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Chirality-induced spin filtering in pseudo Jahn-Teller molecules
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Chirality-induced spin selectivity (CISS) refers to an ability to induce a spin polarization of an electron trans-
mitted through chiral materials. An important experimental observation is that incredibly large spin polarization
is realized at room temperature even for organic molecules that have weak spin-orbit coupling (SOC), although
SOC is the only interaction that can manipulate the electrons’ spins in the setups. Therefore the mechanism of
the CISS needs to be constructed in a way insensitive to or enhancing the magnitude of the SOC strength. In this
paper, we describe a theoretical study of CISS with a model chiral molecule that belongs to the point group C3.
In this molecule, electronic translational and rotational degrees of freedom for an injected electron are coupled to
one another via the nuclear vibrational mode with a pseudo Jahn-Teller effect. By properly taking the molecular
symmetry as well as the time-reversal symmetry into account and classifying the molecular ground states by
their angular- and spin-momentum quantum numbers, we show that the chiral molecule can act as an efficient
spin filter. The efficiency of this spin filtering can be nearly independent of the SOC strength in this model, while
it well exceeds the spin polarization relying solely on the SOC. The nuclear vibrations turned out to have the
role of not only mediating the translation-rotation coupling, but also enhancing the spin-filtering efficiency.
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I. INTRODUCTION

An object that cannot be overlapped with its mirror images,
namely, that lacks the reflection symmetries, is called chiral.
The chiral symmetry breaking gives rise to abundant func-
tionality [1] such as chiral magnetism [2,3], chiral phononics
[4–6], chiral photonics [7], and nonreciprocal conductivity
[8,9]. Recent experimental observations have confirmed that
the chiral materials exhibit spin-selective phenomena, includ-
ing a large spin polarization of photoelectrons transmitted
through helical molecules [10–12] and a large spin depen-
dence of the current-voltage characteristics for the tunneling
electrons through helical molecules [13–15]. Even enan-
tioseparation and asymmetric electrochemical reactions by
magnetic electrodes are reported [16,17]. Furthermore, gen-
eration of large spin current was established for the inorganic
chiral crystals [18–20]. These phenomena that originate from
the structural chirality are collectively termed the chirality-
induced spin selectivity (CISS) [21–24], where the spin is
oriented parallel or antiparallel to the velocity of an injected
electron depending on the materials’ handedness.

CISS has been actively studied and become an inter-
disciplinary research field spanning physics, chemistry, and
biology. The reported spin polarization up to 60% amounts to
an effective magnetic field of the order of 100 T [21], which
is unrealistically strong. So far, theoretical attempts have been
made based on the electron motion in a chiral molecule in
the presence of spin-orbit coupling (SOC) with dephasing
[25,26] or nonunitary [27] effect. These attempts have been
made partly because of the necessity of removing the restric-
tion made by the Bardarson theorem [28], in which no spin

polarization is allowed due to time-reversal symmetry when
two-terminal scattering centers without leakage are consid-
ered, which is, however, not always the case as demonstrated
for a two-channel model [29]. Recently, the importance of
couplings of electronic or other degrees of freedom has been
proposed, including the Coulomb interactions [30], the nu-
clear vibrations and polarons [31–33], and substrate-molecule
interface effects [34]. In order to find an alternative expla-
nation, we would like to understand the fact that the CISS
effect is observed even in organic molecules with weak SOC
strength in a way that does not rely explicitly on the strength
of the SOC. To do so, we hypothesize that interplay between
nuclear and electronic motions which are governed by the
same symmetry restrictions in chiral materials has a critical
role in the CISS effect, where the leakage is replaced with a
built-in molecular degree of freedom rather than an external
outlet.

For our purpose, we consider a molecule under the pseudo
Jahn-Teller effect [35,36], where the coupling between an
electronic translation and rotation is mediated by the nuclear
vibrational degrees of freedom. The Hamiltonian that includes
the electron-nuclear coupling and the SOC satisfies the time-
reversal symmetry. This symmetry confirms that the up-spin
and the down-spin states are degenerate forming a Kramers
pair. The members of this degenerate pair can be separated
from each other by its translational direction, which is made
possible by the pseudo Jahn-Teller coupling. Consequently,
the chiral molecule acts as the spin filter by introducing
the spin-selective electron injection from an external source,
which is distinct from the spin-polarizing effect during prop-
agation in the molecule. The coexistence of the SOC and the
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(pseudo) Jahn-Teller coupling has an intricate effect on the
existence of the orbital degeneracy or the conical intersection
[37,38]. However, this is essentially irrelevant to the spin-
filtering effect proposed in this paper. We further demonstrate
that the performance of this chiral spin filter is determined
critically by the spin-selective transmission probability. In this
model, angular-momentum (AM) quantum numbers play a
crucial role in obtaining quite large efficiency insensitive to
the SOC strength.

The remaining part of this paper is organized as follows:
In Sec. II, we introduce the model Hamiltonian of a chiral
molecule which belongs to the point group C3. In Sec. III, we
propose the spin-filtering mechanism of the chiral molecule
based on the classification of eigenstates by the AM and
discuss its condition in Sec. IV. In Sec. V, we mention the nu-
clear vibrational role in the efficient spin filtering. Section VI
is devoted to the concluding remarks.

II. MODEL

A. Molecular basis

Molecular symmetry shapes a potential field that is exerted
on an electron injected into the molecule to create a rotational
motion from the translational one. As a result, the molecular
orbital occupied by the injected electron is spanned by both
the translational and rotational basis. This study focuses on
the point group C3 as the minimal point group that allows
chiral structure and has a rotational basis with the one rotating
in a direction opposite to the other. Extending the model to
the other point groups Cn with n � 4 is straightforward. Let
the z axis be the threefold rotation axis. We write |φz〉 for the
translational state that is transformed as z, and |φ̄z〉 := �|φz〉
for its time reversal with � being the time-reversal operator.
Inclusion of |φ̄z〉 allows us to construct the model Hamiltonian
that satisfies the time-reversal symmetry in an unambiguous
way. Obviously, 〈φz| p̂z|φz〉 = −〈φ̄z| p̂z|φ̄z〉 holds, where p̂z is
the z component of the electron momentum operator, and
〈φz| p̂z|φz〉 > 0 is assumed. Because these bases belong to the
A irreducible representation of the point group C3, they are
invariant under the threefold rotation C3. The bases for the
rotation on the xy plane, which belong to the E1 and E2 irre-
ducible representations, are denoted by |φ±〉. These rotational
states are transformed under C3 and � as

C3|φ±〉 = e∓i2π/3|φ±〉 (1)

and

�|φ±〉 = |φ∓〉, (2)

respectively.
In chiral materials, translational and rotational motions

are coupled with each other [1]. However, in our model,
the coupling between the translational and rotational states
of an electron is mediated by the nuclear vibrational modes
belonging to the e1 and e2 representation. Indeed, the product
representation ei × Ei for i = 1, 2 includes the A represen-
tation. Consequently, there arises a finite matrix element
〈A|ei|Ei〉 in a symbolic form. The nuclei in the e1,2 represen-
tation also induce the coupling between the rotational states.
This coupling between degenerate rotational states causes the
spontaneous distortion, which is known as the Jahn-Teller

effect [35,36]. The coupling between nondegenerate (Ei and
A) states can also cause a similar symmetry breaking called
the pseudo Jahn-Teller effect [35,36]. The nuclear coordinates
in the e1,2 representation are written as Q± = ρe±iϕ with the
radius ρ and the angle ϕ. The symmetry operations transform
Q± in the following way:

C3Q± = e±i2π/3Q± (3)

and

�Q± = Q∓. (4)

To describe the spin-dependent process, the electronic spin
must be added to the basis. Let |↑〉 and |↓〉 denote the up-
spin and down-spin states, respectively. They are transformed
under the symmetry operations as

C3|↑/ ↓〉 = e∓iπ/3|↑/ ↓〉 (5)

and

�|↑/ ↓〉 = ±|↓/ ↑〉. (6)

B. Model Hamiltonian

The Hamiltonian, H , describing an electron propagating
through the chiral molecule consists of the electronic He, the
nuclear Hn, and the electron-nuclear coupling Hen Hamiltoni-
ans, which are all spin independent, and the SOC Hamiltonian
Hsoc, H = He + Hn + Hen + Hsoc. The electronic Hamiltonian
is given by

He = εtr (|φz〉〈φz| + |φ̄z〉〈φ̄z|) + εrot (|φ+〉〈φ+| + |φ−〉〈φ−|),
(7)

where we set εrot ≡ 0 throughout the paper, and the nuclear
Hamiltonian is described as the two-dimensional harmonic
oscillator,

Hn = − h̄2

2M

(
1

ρ

∂

∂ρ
ρ

∂

∂ρ
+ 1

ρ2

∂2

∂ϕ2

)
+ Mω2

2
ρ2, (8)

where M and ω are the nuclear mass and frequency and h̄ is
Planck’s constant. For derivation of Hen, we use the symmetry
conditions [Hen,C3] = [Hen,�] = 0 and take only the first
order in Q±, which becomes (see Ref. [39] and Appendix A
for details)

Hen = V+Q−|φz〉〈φ+| + V−Q+|φz〉〈φ−|
+ V ∗

−Q−|φ̄z〉〈φ+| + V ∗
+Q+|φ̄z〉〈φ−|

+ V0Q−|φ+〉〈φ−| + H.c., (9)

where H.c. stands for the Hermitian conjugate of all the pre-
ceding terms. The first and second lines of the right-hand side
of Eq. (9) represent the translation-rotation coupling with its
strength V±, and the third line represents the rotation-rotation
coupling with the coupling strength V0. Without loss of gener-
ality, these coupling constants can be always set to be real.

Here, we stress that the chirality imposes

V+ 	= V−. (10)

Actually, the reflection symmetry leads to V+ ≡ V−. We see
this by adding a vertical mirror, i.e., considering the case of
the point group C3v. In this case, the reflection operator σv
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acts on the molecular basis as σv|φ±〉 = |φ∓〉, σvQ± = Q∓,
and σv|↑/ ↓〉 = ±|↓/ ↑〉.

The only ingredient for the spin-dependent process in our
model is the SOC. The derivation of Hsoc is similar to that
of Hen (see Ref. [38] and Appendix B for details): We use
the symmetry conditions [Hsoc, K] = 0 for K = C3 and �. For
simplicity, we retain only the zeroth-order terms in Q±,

Hsoc = λ(|φ+〉〈φ+| − |φ−〉〈φ−|) ⊗ σ̂z, (11)

with σ̂z = |↑〉〈↑| − |↓〉〈↓| and the SOC strength λ. Equa-
tion (11) indicates that spin-momentum locking works in the
chiral molecule: In the cases of V+ > V− and V+ < V−, the
electron propagated with the positive momentum stabilizes
the counterclockwise (|φ+〉) and clockwise (|φ−〉) rotations,
respectively. For λ > 0, this counterclockwise (clockwise) ro-
tation stabilizes the down-spin (up-spin) state. Here, we note
that we neglect the spin-flipping components of Hsoc by dis-
regarding the nuclear dependent contributions. This treatment
is consistent with the experimental observation [40] that the
spin does not flip in the molecule, which may be attributed to
the large spin energy difference [18]. It should be pointed out,
however, that such spin-flipping components may be relevant
to some of the CISS experiments [18–20]. This point will be
discussed in a later part of this paper.

C. Observables

To numerically solve the Schrödinger equation for H ,
we need the nuclear eigenstates {|n, m〉} to evaluate the
matrix elements of H [41,42]. Then, the product state
composed of the chiral molecule and injected electron is
written as |�〉 = ∑

a=z,z̄,+,−
∑

s=↑,↓
∑

n,m C(a,s)
n,m |φa, s〉|n, m〉

with C(a,s)
n,m being the coupling coefficient (φz̄ ≡ φ̄z is used

for convenience). The electron linear momentum and nuclear
AM of |�〉, which is analyzed later, are calculated from
P = 〈�| p̂z|�〉 = g〈φz| p̂z|φz〉, where the momentum factor
g = ∑

s,n,m[|C(z,s)
n,m |2 − |C(z̄,s)

n,m |2], and Ln = 〈�|(−ih̄∂ϕ )|�〉 =∑
a,s,n,m mh̄|C(a,s)

n,m |2, respectively, as derived in Appendix C.
Hereinafter, the parameter values for the energy and cou-
pling constants are given in units of h̄ω and (Mω/h̄)1/2,
respectively.

III. SPIN-SELECTIVE FILTERING EFFECT

A. Chirality-induced spin filtering

The absence of the spin-flipping components in Hsoc indi-
cates that the injected electron passes through the molecule
without changing its spin. This enables us to propose that
the chiral molecule can act as the spin filter: Suppose that
one of the ground states, |�〉, has positive momentum, P =
〈�| p̂z|�〉 > 0, and a down spin. Due to the time-reversal
invariance of H , �|�〉 is degenerate with |�〉 but has negative
momentum and an up spin. Thus these states form a Kramers
pair. In injecting a down-spin electron with P > 0 into the
molecule, the electron propagates in accordance with |�〉, the
lowest state among eigenstates with the down spin, to succeed
in passing through the molecule because of the positivity of
the momentum. In contrast, the injected up-spin electron with
positive P propagates in accordance with �|�〉 and not with
|�〉 due to the mismatch of the spin. However, because the
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FIG. 1. (a) Schematic picture of the spin filter of chiral
molecules. (b) and (c) Energy-momentum diagrams of spinless,
spinful with λ = 0, and spinful with λ > 0 systems for (b) δ′ =
ε±1 − ε0 > 0 of case (i) and (c) δ′ < 0 of case (ii). Up arrows and
down arrows represent the up spin and down spin, respectively.

momentum of �|�〉 is negative, the up-spin electron cannot
pass through the molecule [see Fig. 1(a) for a schematic
picture]. Therefore the spin is selectively filtered depending
on the translational direction of the lowest eigenstate with the
same spin as the injected one. It is of particular importance
that this mechanism of selective spin filtering requires the
molecule to be chiral. An achiral molecule with V+ = V− has
a Hamiltonian that is invariant under the exchange of |φz〉
and |φ̄z〉, physically corresponding to the z-inversion invari-
ance of the system. This invariance causes the disappearance
of the momentum, 〈�| p̂z|�〉 ≡ 0, which means that achiral
molecules cannot utilize the translational direction of each
eigenstate to filter the electronic spins. Therefore the spin
filtering is the chirality-induced effect. Note that this filtering
effect efficiently works only when the lowest state for the
down spin propagating in the positive translational direction
is energetically well separated from that for the up spin. We
call their energy difference the spin barrier difference (SBD),
denoted by δ, and explore the condition that the SBD be-
comes large enough to explain CISS not relying on the SOC
strength λ.

In what follows, we consider the chiral case only, and
without loss of generality, V+ > V− > 0 is assumed.

B. Classification of eigenstates by AM quantum number

The fact that C3 commutes with H allows us to classify all
the energy eigenstates by their AM quantum number J . We
write |�J〉 for the energy eigenstate with the AM quantum
number J , which satisfies the eigenvalue equations H |�J〉 =
EJ |�J〉 and C3|�J〉 = e−i2πJ/3|�J〉 with J = 0,±1 for the
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FIG. 2. (a) The momentum factor g of the ground state for cases
(i) and (ii) is plotted as a function of the SOC strength λ. Momentum
scales linearly for case (i), whereas it is nearly independent of λ for
case (ii). (b) The SBDs δ ≡ E3/2 − E−1/2 for case (i) and δ ≡ E3/2 −
E1/2 for case (ii) are plotted as a function of λ.

spinless systems and J = ±1/2, 3/2 for the spinful systems.
Note that J is determined up to the integer multiple of 3,
and thus J = −3/2 is equivalent to J = 3/2. From the time-
reversal invariance, |�J〉 and |�−J〉 are degenerate, but with
the opposite momentum and spin from each other, immedi-
ately leading to 〈�0| p̂z|�0〉 = 0.

Now, we consider the effect of small but finite λ on the
eigenstates. For distinction, we use a capital J and small
letters j for the quantum number in the spinful and spinless
systems, respectively, and corresponding state, energy, and
momentum are denoted by |�J〉, EJ , and PJ for the spinful
systems and |ψ j〉, ε j , and p j for the spinless systems, respec-
tively. Two quantum numbers are related by J = j + 1/2 for
an up spin and J = j − 1/2 for a down spin. In the cases
of λ = 0, the spinful states are given by |� j+1/2〉 ≡ |ψ j〉|↑〉
or |� j−1/2〉 ≡ |ψ j〉|↓〉, where the spatial part of the states
is exactly the spinless state |ψ j〉, indicating that Ej±1/2 ≡ ε j

and Pj±1/2 ≡ p j . In contrast, in the cases of λ > 0, where the
spatial part of |� j±1/2〉 is modified from |ψ j〉, these states have
different energy and momentum; for j = 0, the states with
J = ±1/2 are degenerate (interchanged by the time-reversal
operation) and P±1/2 	= 0 due to finite λ, as seen in Fig. 2(a),
where the momentum factor g scales linearly with λ. The spin
direction of the state is governed by the spin-momentum lock-
ing. For λ > 0 and V+ > V−, the momentum of the down spin,
namely, the state with J = −1/2, is positive. For j = 1 with
p1 = −p−1 > 0 in the case of V+ > V−, the spin-momentum
locking stabilizes the down-spin state, namely, E3/2 > E1/2.
The origin of the energy splitting in these states is the SOC.

C. SBD

Based on the above argument, we examine the SBD in
the cases of (i) δ′ := ε1 − ε0 > 0 and (ii) δ′ < 0. In case (i)
[see Fig. 1(b) for a schematic picture], the chiral molecule
filters the spin with the ground states |�0±1/2〉. The SBD is,
then, given by δ ≡ E3/2 − E−1/2 = δ′ + O(λ). Hence, under
the condition that δ′ is much larger than the contribution from
the SOC, the SBD is approximated as δ ≈ δ′ and can be nearly
independent of λ, as numerically shown in Fig. 2(b). This
condition will be discussed later. We propose that the effi-
cient spin-filtering effect exactly corresponds to this situation,
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FIG. 3. (a) The energy differences of the spinless system ε1 − ε0

are plotted as a function of V0 for V+ = 1 and V+ = 1.5 with fixed
V− = 0.5 and � = 0.1. (b) The energy differences of the spinless
system ε1 − ε0 are plotted as a function of εtr for various values of
V± with fixed V0 = 0.5.

where the effect is insensitive to the magnitude of λ. On the
other hand, in case (ii) [see Fig. 1(c) for a schematic picture],
the spin filtering occurs in the ground states |�1/2=1−1/2〉
and |�−1/2=−1+1/2〉. The SBD is then identical to δ ≡ E3/2 −
E1/2 = O(λ), which is the energy difference caused by the
SOC and thus scales linearly with λ as presented in Fig. 2(b).
Therefore the resultant spin-filter efficiency is expected to be
small.

IV. GROUND STATE OF SPINLESS SYSTEMS

We justify the conditions under which case (i) [Fig. 1(b)]
holds, namely, |ψ0〉 becomes the ground state for the spin-
less systems. We start this by presenting two limits in which
we can analytically identify the AM quantum number of
the ground state. The first is the limit of V0 ≡ 0, where
the coupling between the rotational states disappears and
only the translation-rotation coupling exists. In this limit,
l̂1 = −ih̄∂ϕ − h̄(|φ+〉〈φ+| − |φ−〉〈φ−|) is conserved with the
integer eigenvalue l1/h̄ ∈ Z. Among them, the ground state
is the state with l1 = 0 that is simultaneously the eigen-
state of C3 with j = 0 (the proof of this statement is given
in Appendix D). Hence the ground state is given by |ψ0〉
in this limit. The second limit is the limit of V± → 0,
where the translation and rotation are decoupled, which
means that the injected electron directly passes through or
is simply circulating in the molecule. In this limit, l̂2 =
−ih̄∂ϕ + (h̄/2)(|φ+〉〈φ+| − |φ−〉〈φ−|) is conserved with the
half-odd-integer eigenvalue l2/h̄ = ±(2n − 1)/2 with n ∈ N.
The ground states are given by the states with l2/h̄ = ±1/2
that are simultaneously the eigenstates of C3 with j = ±1.
Therefore, in this limit, |ψ±1〉 is the ground state.

General situations are located in between these two lim-
its, and the ground states are interchanged depending on the
parameter values of εtr , V±, and V0. Figure 3(a) presents the
energy difference δ′ as a function of the rotational coupling
constant V0. As V0 is decreased below 0.5, in which the sit-
uation approaches the first limit, δ′ increases, thus strongly
stabilizing the ground state with j = 0. Decreasing εtr and/or
increasing V± also make the system approach the first limit,
in which the translation and rotation are strongly coupled.
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Therefore the ground state is again given by |ψ0〉, which is
consistent with the numerical result presented in Fig. 3(b).

V. ROLE OF NUCLEAR AM

Finally, we mention that the energy difference δ′ is cor-
related with that of the nuclear AM. Figures 4(a) and 4(b)
present the energy difference δ′ = ε1 − ε0 and the nuclear
AM, Ln = 〈ψ1|(−ih̄∂ϕ )|ψ1〉, respectively, as a function of
�V := V+ − V− with fixed V+. The behavior in Figs. 4(a)
and 4(b) can be accounted for by an interplay between the
nuclear rotational energy and the pseudo Jahn-Teller effect.
In the �V < 0.5 region in Fig. 4(a), as �V increases, this
imbalance increases the nuclear AM and further differenti-
ates |ψ±1〉 from |ψ0〉, thus increasing δ′. However, increasing
�V by decreasing V− also diminishes the pseudo Jahn-Teller
effect, making the nuclear stable configuration close to the
high-symmetry point, ρ ≡ 0, and hence reducing the nuclear
average radius [see Figs. 4(c)–(e)], which leads to the de-
crease in the nuclear AM and, thus, the nuclear rotational
energy. The resultant energy difference decreases as presented
in the large-�V region (�V > 1.2) in Fig. 4(a). Therefore the
nuclear vibrations have the role of not only mediating the
translation-rotation coupling, but also increasing the energy
difference δ′, and consequently enhancing the spin-filtering
efficiency.

VI. CONCLUDING REMARKS

In this paper, we have theoretically explored the mech-
anism of the spin-filtering effect of chiral molecules. For
that purpose, we have constructed a model of the point
group C3 that consists of the electronic translational and
rotational states, which are coupled with each other by the
pseudo Jahn-Teller effect, or being mediated by the nuclear

vibrational degrees of freedom. The time-reversal symmetry
of the Hamiltonian makes it possible to possess, in com-
bination with SOC, spin-momentum locking to filter the
injected spin depending on the translational direction. Only
when the injected spin state matches the lowest eigenstate
of the same translational direction can the electron selec-
tively pass through the molecule with the ground-state energy.
This also enables us to classify the molecular eigenstates
by their AM quantum number. When the spinless system
has a ground state with j = 0, the SBD that determines
the spin-filter efficiency is nearly independent of the SOC
strength, and this makes it possible for the chiral molecule
to act as an efficient spin filter protected by the energy
for AM quantization. Here we stress that δ′ can be esti-
mated at around 50 meV, which is about twice as large as
room-temperature energy and is therefore enough to explain
the 60% spin polarization in the photoelectron spectroscopy.
In the above estimate, as an example, we employed h̄ω =
0.34 eV (∼2740 cm−1) in Ref. [43] and a maximum reduced
δ′ value of 0.16 in Fig. 3(a). The ground state with j = 0
for the spinless systems is obtained when the translation-
rotation coupling constant V± is sufficiently large compared
with the rotational one, V0. In our future work, the relation
between the model parameters and the molecular structure
should be clarified together with the direct estimation of the
spin-filtering efficiency for actual chiral molecules. Addition-
ally, the mechanism of the spin-filtering proposed in this paper
is not the specific property of the point group C3 and needs
to be straightforwardly generalized to other point or space
groups to which many chiral and/or gyrotropic materials
belong.

In this paper, we have omitted the spin-flipping compo-
nents from the SOC, which may have a role in diminishing
the spin-filtering effect to some extent, because SBD in the
present example is large enough to justify such a treatment.
From an experimental point of view, this situation is fitting,
for example, for the photoelectron transmission through DNA
molecules, where the electron is injected from an external
source. However, a chirality-induced bulk magnetization of
CrNb3S6 seems to require mechanisms that include the spin-
polarizing effect [19]. Therefore CISS seems to include both
spin-filtering and spin-polarizing effects depending on the sit-
uation. In our model, as given explicitly in Appendix B, we are
also able to allow the nuclear-dependent SOC come into play,
yielding spin-flipping terms such as (|φ+〉〈φ+| − |φ−〉〈φ−|) ⊗
Q+σ̂+ and (|φz〉〈φz| − |φ̄z〉〈φ̄z|) ⊗ Q+σ̂+ with σ̂+ = |↑〉〈↓| and
σ̂− = |↓〉〈↑|. These terms allow AM transfer from nuclear
phonon to electron spin, thus polarizing the spin in the chi-
ral molecule while respecting the conservation of AM. This
AM conversion may be further enhanced when the molecule
involves conical intersections on the adiabatic potential en-
ergy surfaces [44,45]. We here note that the current-induced
magnetization phenomenon, called the Edelstein effect, is ap-
parently similar to the CISS effect from a global symmetry
viewpoint. This effect is, however, interpreted as being mainly
dominated by orbital effects [46,47], and the resultant mag-
netization is much weaker than the huge polarization caused
by the CISS effect. The relevance of the spin-flipping compo-
nents of the SOC to the spin-polarizing effect will be focused
on in future studies.
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APPENDIX A: DERIVATION OF ELECTRON-NUCLEAR
COUPLING HAMILTONIAN

In this Appendix, we derive the electron-nuclear coupling
Hamiltonian Hen following Ref. [39]. The electron-nuclear
coupling Hamiltonian Hen is expanded in terms of the elec-
tronic basis {φz, φz̄ = φ̄z, φ+, φ−},

Hen =
∑

a 	=b=z,z̄,+,−
Hab(Q+, Q−)|φa〉〈φb|, (A1)

where Hab = 〈φa|Hen|φb〉 = H∗
ba is the nuclear-dependent ma-

trix element. First, we impose time-reversal symmetry on Hen.
The time-reversal operation � transforms Hen as

�Hen�
−1 =

∑
a,b

(�Hab)|�φa〉〈�φb| =
∑
a,b

H∗
ab|�φa〉〈�φb|.

(A2)
Hence the invariance condition �Hen�

−1 ≡ Hen ensures that
the matrix elements must satisfy

Hz̄− = H∗
z+, Hz̄+ = H∗

z−. (A3)

In the same manner, the invariance condition under the three-
fold rotation, C3HenC−1

3 ≡ Hen, is equivalent to

C3Hz+ = e−i2π/3Hz+, C3Hz− = ei2π/3Hz−, (A4)

C3H+− = e−i2π/3H+−. (A5)

The explicit form of the matrix elements that satisfy Eq. (A5)
is given within the first order of Q± as Hz+ = V+Q−, Hz− =
V−Q+, and H+− = V0Q−. Consequently, the electron-nuclear
coupling Hamiltonian is obtained as

Hen =V+Q−|φz〉〈φ+| + V−Q+|φz〉〈φ−|
+ V ∗

−Q−|φ̄z〉〈φ+| + V ∗
+Q+|φ̄z〉〈φ−|

+ V0Q−|φ+〉〈φ−| + H.c., (A6)

where H.c. stands for the Hermitian conjugate of all the pre-
ceding terms.

APPENDIX B: DERIVATION OF SPIN-ORBIT
COUPLING HAMILTONIAN

This Appendix serves as the derivation of the spin-orbit
coupling (SOC) Hamiltonian following Ref. [38]. We employ
the Breit-Pauli SOC Hamiltonian, which can be effectively
reduced to a one-electron Hamiltonian and is expanded in
terms of the electronic and spin bases as

Hsoc =
∑

a,b=z,z̄,+,−

∑
sa,sb=↑,↓

fasa,bsb |φa, sa〉〈φb, sb|. (B1)

For simplicity, we neglect the matrix elements between the
electronic translational and rotational states, because the tran-
sitions between the nondegenerate states are less probable
than those between the degenerate states. For systems with an

odd number of electrons, the time-reversal operator satisfies
�2 = −1, from which the relation for the matrix element of
the spin-orbit coupling Hamiltonian

〈φa, sa|Hsoc�|φb, sb〉 = −〈φb, sb|Hsoc�|φa, sa〉 (B2)

is derived. This is equivalent to

fz↑,z̄↓ = fz↓,z̄↑ = fz̄↑,z↓ = fz̄↓,z↑
= f+↑,−↓ = f+↓,−↑ = f−↑,+↓ = f−↓,+↑ = 0 (B3)

and

fz↑,z̄↑ = fz↓,z̄↓, fz↑,z↓ = − fz̄↑,z̄↓,

fz↑,z↑ = fz̄↓,z̄↓, fz↓,z↓ = fz̄↑,z̄↑,

fz↓,z↑ = − fz̄↓,z̄↑, fz̄↑,z↑ = fz̄↓,z↓,

f+↑,−↑ = f+↓,−↓, f+↑,+↓ = − f−↑,−↓,

f+↓,+↓ = f−↑,−↑, f+↓,+↑ = − f−↓,−↑,

f−↑,+↑ = f−↓,+↓.

Next, the Wigner-Eckart theorem can rewrite the matrix ele-
ment as

〈φa↑|Hsoc|φb↑〉 = 〈φa‖Hsoc‖φb〉(1/2, 1, 1/2, 0 | 1/2, 1/2),
(B4)

where 〈φa‖Hsoc‖φb〉 is the reduced matrix and ( j1, m1, j2, m2 |
j, m) is the Clebsch-Gordan coefficient. This decomposition,
in combination with the equality (1/2, 1, 1/2, 0 | 1/2, 1/2) =
−(1/2, 1,−1/2, 0 | 1/2,−1/2), results in the following rela-
tion:

〈φa↑|Hsoc|φb↑〉 = −〈φa↓|Hsoc|φb↓〉. (B5)

The above relation can be used to relate among the matrix
elements as

fz↑,z↑ = − fz↓,z↓, fz↑,z̄↑ = − fz↓,z̄↓, fz̄↑,z̄↑ = − fz̄↓,z̄↓,

f+↑,+↑ = − f+↓,+↓, f+↑,−↑ = − f+↓,−↓,

f−↑,−↑ = − f−↓,−↓.

As a consequence of these relations, the spin-orbit coupling
Hamiltonian can be expressed as

Hsoc = f0(|φ+〉〈φ+| − |φ−〉〈φ−|) ⊗ σ̂z

+ f1(|φ+〉〈φ+| − |φ−〉〈φ−|) ⊗ σ̂+

+ f2(|φz〉〈φz| − |φ̄z〉〈φ̄z|) ⊗ σ̂z

+ f3(|φz〉〈φz| − |φ̄z〉〈φ̄z|) ⊗ σ̂+ + H.c., (B6)

with σ̂z = |↑〉〈↑| − |↓〉〈↓|, σ̂+ = |↑〉〈↓|, and σ̂− = |↓〉〈↑|. We
impose the invariance under the C3 operation on Hsoc, which
gives

C3 f0 = f0, C3 f1 = ei2π/3 f1, C3 f2 = f2,

C3 f3 = ei2π/3 f3. (B7)

Although these matrix elements fk (k = 0, . . . , 3) depend
on Q±, we retain only the zeroth-order, i.e., the nuclear-
independent, terms. Then, it is legitimate to discard the
noninvariant f1 and f3 terms. Furthermore, the f2 term has the
same physical effect as the f0 term for the coupled translation-
rotation systems. Based on this consideration, it is legitimate
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to retain the f0 term, and the relevant spin-orbit coupling
Hamiltonian is given by

Hsoc = λ(|φ+〉〈φ+| − |φ−〉〈φ−|) ⊗ σ̂z, (B8)

with the real-valued constant λ.
Here we comment on the Q± dependence of the SOC. If

the first-order contribution is incorporated, we have that Hsoc

is given by

Hsoc = λ(|φ+〉〈φ+| − |φ−〉〈φ−|) ⊗ σ̂z

+ (|φ+〉〈φ+| − |φ−〉〈φ−|) ⊗ (νQ+σ̂+ + ν∗Q−σ̂−)

+ (|φz〉〈φz| − |φ̄z〉〈φ̄z|) ⊗ (μQ+σ̂+ + μ∗Q−σ̂−),
(B9)

where ν and μ are the complex numbers. The effects of this
term are left for future study.

APPENDIX C: NUMERICAL DETAILS

In this Appendix, we present the details of how to numer-
ically obtain the coupling coefficient C(a,s)

n,m of the wave func-
tion |�〉 = ∑

a=z,z̄,+,−
∑

s=↑,↓
∑

n,m C(a,s)
n,m |φa, s〉|n, m〉 and

derive the relation between the coupling coefficients and the
observables. To evaluate the matrix elements of the molecular
Hamiltonian H , we employ, as the nuclear basis, the eigenstate
of the nuclear Hamiltonian Hn [41,42] with the eigenvalue
Nh̄ω with N = (n − |m|)/2, which is given for n = 0, 1, . . .

and m = −n,−n + 2, . . . , n − 2, n, as

�n,m(ρ, ϕ) := 〈ρ, ϕ|n, m〉

=
√

N!

π (N + |m|)!eimϕe−ρ2/2ρ|m|L|m|
N (ρ2), (C1)

where Lm
N (x) is the associated Laguerre polynomial that satis-

fies the following differential equation:[
x

d2

dx2
+ (m + 1 − x)

d

dx
+ N

]
Lm

N (x) = 0. (C2)

The matrix element for Q̂+ is computed as

〈n1, m1|Q̂+|n2, m2〉
= δm1,m2+1

(
δn1,n2

√
n1 + m1 − δn1,n2−1

√
n1 + 1

)
(C3)

for m2 � 0 and

〈n1, m1|Q̂+|n2, m2〉
= δm1,m2+1

(
δn1,n2

√
n1 − m1 + 1 − δn1,n2+1

√
n1

)
(C4)

for m2 < 0 by using the recurrence relation Lm
N = Lm+1

N −
Lm+1

N−1 and the integral formula∫ ∞

0
dx e−xxmLm

M (x)Lm
N (x) = (N + m)!

N!
δM,N . (C5)

The matrix element for Q̂− can be calculated from that for Q̂+
using the relation 〈n1, m2|Q̂−|n2, m2〉 = 〈n2, m2|Q̂+|n1, m1〉.

Expanding H with respect to the electronic basis
{|φz〉, |φ̄z〉 = |φz̄〉, |φ+〉, |φ−〉} and the above nuclear basis

{|n, m〉}n,m gives the molecular eigenstate

|�〉 =
∑

a=z,z̄,+,−

∑
s=↑,↓

∑
n,m

C(a,s)
n,m |φa, s〉|n, m〉 (C6)

or

|�(R)〉 = 〈R|�〉 =
∑

a=z,z̄,+,−

∑
s=↑,↓

C(a,s)(R)|φa, s〉 (C7)

with C(a,s)(R) ≡ ∑
n,m C(a,s)

n,m �n,m(R). By using the above ex-
pansion, the momentum is expressed as

〈�| p̂z|�〉 =
∫ 2π

0
dϕ

∫ ∞

0
dρ ρ〈�(R)| p̂z|�(R)〉

=
∫ 2π

0
dϕ

∫ ∞

0
dρ ρ〈φz| p̂z|φz〉

×
∑

s=↑,↓
[|C(z,s)(R)|2 − |C(z̄,s)(R)|2]

= 〈φz| p̂z|φz〉
∑

s=↑,↓

∑
n,m

[|C(z,s)
n,m |2 − |C(z̄,s)

n,m |2]. (C8)

In this derivation, the equality 〈φ̄z| p̂z|φ̄z〉 = −〈φz| p̂z|φz〉 and
the fact that the rotational basis on the xy plane has no z
component, p̂z|φ±〉 = 0, are used. Also, the nuclear angular
momentum (AM) can be evaluated as

〈�|L̂n|�〉 =
∫ 2π

0
dϕ

∫ ∞

0
dρ ρ〈�(R)|(−ih̄∂ϕ )|�(R)〉

=
∑

a=z,z̄,+,−

∑
s=↑,↓

∑
n,m

mh̄
∣∣C(a,s)

n,m

∣∣2
. (C9)

APPENDIX D: DETAILS OF LIMITING CASES

In the first limit of V0 → 0, l̂1 := −ih̄∂ϕ − h̄(|φ+〉〈φ+| −
|φ−〉〈φ−|) is conserved with the integer eigenvalue l1/h̄ ∈ Z.
The eigenstate with l1/h̄ = 0 is written as

|�0〉 = az(ρ)|φz〉 + az̄(ρ)|φ̄z〉 + eiϕa+(ρ)|φ+〉
+ e−iϕa−(ρ)|φ−〉, (D1)

where the coefficients az, az̄, a+, a− are obtained by solving
the Schrödinger equation. This state is transformed under the
threefold rotation C3 as

C3|�0〉 = az|φz〉 + az̄|φ̄z〉 + ei(ϕ+2π/3)a+(e−i2π/3|φ+〉)

+ e−i(ϕ+2π/3)a−(ei2π/3|φ−〉)

= az|φz〉 + az̄|φ̄z〉 + eiϕa+|φ+〉 + e−iϕa−|φ−〉
= |�0〉. (D2)

Thus |�0〉 is also the eigenstate of C3 with the AM quantum
number j = 0.

The second limit is V± = 0, where l̂2 := −ih̄∂ϕ +
(h̄/2)(|φ+〉〈φ+| − |φ−〉〈φ−|) is conserved with the half-odd-
integer eigenvalue l2/h̄ = ±(2n − 1)/2 with n ∈ N. Its eigen-
states with l2/h̄ = 1/2 and −1/2 are expressed as

|�1/2〉 = b+(ρ)|φ+〉 + eiϕb−(ρ)|φ−〉 (D3)

and

|�−1/2〉 = e−iϕc+(ρ)|φ+〉 + c−(ρ)|φ−〉, (D4)
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respectively. The threefold rotation C3 transforms these states
as

C3|�1/2〉 = b+(e−i2π/3|φ+〉) + ei(ϕ+2π/3)b−(ei2π/3|φ−〉)

= e−i2π/3|�1/2〉 (D5)

and

C3|�−1/2〉 = e−i(ϕ+2π/3)c+(e−i2π/3|φ+〉) + c−(ei2π/3|φ−〉)

= ei2π/3|�−1/2〉. (D6)

Thus, as in the first limit, |�±1/2〉 is also the eigenstate of C3

with the AM quantum number j = ±1.
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and J. Juhaniewicz, Spin filtering in electron transport through
chiral oligopeptides, J. Phys. Chem. C 119, 14542 (2015).

[13] Z. Xie, T. Z. Markus, S. R. Cohen, Z. Vager, R. Gutierrez, and
R. Naaman, Spin specific electron conduction through DNA
oligomers, Nano Lett. 11, 4652 (2011).

[14] M. Kettner, V. V. Maslyuk, D. Nürenberg, J. Seibel, R.
Gutierrez, G. Cuniberti, K.-H. Ernst, and H. Zacharias,
Chirality-dependent electron spin filtering by molecular mono-
layers of helicenes, J. Phys. Chem. Lett. 9, 2025 (2018).

[15] M. Suda, Y. Thathong, V. Promarak, H. Kojima, M. Nakamura,
T. Shiraogawa, M. Ehara, and H. M. Yamamoto, Light-driven

molecular switch for reconfigurable spin filters, Nat. Commun.
10, 2455 (2019).

[16] K. Banerjee-Ghosh, O. Ben Dor, F. Tassinari, E. Capua, S.
Yochelis, A. Capua, S.-H. Yang, S. S. P. Parkin, S. Sarkar, L.
Kronik, L. T. Baczewski, R. Naaman, and Y. Paltiel, Separation
of enantiomers by their enantiospecific interaction with achiral
magnetic substrates, Science 360, 1331 (2018).

[17] T. S. Metzger, S. Mishra, B. P. Bloom, N. Goren, A. Neubauer,
G. Shmul, J. Wei, S. Yochelis, F. Tassinari, C. Fontanesi, D. H.
Waldeck, Y. Paltiel, and R. Naaman, The electron spin as a
chiral reagent, Angew. Chem., Int. Ed. 59, 1653 (2020).

[18] A. Inui, R. Aoki, Y. Nishiue, K. Shiota, Y. Kousaka, H.
Shishido, D. Hirobe, M. Suda, J.-i. Ohe, J.-i. Kishine, H. M.
Yamamoto, and Y. Togawa, Chirality-Induced Spin-Polarized
State of a Chiral Crystal CrNb3S6, Phys. Rev. Lett. 124, 166602
(2020).

[19] Y. Nabei, D. Hirobe, Y. Shimamoto, K. Shiota, A. Inui, Y.
Kousaka, Y. Togawa, and H. M. Yamamoto, Current-induced
bulk magnetization of a chiral crystal CrNb3S6, Appl. Phys.
Lett. 117, 052408 (2020).

[20] K. Shiota, A. Inui, Y. Hosaka, R. Amano, Y. Ōnuki, M. Hedo, T.
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