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Prethermalization and entanglement dynamics in interacting topological pumps
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We investigate the formation of quasisteady states in one-dimensional pumps of interacting fermions at
noninteger filling fraction, in the regime where the driving frequency and the interaction strength are small
compared to the instantaneous single-particle band gap throughout the driving cycle. The system rapidly absorbs
energy from the driving field and approaches a quasisteady state that locally resembles a maximal entropy state
subject to the constraint of a fixed particle number in each of the system’s single-particle Floquet bands. We
explore the nature of this quasisteady state through one-body observables including the pumped current and
natural orbital occupations, as well as the (many-body) entanglement spectrum and entropy. Potential disorder
significantly reduces the amplitude of fluctuations of the quasisteady-state current around its universal value,
while the lifetime of the quasisteady state remains nearly unaffected for disorder strengths up to the scale of the
single-particle band gap. Interestingly, the natural orbital occupations and the entanglement entropy display
patterns signifying the periodic entangling and disentangling of the system’s degrees of freedom over each
driving cycle. Moreover, prominent features in the system’s time-dependent entanglement spectrum reveal the
emergence of long timescales associated with the equilibration of many-particle correlations.
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I. INTRODUCTION

Topological phenomena have come to prominence in con-
densed matter physics due to their robust character, which
makes them insensitive to small perturbations and variations
of system details [1–6]. In equilibrium, topological phenom-
ena arise in the ground states (or low-energy excited states)
of many-body systems and therefore require low tempera-
tures for observation. Interestingly, it has recently been shown
that robust topological phenomena may also emerge in far-
from-equilibrium quantum many-body systems [7–19]. These
nonequilibrium phenomena persist at high-energy densities
and thus do not require low temperatures for observation.
However, many important questions remain about the factors
that control the degree of robustness of these phenomena, as
well as their temporal emergence after nonequilibrium driving
fields are imposed.

Time-periodic driving provides a powerful set of tools for
achieving nonequilibrium topological phenomena. For exam-
ple, through “Floquet engineering,” time-periodic driving may
be used to modify the topological properties of Bloch bands in
itinerant systems [20–26]. However, in the presence of inter-
actions, periodically driven quantum many-body systems are
generically expected to absorb energy from the driving field
and heat up towards featureless high-entropy density states in
which all observables display trivial behavior [27]. Disorder-
induced many-body localization (MBL) in isolated systems

provides a mechanism for inhibiting energy absorption in the
system [9,28–33], thereby allowing for a rigorous definition
of novel nonequilibrium topological phases that persist in the
long-time limit [11–17,34]. Beyond the strict requirements of
MBL and stability in the long-time limit, the use of appro-
priately designed high- [35–38] or low-frequency [39] driving
fields enables the possibility of studying nonequilibrium phe-
nomena in long-lived transient (“prethermal”) states [40–42].

In this work we study the temporal emergence of long-lived
chiral quasisteady states and associated universal transport
behavior in one-dimensional topological pumps, as predicted
in Refs. [39,43] (see Fig. 1). We consider a periodically mod-
ulated two-band system, which in the band-insulator regime
(i.e., at half-filling) exhibits quantized charge pumping in
the adiabatic limit where the modulation frequency is much
smaller than the (instantaneous) band gap [44–47]. As dis-
cussed in Refs. [21,25], the corresponding Floquet-Bloch
bands of the system are chiral: quantization of the charge
pumped by a filled band arises due to a nonzero average
group velocity of the band, which is quantized due to the
topological requirement that the quasienergy ε(k) must wind
an integer number of times around the quasienergy Brillouin
zone as the crystal momentum k traverses the Brillouin zone.
For a partially filled band, the pumped charge is nonuniversal.
However, as discussed in Ref. [39], in the presence of interac-
tions, the natural heating that is typically viewed as a nuisance
for Floquet engineering may actually become a resource: in
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FIG. 1. (a) Schematic of a one-dimensional quantum pump con-
sisting of a periodically modulated one-dimensional lattice with a
two-site unit cell. The sublattice potential V (t ) and the intracell
and intercell hopping amplitudes, J+(t ) and J−(t ), are modulated
with a driving period T [see Eqs. (1) and (2)]. (b) Driving protocol
represented in the plane of dimerization δJ (t ) ≡ 0.5[J+(t ) − J−(t )]
and sublattice potential V (t ). The instantaneous band gap closes
when V = 0 and δJ = 0 (red X). The number of times that the
drive trajectory encircles the origin of this plane over one cycle (i.e.,
the winding number) labels topologically distinct driving protocols.
(c) Time-averaged spectral function of the system in the absence
of interactions, for the topologically nontrivial driving protocol in-
dicated by the blue curve in panel (b). Lower panel: Zoom-in of
the lower (right-moving, “R”) Floquet-band. Each Floquet sideband
shifts by ω as k traverses the Brillouin zone, indicative of a quantized,
nonzero value of the band-averaged group velocity.

a low-frequency driving regime where interband transitions
are exponentially suppressed in the inverse of the driving
frequency, the system is expected to heat up to a state with
maximal entropy-density, subject to the constraint of the fixed
particle number in each band. In such a state, the occupation
of Floquet modes in each band is uniform in k, and we expect
the quasisteady-state current to be given by the topological
winding numbers and the corresponding particle densities of
the two bands.

While Ref. [39] provided a general picture of this
nonequilibrium topological phenomenon, many important
open questions remain. In particular, the extent to which the
quasisteady state realizes the heuristic restricted maximal en-
tropy density form described above, as well as how rapidly
the current approaches its universal value as a function of
system parameters, remain to be addressed. Moreover, given
the central role that disorder plays in the characterization of
topological phases, it is important to assess how disorder af-
fects both the fidelity and the stability of the quasisteady-state
of the system.

To assess the degree to which the (constrained) entropy
maximization hypothesis is realized, we compute the one-
body reduced density matrix, the entanglement entropy, and
the full entanglement spectrum in the initial transient and
quasisteady-state regimes. Compared with the populations in
the system’s noninteracting band structure that were studied
previously, these observables give a basis-independent view
of the quasisteady state that naturally adapts to capture the
nature of the steady state even if interaction-induced band

renormalizations become large. Through numerical exact evo-
lution simulations on finite systems, we observe that the
quasisteady-state current and natural orbital populations con-
verge to their anticipated forms, while the entanglement
spectrum reveals that the full many-body state of the system
hosts higher-order correlations that decay only over much
longer timescales. Remarkably, spatial disorder, which may
be expected to assist thermalization by relieving the constraint
of momentum conservation (which may particularly severely
inhibit scattering in a finite system), significantly improves
the convergence of the current to its expected universal value
by reducing fluctuations around its mean value. However, by
all other measures tested, the quasisteady state (including its
lifetime) appears to be qualitatively unaffected by the pres-
ence of disorder, up to disorder amplitudes comparable to the
minimal instantaneous single-particle band gap present within
the driving cycle.

In the text below we first describe the model studied and
introduce the Thouless charge pump as described through the
framework of Floquet theory. We then introduce the observ-
ables that we use to study the build-up and nature of the
chiral quasisteady state, and we discuss the related signatures
that we expect. Next, we present and discuss our numerical
results in relation to the behavior anticipated by our general
considerations. Finally, we discuss open questions and future
directions for investigation.

II. PROBLEM SETUP

To study the nature of the quasisteady states that emerge in
the low-frequency driving regime, we consider the dynamics
of interacting, spinless fermions in a periodically modulated
one-dimensional lattice. The full Hamiltonian is given by
H (t ) = H0(t ) + Hint + Hdis, where the translation-invariant
single-particle Hamiltonian H0(t ) depends periodically on
time t , while Hint and Hdis describe the interparticle interac-
tions and (static) disorder, respectively.

The single-particle Hamiltonian H0(t ) describes the hop-
ping of fermionic particles between the sites of a one-
dimensional lattice with two sublattices, A and B [see
Fig. 1(a)]:

H0(t ) = − J+(t )
∑

j

c†
j,Ac j,B − J−(t )

∑
j

c†
j,Bc j+1,A + H.c.

+V (t )
∑

j

(c†
j,Ac j,A − c†

j,Bc j,B), (1)

where c†
j,s (c j,s) creates (annihilates) a fermion in unit cell j on

sublattice s = {A, B}. As depicted in Fig. 1(b), the sublattice
potential V (t ), and intra- and inter-unit-cell hopping ampli-
tudes J+(t ) and J−(t ), respectively, are periodically modulated
according to

V (t ) = δV1 sin(�t ),

J±(t ) = J0 ± δJ (t ), δJ (t ) = δJ0 + δJ1 cos(�t ). (2)

Here δJ0 describes a static dimerization of the hopping, and
δJ1 and δV1 are the corresponding amplitudes of the modu-
lation at frequency �. In the adiabatic limit, at half-filling,
this periodically modulated Rice-Mele system presents a
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canonical realization of Thouless’ quantized adiabatic charge
pump [44,45].

To study the emergence of quasisteady states, we take a
model short-ranged two-body interaction of the form

Hint = U
∑

j

n j (n j − 1), n j = c†
j,Ac j,A + c†

j,Bc j,B, (3)

where U is the interaction strength (which we take to be
positive). Moreover, we incorporate disorder via a random
on-site potential:

Hdis =
∑

j,s

Vj,s c†
j,sc j,s , Vj,s ∈ [−η, η], (4)

where Vj,s is randomly chosen for each unit cell j and sublat-
tice s = {A, B} from a uniform distribution over the interval
−η � Vj,s � η, where the parameter η encodes the disor-
der strength. We note that quantized pumping for disordered
systems in the adiabatic driving regime has previously been
shown to be robust to disorder that is weak on the scale of the
bulk band gap of the corresponding clean system [48–54].

Due to the time periodicity of H0(t ) [see Eqs. (1) and
(2)], solutions to the single-particle Schrödinger equation can
be expressed in terms of an orthonormal basis of Flo-
quet states |ψν (t )〉 = e−iεν t |φν (t )〉 that satisfy i d

dt |ψν (t )〉 =
H0(t )|ψν (t )〉. (We set h̄ = 1 throughout.) The parameter εν is
the quasienergy of Floquet state ν, and |φν (t )〉 = |φν (t + T )〉
is periodic in time, with period T = 2π/�. The periodic
parts of the Floquet states can be expanded in Fourier “side-
band” harmonics as |φν (t )〉 = ∑∞

m=−∞ e−im�t |φ(m)
ν 〉. In the

absence of disorder, the single-particle quasienergies form
Floquet-Bloch bands, labeled by ν = (k, α), where k is the
crystal-momentum and α is the Floquet band index.

The single-particle Floquet band structure of the sys-
tem we study [Eqs. (1) and (2)], together with the
amplitudes of the sideband harmonics, is conveniently
visualized through the time-averaged spectral function
[55–58]: Ak,α (ω) = ∑

m A(m)
k,α

δ(εk,α + m� − ω), with A(m)
k,α

=
〈φ(m)

k,α
|φ(m)

k,α
〉 [see Fig. 1(c)]. As displayed in the lower panel of

Fig. 1(c), the “lower Floquet band” (α = R for right-moving,
blue color) carries a quasienergy winding number wR = 1:
each continuous line of spectral weight shifts up by � as k
goes from −π/a to π/a, where a is the lattice constant. The
winding number of the upper band (α = L for left-moving,
red color) is given by wL = −1. As a consequence of these
nontrivial shifts, the average group velocities of the bands,
v̄α , are quantized in units of a/T : v̄α ≡ a

2π

∫ π/a
−π/a dk ∂kεk,α =

wαa/T .
In this work, we focus on the situation where the system

is initialized with partial filling of the lower (right-mover)
band, while the upper (left-mover) band is initially empty. We
study the evolution of the interacting many-body system and
characterize its dynamics, its quasisteady states, and the emer-
gence of universal charge transport through the observables
described below.

III. NATURE OF THE QUASISTEADY STATE

The quasisteady states that we seek emerge due to a para-
metrically large separation between the timescales for energy

absorption via intraband and interband scattering, τintra and
τinter, respectively. The populations of particles within the
two bands are approximately separately conserved for times
t � τinter. For τintra � τinter and on intermediate times τintra �
t � τinter, we expect the system to approach a quasisteady
state which, from the point of view of all local observables,
is equivalent to a state of maximal entropy, subject to the
constraint of fixed particle numbers in each band [39]. For
times t � τinter, we expect the system to approach a feature-
less state in which all local observables are trivial, as in an
infinite-temperature state.

The separation of timescales τinter/τintra � 1 that provides
the time window for quasisteady-state formation arises when
the spectral weights of the two Floquet bands [see Fig. 1(c)]
are well separated, relative to � and U , and to the individ-
ual bandwidths. Under these conditions, inter-Floquet-band
transitions involve a large energy change that must involve
high-order multiphoton absorption or many-body rearrange-
ment processes.

Before turning to our numerical investigation of this
system, we briefly outline the observables that we use to
characterize the evolution and their expected signatures in the
quasisteady state.

Period-averaged current. The first diagnostic that we em-
ploy is the period-averaged particle current. For a system of N
unit cells with periodic boundary conditions, the net current
flowing around the system, averaged over a driving period
starting at time t0, is given by

J (t0) = −
∫ t0+T

t0

dt
J−(t )

N

N∑
j=1

〈ic†
j,Bc j+1,A + H.c.〉. (5)

The expectation value in Eq. (5) is taken with respect to
the many-body state of the system at time t , |�(t )〉. For a
generic initial state, the current at short times takes a nonuni-
versal, initialization-dependent value. However, after a short
time τintra, we expect heating via photon-assisted intraband
scattering processes to homogenize the populations within
the partially filled band, leading to a universal value of the
quasisteady-state current: Jqs = ρwR/T , where ρ is the fill-
ing fraction of the initially populated R band (recall that we
assume the L band to be initially empty) [see Fig. 2(a)]. On
timescales much longer than τinter, the current will drop to 0 as
interband scattering causes the band populations to equalize.

Natural orbital populations. More generally, the one-body
reduced density matrix (1RDM) ρ

(1)
i j = 〈�(t )|c†

i c j |�(t )〉
encodes the expectation values of all one-body observ-
ables. Here we focus on the “natural orbital populations,”
{nμ(t )}, which are the eigenvalues of the 1RDM: ρ (1) =∑

μ nμ(t ) |nμ(t )〉 〈nμ(t )|. The natural orbitals {|nμ(t )〉} pro-
vide an orthonormal single-particle basis for the system. For
a translation-invariant state, the natural orbitals are labeled by
the crystal momentum k and the band index α̃. Compared with
the single-particle Floquet bands of H0(t ), the natural orbital
bands are renormalized and incorporate mean-field effects of
interactions in the time-dependent state of the system.

For the reasons above, we track the emergence of the qua-
sisteady state through the natural orbital populations, {nμ(t )},
which provide a more refined picture of the system’s dynamics
than the noninteracting band populations studied in Ref. [39].
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(a) (b)

(c) (d)

FIG. 2. Transient- and quasisteady-state behavior of single-
particle observables. (a) Period-averaged current for clean and
disordered systems, at quarter filling. The system is initialized
with the right-moving Floquet band half-filled. The current starts
from an initialization-dependent value and then quickly approaches
the expected universal value [see discussion below Eq. (5)]. Inset:
Zoom-in showing deviation of the period-averaged current from the
quasisteady-state value. Fluctuations are significantly suppressed by
disorder. (b) The populations of the 16 natural orbitals with high-
est occupation (approximately corresponding to the right-moving
Floquet band) quickly converge around the expected value of 1/2
(red curves); the remaining 16 nearly empty natural orbitals are
shown in blue, magnified by a factor of 10 for visibility. (c) Total
occupation of the initially empty band, measured by the sum of the
16 smallest natural orbital populations. The timescale for interband
excitation defined by the slopes of these curves (τ−1

inter ≈ 3 × 10−4/T )
is nearly unaffected by disorder. (d) Effect of disorder strength η on
the interband excitation rate τ−1

inter . Each point is an average taken
over 50 disorder realizations in a system of L = 28 sites. The red
dashed line indicates where the disorder bandwidth 2η is equal to
the minimal instantaneous single-particle band gap over the driving
cycle. Drive parameters [also corresponding to Fig. 1(c)]: � = 0.23,
J0 = 1.0, λ = 0.85, δJ0 = 0.0, and U = 2J0. The modulations of the
hopping and sublattice potentials are set by δJ1 = λJ0 and V1 = 3λJ0.

For any product (Slater determinant) state, the natural orbital
populations are 1 for each of the filled orbitals and 0 for the
remaining unoccupied orbitals. Deviations from this form (of
all 1’s and 0’s) signal the development of correlations. In the
quasisteady state, we expect the natural orbital populations
within the (renormalized) partially filled band to be uniform,
while the populations in the unoccupied band remain close
to 0. For a half-filled band (quarter-filled system), in the
quasisteady state we therefore expect N/2 natural orbitals
(accounting for one of the two bands) to be half-occupied
(nμ = 0.5), while the remaining N/2 natural orbitals remain

nearly empty. At long times, t � τinter, we expect all natural
orbitals to become equally occupied, with nμ = 1/4 for all
μ, as heating allows the system to ergodically explore its full
Hilbert space.

Entanglement spectrum and entropy. While the natural
orbital populations provide some measure of correlations
between one particle and the remainder of particles in
the system, they do not contain sufficient information to
resolve correlations of higher order. To more fully character-
ize the many-body nature of the quasisteady state, we turn
to the entanglement spectrum and the entanglement entropy.
These measures characterize entanglement between degrees
of freedom that are split across a bipartition of the system into
two complementary regions, A and B. Such correlations are
captured by the Schmidt decomposition

|�(t )〉 =
∑

i

λi |�A,i(t )〉 ⊗ |�B,i(t )〉 ; (6)

the entanglement spectrum (ES) {ξi} is defined in terms of
the Schmidt coefficients {λi} via λ2

i = e−ξi . The entanglement
entropy is given by the von Neumann (vN) entropy of the
reduced density matrix of subsystem A (or B, by symmetry):

SvN =
∑

i

ξie
−ξi . (7)

Given that the entropy of a quantum state is preserved
under unitary evolution (in particular, remaining 0 for any
pure state), entanglement entropy growth due to the build-up
of correlations plays a crucial role in characterizing self-
equilibration and thermalization of closed quantum systems.
In our context, the tendency of the system to heat towards a
state similar to a maximal entropy state, subject to the con-
straint of fixed band occupations at intermediate times τintra �
t � τinter, is defined precisely in terms of the entanglement
entropy and the entanglement spectrum of a spatially local
subsystem A of the full system. Throughout this work we
consider a “half-system cut” bipartition in which subsystems
A and B are equal in size, each containing N/2 unit cells (for
a system with a total of N unit cells).

In the quasisteady state, we expect the state of the system
to be similar to a typical random pure state of Np particles,
sampled from the subspace with all particles residing in a
single band. The corresponding distribution can be described
as an ensemble in which all states with Np particles residing
in a single band are represented with equal probability. The
corresponding density matrix takes the form of an infinite-
temperature state (proportional to identity), projected onto
the subspace of a single band. Within this ensemble, the von
Neumann entropy associated with the reduced density matrix
of subsystem A can be obtained by straightforward combina-
torics [59]. First, the total number of states of the full system,
with Np particles distributed across N unit cells (and restricted
to one band), is given by the binomial coefficient Ntot = (N

Np

)
;

the corresponding probability per state is 1/Ntot. For each
configuration with Np − n particles in subsystem A, there are
NB;n = (N/2

n

)
configurations of the remaining n particles in
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subsystem B. For a half-filled band, Np = N/2, this yields [60]

S(∞)
vN = −

N/2∑
n=0

(
N/2

N/2 − n

)NB;n

Ntot
ln

(NB;n

Ntot

)
, (8)

where the ratio NB;n/Ntot is the probability for each state of
subsystem A in which n particles are located in subsystem B,
and the factor

( N/2
N/2−n

)
arises from summing over the (equal)

contributions of states with N/2 − n particles in subsystem A.
Importantly, as pointed out by Page [61], the entanglement

entropy (and hence the entanglement spectrum) obtained by
tracing out half of the degrees of freedom of a random pure
state, and then averaging over pure states, differs from that ob-
tained for a mixed state corresponding to an ensemble where
all states are equally likely (as described above). The “Page
correction” in the case with a conserved quantity (as we have
here for particle number) was further studied in Ref. [62]. For
the case of a half-filled band and a half-system cut, in the
thermodynamic limit, Ref. [62] predicts that the entanglement
entropy of a random pure state will be reduced by �SvN = 1/2
compared with the value S(∞)

vN calculated above for the random
ensemble. Below we display both values for comparison when
analyzing our numerical results.

Less is known about the precise form of the entanglement
spectrum for a random pure state in the restricted Hilbert
space. However, based on the similarity to the constrained
maximal entropy mixed state discussed above, we may expect
that the entanglement spectrum in the quasisteady state will
feature ∼Np/2 clusters of approximately degenerate entangle-
ment levels, corresponding to the states with Np − n particles
in subsystem A, with degeneracies given by the weight factors
NB;n defined above.

IV. NUMERICAL SIMULATIONS

We now discuss our numerical results for the one-body and
many-body observables described in the preceding section.
Except when noted otherwise, all numerical results were ob-
tained by exact time-evolution of a periodic system of N =
16 unit cells (L = 32 sites) with Np = 8 fermions (quarter
filling). In each simulation the system is initialized in a single
Slater determinant state. For the clean systems (i.e., with no
disorder), we take an initial state in which all single-particle
states with positive values of crystal momentum in the lower
Floquet band are occupied. (This band is adiabatically con-
nected to the lower band of the original, nondriven system
[63].) In the presence of disorder, we initialize the system
by filling the Np single-particle Floquet eigenstates of the
disordered system that have the largest projections on the
lower Floquet band of the clean system. Although the initial
transients depend on the details of the initialization, we ob-
serve the behavior in the quasisteady and long-time regimes
to be insensitive to the initialization as long as the initial band
populations are kept fixed.

One-body observables. Time traces of the current and
natural orbital occupations in a system in the topologically
nontrivial driving regime are shown in Fig. 2 (see caption
for parameter values). As anticipated, the current quickly
approaches and then fluctuates around the universal value of
0.5/T characteristic of a half-filled band with winding number

wR = 1 in the quasisteady regime [Fig. 2(a)]. On a similar
timescale τintra of a few driving periods, the populations of
16 natural orbitals coalesce around the value 0.5, while the
remaining 16 natural orbital populations remain close to 0
[see Fig. 2(b)]. (Here N = 16 is the number of unit cells of
the system.) We have confirmed that the 16 natural orbitals
with populations near 0.5 have nearly unit overlap with the
states in the right-moving band of the system in the absence
of interactions. Interestingly, the populations of the remaining
16 natural orbitals display periodic spikes (repeating once per
driving cycle). These spikes indicate that, within each driving
cycle, the system builds up—and then eliminates—additional
correlations that cannot be described by projecting into any
single band. We expect that such reversible interband mixing
by interparticle interactions arises due to the periodic mod-
ulation of the instantaneous band gap and interaction matrix
elements throughout the driving cycle. Interestingly, in this
topologically nontrivial regime the times of maximal mixing
correspond to times where the instantaneous Wannier orbitals
straddle the bonds between adjacent unit cells (cf. discussion
of entanglement entropy below); we surmise that an enhanced
interaction probability at these times is thus responsible for
the spike.

In the presence of disorder, which relieves the conser-
vation of crystal momentum, the fluctuations of the current
around the quasisteady-state value of 0.5/T are dramatically
reduced [Fig. 2(a)]. To explain this behavior, we first note
that for a clean system, time-dependent deviations of the
current from the anticipated universal value arise due to the
nonuniform (instantaneous) population of the Floquet states in
the right-mover Floquet band. Disorder helps to reduce such
fluctuations by mixing and causing more efficient scattering
between states from across the Brillouin zone, thus providing
more uniform sampling of the subspace that is on average
transported by one unit cell to the right per driving period.
Indeed, along with the reduction of fluctuations of the current,
we observe that the distribution of natural orbital populations
is more homogeneous and temporally stable in the presence
of disorder than in the clean case. Given that disorder appears
to improve the quality of the quasisteady state from the point
of view of its transport properties, it is natural to ask how dis-
order affects other aspects of the quasisteady state, including
its stability in particular.

We now further characterize the role of disorder in the
processes that lead to the eventual decay of the quasisteady
state. In Fig. 2(c) we plot the total occupation of the ini-
tially empty band of natural orbitals, as a function of time.
After a small initial jump at short times, the excited popula-
tion grows approximately linearly in time; the slope of this
linear dependence gives a measure of the decay rate [39]
τ−1

inter ∼ 10−4/T . In Fig. 2(d) we plot the (disorder-averaged)
interband excitation rate τ−1

inter, extracted from such linear fits,
as a function of disorder strength. Here we see that the de-
cay rate remains nearly unaffected by disorder up to quite
large disorder strengths (of the order of the band width), with
a breakdown occurring once the disorder strength becomes
comparable to the minimal instantaneous single-particle gap
(red dashed line). Thus we find that disorder dramatically
improves the degree of quantization of the quasisteady-state
current, without limiting its lifetime.
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We observe qualitatively similar behavior in the topolog-
ically trivial driving regime, albeit with the current decaying
to 0 over the time τintra (see data in the Appendix). In par-
ticular, similar to Fig. 2(b), the populations of the nearly
empty natural orbitals exhibit periodic spikes. Interestingly,
in the topologically trivial driving regime, the spikes show
additional structure that closely correlates with modulations
of the instantaneous gap between single-particle bands that
occur throughout the driving cycle, with maximal interband
correlations appearing at times coinciding with minima of the
instantaneous band gap.

Entanglement diagnostics. In Figs. 3 and 4 we show how
the entanglement entropy and the entanglement spectrum
evolve in time. Here we focus on a clean system; results for
disordered systems differ only in small quantitative details.
Similar to the rapid equilibration of the one-body observables
displayed in Fig. 2, the entanglement entropy SvN [Eq. (7)]
for a half-system cut rapidly approaches a quasisteady-state
saturation value over the short timescale τintra of a few driving
periods [Fig. 3(a)]. For driving parameters in the topologically
nontrivial regime (blue curve), SvN displays periodic spikes
akin to (and in phase with) those seen for the natural orbital
populations. In the topologically trivial driving regime, aperi-
odic fluctuations with a much smaller amplitude are observed
(gray and orange curves, see inset for zoom-in).

The black dashed line in Fig. 3 shows the value S(∞)
vN

obtained from an infinite-temperature state projected into
a single band [Eq. (8)]; the red horizontal line below it
is offset by the expected Page correction [61,62], �SvN =
0.5. The orange and gray traces were obtained for a sys-
tem in the topologically trivial driving regime, with two
choices of entanglement cuts [either both cutting through
bonds with hopping J+ or J−, see Fig. 1(a)]. For the gray
curve, the partition cuts through the Wannier orbital of the
occupied band near its maximum, giving an additional con-
tribution to the entanglement entropy for the particles that
straddle the cut. For the orange curve, the partition cuts
through the tails between Wannier centers, and we see that
the saturation value of the entanglement entropy in the qua-
sisteady state falls very close to the Page-corrected value
anticipated above. The spikes in the blue curve (topolog-
ically nontrivial driving regime) interpolate between these
two values as the Wannier centers periodically sweep past
the entanglement cuts due to the nontrivial pumping in this
regime.

In Figs. 3(b) and 3(c), we show the scaling of the saturation
value of the entanglement entropy with the number of sites
in the system, L. The data shown are for the topologically
nontrivial driving regime and are averaged over the last ten
periods of each run to smooth out the periodic spikes. The
small black points show the corresponding values of S(∞)

vN
for each system size (as indicated by the black dashed line
in Fig 3(a) for the system with L = 32 sites). The small red
points indicate the corresponding Page-corrected values. In
Fig. 3(c) we plot the entropy density as a function of 1/L.
The data extrapolate well to the expected value of ln(2)/4,
corresponding to a half-filled band, in the thermodynamic
limit.

In Fig. 4(a) we show a histogram (color scale) of the half-
system-cut entanglement spectrum of the system at integer

(a)

(b) (c)

FIG. 3. Time evolution of the entanglement entropy SvN [Eq. (7)]
and scaling of its saturation value in the quasisteady state with the
number of sites, L. (a) Entanglement entropy SvN for a half-system
cut for a clean system in the topologically trivial (gray and or-
ange curves) and nontrivial (blue curve) driving regimes. The black
dashed and red solid lines indicate the entanglement entropies of
the band-projected infinite-temperature state, S(∞)

vN [Eq. (8)], and its
Page-corrected value, respectively. When the entanglement partition
cuts through the tails between Wannier centers in the populated band,
the quasisteady-state entanglement entropy of the topologically triv-
ial system sits just above the Page-corrected value (orange curve).
For an entanglement partition that cuts through the maximum of
the Wannier function, an additional contribution to SvN is observed
in the quasisteady state (gray curve). Periodic spikes observed for
the topologically nontrivial drive (blue curve) arise due to polariza-
tion pumping across the entanglement cut during the driving cycle.
(b) Scaling of the absolute difference between the average of the
time-averaged entropy SvN in the numerically obtained quasisteady
state (between the 10th and 20th period) and S(∞)

vN , with system size
L (at quarter filling). (c) Extrapolation of the entanglement entropy
density SvN/L to the thermodynamic limit is consistent with the
expected value of ln(2)/4 for an infinite-temperature state. Error bars
show the standard deviation of the period-averaged entanglement
entropy for periods 10–20. Driving parameters for the topologically
trivial regime: � = 0.1, J0 = 3.5, λ = 0.25, δJ0 = −2.2J0, and U =
1.0J0. Parameters for the topologically nontrivial driving regime are
the same as those in Fig. 2.

multiples of the driving period, T ; the color scale can be
interpreted as an “entanglement density of states.” A zoom-
in showing the entanglement spectrum at intermediate times
over two complete periods in the quasisteady-state regime is
shown in Fig. 4(b).

As discussed below Eq. (8), in the quasisteady state we
expect the entanglement levels to approximately concentrate
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FIG. 4. Histogram of the time-dependent entanglement spec-
trum, {ξi} [see text below Eq. (6)]. (a) Evolution of the stroboscopic
ES histogram at integer multiples of the driving period. Bright streaks
showing accumulation of entanglement levels slowly converge to-
wards ξqs, signifying the emergence of long-relaxation timescales
associated with the relaxation of many-body correlations. (b) Interpe-
riod evolution of the ES histogram. Sloped lines running between the
bright streaks are associated with winding of the ES in the pumping
regime [64]. Driving parameters are the same as those in Fig. 2, with
η = 0.

around several values, distinguished by the numbers of parti-
cles in subsystems A and B. The states with approximately
equal numbers of particles in subsystems A and B are
by far the most probable and therefore appear with the
largest Schmidt coefficients [see Eq. (6)]. The corresponding
entanglement levels appear with the lowest values of ξi

and provide the dominant contribution to the entanglement
entropy, SvN [Eq. (7)]. For the reference case of an infinite-
temperature state projected into one band, the entanglement
density of states would consist of a set of bright peaks at the
values ln(NB;n/Ntot ) with weights given by the corresponding
combinatorial factors in Eq. (8). The horizontal red line in
Fig. 4(a) indicates the value ln(NB;Np/2/Ntot ), which would
correspond to the brightest peak in the infinite-temperature
state.

The plots in Figs. 4(a) and 4(b) display a much richer
structure than anticipated for the simple picture described
above. First, despite the fact that the one-body observables are
very close to their expected values, the entanglement spec-
trum displays several “streaks” (of low total weight) around
which many entanglement levels are concentrated. (While
there is significant weight near the red line, which accounts
for the bulk of the entanglement entropy, there is no visible
peak structure associated with the different particle number
sectors as anticipated above for the band-projected infinite-
temperature state.) The bright streaks of low Schmidt weight
slowly shift towards lower values of ξ [and hence towards
greater weight in the Schmidt decomposition, Eq. (6)], in-
dicating that their (small) contributions to the quasisteady
state increase with time. The time dependencies of the streak
positions are neither described by exponential nor by any
simple power-law forms. This behavior indicates the emer-
gence of additional long timescales, between the timescale
τintra for equilibration of one-body observables to the quasis-
teady regime and the timescale τinter for relaxation of the band

populations. These additional long timescales for equilibra-
tion within the band can be attributed to a slow build-up of
many-body correlations.

The intraperiod evolution of the ES showcased in Fig. 4(b)
displays an interesting oscillatory pattern. On a heuristic level,
the periodic entangling/disentangling of the system across
its partition can be traced to the change of polarization that
occurs during a nontrivial pumping cycle [64,65]. Indeed, by
labeling each entanglement level by the corresponding num-
ber of particles in subsystem A in the Schmidt decomposition
of the state [see Eq. (6)], the diagonal lines connecting be-
tween the bright horizontal bands of entanglement levels in
Fig. 4(b) can be traced to the movement of particles across
the partition. This behavior is responsible for the periodic
spikes observed in SvN in Fig. 3(a). Note that these features
are not observed in the topologically trivial driving regime
(not shown).

V. DISCUSSION

In this work, we have provided a multifaceted view of
prethermalization and the formation of chiral quasisteady
states in many-body quantum pumps. From the point of view
of one-body observables, we identify a clear intraband ther-
malization timescale, τintra, that characterizes the approach
of these observables to quasisteady-state values. Remarkably,
the addition of weak potential disorder reduces fluctuations
of the period-averaged current around its expected universal
value. This not only highlights the robustness of universal far
from equilibrium topological transport but also showcases the
positive role that disorder can play in reducing the fluctua-
tions of the current around its universal value by helping to
homogenize the state of the system across the topologically
transported subspace.

The quasisteady state persists for disorder strengths ex-
ceeding the single-particle bandwidth, while still remaining
smaller than the instantaneous single-particle band gap. The
lifetime τinter of the quasisteady state, as measured by the
growth rate of the population in the initially nearly empty
band of natural orbitals, is similarly only very weakly affected
by disorder until the disorder strength approaches the single-
particle band gap. Interestingly, in the absence of interactions,
a topological transition to a trivial phase (with all parti-
cles remaining localized over each driving cycle) is expected
when the disorder strength is made larger than the single-
particle gap [48,51,53]. It will be an interesting direction
for future work to study the interplay (and possible rela-
tion) between this disorder-driven topological transition and
the destruction of the quasisteady state due to fast interband
heating.

Our study of the entanglement spectrum of the system
also revealed intriguing structure as well as the emergence
of long equilibration timescales, intermediate between τintra

and τinter. This structure highlights that, even with rapid ab-
sorption of energy from the driving field, the formation of a
maximal-entropy-like state (restricted to the low-energy sec-
tor) is a complex process that requires the development of
many-particle correlations. Even at times when one-body ob-
servables, such as the current, have already converged to their
expected quasisteady-state values, many-particle correlations
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(a) (b)

FIG. 5. One-body observables in the topologically trivial driving
regime. (a) As expected for the trivial phase, the current decays
to 0 over the intraband equilibration timescale τintra. (b) Similar to
the behavior in the topologically nontrivial driving regime shown in
the main text, the 16 highest natural orbital populations converge to
values around 0.5 on the timescale τintra. The remaining 16 natural or-
bital populations show periodic spikes (magnified by a factor of 10),
with a structure that correlates well with the size of the instantaneous
single-particle band gap. Simulation parameters: � = 0.1, J0 = 3.5,
λ = 0.25, δJ0 = −2.2J0, and U = 1.0J0.

continue to develop and evolve over long times. Further inves-
tigation of this structure and slow equilibration of many-body

correlations, along with their implications for the reversibility
of the system’s dynamics, provides additional fertile ground
for other areas of investigation.
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APPENDIX: ADDITIONAL DATA FOR THE
TOPOLOGICAL TRIVIAL DRIVING REGIME

In this Appendix, we provide additional data for the
topologically trivial driving regime to complement the data
presented in the main text. In Fig. 5, we show the time
dependence of the current and natural orbital populations.
The behavior is qualitatively similar to that observed for the
topologically nontrivial driving regime, as shown in Fig. 2 of
the main text, albeit with the current decaying to 0 over the
time τintra as expected for the topologically trivial regime.
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12, 021008 (2022).

[20] T. Oka and H. Aoki, Phys. Rev. B 79, 081406(R) (2009).
[21] T. Kitagawa, E. Berg, M. Rudner, and E. Demler, Phys. Rev. B

82, 235114 (2010).
[22] N. H. Lindner, G. Refael, and V. Galitski, Nat. Phys. 7, 490

(2011).
[23] T. Oka and S. Kitamura, Annu. Rev. Condens. Matter Phys. 10,

387 (2019).
[24] A. Eckardt, Rev. Mod. Phys. 89, 011004 (2017).
[25] M. S. Rudner and N. H. Lindner, Nat. Rev. Phys. 2, 229

(2020).
[26] N. R. Cooper, J. Dalibard, and I. B. Spielman, Rev. Mod. Phys.

91, 015005 (2019).
[27] A. Lazarides, A. Das, and R. Moessner, Phys. Rev. E 90,

012110 (2014).
[28] D. M. Basko, I. L. Aleiner, and B. L. Altshuler, Ann. Phys. 321,

1126 (2006).
[29] V. Oganesyan and D. A. Huse, Phys. Rev. B 75, 155111 (2007).
[30] A. Pal and D. A. Huse, Phys. Rev. B 82, 174411 (2010).
[31] A. Lazarides, A. Das, and R. Moessner, Phys. Rev. Lett. 115,

030402 (2015).
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