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Non-Abelian bosonization in a (3 + 1)-d Kondo semimetal via quantum anomalies
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Kondo lattice models have established themselves as an ideal platform for studying the interplay between
topology and strong correlations such as in topological Kondo insulators or Weyl-Kondo semimetals. The nature
of these systems requires the use of nonperturbative techniques, which are few in number, especially in high
dimensions. Motivated by this we study a model of Dirac fermions in (3 + 1) dimensions coupled to an arbitrary
array of spins via a generalization of functional non-Abelian bosonization. We show that there exists an exact
transformation of the fermions, which allows us to write the system as decoupled free fermions and interacting
spins. This decoupling transformation consists of a local chiral, Weyl, and Lorentz transformation parameterized
by solutions to a set of nonlinear differential equations, which order by order takes the form of Maxwell’s
equations with the spins acting as sources. Owing to its chiral and Weyl components this transformation is
anomalous and generates a contribution to the action. From this we obtain the effective action for the spins and
expressions for the anomalous transport in the system. In the former we find that the coupling to the fermions
generates kinetic terms for the spins, a long-ranged interaction, and a Wess-Zumino-like term. In the latter we
find generalizations of the chiral magnetic and Hall effects.

DOI: 10.1103/PhysRevB.105.195108

I. INTRODUCTION

Quantum impurity models are a prime example of strongly
correlated condensed matter systems, facilitating our un-
derstanding of many physical phenomena including the
ubiquitous Kondo effect. When many impurities are present
as is the case in a Kondo lattice, hybridization between the
localized spins and the itinerant fermions leads to a variety
of effects including rich heavy fermion physics [1,2]. More
recently, the Kondo lattice has been the focus of attention
for its possible topological properties and in particular the
potential to study the interplay between topology and strong
correlations. In those cases, the strong correlations result in
the emergence of topological phases of matter including topo-
logical Kondo insulators [3,4] and Weyl-Kondo semimetals
[5–8]. In the latter case, due to the Kondo effect, the low-
energy excitations of the system are Weyl fermions. Weyl
semimetals are of great interest in and of themselves providing
concrete realizations in a solid-state system of physical phe-
nomena historically associated with particle physics. Chief
among these is the chiral anomaly, the breaking of classical
chiral symmetry [9–11] in a quantum theory, which gives
rise to several distinct transport features in free [12–25] and
interacting systems [26,27].

Motivated by these considerations and in particular the ef-
fects of quantum anomalies in strongly correlated systems, we
study a system of (3 + 1)-dimensional Dirac fermions cou-
pled to an arbitrary array of spins. In lower dimensions there
exist many analytic, nonperturbative, or exact techniques to
study Kondo models including conformal field theory [28,29],
Bethe ansatz [30–36], and bosonization [37–42]. In higher
dimensions there is a lack of nonperturbative techniques and

typically a slave particle approach is adopted [1,2,8,43,44]. In
this work we will take an alternative approach. Our method
will follow that of the anomaly-based formulation of func-
tional bosonization, appropriately generalized to the present
situation. In the original formulation one considers Dirac
fermions in (1 + 1) dimensions, with either Abelian or non-
Abelian symmetry, coupled to some fluctuating field, e.g.,
a Hubbard-Stratonovich field. The fermions are decoupled
from this field via a judiciously chosen local chiral and gauge
rotation after which the system consists of free fermions
and a decoupled fluctuating field whose effective action is
calculated using the chiral anomaly [45–48]. The remaining
fermionic degrees of freedom are easily integrated out result-
ing in an effective bosonic theory. We will follow the same
procedure for our system, with the spin-momentum locking
of Dirac fermions necessitating a non-Abelian formulation. In
addition, the increase in dimensions will make the formalism
more complex and ultimately will not end in an exact solution,
which can be the case in lower dimensions [37,38]. In spite of
this, the approach provides us access to some exact results
including that of the anomalous transport in the system.

This paper is organized as follows. In Sec. II we introduce
the model and discuss the relation between our method and
the standard chiral anomaly treatment of Weyl semimetals.
In Sec. III we formulate the decoupling transformation and
show how it can reduce the system to free fermions and a de-
coupled interacting spin system. In the subsequent section we
present an iterative scheme for finding this transformation. In
Sec. V we calculate the contributions of the chiral and Weyl
anomalies to the action for our model. These are then used
in Sec. VI to determine the low-energy effective action for
the spin system. Following this we determine the anomalous
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transport, finding a modification to the quantum Hall current
and a chiral magnetic effect (CME) due to the fluctuations of
the spins. In the last section we summarize and conclude.

II. MODEL

Our system is described by the path integral

Z =
∫

DψDψ̄DS eiS[ψ,ψ̄,S], (1)

where the action is S = SD + Sspin with

SD =
∫

d4x ψ̄ (x)iγ μ[∂μ − ieAμ(x) − iJγ5Sμ(x)]ψ (x). (2)

Here ψ̄ (x), ψ (x) are four-component Dirac fermions, (spinor
indices suppressed for the moment) describing the low-energy
sector of a semimetal. They are coupled via a spin exchange
of strength J to a system of spins, Sμ(x) = [0, S(x)], governed
by the action Sspin and a gauge field Aμ(x). Specific cases of
this model have been studied previously including the Kondo
effect for a single impurity [49] and also the Ruderman-Kittel-
Kasuya-Yosida (RKKY) interaction for two impurities [50].
Our approach here does not depend upon the form of Sspin,
S(x) can be an arbitrary vector field, classical or quantum as
in (1).

This action, (2), can also be viewed as that of a low-energy
description of a semimetal subject to strain fields [51,52]. The
strain induces chiral gauge fields in the action for which the
field S(x) plays the role of a vector potential, e.g., a rota-
tional strain will induce a chiral magnetic field with strength
∇ × S(x). Our results are also applicable to these strained
semimetals, however, in the remainder of the paper we re-
strict the terminology and perspective to that of the Kondo
semimetal.

We will perform a rotation on the fermionic degrees of
freedom such that S(x) is removed from SD. For a simple Weyl
semimetal, when S is constant this is easily carried out via a
local chiral gauge transformation

ψ (x) → eiγ5x·Sψ (x), ψ̄ (x) → ψ̄ (x)eiγ5x·S,

which transforms the action SD → S ′
D = ∫

dx ψ̄ (x) iγ μ[∂μ −
ieAμ(x)]ψ (x) [53]. Such a transformation is known to be
anomalous [9,10], meaning that it results in a nontrivial Ja-
cobian in the path integral measure, i.e.,

DψDψ̄ → DψDψ̄ eiSA .

The anomalous contribution to the transformed action, SA
is straightforwardly calculated using the method of Fujikawa
[54,55]. It takes the form of an axionlike term

SA = J
e2

4π2

∫
d4x ενμρσ SμAν∂ρAσ . (3)

Using this one may then calculate the anomalous transport
of the fermions by varying the action with respect to Aμ(x).
This gives the Hall current 〈j〉 = J e2

2π
S × E and density 〈ρ〉 =

J e2

2π
S · B where E, B are external electric and magnetic fields.

When S0 �= 0 inversion symmetry is broken and the chiral
magnetic effect occurs in the presence of a magnetic field
[53,56,57].

When S is not constant a local chiral gauge transforma-
tion is no longer sufficient to decouple the fermions from
the spins. As we will show below it is still possible but the
transformation that does this is non-Abelian, consisting of a
combination of local chiral, Weyl and Lorentz transforma-
tions. The first two of these are anomalous and will generate
a contribution to action, which includes interactions between
the spins and also provides a route to calculating the exact
anomalous transport. For simplicity we restrict ourselves to
the zero chemical potential and zero chiral chemical potential
(i.e., S0 = 0, which is also the case for a stained semimetal),
however, both can be straightforwardly accommodated within
our approach. In addition we treat only the zero temperature
and infinite volume case.

III. DECOUPLING TRANSFORMATION

For arbitrary S(x) the appropriate decoupling transforma-
tion is ψ (x) → U (x)ψ (x) and ψ̄ (x) → ψ̄ (x)U (x) with

U (x) = eiγ5φ(x)+�(x)+iγ5Fμν (x)σμν

(4)

and U (x) = γ0U †(x)γ0 where σμν = [γ μ, γ ν]/2 are the
generators of Lorentz transformations in the spinor repre-
sentation. Heuristically, we can understand the form of this
transformation in the following way. We envision an array of
spins, each of arbitrary length and orientation. Using a local
Lorentz transformation we can locally rotate to a frame where
the spins are parallel but of differing length. They can then
be rescaled in length to be the same using the local Weyl
transformation and following this they can then be decoupled
through the local chiral transformation.

More specifically, the real functions φ(x), �(x), Fμν (x),
which parametrize the local chiral, Weyl, and Lorentz trans-
formations, respectively, are determined by solving

i[/∂U (x)]U −1(x) = Jγ5/S(x), (5)

where we have employed Dirac slash notation; /C ≡ γ μCμ. As
opposed to the case of constant S, the non-Abelian nature of
U (x) now makes this a nontrivial task, which we will address
in the next section. Using this transformation in (2) the action
is transformed as SD → S ′

D,

S ′
D =

∫
d4x ψ̄ (x)U (x)γ μU (x)[∂μ − iAμ]ψ (x) (6)

=
∫

d4x ψ̄ (x)e2�(x)�μ
ν (x)γ ν[∂μ − iAμ]ψ (x). (7)

In the second line we have introduced �μ
ν (x) =

[eiγ5Fαβ (x)ωαβ

]μν with ωαβ being the generators of Lorentz
transformations in the vector representation. We then perform
a coordinate transformation x → y(x) such that,

dyμ(x)

dxν
= e−2�(x)/3�μ

ν (x). (8)

This transformation does not have unit determinant due to the
�(x) term, however, the coefficient in the exponent is chosen
such that the Jacobian of this transformation is canceled. Ul-
timately, we obtain

S ′
D =

∫
d4y ψ̄ (y)γ μ[∂μ − iÃμ]ψ (y). (9)
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Which is the action of free Dirac fermions coupled to a rotated
and rescaled gauge field

Ãμ(y) = e2�(x)/3�ν
μ(x)Aν (x). (10)

In the absence of the gauge field the fermion and spin sys-
tem have been decoupled. Therefore, provided that a solution
to (5) exists our path integral is transformed to

Z =
∫

DψDψ̄DS eiS ′
D[ψ,ψ̄]+iSA[S]+iSspin[S], (11)

where SA comes from the Jacobian of the chiral and Weyl
transformations, which depends upon S(x) and Aμ(x).

We note that the defining equation for the transformation
(5) is a Dirac equation of the type which the untransformed
fermion obeys. In the noninteracting case, J = 0, U (x) should
reduce to the identity and so we can view it as the operator,
which locally transforms the field from the Heisenberg to the
interaction picture. We expect on general grounds that this is
generically possible to implement. In contrast to the standard
procedure however we carry out this transformation in the
path integral, which turns out to be anomalous.

IV. ITERATIVE SOLUTION

The task now is to solve (5) for φ(x),�(x), and Fμν (x)
in terms of S. To do this we introduce Ei = F0i and Bi =
− 1

2εi jkF jk with Latin indices reserved for spatial compo-
nents. Inserting this form into (5) and using standard vector
calculus identities we obtain a set of nonlinear differential
equations for our unknown functions, φ,�,E , and B, which
resemble the equations for a driven two-level system [58,59].
We solve these by expanding in powers of J , i.e., φ(x) =∑∞

n=1 Jnφ(n) and proceeding iteratively.
The leading-order equations resemble Maxwell’s equa-

tions with magnetic source terms. Therein, E (1) and B(1)

play the role of pseudoelectric and pseudomagnetic fields and
S, φ(1), �(1) provide the sources,

∂tE (1) − ∇ × B(1) = S − ∇φ(1) (12)

∂tB(1) + ∇ × E (1) = −∇�(1) (13)

∇ · B(1) = ∂t�
(1), ∇ · E (1) = ∂tφ

(1). (14)

The solution of these equations is known from clas-
sical electromagnetism; φ(1)(x) = ∇[G ∗ S(x)], E (1)(x) =
∂t [G ∗ S(x)], and B(1)(x) = −∇ × [G ∗ S(x)] in addition to
�(1)(x) = 0. Here G(x) is the Green’s function for the
d’Alembertian, [∂2

t − ∇2]G(x) = δ(4)(x) and ∗ stands for
convolution, G ∗ S(x) = ∫

d4zG(x − z)S(z). Note that since
�(1)(x) vanishes, no Weyl transformation is required at this
order and (12)–(14) reduce to Maxwell’s equations without
magnetic monopole terms.

We may express this linearized solution in a more ele-
gant form. To do this we recall that G(x) can be related
to the Green’s function, G(x), for the massless Dirac equa-
tion through G(x) ≡ /∂G(x). Using this we have that to linear
order

U (x) = eiJγ5G∗/S(x). (15)

The higher-order corrections to this, E (n) and B(n) are also
solutions to Maxwell’s equations but with sources, which are
determined by the lower-order terms. For example at second
order

∂tE (2) − ∇ × B(2) = Re[S(1)] − ∇φ(2), (16)

∂tB(2) + ∇ × E (2) = Im[S(1)] − ∇�(2), (17)

∇ · B(2) = ∂t�
(2) − Im

[
S(1)

0

]
, (18)

∇ · E (2) = ∂tφ
(2) − Re

[
S(1)

0

]
, (19)

where we have introduced S(1) = X(1) × [∂t + i∇×]X(1) and
S(1)

0 = X(1) · ∇ × X(1) with X(1) = E (1) + iB(1). The solution
to these can be found from a straightforward generalization
of the linear-order solution, i.e., derivative operators acting on
terms like G ∗ S(1)

μ . Combining this with (15) we have that up

to second order U (x) = eJG∗(JIm[/S(1)]−iγ5(/S+JRe[/S(1)]). All higher
orders proceed along similar lines and we can write the full
solution as

U (x) = eJG∗(Im[/S(x)]−iγ5Re[/S(x)]), (20)

where Sμ = ∑∞
n=0 JnS(n)

μ and S(0)
μ = Sμ. Matching this to

(4) then gives φ(x) = J
4 tr(G ∗ Re[/S]), �(x) = J

4 tr(G ∗ Im[/S])
and Fμν (x) = − J

8 tr[σμνG ∗ (γ5Re[/S] − iIm[/S])].
The corrections to Sμ naturally become more complicated

at higher orders. Notably, they contain an increasing number
of derivatives each time, i.e., S(n) contains at least n derivatives
acting on S. Accordingly, if for some n, S(n) is constant then no
further terms are generated. For instance, if S is constant then
only the first order is required. We can view this as a gradient
expansion, which can be truncated if one is interested in the
long wavelength physics of the system.

V. ANOMALOUS ACTION

We turn now to calculating the anomalous contri-
bution to the action. Following Fujikawa’s method, we
switch to Euclidean space and suppose that we have par-
tially performed our transformation so that SD → SD(τ ) =∫

d4y ψ̄ (y) /D(τ )ψ (y) with τ ∈ [0, 1] and

/D(τ ) = γ μ[∂μ − iÃμ(y; τ ) − iJ (1 − τ )S̃μ(y; τ )]. (21)

Here we have introduced the partially rotated and rescaled
field Ãμ(y; τ ), [cf. (10)], which coincides with the origi-
nal gauge field at τ = 0, Ãμ(y; 0) = Aμ(x), and the final
one at τ = 1, Ãμ(y; 1) = Ãμ(y). A similar definition is true
for S̃μ(y; τ ). This partially rotated action coincides with the
initial action, SD and final action S ′

D also at τ = 0, 1, respec-
tively. The anomalous contribution is found by considering an
infinitesimal rotation such that SD(τ ) → SD(τ + dτ ), calcu-
lating the Jacobian due to the transformation on the fields and
then integrating this from τ = 0 to τ = 1. The result is [11]

SA = 2i
∫ 1

0
dτ

∫
d4x{�(x; τ )Tr[1] + iφ(x; τ )Tr[γ5]}, (22)

which is the sum of standard Weyl and chiral anomaly
terms. Here the Tr[ ] denotes a trace over the Hilbert space
as well as over spinor indices. The Hilbert space sum is
naively divergent but can be regularized in the standard heat
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kernel way,

Tr[O] = lim
M→∞

∫
d4k

(2π )4
e−ikμxμ

tr[Oe− /D2(τ )/M2
]eikμxμ

(23)

with O = 1, γ5 and tr[ ] denoting a trace over spinor indices
only. We note that in contrast to normal circumstances the
generators of the chiral and Weyl transformations φ(x; τ ),
�(x; τ ) themselves depend upon τ .

To calculate (23) it is sufficient to expand the exponential
up to at most fourth order as all other terms will be suppressed
by the M → ∞. After straightforward but tedious calculation
we find

Tr[γ5] = iJ (1 − τ )

[
M2

4π2
+ [J (1 − τ )]2S̃2

2π2
− ∂μ∂μ

24π2

]
∂α S̃α

+ εμνρσ

8π2

[
[2J (1 − τ )]2

3
∂μS̃ν∂ρ S̃σ + e2F̃μν F̃ρσ

]
,

(24)

where F̃μν = ∂μÃν (y; τ ) − ∂νÃμ(y; τ ) and S̃2 = S̃μ(y; τ )
S̃μ(y; τ ). The last term above is the standard chiral anomaly
term. A similar term also appears in the second line but is
constructed purely from the spins. Among the remaining
terms we note the divergent term iJ (1 − τ ) M2

4π2 ∂α S̃α , which
we will discuss further below. For the Weyl contribution we
have

Tr[1] = M4

4π2
− J2(1 − τ )2

24π2
[12M2S̃2 + 2∂μS̃ν∂

μS̃ν − 9S̃4

+ 4S̃μ∂ν∂
ν S̃μ − (∂μS̃μ)

2
] + e2

24π2
F̃μνF̃μν. (25)

Again we see the presence of the usual Weyl anomaly con-
tribution in the first and last terms. The divergent term is
typically discarded when considering the Weyl anomaly as
it does not depend upon S̃ or Ã but when calculating (22) it
should be retained.

VI. EFFECTIVE SPIN ACTION

Combining (22) with (24) and (25) we have the exact
anomalous action. To fully determine this requires us to per-
form the rather daunting seeming τ integral in (22), which we
do not attempt here. To get some understanding of what form
this takes, however, we consider the case where the spin field
takes the form

S(x) = S̄ + δS(x), (26)

where S̄ is constant and δS describe the fluctuations about this
and then proceed by computing the anomalous action using
only the linearized solution (15),

U (x) = eiγ5J[x·S̄+G∗δ/S]. (27)

The first term in the exponent is the standard chiral transfor-
mation used for Weyl semimetals, which was discussed earlier
and the second arises due to the fluctuations. We now make
the assumption that (27) provides a reasonable approximation
to the transformation for the purpose of computing the low-

energy effective anomalous action. Using (24) we then find

SA = −
∫

d4x

{
e2J

4π2

[
S̄μ + 1

4
∂μtr(G ∗ δ/S)

]
εμνρσ Aν∂ρAσ

+ J3

18π2

[
S̄μ + 1

4
∂μtr(G ∗ δ/S)

]
εμνρσ δSν∂ρδSσ

+ J2

12π2
[∇· S(x)]2 +

∫
d4y Si(x)V i j (x − y)S j (y)

}
,

(28)

where Vi j (z) = J ∂i∂ jG(z). Adding this to Sspin we arrive at
the approximate effective action for the spin system. The first
term here is the typical chiral anomaly term now modified to
include the effect of the fluctuations, it represents a fermion
mediated coupling of the spins to the gauge field. The second
has the same form as the first, arising from a standard chiral
anomaly term but built using spins. Such a three-spin term
suggests a connection with the Wess-Zumino term occurring
in the low-energy action of fermions coupled to local mo-
ments [40,41,60,61]. The third is a kinetic term for the spins
generated from the coupling to the itinerant fermions. Lastly,
we have a long-range RKKY interaction between the spins.
The coupling constant depends explicitly on the cutoff intro-
duced earlier J = J2M2

2π2 .1 The appearance of this divergence is
natural in models such as ours and is akin to the well-known
divergence of the vacuum polarization in QED, which is gov-
erned by the same set of diagrams. In a condensed matter
context, deviations from a linear dispersion will cure this
divergence giving a finite but nonuniversal coupling constant.
From this we can determine the leading-order renormaliza-
tion group (RG) flow of this RKKY coupling dJ

dl = 2J with
l = log M indicating it is relevant in an RG sense.

If we were to include terms beyond the linear approxima-
tion in our transformation then this would result in four-spin
terms as well as terms involving higher derivative terms,
which are typically dropped when computing an effective
action. For these reasons we content ourselves with the lin-
earized approximation but note that the presence of the Weyl
transformation at higher orders provides a means to determine
the RG flow of the terms present in (28).

VII. TRANSPORT

We turn our attention now to calculating the anomalous
transport in the system, which we will be able to do without
resorting to approximations as done in the previous section. In
principle, this requires evaluating the integral (22) fortunately,
however, this turns out to be not necessary. To see this we
note that the anomalous current is found by varying SA with
respect to Aμ(x) = Ãμ(x, τ = 0). Thus

〈 jμ(x)〉 = ∂SA

∂Ãμ(x, 0)
= −2φ(1)(x)

∂Tr[γ5]|τ=0

∂Aμ(x, 0)
,

1In (24) a term ∼S̃μS̃μ∂α S̃α is present. Since we are dealing with
a spin system, however, S · S is a scalar of order one. This term
contributes to J but it is negligible in comparison to J2M2/2π 2.
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where the second equality follows from the fact that the
variation is carried out at τ = 0 along with φ(x, 0) = φ(1)(x)
and �(x, 0) = �(1)(x) = 0. From this we find the density
response to be ρ(x) = e2

2π2 ∇φ(1)(x) · B or in Fourier space,

ρ(q, ν) = e2J

2π2

∫
kω

kik j

|k|2 − ω2
〈S j (k, ω)〉SBi(q − k, ν − ω),

(29)

where we have used the shorthand
∫

kω
= ∫

d3k dω/(2π )4

and Bi(k, ω) is the applied magnetic field in Fourier space.
The expectation value on the right is taken with respect to
the effective spin action (28) or alternatively could represent
some imposed, mean-field spin configuration. This general-
izes the result for a Weyl semimetal to the case of nonconstant
S(x). It describes the response of the system to a density
perturbation in the presence of an arbitrary magnetic field.

Similarly the current is

j(x) = e2

2π2
∇φ(1)× E − e2

2π2
∂tφ

(1)B (30)

or in Fourier space,

jl (q, ν) = e2J

2π2

∫
kω

ki〈S j (k, ω)〉S

|k|2 − ω2
[εl jsk jEs(q − k, ν − ω)

+ωBl (q − k, ν − ω)]. (31)

In the first line we can recognize the generalization of the
standard Hall current expression to the case of nonconstant
S(x). In addition to this we note the presence of the magnetic
field, which gives rise to a chiral magnetic effect. This is in
contrast to the simple Weyl case discussed above wherein
the CME requires that S0 �= 0, which can be the case in
the absence of inversion symmetry. This in turn results in a
time-dependent chiral rotation ∼eiJγ5S0t and a corresponding
term in the anomalous action. In the current circumstances,
although S0 = 0 and the symmetry is not broken, a CME is

still generated via the time-dependent nature of the transfor-
mation.

VIII. DISCUSSION AND CONCLUSION

In this paper we have presented an alternative approach
to interacting semimetals based on the technique of func-
tional bosonization from (1 + 1) dimensions, generalized to
(3 + 1) dimensions. We have focused here on the case of
a Kondo semimetal wherein the semimetal is coupled to an
array of spins, although our method can be applied to strained
semimetals also. Our method relies on the existence of a
non-Abelian transformation of the fermions, which decouples
them from the spin system. This transformation is anomalous,
due to the presence of the chiral and Weyl anomalies, and
by calculating its nontrivial Jacobian the low-energy effective
action for the spin system can be determined in addition to the
anomalous transport.

This approach can also be used for the evaluation of corre-
lation functions. For instance the fermionic Green’s function
is given by

i〈ψα (x)ψ̄β (0)〉 = 〈
U α′

α (x)Ū β ′
β (0)

〉
S
Gα′β ′ (x),

where once again 〈〉S denotes the expectation value with re-
spect to the spin system only and we have restored spinor
indices. The factorization of the correlation functions into
a free fermionic part, G(x), and a bosonic part is a hall-
mark of the bosonization method and in (1+1) dimensions
provides a simple route to finding non-Fermi liquid behav-
ior [37,38,47,48]. Upon adopting the linear approximation
U (x) ≈ eiγ5JG∗/S(x) this expression simplifies and the expo-
nential form of the spin factor can facilitate evaluation
of the expectation value and, potentially non-Fermi liquid
correlations.
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