Emergence of topological and trivial interface states in VSe₂ films coupled to Bi₂Se₃

Joseph A. Hlevyack^(D),^{1,*} Yang-Hao Chan,^{2,3,*} Meng-Kai Lin,^{1,4,*} Tao He^(D),² Wei-Hsiang Peng,¹ Ellen C. Royal,¹ Mei-Yin Chou^(D),^{2,5,†} and T.-C. Chiang^(D),[‡]

¹Department of Physics and Frederick Seitz Materials Research Laboratory, University of Illinois at Urbana-Champaign,

Urbana, Illinois 61801, USA

²Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 10617, Taiwan

³Physics Division, National Center for Theoretical Sciences, Taipei 10617, Taiwan

⁴Department of Physics, National Central University, Taoyuan 32001, Taiwan

⁵Department of Physics, National Taiwan University, Taipei 10617, Taiwan

(Received 2 December 2021; revised 8 April 2022; accepted 27 April 2022; published 12 May 2022)

Coupling ordinary metals with topological Bi_2Se_3 can instigate the long-range migration of the spin-polarized Dirac states. Instead, for trivial metallic VSe_2 films on Bi_2Se_3 , topological and trivial Rashba-type interface states emerge, each strongly localized at the VSe_2/Bi_2Se_3 interface. Their rapidly decaying spectral weights are uncovered by thickness-dependent band mappings of VSe_2 films and replicated by a phenomenological first-principles model of the spectral function. The results are pertinent to spintronic devices requiring spin transmission across metal/topological insulator interfaces.

DOI: 10.1103/PhysRevB.105.195119

I. INTRODUCTION

Fundamental to future impetus regarding topological insulators (TIs) is integration of TIs into heterostructures exhibiting emergent phenomena [1-4], whereby Dirac states are judiciously tuned while fostering a myriad of exotic quasiparticle excitations ranging from Majorana fermions to magnetic skyrmions [1-14]. By virtue of symmetryprotected emergent quasiparticles, hybrid topological systems hold alluring promises for applications in fault-tolerant quantum computation, spintronics, and low-power electronics [4]. Though mandated in topological devices containing TIs, ordinary metal contacts interfaced with TIs such as Bi2Se3 happen to be intriguing, albeit the simplest, cases for probing hybridization coupling between trivial and nontrivial phases [7–11]. Theoretically, when trivial metals contact TIs, topological surface states couple with bulk metallic states, thereby potentially spawning topological quantum well resonances having nontrivial spin textures that propagate over extended distances [7]. Indeed, as recently demonstrated by angle-resolved photoemission spectroscopy (ARPES), band mappings of superconducting Pb overlayers on TlBiSe2 exhibit the migration of nontrivial states, as exact clones of those on pure TlBiSe₂, to the probed Pb surface over appreciable distances (up to ~ 5 nm) [8]. Still, nontrivial surface bands can instead be converted into topological interface states (TISs) localized at the trivial material/TI interface [10-14]. Nevertheless, confirming the presence and band tuning of TISs in topological heterostructures has been impeded-or even

Herein, we unveil complete evidence from thicknessdependent ARPES for concomitant evolutions of two species of spin-polarized surface states, one nontrivial and the other trivial Rashba-type [16-18], into interfacial bands in thinfilm heterostructures of topological Bi2Se3 and trivial metallic VSe₂, all corroborated by a fresh first-principles model for the spectral function. Topologically trivial VSe₂ itself possesses an exotic charge density wave in the single-layer limit distinct from that in bulk [19-21], which also evidently suppresses the theoretically predicted ferromagnetic phase for pristine single-layer VSe₂ [19–23]. When fabricated on topological Bi₂Se₃, VSe₂ emerges as a cardinal system harboring strongly localized nontrivial and trivial Rashba-type states. As the VSe₂ thickness varies from zero to three layers, all surface bands of Bi2Se3 transfigure into interfacial states with substantially reduced spectral weights and the Dirac cone preserved, vanishing in the mappings at three layers due to photoemission's superficial probing depth [24,25]. First-principles modeling of the spectral functions and wave functions' charge densities reinforces the inception of these interface states. Our results provide methodologies for probing localized symmetry-protected states in real hybrid systems and underscore engineering constraints of topological devices.

II. METHODS

[†]mychou6@gate.sinica.edu.tw

overlooked—due to often-low photoemission spectral weights of interface states [10], inhomogeneity of overlaying films [9–11], and/or inherent difficulties of first-principles modeling of real hybrid systems with exceedingly large unit cells under full atomic relaxations [8,15].

^{*}These authors contributed equally to this work.

[‡]tcchiang@illinois.edu

(BLG/SiC). To fabricate Bi2Se3 films, Bi and Se were coevaporated from an electron-beam evaporator and an effusion cell, respectively, onto BLG/SiC held at 220 °C; the growth rate was one quintuple layer (QL) $(1 \text{ QL} \approx 1 \text{ nm})$ every ~12.5 min, and Bi₂Se₃ films were postannealed for \sim 45 min at 220 °C under Se flux [26,27]. VSe₂ films were prepared by codepositing V and Se onto 10 QL Bi₂Se₃ and BLG/SiC at $280 \,^{\circ}$ C; the growth rate was ~ 50 min per triatomic layer (TL) $(1 \text{ TL} \approx 0.6 \text{ nm})$. Deposition rates were cross-checked *in situ* with a quartz crystal monitor and ARPES through established methods [15,19,26–30]. Photoemission measurements were undertaken at 30 K with 21.218-eV photons using a Scienta R4000 analyzer and a Scienta-Omicron VUV5k He lamp. Sharp reflection high-energy electron diffraction (RHEED) patterns for all N = 0-3 TL VSe₂ films on 10 QL Bi₂Se₃ and BLG/SiC also confirmed in situ the samples' high crystallinity [30].

First-principles calculations were executed using a localized basis set under the linear combination of atomic orbitals method implemented in SIESTA [31-34]. The generalized gradient approximation with the Perdew-Burke-Ernzerhof functional [35] was employed to calculate atomic-layerresolved, orbital-projected band structures. Though VSe₂ and Bi₂Se₃ lattices are incommensurate with in-plane lattice constants $a_{\rm V} = 3.357$ Å for VSe₂ and $a_{\rm B} = 4.143$ Å for Bi₂Se₃ differing by $\sim 19\%$ [36,37], their structural parameters grant a near lattice matching for a superlattice with periodicity $5a_V \cong$ 4a_B. Consequently, computations of VSe₂/Bi₂Se₃ entailed superlattices having an in-plane periodicity $5a_{\rm V} = 4a_{\rm B}$ at zero twist angle (with $a_{\rm V} = 3.314$ Å), each modeled as periodic slab systems with vacuum gaps larger than 14.1 Å. A k-space mesh of 4×4 was used; spin-orbit interactions and the dipole correction were incorporated. Unfolded band structures were computed using the utility in SIESTA [38], modified to handle energy bands with spin-orbit coupling included. The lattice structure of atomic layers in the first Bi₂Se₃ QL and VSe₂ TL nearest to the VSe₂/Bi₂Se₃ interface was optimized separately via VASP [39,40] using the Perdew-Burke-Ernzerhof functional with the van der Waals D2 correction [41], until the residual force on each atom was less than $10^{-3} \,\mathrm{eV/\AA}$ and with the total energy difference less than 10⁻⁶ eV.

III. RESULTS AND DISCUSSION

One VSe₂ TL typically adopts the 1*T* lattice structure [Fig. 1(a)], wherein three triangular atomic layers of V and Se are stacked in the order Se-V-Se [19–23], while Bi₂Se₃ manifests a rhombohedral phase [Fig. 1(b)] consisting of QL units, each terminated by Se layers and assembled as a stack of alternating triangular atomic layers of Bi and Se [16]. Bulk VSe₂ (Bi₂Se₃) is constructed by vertically stacking, while preserving inversion symmetry, many TLs (QLs) with adjacent TLs (QLs) weakly held together by van der Waals bonds. The crystallographic orientation of VSe₂ TLs on Bi₂Se₃ surfaces aligns with that of Bi₂Se₃ [Figs. 1(c)–1(f)] [16–21,30]. For comparisons, Fig. 1(c) schematically depicts the (001)-projected Brillouin zone of Bi₂Se₃ overlaid on that for VSe₂. Second-derivative band mapping of 10 QL Bi₂Se₃/BLG near the Fermi level [Fig. 1(d), left panel]

FIG. 1. Contrasting components in VSe₂/Bi₂Se₃. (a) Unit cell for VSe₂ TL. (b) Atomic structure of Bi₂Se₃ (QL identified with green dashed rectangle). (c) Comparisons between surface Brillouin zones of VSe₂ (turquoise) and Bi₂Se₃ (violet); $\overline{\Gamma M}$ lengths are 1.081 Å⁻¹ for VSe₂ and 0.875 Å⁻¹ for Bi₂Se₃. (d) Second-derivative spectra near the Fermi level (left) and wide-range band mapping (right) for 10 QL Bi₂Se₃/BLG, taken at 30 K with 21.218-eV photons. The topological Dirac cone (red arrow) and trivial Rashba spin-split surface states (cyan arrow) are marked. (e) Same as (d) but for 1 TL VSe₂/10 QL Bi₂Se₃; Dirac-cone-like (red arrow) and V-shaped (cyan arrow) features are distinguished. (f) Same as (e) but for 1 TL VSe₂/BLG. In (d)–(f), second derivatives are taken along the in-plane momentum direction; \overline{M} points of Bi₂Se₃ and VSe₂ are designated.

uncovers sharp topological surface states and intense quasiparticle signals from trivial Rashba spin-split surface bands [17,18], hallmarks of smooth TI surfaces [18,26–29]. Probing the band structure of 10 QL Bi₂Se₃/BLG over extended measurement ranges [Fig. 1(d)] unveils numerous crisp valence bands [18,29]. After deposition of 1 TL VSe₂ onto 10 QL Bi₂Se₃, a weakly dispersive feature near the Fermi level dominates ARPES and second-derivative mappings, while other zone-centered, holelike bands disperse strongly down into valence bands buried at deeper binding energies [Fig. 1(e)]. Such bands are quintessential to VSe₂ [Fig. 1(f)], with the former and latter primarily derived from V 3*d* and Se 4*p* orbitals, respectively [9,19–21]. No ferromagnetic exchange splitting emerges [Figs. 1(d)–1(f)], suggesting pristine VSe₂ films here are nonferromagnetic [9,19–21]. However, for 1 TL

FIG. 2. Topological and trivial interface states in VSe₂/Bi₂Se₃. (a), (b) ARPES maps near the Fermi level along $\overline{\Gamma K}$ and corresponding second derivatives with respect to the in-plane momentum for N = 0-3 TL VSe₂/BLG, respectively, taken at 30 K using 21.218-eV photons. (c), (d) Same as (a), (b) but for N = 0-3 TL VSe₂/10 QL Bi₂Se₃; interfacial bands TISs (red arrow) and SISs (cyan arrow) are marked in (d).

VSe₂/10 QL Bi₂Se₃, besides a V-shaped structure centered at the $\bar{\Gamma}$ point, a clear Dirac-cone-like feature arises in the second derivative near the Fermi level [Fig. 1(e), left panel], largely obscured in the raw data by the more intense V 3*d* and Se 4*p* bands [Fig. 2]. Undoubtedly, these two band features arise from interfacing VSe₂ with Bi₂Se₃, per their absence in 1 TL VSe₂/BLG results [Fig. 1(f)].

Since two species of surface states abound on Bi_2Se_3 [Fig. 1(d)] [17,18], one hypothesis for the Dirac-cone-like and V-shaped structures of 1 TL VSe₂/10 QL Bi₂Se₃ is they are interface states derived, respectively, from topological and trivial Rashba spin-split surface bands of Bi₂Se₃, corroborated by their reduced spectral weights and slight energy shifts relative to those of pristine Bi₂Se₃ [Figs. 1(d) and 1(e)] [10–12]. Such presumed TISs and their "sister" interface states (SISs)—TISs for the Dirac-cone-like feature and SISs for the V-shaped structure—should exhibit greatly attenuated spectral weights with further increase of the VSe₂ thickness due to photoemission's short probing depth, about 1 nm [24,25], comparable to the thickness of 2 TL VSe₂ [per Fig. 1(a)]. Figures 2(a) and 2(b) summarize ARPES and second-derivative spectra near the Fermi level along $\overline{\Gamma K}$ for N = 0-3 TL VSe₂/BLG; similar datasets for N = $0-3 \text{ TL VSe}_2/10 \text{ QL Bi}_2\text{Se}_3$ appear in Figs. 2(c) and 2(d). Aside from evident V-shaped SISs in the spectra for 1 TL and 2 TL VSe₂/10 QL Bi₂Se₃, both sets of ARPES maps for N = 1-3 TL VSe₂ are superficially similar to one another [Figs. 2(a) and 2(c)]. Second derivatives highlight contrasts: For 1 TL VSe₂/10 QL Bi₂Se₃, the Dirac cone of the TISs and the SISs emerge [Fig. 2(d)], both absent in 1 TL VSe₂/BLG data [Fig. 2(b)]; further increase of film thickness to 2 TL in VSe₂/10 QL Bi₂Se₃ yields dramatic reductions in spectral weights of the TISs and SISs, which disappear at 3 TL [Fig. 2(d)]. Conversely, besides the trivial instance when the thickness is tuned from 0 to 1 TL, second-derivative spectra for VSe₂/BLG here vary little with thickness [Fig. 2(b)].

To rationalize these thickness-mediated evolutions and unambiguously recognize the TISs and SISs as interfacial entities, spectral functions $P(k_{||}, E_B)_N$ for N = 0-2 TL VSe₂/6 QL Bi₂Se₃ are calculated by summing over theoretical atomic-layer-resolved band structures $L(i, k_{||}, E_B)_N$ [30], each modulated by an effective cross section factor $R_i = \sigma_i/\sigma_{Bi}$ for the *i*th layer's atomic species (Se 4*p*, V 3*d*, or Bi 6*p*) and an exponentially decaying weight in the position z_i along the *c* axis (referenced to the probed surface) introduced by photoemission [24,25]:

$$\frac{P(k_{\parallel}, E_B)_N}{\sigma_{Bi}} = \sum_i R_i \exp\left(-z_i / \lambda\right) L(i, k_{\parallel}, E_B)_N. \quad (1)$$

The photoelectrons' escape depth is set to $\lambda = 8.75$ Å, consistent for an incident photon energy of 21.218 eV [24], while $R_{\text{Se}} = 0.05$ and $R_{\text{V}} = 0.075$ ($R_{\text{Bi}} = 1$) through experimentation [30]. These results were Gaussian broadened using full width at half maxima of 125 meV and 0.06 Å⁻¹ for binding energy and momentum broadenings, respectively, and then multiplied by the Fermi-Dirac distribution at 30 K. Figures 3(a) and 3(b) present measured mappings along $\overline{\Gamma K}$ for $N = 0-2 \text{ TL } \text{VSe}_2/10 \text{ QL } \text{Bi}_2\text{Se}_3$ and their second derivatives, while simulated spectra along $\overline{\Gamma K}$ and associated second derivatives for $N = 0-2 \text{ TL } \text{ VSe}_2/6 \text{ QL } \text{ Bi}_2 \text{Se}_3$ appear in Figs. 3(c) and 3(d). For completeness, similar experimental and theoretical datasets along $\overline{\Gamma M}$ appear in the Supplemental Material [30]. Like the ARPES and second-derivative maps for 10 QL Bi₂Se₃ [Figs. 3(a) and 3(b)], simulations for 6 QL Bi_2Se_3 exhibit ungapped topological surface states [Figs. 3(c) and 3(d)] [26,28]. Upon addition of 1 TL VSe₂, these surface states are replaced by a Dirac-cone-like feature in the simulated derivative [Fig. 3(d)], like the observed TISs [Fig. 3(b)]. As in the ARPES map [Fig. 3(a)], these simulated TISs are largely masked by VSe₂ bands in the calculated mapping [Fig. 3(c)]. Likewise, V-shaped SISs unmistakably arise in the simulated 1 TL data [Figs. 3(c) and 3(d)]. Although the binding energy position of the calculation's SIS feature deviates from that observed [Figs. 3(b) and 3(d)], such discrepancies are expected considering similar differences between experimental and first-principles results reported for trivial Rashba-type surface states of Bi₂Se₃ and oft-unavoidable Se vacancies in MBE-grown compounds, which foster shifts in surface/interfacial and bulk bands [18,26-29]. Increasing the

FIG. 3. Thickness-dependent ARPES versus simulated maps. (a), (b) Photoemission mappings and corresponding second derivatives for N = 0-2 TL VSe₂/10 QL Bi₂Se₃, respectively, measured along $\overline{\Gamma K}$ at 30 K with 21.218-eV photons. (c), (d) Theoretical spectral functions and their second derivatives for N = 0-2 TL VSe₂/6 QL Bi₂Se₃, respectively, calculated parallel to $\overline{\Gamma K}$. In (b), (d), second derivatives are along the in-plane momentum direction; TISs (red arrow) and SISs (cyan arrow) are flagged.

 VSe_2 thickness to 2 TL suppresses the spectral weights for the simulated TISs and SISs, though hints remain [Figs. 3(c) and 3(d)]. Overall, the simulations' dimensionality-mediated behaviors remarkably complement our experimental evidence for the localized natures of the TISs and SISs.

Furthermore, the interfacial characters of the TISs and SISs, ones with wave functions spatially concentrated around the VSe₂/Bi₂Se₃ interface, are extracted from the states' thickness-dependent charge densities. Figures 4(a) and 4(b) reproduce simulated mappings and their second derivatives for 1 TL and 2 TL VSe₂/6 QL Bi₂Se₃. At both VSe₂ thicknesses, spatial charge densities ρ for TISs and SISs at the $\overline{\Gamma}$ point, integrated in real space over the in-plane coordinates, are plotted in Figs. 4(c) and 4(d) versus the coordinate *z* along the *c* direction, as defined in the lattice in Fig. 4(e). For TISs [Figs. 4(c) and 4(d), left panels], the charge density mostly lies within the first couple of Bi₂Se₃ QLs nearest the VSe₂/Bi₂Se₃ interface, though there are non-negligible penetrations of the

FIG. 4. Spatial charge densities for interface states. (a) Simulated mapping (left) along $\overline{\Gamma K}$ and its second derivative with respect to the in-plane momentum (right) for 1 TL VSe₂/6 QL Bi₂Se₃, wherein TISs (red arrow) and SISs (cyan arrow) are identified. (b) Similar to (a) but for 2 TL VSe₂/6 QL Bi₂Se₃. (c) Integrated charge densities ρ for TISs (left) and SISs (right) of 1 TL VSe₂/6 QL Bi₂Se₃ at the $\overline{\Gamma}$ point graphed versus the spatial coordinate *z* along the *c* axis, where z = 0 is at the top Se layer of Bi₂Se₃. Each curve is normalized to its maximum; colored rectangles mark regions occupied by atomic layers of Bi₂Se₃ (lavender) and VSe₂ (turquoise). (d) Same as (c) but for 2 TL VSe₂/6 QL Bi₂Se₃ atomic-layer sets, respectively, acting as guides to those in (c), (d).

wave functions into the van der Waals gap(s) of overlaying VSe₂. As for SISs [Figs. 4(c) and 4(d), right panels], the largest contribution is concentrated near the VSe₂/Bi₂Se₃ interface, but the wave functions penetrate significantly into VSe₂ over an extended *z* range, implying the SISs are more accessible with photoemission than the TISs [Figs. 4(c) and 4(d)], consistent with the measurements [Figs. 3(a) and 3(b)].

IV. CONCLUSION

Transformations of topological and trivial Rashba spin-split surface bands into interfacial phenomena in VSe_2/Bi_2Se_3 are extreme antitheses of potential long-range migrations of topological states into trivial metals [7,8]. Signatures of interfacial states in VSe_2/Bi_2Se_3 , namely,

dramatic reductions in spectral weights with increasing VSe₂ thickness [Figs. 2(c) and 2(d)], are understood in terms of photoemission's probing depth—here, $\sim 1 \text{ nm}$ [24,25]—which limits observing bands spatially localized near the VSe_2/Bi_2Se_3 interface, per our simulations [Figs. 3 and 4]. Such localized behaviors are relevant when refining designs for nanoscale devices requiring transmissions of spin polarization across metallic/TI interfaces [7]. Moreover, these conversions leave tantalizing features, including topological Dirac states, largely intact, though interfacial band dispersions are visibly modified relative to those of Bi₂Se₃ despite weak incommensurate van der Waals bonding at the interface [Fig. 3]. These preservations amid hybridization coupling are critical prerequisites for exploiting TIs in topological devices [4-8]. Thus, our work not only helps complete the picture for hybridization coupling effects in trivial metal/TI but also highlights methods for probing localized topological and

- L. Fu and C. L. Kane, Superconducting Proximity Effect and Majorana Fermions at the Surface of a Topological Insulator, Phys. Rev. Lett. 100, 096407 (2008).
- [2] K. Yasuda, R. Wakatsuki, T. Morimoto, R. Yoshimi, A. Tsukazaki, K. S. Takahashi, M. Ezawa, M. Kawasaki, N. Nagaosa, and Y. Tokura, Geometric Hall effects in topological insulator heterostructures, Nat. Phys. 12, 555 (2016).
- [3] J. Chen, L. Wang, M. Zhang, L. Zhou, R. Zhang, L. Jin, X. Wang, H. Qin, Y. Qiu, J. Mei, F. Ye, B. Xi, H. He, B. Li, and G. Wang, Evidence for magnetic skyrmions at the interface of ferromagnet/topological-insulator heterostructures, Nano Lett. 19, 6144 (2019).
- [4] X.-L. Qi and S.-C. Zhang, Topological insulators and superconductors, Rev. Mod. Phys. 83, 1057 (2011).
- [5] B.-J. Yang, M. S. Bahramy, and N. Nagaosa, Topological protection of bound states against the hybridization, Nat. Commun. 4, 1524 (2013).
- [6] T. Shoman, A. Takayama, T. Sato, S. Souma, T. Takahashi, T. Oguchi, K. Segawa, and Y. Ando, Topological proximity effect in a topological insulator hybrid, Nat. Commun. 6, 6547 (2015).
- [7] X. Wang, G. Bian, T. Miller, and T.-C. Chiang, Topological quantum well resonances in metal overlayers, Phys. Rev. B 87, 235113 (2013).
- [8] C. X. Trang, N. Shimamura, K. Nakayama, S. Souma, K. Sugawara, I. Watanabe, K. Yamauchi, T. Oguchi, K. Segawa, T. Takahashi, Y. Ando, and T. Sato, Conversion of a conventional superconductor into a topological superconductor by topological proximity effect, Nat. Commun. 11, 159 (2020).
- [9] T. Yilmaz, X. Tong, Z. Dai, J. T. Sadowski, E. F. Schwier, K. Shimada, S. Hwang, K. Kisslinger, K. Kaznatcheev, E. Vescovo, and B. Sinkovic, Emergent flat band electronic structure in a VSe₂/Bi₂Se₃ heterostructure, Commun. Mater. 2, 11 (2021).
- [10] Y. A. Surnin, I. I. Klimovskikh, D. M. Sostina, K. A. Kokh, O. E. Tereshchenko, and A. M. Shikin, Impact of ultrathin Pb films on the topological surface and quantum-well states of Bi₂Se₃ and Sb₂Te₃ topological insulators, J. Exp. Theor. Phys. **126**, 535 (2018).

trivial Rashba-type states, while revealing design limitations of topologically protected states in spintronic devices.

ACKNOWLEDGMENTS

This work was supported by the U.S. Department of Energy (DOE), Office of Science (OS), Office of Basic Energy Sciences, Division of Materials Science and Engineering, under Grant No. DE-FG02-07ER46383 (T.-C.C.). Y.-H.C., T.H., and M.-Y.C. acknowledge support from Academia Sinica, Taiwan. Y.-H.C. acknowledges support by the Ministry of Science and Technology (Grant No. 110-2124-M-002-012), National Center for Theoretical Sciences, and National Center for High-Performance Computing in Taiwan. M.-K.L acknowledges support from the Ministry of Science and Technology of Taiwan under Grant No. MOST 110-2112-M-008-039-MY3.

- [11] A. Eich, N. Rollfing, F. Arnold, C. Sanders, P. R. Ewen, M. Bianchi, M. Dendzik, M. Michiardi, J.-L. Mi, M. Bremholm, D. Wegner, P. Hofmann, and A. A. Khajetoorians, Absence of superconductivity in ultrathin layers of FeSe synthesized on a topological insulator, Phys. Rev. B 94, 125437 (2016).
- [12] C. M. Polley, R. Buczko, A. Forsman, P. Dziawa, A. Szczerbakow, R. Rechciński, B. J. Kowalski, T. Story, M. Trzyna, M. Bianchi, A. G. Čabo, P. Hofmann, O. Tjernberg, and T. Balasubramanian, Fragility of the Dirac cone splitting in topological crystalline insulator heterostructures, ACS Nano 12, 617 (2018).
- [13] R. Yoshimi, A. Tsukazaki, K. Kikutake, J. G. Checkelsky, K. S. Takahashi, M. Kawasaki, and Y. Tokura, Dirac electron states formed at the heterointerface between a topological insulator and a conventional semiconductor, Nat. Mater. 13, 253 (2014).
- [14] M. H. Berntsen, O. Götberg, B. M. Wojek, and O. Tjernberg, Direct observation of decoupled Dirac states at the interface between topological and normal insulators, Phys. Rev. B 88, 195132 (2013).
- [15] M.-K. Lin, T. He, J. A. Hlevyack, P. Chen, S.-K. Mo, M.-Y. Chou, and T.-C. Chiang, Coherent electronic band structure of TiTe₂/TiSe₂ moiré bilayer, ACS Nano 15, 3359 (2021).
- [16] H. Zhang, C.-X. Liu, X.-L. Qi, X. Dai, Z. Fang, and S.-C. Zhang, Topological insulators in Bi₂Se₃, Bi₂Te₃ and Sb₂Te₃ with a single Dirac cone on the surface, Nat. Phys. 5, 438 (2009).
- [17] H.-H. Kung, A. P. Goyal, D. L. Maslov, X. Wang, A. Lee, A. F. Kemper, S.-W. Cheong, and G. Blumberg, Observation of chiral surface excitons in a topological insulator Bi₂Se₃, Proc. Natl. Acad. Sci. USA **116**, 4006 (2019).
- [18] Y. Xia, D. Qian, D. Hsieh, L. Wray, A. Pal, H. Lin, A. Bansil, D. Grauer, Y. S. Hor, R. J. Cava, and M. Z. Hasan, Observation of a large-gap topological-insulator class with a single Dirac cone on the surface, Nat. Phys. 5, 398 (2009).
- [19] P. Chen, W. W. Pai, Y.-H. Chan, V. Madhavan, M. Y. Chou, S.-K. Mo, A.-V. Fedorov, and T.-C. Chiang, Unique Gap Structure and Symmetry of the Charge Density Wave in Single-Layer VSe₂, Phys. Rev. Lett. **121**, 196402 (2018).

- [20] J. Feng, D. Biswas, A. Rajan, M. D. Watson, F. Mazzola, O. J. Clark, K. Underwood, I. Marković, M. McLaren, A. Hunter, D. M. Burn, L. B. Duffy, S. Barua, G. Balakrishnan, F. Bertran, P. Le Fèvre, T. K. Kim, G. van der Laan, T. Hesjedal, P. Wahl *et al.*, Electronic structure and enhanced charge-density wave order of monolayer VSe₂, Nano Lett. **18**, 4493 (2018).
- [21] P. M. Coelho, K. N. Cong, M. Bonilla, S. Kolekar, M.-H. Phan, J. Avila, M. C. Asensio, I. I. Oleynik, and M. Batzill, Charge density wave state suppresses ferromagnetic ordering in VSe₂ monolayers, J. Phys. Chem. C **123**, 14089 (2019).
- [22] Y. Ma, Y. Dai, M. Guo, C. Niu, Y. Zhu, and B. Huang, Evidence of the existence of magnetism in pristine VX₂ monolayers (X = S, Se) and their strain-induced tunable magnetic properties, ACS Nano **6**, 1695 (2012).
- [23] M. Bonilla, S. Kolekar, Y. Ma, H. C. Diaz, V. Kalappattil, R. Das, T. Eggers, H. R. Gutierrez, M.-H. Phan, and M. Batzill, Strong room-temperature ferromagnetism in VSe₂ monolayers on van der Waals substrates, Nat. Nanotechnol. 13, 289 (2018).
- [24] M. P. Seah and W. A. Dench, Quantitative electron spectroscopy of surfaces: A standard data base for electron inelastic mean free paths in solids, Surf. Interface Anal. 1, 2 (1979).
- [25] S. Hüfner, *Photoelectron Spectroscopy*, 3rd ed. (Springer-Verlag, New York, 2003).
- [26] D. Flötotto, Y. Ota, Y. Bai, C. Zhang, K. Okazaki, A. Tsuzuki, T. Hashimoto, J. N. Eckstein, S. Shin, and T.-C. Chiang, Superconducting pairing of topological surface states in bismuth selenide films on niobium, Sci. Adv. 4, eaar7214 (2018).
- [27] J. A. Hlevyack, S. Najafzadeh, M.-K. Lin, T. Hashimoto, T. Nagashima, A. Tsuzuki, A. Fukushima, C. Bareille, Y. Bai, P. Chen, R.-Y. Liu, Y. Li, D. Flötotto, J. Avila, J. N. Eckstein, S. Shin, K. Okazaki, and T.-C. Chiang, Massive Suppression of Proximity Pairing in Topological (Bi_{1-x}Sb_x)₂Te₃ Films on Niobium, Phys. Rev. Lett. **124**, 236402 (2020).
- [28] Y. Zhang, K. He, C.-Z. Chang, C.-L. Song, L.-L. Wang, X. Chen, J.-F. Jia, Z. Fang, X. Dai, W.-Y. Shan, S.-Q. Shen, Q. Niu, X.-L. Qi, S.-C. Zhang, X.-C. Ma, and Q.-K. Xue, Crossover of the three-dimensional topological insulator Bi₂Se₃ to the two-dimensional limit, Nat. Phys. 6, 584 (2010).
- [29] T. J. Whitcher, M. G. Silly, M. Yang, P. K. Das, D. Peyrot, X. Chi, M. Eddrief, J. Moon, S. Oh, A. H. Castro-Neto, M. B. H. Breese, A. T. S. Wee, F. Silly, and A. Rusydi, Correlated

plasmons in the topological insulator Bi_2Se_3 induced by longrange electron correlations, NPG Asia Mater. **12**, 37 (2020).

- [30] See Supplemental Material at http://link.aps.org/supplemental/ 10.1103/PhysRevB.105.195119 for additional experimental data and theoretical analysis, including Refs. [7–9,15–21,24– 29].
- [31] P. Ordejón, E. Artacho, and J. M. Soler, Self-consistent order-N density-functional calculations for very large systems, Phys. Rev. B 53, R10441 (1996).
- [32] D. Sánchez-Portal, P. Ordejón, E. Artacho, and J. M. Soler, Density-functional method for very large systems with LCAO basis sets, Int. J. Quantum Chem. 65, 453 (1997).
- [33] J. M. Soler, E. Artacho, J. D. Gale, A. García, J. Junquera, P. Ordejón, and D. Sánchez-Portal, The SIESTA method for *ab initio* order-*N* materials simulation, J. Phys.: Condens. Matter 14, 2745 (2002).
- [34] E. Artacho, E. Anglada, O. Diéguez, J. D. Gale, A. García, J. Junquera, R. M. Martin, P. Ordejón, J. M. Pruneda, D. Sánchez-Portal, and J. M. Soler, The SIESTA method; developments and applicability, J. Phys.: Condens. Matter 20, 064208 (2008).
- [35] J. P. Perdew, K. Burke, and M. Ernzerhof, Generalized Gradient Approximation Made Simple, Phys. Rev. Lett. 77, 3865 (1996).
- [36] S. Barua, M. C. Hatnean, M. R. Lees, and G. Balakrishnan, Signatures of the Kondo effect in VSe₂, Sci. Rep. 7, 10964 (2017).
- [37] S. Nakajima, The crystal structure of $Bi_2Te_{3-x}Se_x$, J. Phys. Chem. Solids **24**, 479 (1963).
- [38] S. G. Mayo, F. Yndurain, and J. M. Soler, Band unfolding made simple, J. Phys.: Condens. Matter 32, 205902 (2020).
- [39] G. Kresse and J. Furthmüller, Efficient iterative schemes for *ab initio* total-energy calculations using a plane-wave basis set, Phys. Rev. B 54, 11169 (1996).
- [40] G. Kresse and D. Joubert, From ultrasoft pseudopotentials to the projector augmented-wave method, Phys. Rev. B 59, 1758 (1999).
- [41] S. Grimme, Semiempirical GGA-type density functional constructed with a long-range dispersion correction, J. Comput. Chem. 27, 1787 (2006).