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Nonlinear optical response of type-II Weyl fermions in two dimensions
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We present a theoretical model to study the nonlinear optical response of materials with a low-energy spectrum
characterized by strongly tilted, type-II Weyl cones in two dimensions, which we call 2D Weyl materials. Our
findings reveal that the tilted nature of the Weyl cones is responsible for the appearance of even harmonics in
the nonlinear signal, as well as its strong polarization dependence. We discuss how it is possible to control such
a nonlinear response and envision how 2D Weyl materials can be used to realize different photonic devices for

sensing applications.
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I. INTRODUCTION

Relativistic massless and massive fermions can be probed
with high-energy physics experiments, but also appear as
low-energy quasiparticle excitations in condensed matter sys-
tems, where their massless character is typically protected
by crystal symmetries. The low-energy dispersions of such
excitations usually contain diabolical points and conical in-
tersections, that are frequently referred to as Dirac, or Weyl,
points. A prime example of that is certainly graphene. Since
its discovery in 2004 by Novoselov and Geim [1,2], in fact,
condensed matter physics has been witnessing a rapid ex-
pansion in the fabrication and engineering of a wide variety
of materials with pseudorelativistic quasiparticle excitations:
the so-called Dirac materials [3]. This class of materials en-
compasses, among others, semimetals [4], transition-metal
dichalcogenides (TMDs) [5], and topological insulators [6].
A considerable amount of effort has then been made in the
last decade to understand the electronic and optical properties
of such materials, and their underlying fundamental physical
principles, both at the linear [7] and nonlinear [8,9] level.
The research in this field, for example, has paved the way for
breakthroughs in spintronics and valleytronics [10], the gen-
eration of strong harmonics [11-13], unconventional exciton
states [14,15], superconductivity [16], but also the discovery
of new topological states of matter [6].The universality of
these concepts, moreover, very rapidly contaminated many
others fields of physics, leading very quickly to, e.g., the fields
of topological mechanics [17], topological photonics [18,19],
and topological atomic physics [20,21].

To understand the properties and peculiarities of the var-
ious Dirac materials, one could first try to classify them
based on the nature of their low-energy dispersion, namely
if they admit Dirac or Weyl (DW) cones. Dirac materials
contain both time reversal and spatial inversion symmetry.
When one of these symmetries is broken, the Dirac points
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are split into two constituent Weyl points, and the medium
becomes a Weyl material. In bulk materials both Dirac and
Weyl points have been observed [22]. In two dimensions, the
amount of research on Dirac and Weyl fermions has been
remarkable [3,23]. However, in contrast to Dirac fermions,
which are easy to observe and engineer in two-dimensional
(2D) materials, two-dimensional Weyl fermions have been
only explored theoretically and, although several materials
have been suggested, they are still eluding experimental veri-
fication [24-26].

DW cones (fermions) can be further classified into type-I
and type-II cones. While the former present DW cones that are
straight, and preserve Lorentz invariance, the latter are tilted
and with broken Lorentz invariance. Type-II cones typically
occur when type-I DW nodes are tilted enough, along some
specific direction, that a Lifschitz transition occurs and the
system acquires a finite density of states at the DW node. The
first proposal of type-II Weyl fermions [27] has inspired inten-
sive investigations of the counterpart type-II Dirac fermions,
to the point that during the last few years a good deal of
research has been done to characterize and find materials
showing tilted DW cones. Type-II fermions have been found
in a variety of materials such as semimetals, TMDs (PtTe,,
WTe,) [28], LaAlO;/LaNiO3;/LaAlO3; quantum wells [29],
and PdTe, superconductors [30].

While the electronic properties of such media are fairly
well studied, understanding the nonlinear optical processes,
and harnessing their potential applications for photonics, con-
stitutes a less explored territory. This paper envisions the
characterization of the nonlinear optical properties of ma-
terials with a low-energy spectrum described by strongly
tilted (type-II) Weyl cones in two dimensions, which we call
2D Weyl materials (2D WMs). In particular we are inter-
ested in systems with band-crossing nodal points (massless
fermions) and broken inversion symmetry such as Cr,C and
XP, transition-metal diphosphides in which type-II Weyl
fermions are predicted [31,32].

This paper is organized as follows: In Sec. II we present
the generalized model for 2D WMs in the low-energy

©2022 American Physical Society
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approximation. Section III is then dedicated to analyzing the
temporal and spatial symmetries possessed by such materials,
and we show explicitly how the inversion symmetry is broken.
Section IV is then dedicated to obtaining Dirac-Bloch equa-
tions for 2D WMs, which are then used in Sec. V to construct
the nonlinear induced current. In Sec. VI, we discuss the
properties of the harmonics generated by an electromagnetic
pulse interacting with 2D WMs, and, in particular, we point
out the role the tilting of DW cones plays in said nonlinear
response. Finally, conclusions are drawn in Sec. VIIL.

II. HAMILTONIAN FOR A 2D WEYL MATERIAL

To start our analysis, we consider the following low-
energy, generalized, two-band Weyl Hamiltonian in d dimen-
sions,

3
He(q) =) ¢ Jou. )
n=0

where o, are the Pauli matrices (with o9 = I), £ indicates a
nodal point with opposite chirality (valley degree of freedom),
and the coefficients cflﬁ . are linked to the velocity and tilting

parameters of the 2D WM as follows,

Cio=2 ¢, (2a)

(ch1cha) = (a0, (2b)
§ A 2

Cq3 =8v4:+ 5 (20)

where a = (a,, ay) is the tilting vector, describing the orien-
tation and magnitude of the tilted cone, q¢ = (§qx, gy) is the
valley-dependent momentum, ¥ is the carrier velocity tensor,
whose diagonal elements v; represent the carrier velocity
along the direction x;, and v and A are, respectively, the inver-
sion symmetry breaking parameter and a staggered potential
accounting for an eventual gap in the band structure. If we
introduce the following set of generalized polar coordinates,

_ £ \2 £ \2
gfl - (Cq.l) + (Cq,2) ’ (321)
&
c
<pf; = arctan (g—’z), (3b)
c
q,1
the Hamiltonian in Eq. (1) can be written in matrix form as
follows,
& & £ —igh
cat+c gqe
H:(q) = ( q’og i(pgq,3 £ d £ ) 4)
gqe' Cq.0 — Cq3

The form of the above Hamiltonian is particularly convenient
and is readily diagonalized, with eigenstates and eigenvalues
given by

qu = Ci}o + )\,fg,

£ fg wi L —if2 £
_ 8 Ste
0= — ( % ) )

q
E 2wt ei/294

where fi = /(gq)> + (c3)% and wf, =1+ A(c];/fg)
[with A = £1 being the band index, identifying the valence
(A = —1) or conduction (A = +1) band of the material].

Notice that this form of eigenvalue problem is fairly gen-
eral, and it applies to every material (or physical process),
whose low-energy Hamiltonian can be parametrized with a
2 x 2 matrix.

III. TEMPORAL AND SPATIAL INVERSION SYMMETRIES
OF 2D WEYL MATERIALS

In this section we discuss the behavior of the Hamiltonian
defined above under time reversal and spatial inversion sym-
metry. In particular, we show how the former is preserved,

while the latter is broken, due to the presence of the term cfl 5

A. Time reversal symmetry

Let us start with time reversal symmetry. To prove that
the Hamiltonian in Eq. (1) preserves time reversal symmetry,
we need to prove that, under the action of the time reversal
operator 7' = K (which essentially amounts to complex con-
jugation), the Hamiltonian in Eq. (1) transforms as TA"HE (q) =
H_¢(q). An explicit calculation using Egs. (1) and (2) gives

TH:(q) = Hi (—q)
= —£op(a-q) —£0,(V-q),

A
+0y(€’ . Q)z + Uz<_qu,r + 3)

= H-¢(q), (6)

where (V - q); indicates the kth element of the vector ¥ - q, and
we have made use of the relation —o = oy. Notice that going
from the third to the fourth line, we only made the substitution
& — —&, as it is expected from time reversal symmetry to
hold.

B. Spatial inversion symmetry

For the case of spatial inversion symmetry, the Hamiltonian
in Eq. (1) should transform, under the action of the inversion
operator I = o,, as follows,

[H:(—@)I" = H_¢(q). )

Again, using Egs. (1) and (2), we can show that this symmetry
is broken by calculating explicitly the left- and right-hand
sides of the above equality and show they give a different
result. In particular, we have that

[He(—q)ff = —£ 0p(a- q)
—£o0,(V-q); +0,(V-q),

A
+Gz <’S Vqgx — E) (8)
A direct comparison of the above result with Eq. (6) allows
us to immediately conclude that [ Hg(—q)f "% H_¢(q), and
therefore that spatial inversion symmetry is broken. Notice
how this symmetry is broken because of the presence of the
last term, proportional to o,, which corresponds to the ci 3
term in Eq. (1). ’
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IV. DIRAC-BLOCH EQUATIONS FOR 2D WEYL
MATERIALS

We can now use the formalism developed so far to derive
the Dirac-Bloch equations (DBEs) for a generalized 2D Weyl
material. To do so we introduce the minimal substitution q —
(1) = q+ e A(t), where A(¢) is an external electromagnetic
field. The Hamiltonian is now explicitly time dependent, but
it can be still diagonalized in terms of instantaneous band
eigenstates and eigenvalues.

For the purposes of this work, we employ a linearly polar-
ized, spatially homogeneous, Gaussian electromagnetic pulse,
whose vector potential has the following explicit form,

A(t) = Eyte /" cos(ort)f, ©)

where Ej is the electric field amplitude, 7 the duration [full
width at half maximum (FWHM)] of the pulse, wy, its carrier
frequency, and f = {&, §} indicates the pulse’s polarization,
which we choose to be either oriented along the x or y axis.
Next, we can represent the time-dependent momentum
space coefficients cf,, (1), in direct space by means of the for-
mal substitution (i.e., inverse Fourier transform) q — —ii V,
to obtain the following time-dependent type-1I Weyl equation,

. .
lhgl//é(r,t) - XM:%DM v, 1), (10)

where the differential operators D,, have the following explicit
expression,

Dy = a D, + ayDy,

Dy = vy Dy + vy Dy,

Dy = vy Dy + vy, Dy,

D3=va+%, (11

where D,, = 0, + eA, (t)/lic is the standard covariant deriva-
tive [33]. Note that while D, transforms as a three-vector
under the Lorentz group, D, does not. To prove this, we
can define a general form of D, from the relations above,
as a linear combination of covariant derivatives along x and
y with some constant coefficients, i.e., D, = a, D, + b, Dy,
where a,, b, can be determined by using the relations above.
Applying a Lorentz transformation A}, to D, then gives the
following result,

ﬁﬂ =ay, D, + b, Dy
= a,(A™)\D, + b, (A7) D
= [a, (A7)} + bu(A™)}ID,
+[a, (A", + bu (AT 21D,
# (A7) D,. (12)

Hence, the equation above is not Lorentz covariant.
The general spinor solution can be then expressed in term
of instantaneous band eigenstates as

e*i[lbq.A(l)Jrqu (t)—q-r] , (13)

- 1
_ A =&
Ye(r, t) = i E g2 Uy g
q,x

where 4, are the band-electron ladder operators for valence
(A = —1) and conduction (A = +1) bands, respectively,

)\’ t
wq(t) = —/ dt eq(7) 14)
i Jo
is the dynamical phase, and
t
Yaur () = / dt Q,.(7) 5)
—00

is the Berry phase, with €2, ,(¢) being the intraband (if A = )
or interband (if A # ) Rabi frequency, defined as €2,,(t) =

( U, q)T
Insertmg the ansatz in Eq. (13) into the field Hamiltonian

H = / dr (v, 00, D" e (r, 1), (16)

and upon introducing the electron-hole ladder operators
Qq,1 = 4q and aq,_1 = I;f_q, and from the Heisenberg equa-
tions of motion for these ladder operators, we arrive, after a
lengthy but straightforward calculation, at the following set of

DBE:s for the population and inversion variables ng = (&;&q),
np = (b' yb_q). and pq = (b_qay). ic.,
hpy = —2if5 (1)ph — ihQE(1)e 27D Ang ¢, an

Rt = —4Re {[Q§()]" MO},

where Ange = (n¢, +n . — 1), and Qq(t) = 2, _,(¢). An
important aspect of the DBES is that while describing the
interband transitions they encapsulate the intraband dynamics
through the instantaneous energy and dynamical angle <p§ @),
as well as the Berry phase y4(¢). In the following section we
compute explicitly the interband and intraband contributions
to the nonlinear current.

V. GENERALIZED NONLINEAR CURRENT

We now compute explicitly the time-dependent current that
we will use to study the nonlinear response of type-1I 2D
WMs. The quantized current density can be written as

T =—e) V. V. H (@), (18)
§
whose components read
Ju=—eY ¥l o,dnc V. (19)
&1

To obtain a simple explicit expression for the current compo-
nents J, ,, it is useful to compute first quantities of the form

&g 0/11/7. To do so, we use Eqgs. (5) to write the products in

terms of the instantaneous eigenstates i ”;\ q(t) and then com-
pute the following quantities,

ity | (t)ouiy, () = 8.

att (t)o,ii i (1) = Zq COS§0q(l) — i Squ(t) A= —h
2,q Oy g f* Cos<pq(t), W=
" () (1) = Zq sin g (1) + ik cos @5 (1), A = —A,
u»\ q O—yux q fé sin (pq(t) =,
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Ay, M= —a,

BN E o
ity ()02l 4 (1) = i% A=A,
q

(20)
where, according to the generalized polar coordinates intro-
duced in Egs. (3), cos pg(t) = ¢} ((1)/q(t) and singg(r) =
ci a/ gf; (). To make the notation more compact we have also

defined the function zﬁ = —cfl’ 3/ ff . Using the above results,

the components of the nonlinear current operator can be then
written in the following simple form, as a function of the
coefficients cfl, 1w

3 3
Cr.l C7,2

Jut)=—eY (%cfw + O, oy F O, G
T fq a

& e h &
_ a,,“cqufl) (ng +ny—1) + 2Re{ |:8,,“cq,l

£ gflcfll] 2i 5()C4511
+ 8, 20l 2@ Gl 1)
1Tq3 ok a &
R I fq

VI. NONLINEAR OPTICAL RESPONSE OF 2D WEYL
MATERIALS

The nonlinear optical response of material presenting ei-
ther a Dirac or Weyl low-energy dispersion has been the
focus of relevant research in recent years. In particular, many
studies focused on the role of the nodal point, both gapped
or gapless, in the interaction with an external electromagnetic
field [34—41]. Remarkably, it has been pointed out that the
spikelike Berry curvature, in type-I and type-II bulk Weyl
materials, plays an important role in the generation of efficient
high-order harmonic generation [37-40]. 2D WMs have not
been observed in nature yet, nor have they been fabricated.
Specifying a set of parameters {a, ¥} that would correspond
to a specific 2D WM, therefore, is not possible. Tilted DW
cones, however, have been observed in several bulk and lay-
ered materials, such as MoTe,, TalrTes, and WTe, [42], the
latter also showing signatures of tilted Weyl cones in 2D
monolayers [43], or layered organic conductors, that possess
Dirac, rather than Weyl, tilted cones [44]. Following the dis-
cussion presented in these references, however, allows us to
make reasonable assumptions on the shape and values of the
material parameters.

In our simulations, therefore, for the Weyl material we
assume a diagonal form of the velocity tensor with v,, =
6.70v, vy, = 6.86vp, and a tilting vector a = (5.06, 0.75)vy,
where vy = 0.01vr and vp = ¢/300 is the Fermi velocity in
graphene [45].

For the impinging electromagnetic field, on the other hand,
we assume an amplitude of Ey = 10’ V/m, a carrier fre-
quency of w; = 12 THz, and a pulse duration of T = 50 fs.

To characterize the nonlinear optical response we solve
Egs. (17) in the vicinity of the nodal points using a
Runge-Kutta-based solver, coded using the JULIA package
DifferentialEquations.jl [46], and then we compute the non-
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FIG. 1. Nonlinear optical response /(w) of a 2D WM, as a func-
tion of normalized frequency w/wy, for the case of an impinging
electromagnetic pulse with x polarization (blue, solid line), and y
polarization (orange, solid line). As it can be seen, the presence of
tilted Weyl cones leads to the generation of even harmonics, and
a polarization-dependent amplification of the harmonic signal. The
numerical values of the various parameters for these plots are given
in the text.

linear electrical current from Eq. (21). To do this, we exploit
the axial symmetry of the system to perform the integration
in momentum space in polar coordinates, which allows us
to achieve better accuracy, in particular in the vicinity of the
nodal points. We then calculate the nonlinear signal with the
relation I(w) ~ | J(w)|>.

The nonlinear optical response of a 2D WM for the case
of impinging x (blue line) and y polarization (orange line) is
shown in Fig. 1. First, we notice that the generation of even
harmonics (EHG) is not suppressed, as in the case of other
2D materials, such as graphene [34]. This is mainly due to the
presence of tilted, rather than straight, DW cones. A nonzero
tilting vector a, in fact, breaks centrosymmetry, thus allowing
the generation of even harmonics.

The anisotropy induced by the tilting, and quantified by
the tilting vector a, also results in a polarization-dependent
amplification of the nonlinear signal, as it can be seen by
comparing the spectra for x and y polarization in Fig. 1. In
particular, comparing the second-harmonic signal (SHS) for
both polarizations, we can see that IS()IiI)S IS({{)S ~ 10 dB. We
moreover notice that while the polarization dependence of the
SHS (and, in general, the nonlinear response) of 2D WMs is
essentially due to the anisotropy induced by the tilting vector
a, the specific polarization direction experiencing a higher
SHS (or, more in general, a higher harmonic signal) is dictated
by the actual form of the tilted cone, which, for the parameters
chosen here, has a stronger tilt along the x direction than along
the y direction, resulting in an overall amplification of the
nonlinear signal generated by x-polarized light.

This is the main result of our work. The presence of tilted
cones in 2D WMs leads to a polarization-dependent harmonic
spectrum, which allows, on one hand, the generation of even
harmonics and, on the other hand, presents an unbalanced
response for different impinging polarization states, which
ultimately is due to the orientation of the tilting vector a.
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FIG. 2. Frequency spectrum of the x (dashed, blue line) and y
component (solid, orange line) of the nonlinear current J(w) for the
case of an impinging right-handed circularly polarized pulse.

The great sensitivity of the nonlinear response of 2D WMs to
polarization could be employed, for example, to realize effi-
cient nanoscale nonlinear polarization sensors. Interestingly,
the strong anisotropy shown by the harmonic response of
type-1I Weyl fermions has been studied, for bulk materials,
in two very recent experimental papers [39,40]. These studies
focus on the polarization dependence of the nonlinear har-
monic response of two experimentally confirmed type-I1I Weyl
semimetals due to breaking of inversion symmetry, S-WP,
[39], and T3-WTe, [40]. It is worth noticing that the strong
polarization dependence shown by type-II fermions is not
just remarkable if compared with their nontilted counterparts
[35,36]. Twisted bilayer graphene, for example, shows both
a nodal crossing point and anisotropy (due to the twisting
angle), but while having different selection rules that depend
on the photocurrent direction, it does not show a relevant
polarization dependence for the intensity of the response [41].

Figure 1 also hints at another peculiar behavior of the
nonlinear response of 2D WM. If we take a closer look at
the odd harmonics, in fact, it is possible to notice that the
amplification trend mentioned above for the second harmonic
(and, in general, for even harmonics) is reversed, meaning
that the odd harmonics generated by an impinging electro-
magnetic field polarized along the tilting direction of the DW
cones are less amplified than those generated by a field with
orthogonal polarization (with respect to the tilting direction).
This intrinsic feature of 2D WM, essentially due to the strong
anisotropy (regulated by the tilting vector a), would then
allow us to use polarization as an active diagnostic tool to
fully characterize the orientation of the DW cones in 2D
WM.

This unbalance, however, only manifests if the impinging
electromagnetic pulse has linear polarization. The tilted nature
of DW cones, in fact, does not introduce any unbalance for
circularly polarized pulses, as can be seen in Fig. 2, where
the spectral components of the nonlinear current generated
by right-handed circularly polarized pulses are plotted as a
function of the harmonics of the impinging pulse. As it can be
seen, the spectra for the x (dashed blue line in Fig. 2) and y
(solid orange line in Fig. 2) are very similar, and do not present

-60

I(w) [dB]

0 1 2 3 4 5
a,/v

FIG. 3. Evolution of the peak of the SHS, for the case of Fig. 1,
as a function of the scaled tilting parameter a, /vo.

the characteristic unbalance seen in Fig. 1. The effect of the
tilting, in this case, can be seen by the appearance of even
harmonics, not present for the case of a straight cone, but no
difference in the spectral amplitude of the two components of
the nonlinear current can be seen.

Tuning the nonlinear response of 2D WMs. An important
aspect to look at, when considering the potential impact 2D
WMs could have for the realization of different linear and
nonlinear photonic devices, is to understand how their differ-
ent degrees of freedom, such as anisotropy and tilting, can be
engineered to optimize the onset of desirable features, such
as the polarization-dependent SHS amplification described
above. To this aim, in Fig. 3 we show how changing the
tilting vector a along the x direction (while maintaining it
constant in the y direction) affects the intensity of the SHS.
As it can be seen, varying the tilting parameter a, corresponds
to a nonlinear modulation of the intensity of the SHS, which
saturates to approximately 60 dB for tilting values a, > 5.
This, moreover, is not limited to SHS, and the same kind
of analysis could be applied, in principle, to optimize the
material to amplify a specific harmonic signal. Suitably engi-
neering the tilting vector a of 2D WMs could then lead to very
efficient, polarization-sensitive frequency converters. Nonlin-
ear frequency conversion is a useful tool for the manipulation
of laser light. Optical nonlinearity is utilized for converting
part of the optical power of the input light to output light
in a different wavelength region [47,48]. In this perspective
the anisotropy of the sample introduces further possibilities. It
would allow us to select the optimal polarization of the input
light for the efficiency of the conversion.

VII. CONCLUSIONS

In this paper, we have introduced a low-energy model for
type-II 2D WMs, and studied its nonlinear optical response. In
particular, we have shown how the tilted nature of type-1l DW
cones results in a natural polarization-dependent anisotropy
of the nonlinear signal, and in a significant polarization-
dependent amplification (see Fig. 1). Moreover, we have
also discussed how it is possible to control the nonlinear
response of such materials, by suitably engineering its proper-
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ties, in terms of velocity tensor and tilting vector. The results
presented here suggest that 2D WMs possess a significant
potential for disruptive photonic devices, such as, for example,
very efficient nonlinear polarization sensors. In addition to
that, our work could be impactful in the topological photonics
community as well, where type-II Dirac cones have recently
made their appearance in photonic lattices [49]. Understand-
ing the formation and dynamics of type-II tilted Weyl cones
in such materials could, in fact, open different possibilities for
the control of light in photonic nanostructures.
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