors of the conductance against the perturbation
toward reducing the Lieb’s ferrimagnetism. This robustness is
caused by the perturbation-strength-independent ground state
resulting from three perturbation-strength-dependent scenar-
ios for entanglements of the degrees of freedom in high
temperature regions. It would be interesting that experimental

investigations of the above-mentioned properties of the Kondo
effect on the minimal Lieb’s ferrimagnetism will be carried
out in the future.
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