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Thermodynamics of an exactly solvable model for superconductivity in a doped Mott insulator
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Computing superconducting properties starting from an exactly solvable model for a doped Mott insulator
stands as a grand challenge. We have recently shown that this can be done starting from the Hatsugai-Kohmoto
(HK) model, which can be understood generally as the minimal model that breaks the nonlocal Z, symmetry
of a Fermi liquid, thereby constituting a new quartic fixed point for Mott physics [Phillips et al., Nat. Phys.
16, 1175 (2020); Huang et al., Nat. Phys. (2022)]. In the current paper, we compute the thermodynamics,
condensation energy, and electronic properties such as the NMR relaxation rate 1/7; and ultrasonic attenuation
rate. Key differences arise with the standard BCS analysis from a Fermi liquid: (1) the free energy exhibits
a local minimum at 7, where the pairing gap turns on discontinuously above a critical value of the repulsive
HK interaction, thereby indicating a first-order transition; (2) a tricritical point emerges, thereby demarcating
the boundary between the standard second-order superconducting transition and the novel first-order regime;
(3) Mottness changes the sign of the quartic coefficient in the Landau-Ginzburg free-energy functional relative
to that in BCS; (4) as this obtains in the strongly interacting regime, it is Mott physics that underlies the generic
first-order transition; (5) the condensation energy exceeds that in BCS theory suggesting that multiple Mott bands
might be a way of enhancing superconducting; (6) the heat-capacity jump is nonuniversal and increases with the
Mott scale; (7) Mottness destroys the Hebel-Slichter peak in NMR; and (8) Mottness enhances the fall-off of the
ultrasonic attenuation at the pairing temperature 7,. As several of these properties are observed in the cuprates,
our analysis here points a way forward in computing superconducting properties of strongly correlated electron

matter.
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I. INTRODUCTION

A truly remarkable feature of superconductivity in ele-
mental metals is that although the superconducting order
parameter, W = A¢'?, has two components, a phase # and
an amplitude A, both turn on at the same temperature. This
behavior is captured by the mean-field treatment of BCS [1],
which predicts a second-order phase transition in which su-
perconducting fluctuations of the pair amplitude satisfy the
Ginzburg criterion, §(A)?/A <« 1. Should this criterion be
met, pairing and phase coherence are synonymous. From a
technical standpoint, satisfying the Ginzburg criterion is quite
surprising as the latter is governed by a divergence in the
pair susceptibility while the former stems from a solution to a
mean-field integral equation. Experimentally, no more than a
1 K difference between these temperatures in BCS materials is
observed. Hence, the Ginzburg criterion is really a statement
about the accuracy of mean-field theory.

It is well known that the cuprates violate the Ginzburg
criterion or equivalently the BCS dictum that pairing with-
out long-range order is impossible [2-5]. While this trend
was thought to vanish in the overdoped regime, recent
spectroscopic measurements [6] on the bilayer cuprate
(Pb, Bi),Sr,CaCu,0g,5 (Bi-2212) have verified that even
in such samples remnants of a particle-hole symmetric su-
perconducting gap persist up to Ty = 86 K where the
superconducting transition is 7. = 63 K. The focus on a
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particle-hole symmetric gap as the signature of the pairing
gap is designed to disentangle superconductivity-related gaps
from the wider range of phenomena associated with the pseu-
dogap [7] that need not [8—10] have this symmetry. Within
the cuprate family, Bi-2212 and YBa,Cu3;07_s (YBCO) have
the highest ratio of Tp,;i/7. of 1.6 while in (La, Sr);CuQy4
(LSCO) the ratio is 1.2. Although 2D disordered materials are
expected to have a wide range where thermal superconducting
fluctuations obtain [11,12], the efficient cause of the discon-
nect between phase coherence and the gap turn-on remains
unsettled in the cuprates. For example, the discrepancy has
been attributed [6] to the existence of a flat band at (7, 0).
Further, it is unclear how to think about a pairing gap without
a phase transition. The question arises, what is the order of
the transition in which pairing and phase coherence are de-
coupled? It is questions of this type that we address in this
paper.

In trying to understand the source of the discrepancy be-
tween pairing and phase coherence, it is worth cataloguing
other instances of deviations from BCS superconductivity in
the cuprates. Two features stand out: (1) the color change
[13] and (2) a violation of the Glover-Ferrell-Tinkham [14,15]
(GFT) sum rule. Regarding the latter, in a standard BCS su-
perconductor, condensation leads to loss of spectral weight at
energy scales no more than ten times the pairing energy. Not
so in the cuprates. Bontemps and colleagues [16] have directly
observed that in underdoped (but not overdoped) Bi-2212, the
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Glover-Ferrel-Tinkham sum rule is violated and the optical
conductivity must be integrated to 20 000 cm ™' to recover the
spectral weight lost upon condensation into the superconduct-
ing state. Similarly, Riibhaussen et al. [17] and others [18]
have shown that changes in the optical conductivity occur at
energies 3 eV (roughly 100A where A is the maximum super-
conducting gap) away from the Fermi energy at 7. Finally,
van der Marel and colleagues [13] have seen an acceleration
in the depletion of the high energy spectral weight accompa-
nied with a compensating increase in the low-energy spectral
weight at and below the superconducting transition. Specif-
ically the integrated weight of the optical conductivity over
the lower Hubbard band scales (<1 eV) increases below the
superconducting temperature, whereas the high-energy com-
ponent ([1 eV, 2 eV]) decreases. Since the integrated weight
determines the number of charge carriers, the color change
indicates that high-energy scales contribute to the superfluid
density in contrast to the standard BCS picture. Consequently,
the superfluid density in the cuprates is derived not just from
low energy physics. In essence, it involves UV-IR mixing.

What all of this seems to indicate is that the departures
from BCS superconductivity in the cuprates are tethered to the
Mott state. What is difficult then is to solve a reasonable model
for a Mott insulator, which captures this range of deviations
from the BCS paradigm. It is in attempting to answer this
array of questions that we have focused [19] on the Hatsugai-
Kohmoto (HK) [20] model, an exactly solvable model for a
Mott insulator. The HK model,

Huyx = Zi‘knko +U anTnk¢’ (D
ko k

is essentially the Hubbard model in momentum space. As we
pointed out previously [21], this model is important because
it represents the simplest way of breaking the hidden Z,
symmetry of a Fermi liquid. We illustrate this from the basic
Hamiltonian for a Fermi liquid

HeL =) Yi(ep — €r)taip + -+ . 2
p

Here wT (CPT’ —py) and 73 is the standard z-Pauli matrix.
For electrons at the Fermi surface, € = €r, this Hamiltonian
obeys the symmetry nyy — —ngs where only one of the spin
currents changes sign. Consequently, the interaction term of
the form in the HK model maximally breaks this symmetry.
Based on this, we showed previously [21] that the HK model
represents a fixed point for Mott physics that even encom-
passes Hubbardology. A straightforward Fourier transform of
the Hubbard on-site interaction reveals that it contains the HK
interaction term. As we have shown previously [21], it is this
term that is most relevant in the renormalization sense and
the only one that maximally breaks the hidden Z, symmetry
of a Fermi liquid. For these reasons, we have focused on
revealing its superconducting properties [19]. To accomplish
this, we appended to the HK Hamiltonian, which only de-
scribes a doped Mott insulator, a pairing term, in analogy
with the Cooper program [1] in which a pairing term was
added to a Fermi liquid, to investigate if a corresponding
pairing instability obtains. Indeed it did [19] and hence we
found a computationally tractable starting point for supercon-

ductivity and Mottness. While our previous work revealed
T = 0 properties of the HK model appended with a pairing
term with coupling constant g, none of the thermodynamics
were obtained. Nonetheless several non-BCS properties were
apparent: (1) hmg_,o T — rather than the BCS ratio of
3.52; (2) Composite quasiparticle excitations consisting of
doublons and holons rather than the standard particle-hole
excitations of BCS; and (3) a suppression of the superfluid
density relative to that of BCS.

Because the model we explore is highly amenable to
computation, we can with certainty catalog how the finite
temperature properties derived from Mottness lead to sub-
stantial deviations from BCS theory. First, we establish that
the turn-on of the gap and the divergence of the suscepti-
bility occur at distinct temperatures. The former appears to
obtain at a first-order transition while the latter tends to a
global second-order transition of the superconducting state.
We show that this effect vanishes when U = 0, thereby mak-
ing this a true consequence of Mottness. We make contact
with earlier results on multiband superconductors that found
a first-order transition [22-25]. We trace the first-order nature
of the pairing transition to a singly-occupied holon band that
arises purely from Mott physics. Second, we compute the heat
capacity jump at 7, as well as the condensation energy. Unlike
BCS theory, we find that E.,,q/A is stronger than in BCS
theory. Finally, we compute the ultrasonic attenuation as well
as T; near the superconducting transition. We are able to show
that the Hebel-Slichter [26] peak in BCS theory vanishes in
the strongly correlated limit as seen widely in the cuprates
[27-29]. Although the absence of this peak in the cuprates
[30,31] has been attributed to spin fluctuations, we argue here
that it is just a consequence of Mottness, the splitting of the
spectral weight over two correlated bands. Subsequent exper-
iments are discussed. While it is possible to use this model
to address a possible BCS/BEC crossover, we do not explore
this here. Such a crossover has been explored previously from
a Luttinger surface [32].

II. SUPERCONDUCTIVITY IN THE HK MODEL

Superconductivity in the cuprates necessitates a solution to
at least the Cooper instability in a doped Mott insulator. We
have shown [19] previously that this can be done exactly by
solving Cooper instability equation that arises from the HK
analog

H = Hix — gzwm 3)

of the pairing Hamiltonian for a doped Mott insulator. Here
bx = c_xcky is the s-wave pair creation operator at zero total
momentum. As is well known for Mott systems, the single-
particle Green function for Hyg,

/3 .
Gyo (i) = _/ dt <Ckg(t)ci£a (O)>ela)nf (4)
0

. 1 — (mw) (i)
Gyo (iwy, — 2) = + )
7 — & z— Gk +U)
exhibits a bifurcation of the spectral weight between lower
(1) and upper (u) bands with weights that are determined by
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the electron filling, 1 — (nxz) and (ngz), respectively. It is
this bifurcation that leads to zeros of the real part of the
Green function. The features in the lower band are created
with the momentum-projected operators &, = i (1 — mz).
In the Hubbard model, the corresponding operators for the
lower band are not known exactly. With these operators, it is
easy to see that the physics of the lower Hubbard band in the
HK model is not that of a Fermi liquid. Namely, there are
excited states of the HK model that have no correspondence
with those in a FL. Consider a two-particle excitation. This
would be generated by applying the £, operator twice. That
is, the excited states should be described by E,;LTEQ'V However,
this operator is explicitly zero. That is, there are excitations
in the HK model that have no counterpart by acting with the
single-particle operators. At work here is the fact that as long
as U # 0, a Luttinger surface of zeros is present. There are
strictly no pure pole-like excitations. Hence, there is no FL
part of the HK model as long as U # 0.

We have also shown [19] that not only is the Cooper insta-
bility exactly solvable but so is the exact pair susceptibility.
The exact susceptibility [19]

x(ivy) = Z / dt " (Th(T)b),  (6)

k.k’

can be expressed, in the normal state, in terms of the bare
susceptibility

. Xo(iv,)
x(ivy) = —————, )
1 = gxo(ivn)
which is given by
Xo(iva) = Xo' + x8" + xo" + X3 ®)
F(@) + f () —
=v Z g = O

v, —op — o

where for a)k =& and oy =& +U, ng, = (nks)o, and
n{w =1-ng, and f(w) the Fermi function at temperature
T, the superscripts ab may represent /1, uu, [u, or ul.

A consequence of the expression of the pair susceptibility
is that the divergence at xo = 1/g is expected to be a second-
order transition to the bulk superconducting state. As we will
see, this divergence is not coincident with the turn-on of the
gap. To calculate the susceptibility, we will work with the
exact finite temperature occupancy,

1 e Pék | o= B&A+U)

o) = (M) = T e o

(10)

so as to give the correct temperature dependence of x(7')
explicitly. In Fig. 1, we plot the zero-frequency bare suscepti-
bility xo(T) as well as x(T'). The divergence of x(T =T.)
would imply a diverging length scale and thus a possible
second-order phase transition temperature 7,. Above T, there
is no extra singularity in the susceptibility, which is the same
case as in the BCS theory. To reiterate, the onset of the gap,

\ d|vergence of x

Xo
Xo/(1-9Xo)

1/g9

X
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FIG. 1. The temperature dependence of y, (left) and y (right) for
a 3D-HK model with superconducting pairing. The energy dispersion
was approximated by a parabola dispersion, and the chemical poten-
tial was set to half filling of the lower Hubbard band, u = 0.5W
where W is the bandwidth of the lower Hubbard band. We take
W =1 in the following calculation. The temperature 7, at which
X = xo/(1 — gxo) diverges (xo = 1/g) represents the true supercon-
ducting transition onset.

a mean-field notion, is distinct from the divergence of the
susceptibility.

A. Mean-field theory of HK

Given that the susceptibility calculation is exact, we can
assert that the ground state of the HK model with a pairing
term is superconducting. To describe this state, we resort to a
mean-field description in the spirit of BCS. In our previous
paper, we implemented the mean-field by an appropriately
chosen pairing wave function. To go beyond such a ground-
state treatment, we explicitly diagonalize H, obtaining all
eigenstates and measuring observables in grand canonical
ensemble, including their full temperature dependence. The
procedure we use has been outlined in the Supplemental Ma-
terials of Ref. [19] and by Zhu et al. [33]. In constructing the
mean-field, we take advantage that the HK Hamiltonian does
not mix the various k-states. In terms of the pair amplitude,

= (g/V) D\ bk, we formulate the mean-field,

_ 8 i
Hy = %;bkbk/

= —ATA
g

14 b, oo _
—@BA"+A)SA+A)
8

%

_ —x vV —
> (Db + Aby) - PR (n
k

entirely on the pairing term where we have introduced the
average of the pairing amplitude to be A = (A). In the last
step, mean field amounts to ignoring the second-order fluctu-
ation O(8 A?) term. The mixing between different momentum
sectors averages out because of the momentum-diagonal
structure of HK. Thus the mean-field (MF) HK Hamiltonian
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TABLE 1. Block decomposition and the energy levels of the
HKSC mean-field Hamiltonian

Subspace Eigenvalue Degeneracy Basis
PB E}f =25 +U 2 |1100), |0011)
s _ 11010), [0101),
ST =25 : (11001) — [0110)/+/2
E =E, 1 [0000),
Mixing E=E; 1 (11001) + |0110))/+/2,
E; = E; 1 11111)
{11000), [1110)}
ES=E_ 4 {10100}, [1101)}
Odd x4 El =E, 4 {10010}, [1011)}
)}

{10001), [1011

can be block diagonalized [19,33]

vV _
H~ Y HYF+ —[AP
keHFBZ 8

MF
H" = Z €k Z Czkacskff + UCjkTmeCIlem
s=+ o

— (A c gy coer + Acliycl g ). (12)
The summation over k is carried out inside half of the first
Brillouin zone (HFBZ), while the boundary terms with mo-
menta restricted to the edge of the first Brillouin zone are
neglected as they are suppressed by a factor of 1/N and hence
vanish in the thermodynamic limit.

The decomposed Hamiltonian lives in a Fock space F,
which contains 4 fermion currents, |nyy, nk , Bkt , h—k|) and
spans a 16-dimensional space [33]. Due to the fermion parity
conservation of HMF, this Fock space can be decomposed by
parity into Fx = F°% @ F*". The even sector is further block
diagonalized into 3 subspaces, Fi©**" = FFB @ F5T @ FMX, as
shown in Table I :

(1) The states in the Pauli blocking (PB) states, possess
an energy level at E; = 2& + U with degeneracy 2, which
have definite total electron number 2 (not participating the
superconducting pairing) and is blocked by the repulsion U .

(2) The states in the spin triplet (ST) states, possess an
energy level at E]f = 2& with degeneracy 3, which also have
two electrons (not participating the superconducting pairing).

(3) The 3-dimensional particle number mixing (Mixing)
states related by the off-diagonal superconducting pairing.

The Hamiltonian matrix in the 3-dimensional mixing states
subspace is

0 —V2A 0
—V2A 2% —V2A (13)
0 —V2A 45 +2U
with corresponding 3 energy levels (i = 1, 2, 3)
2U 4 ven 27 .
E; :2Ek+T+ﬁE§e cos (91(—}-?1), (14)
U\? 2 U?
Eeven — ( _) A — 15
k \/ kt o) +A+ 5 15)

Ok = larccos |:—Qk :| (16)
3 9
3 (V3ERe")
9 9 9
=U(U>+ ZUg + =2 — =A" ). 17
4k ( 3 €k 251( i ) (17)

Similarly, the odd sector can be written into a direct-sum of 4
equivalent subspace, e.g., {|1000), |1110)}. Here the Hamil-
tonian matrix in each 2-dimensional subspace is

<Ek_ —a ) (18)
—A 35 +U

and the odd sectors share the 2 energy levels,

U
Ey = 2%+ o £ BV, (19)
U\> —
EQ = \/ (sk + 3> + A% (20)

The energy levels and bases in each subspace are shown in
Table I. Thus we have all energy levels of the system. The
ground state is recognized as the eigenvector corresponding to
E;, which is a linear combination of the 3 occupancy states:
|0000) from £y ® 0, (|1001) + [0110))/+/2 from Q; ® £,
and |1111) from 2, ® 2,. Our previous variational treatment
[19] concurs with this result.

The work horse of the mean-field treatment is the self-
consistent equation for the pair amplitude:

a=2 ?cmc_m. 1)

The right-hand side has a dependence on A through the ther-
mal average over the energy levels enumerated in Table I. We
can also treat the self-consistent equation for A as the solution
to the extremum of the free energy,

F = —kyTInZ, (22)
where
Z= Y A (23)
i,keHFBZ

Both procedures yield identical results and are tabulated
in Fig. 2. Displayed first is the free energy as A is varied.
Of first note is that for T > T}, the global minimum of free
energy remains zero. At T = T, (p for pair), there are two de-
generate minima, with A=0 and A = A » 7 0. The technical
definition of 7}, then is 8F/8A|K:Ap =0and F(A,) = F(0).
This degeneracy is lifted by lowering the temperature such
that T, < T < T,,. The solution to 82F/3A2|A:0 = 0 defines
T, as the inflection point. As we will see, 7, will correspond
to the divergence of the susceptibility.

To corroborate this picture, we solve the self-consistent
equations for the the gap. The dashed curve in Fig. 2(b) corre-
sponds to BCS theory, which has a unique turn-on temperature
for the pair amplitude at the red dot, namely T = T5. In HK,
however from our evaluation of the free energy, we see multi-
ple solutions for the gap turn-on distinct from the feature at 75.
As shown, the A — T curve for the mean-field HK exhibits a
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FIG. 2. (a) The variation of the free energy F as a function of
the the pair amplitude A for an HK superconductor at U/W = 1 and
g = 0.3. The chemical potential is set at half filling of the lower band
(u =0.5). For T > T, the global minimum of free energy is A = 0.
At T =T,, the free energy at A =0 and A = A, coincides, thus
indicating a first-order transition. When 7, < T < T,,, A = 0 is still
a local minimum, while the global minimum obtains at finite A. For
T = T, the only minimum occurs at finite A, and A = 0 becomes
a local maximum (the inflection point). (b) The dashed-purple line
and the solid-blue line are the solution to the pair amplitude from the
self consistent equation at different temperatures (the A — T plot) for
BCS (U/W = 0) and HK (U/W = 1). The green dot shall represent
the first-order phase transition and the red dot represents the second-
order phase transition. In both cases, the axes are scaled according to
respective 73, and respective zero temperature pair amplitude A.

nontrivial back-folding behavior above 7. This multivalued-
ness confirms that there are multiple choices of A that make
the first derivative of the free energy with respect to the gap
vanish. Only one of these gaps yields the global minimum of
the free energy. The equivalence of the free energy at A = 0
and A, implies a first-order phase transition at this tempera-
ture 7}, (green dot), which ensures the accuracy of mean-field
treatment since the first order transition does not have any
diverging fluctuations. The degenerate minimum of the free
energy at T = T}, are shown in Fig. 2(a) with the green-solid
curve. There are two mechanisms to lift the degeneracy: (1)
decrease the temperature as shown in Fig. 2(a) or (2) decrease
U from the value shown in Fig. 2(b). What is not shown is
that there is a critical value of U that is needed to destroy the
back-folding in Fig. 2(b). This critical value diminishes as the
pairing strength g decreases. While it is suggestive at this point
that it is Mott physics that leads to the first-order nature of the
superconducting transition, we will confirm this by a detailed
evaluation of the Landau expansion parameters. An analysis
of the HK model under d-wave pairing could be carried out

1.0
0.8}
ﬂo 0.6
< 0.4;
0.2}

0.0 S
00 02 04 06 08 10

T/T,

FIG. 3. Pair amplitude of s-wave and d-wave pairing at the same
pairing strength g = 0.3 and repulsion strength U/W = 1.

similarly by replacing the pairing term H, in Eq. (3) with a
d-wave form

8d =
Hy= %N b by, 2
f V%{;kk (24)

where by = c_k yckp(cosky — cosky) is the d-wave pair cre-
ation operator in 2-dimensions. After performing the same
mean-field calculation on by, we find that the pair amplitude,
as shown in Fig. 3, also exhibits a nontrivial back-folding
behavior above 7, which is recognized as the key major
difference between a BCS superconductor and an HK super-
conductor at the mean-field level. As there is little difference
between these two cases, in the subsequent analysis only the
s-wave case will be analyzed.

One remaining subtlety is that the calculations in this sec-
tion are all based on mean-field theory, which is exact only if
the transition is truly first order. Strictly, they break down at
the critical point of a second-order transition. Since the exact
pair susceptibility diverges at a temperature distinct from 7,
we need to consider two possibilities:

(1) The phase transition is first-order at 7, and the cal-
culation of the susceptibility cannot be applied to the theory
below the transition temperature at which 7, (A jumps to a
finite value instead of continuously growing from zero when
T =T,). The mean-field calculation is exact in this scenario.

(2) The phase transition is second-order at 7. The global
minimum of the free energy at 7, shall be excluded due to
the divergence of fluctuations near the second-order phase
transition, which destroys the mean-field theory. Only the
non-MF calculation (e.g., susceptibility) is right.

In the first case, the calculation of T, is internally inconsis-
tent as it presumed that A, = O for T > T.. In the second case,
we take advantage of the exact diagonalizability and use the
Ginzburg criterion to estimate the temperature range where
the fluctuations diverge (mean-field theory breaks down).

B. Ginzburg criterion

The unusual first-order nature of the phase transition in an
HK superconductor is manifest at the mean-field level. The
crucial question is then: Is this first-order transition just an
artifact? In other words, how valid is the mean-field theory,
or equivalently, what is its range of validity? To address this,
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we compute the Ginzburg criterion, presuming that the phase
transition is second order at 7 = T,.

Recall that the Landau-Ginzburg description of a tradi-
tional superconductor is equivalent to the mean-field treat-
ment of the BCS theory around the transition point [34]. We
demonstrate the same result for HK superconductors. In an
s-wave superconductor, which is the case considered here, the
order parameter is given by

W(x) o< (er (x)ey (x)). (25)

In the absence of a magnetic field, the Landau free energy is

1
F[V] = /ddx<a|\11(x)|2 + §b|w(x)|4 + KIV\IJ(x)|2),

(26)
where a is directly related to the susceptibility and K is
the rigidity. Close to a second-order critical point 7, that is
|| < 1, we may neglect the quartic terms. As a result, the
free energy,

F[V, U*] = /ddx(a|\ll(x)|2+K|V\Il(x)|2)

=Y (a+ Ki)|Wk)P
k

1 ,
W) = — Y W)™, 27)
2>
by performing the Fourier transform of the order parameter.
The Helmholtz free energy A(T') is given by
A(T)= —kgT InZ

- —kBTln/D[\IJ,\lf*]e_”q"‘l'*]/k‘*r

ksT
= ksT Z In ( BKk2> (28)

We write a(T) = at witht = T % The singular contribution
to the specific heat Cy = —TA”(T) comes when differentiat-
ing with respect to 7. The dimensionless heat capacity per
unit cell is

i CV
“T Noks
_ofal h adk 1
- K? / @2m) (672 + k*)?
_ @547(1 /AS d'q 1 29)
K2 Qm)d (14 ¢%)%

where A ~ a~! is an ultraviolet cut-off and a is the lat-
tice constant (set to unit in the following calculation), & =

(K/a)'/* = (K/a)'/?|t|~'/2. The fluctuation contribution is
small when
2.d
ara’ 44
75 < 1, (30)
which entails |¢t| > t; where the latter is defined,
d
A=
to = <a2E)4 ! 31)

26} — g=0.1
24F — g=02
2.2¢

— g=0.3

— =04
18! 9

16F
1.4}

120 ‘ ‘ ‘ ‘ ‘ ‘
00 01 02 03 04 05 06

u/w

FIG. 4. The dependence of the Landau expansion parameter o =
a/t on the HK interaction strength U at different values of the
superconducting pairing strength g. We claim thatat U = 0, ¢ ~ 2.1
and at U > u = 0.5, @ & 1.3, which are around the same scale. The
magnitude of « does not vary appreciably for all values of g.

as the Ginzburg reduced temperature. This calculation then
just hinges on knowing o and K and we can estimate the
temperature region where mean-field theory is not valid.

To obtain «, we calculate the spatial average of the order
parameter

oo

v

> / x(cp(x)ey (x))

= gZCkTC k¢
k

—A. (32)

<

<

Thus, the Landau free energy parameters can be calculated by
differentiating the free energy density f with respect to A

, (33)

a =

oA Iz
and the parameter o can be calculated by linear fitting the
a(T) around the transition temperature as shown in Fig. 4. The
key point is that o does not vary appreciably for the system
parameters U/W and g.

We also have the superfluid stiffness defined by

1
T[0] = /ddxips(ve)z, (34)

where 6 is the phase of the superfluid W(x) = We. Thus the

relation between K and py is

1 2 2 T 2

S Ps(VO): = KIVW[® = KT (V6)’, (35)
Ps Ps
2v 2A

From Figs. 4 and 5, we can read that at u = 0.5, U > p,
the value of « and py is @ ~ 1.3, K ~ p,/2A% ~ 10*. From
Eq. (31), we may estimate t; ~ 10~'!. Consequently, the
Ginzburg temperature is sufficiently small to guarantee the va-
lidity of the mean-field calculation, which predicts a first order
transition. Hence, the presumption that the phase transition is
second-order shall be ruled out when 7,, > T>. We will discuss
the consequences of this first order transition in more depth.
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‘<
< 1000
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FIG. 5. The rigidity at transition temperature (" = T, solid line)
and at zero temperature (7' = 0, dotted points). The calculation (see
Appendix) was performed with u = 0.5, g = 0.2. The value of K
was calculated with A = 107 and T = T, (where the susceptibility
diverges).

C. Phase diagram

To put this all together, we focus on the phase diagram in
the T — U plane presented in Fig. 6 with a superconducting
paring strength ¢ = 0.3. We observe that for a small value of
U/W < 0.13, the superconducting transition is second order
(red line) in which the divergence of the pair susceptibility
and the turn-on of the gap are coincident. In general, the
critical value of U/W, denoted by U,/W, for the transition
to be second order decreases as g decreases. Hence, it is only
the weakly interacting regime in which we find the traditional
result that the superconducting transition is second order. As
pointed out in our previous paper, in no regime (except U = 0)
does a BCS picture apply. For example, even in the weakly
interacting regime, the transition temperature compared with
BCS (U = 0) value increases as U increases implying that the
multiband nature of the HK model is at play in driving the en-
hancement of superconductivity. The second-order transition
line ends at the tricritical point located at U;/W = 0.13 and
T,/W = 0.0255. It is at this point that the local and global

0.030
0.025 «Tricritical Point Tp
0.020¢
2 0.015 -
= . Tc
0.010¢
0.005¢}
0.000 : : ‘ ‘
0.0 0.2 0.4 0.6 0.8 1.0

u/w

FIG. 6. Phase diagram in the 7 — U plane of the HK super-
conductor for coupling g = 0.3. The green line corresponds to the
first-order transition temperature 7, at which the global minimum
of the free energy switches from A =0 to a finite value. The red
line corresponds to 75 at which A = 0 changes from a local mini-
mum into a local maximum. The gray line is the pair susceptibility
diverging temperature 7. The gray and red lines coincide, thereby
corroborating that the pair-susceptibility divergence is coincident
with the inflection point in the free energy.

0.004
0.003}
= 0.002/ — U=05
0.001 — U=
— U=2
0.000: ]
00 02 04 06 08 1.0

<ng>

FIG. 7. Phase diagram in the 7. — (n,) plane of the HK super-
conductor for coupling g = 0.3. The blue line (U = 0.5) represents
the overlapping bands or metallic phase in which U < W. The pink
and purple line (U = 1, 2) represent the nonoverlapping bands (Mott
insulator ground state at half filling, (n,) = 0.5).

minima merge. For larger values of U > U,, the transition
becomes a first-order one (green dots). The phase transition
temperature 7), saturates when U/W > 0.5, which coincides
the elimination of the single-occupancy region €2 and double-
occupancy region €2, boundary in the HK model.

We can also compare 7, with T.. As is evident, they both
coincide as illustrated in Fig. 6. This is significant because
T. is computed from a divergence of the susceptibility while
T, follows from a solution to a mean-field equation. For an
HK superconductor with first-order transition, the temperature
T, represents the elimination of the metastable state (local
minimum).

In all the computations thus far, either the chemical po-
tential or the filling has remained fixed. To make contact
with the cuprates, a phase diagram of 7, versus filling or
chemical potential is needed. This can be done using the same
machinery. Shown in Fig. 7 is a plot of T, versus filling for
two distinct cases: (1) overlapping lower and upper Hubbard
bands and (2) no overlap. This can be engineered simply by
changing the value of U. In general electron and hole doping
yield the mirror results. When the bands overlap, a metallic
state always ensues, though a non-Fermi liquid one [19] and
T. is minimized at half-filling though it does not vanish. A
vanishing of 7, at the Mott insulating state obtains only for
U > W as is shown in the plots in which U = 1 and U = 2.
The familiar dome-shaped phase diagram obtains as dictated
by the dome-shaped superfluid stiffness reported previously
[19]. The dome shape here is a direct consequence of Mott
physics.

D. Landau expansion parameters

To complete a theory of a first order transition, we rewrite
the Landau free energy

F[A] = aA’ + bA' + A + O(R°), (37)
in terms of the 4th order expansion parameter b. For a first-
order transition, » < 0 and the 6th order term be positive to
keep the free energy bounded from below. When the first-
order transition obtains, both the value of the free energy and
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FIG. 8. (a) The occupancy of the HK (U = 0.3) and Fermi lig-
uid (FL) at finite temperature 7 /W = 0.01. (b) The 2nd expansion
parameter ax of the Landau free energy over the energy levels &.
(c) The 4th expansion parameter by of the Landau free energy over
the energy levels &.

the first derivative with respect to § vanish,

FIA,] = aB, +bA, + cA, = 0, (38)
F'[A,) = 2ah, + 4bA, + 6¢A, = 0. (39)

The solution is Kf, = —2a/b and b* = 4ac, thus proving that

a>0,b= —V4ac < 0is required for this kind of first-order
transition to exist. Recall that for an HK superconductor, ex-
treme factorizability in momentum sections allows us to write
the free energy as

F[Al= ) RlAl (40)

keHFBZ

As a result, the free-energy expansion parameters can be
decomposed as a = ), ax and b = ), by. To organize our
results, we recall that what makes the HK model a non-Fermi
liquid is that at zero temperature, as a result of U, singly
occupied states, €2, exist below the chemical potential, which
never obtains in a Fermi liquid. This is depicted in Fig. 8(a).
The results for the momentum-resolved Landau expansion
coefficients are shown in Figs. 8(b) and 8(c).

In the BCS case, the negative contribution of ax comes
from the states around the Fermi surface, where the occupancy

u/w

1.0 -1.0
0.8 1.2
0.6 1.4
0.4 -1.6
0.2 -1.8
00 2.0

0.15 0.20 0.25 0.30 0.3
9

FIG. 9. The dependence of the condensation energy Enq divided
by N(0)A? at zero temperature in the g — U plane. The chemical
potential is set u/W = 0.5. The bottom red-bold line represents
the BCS result C = —1. As is evident, HK superconductors have
condensation energies that generically deviate from the BCS result.

changes from 2 to zero. This arises from the sharpness of the
Fermi surface. In the HK superconductor, similar sign changes
at the occupancy boundaries from €2, to €2; and from €,
to . ak is always positive except around the boundary of
different occupancy region. When the positive contribution
exactly cancels, the negative contribution a vanishes, imply-
ing that the free energy changes from a concave function into
a convex one around A = 0. Most crucial here, however, is
the behavior of bx. For the HK superconductors, while the
distribution of ay follows the BCS case, the value of by differs
drastically from BCS. In BCS, bg is always positive; thus
b > 0 is true for any temperature. In HK, however, inside the
single occupancy region €21, which is not present in any fermi
liquid, bk becomes negative! Together with a suppression of
the positive by contribution, it is possible that b < 0 and a
first-order transition emerges. Consequently, it is Mottness
that drives the first-order nature of the transition in the HK
model. Perhaps this is true in general.

E. Condensation energy

The deviation of an HK superconductor from that of the
BCS type is also manifest from the condensation energy,
defined by the energy difference between the superconducting
and normal states,

Econd = Esc — Ey. 41

In a traditional s-wave BCS superconductor, the condensation
energy is well known to be proportional to the square of
the pair amplitude EBCS = —N(0)A2/2, where N(0) is the
density of states around the chemical potential. In the HK su-
perconductor, however, this relation holds up to a modification
to the coefficient

ERX = CN(0)A?)2, (42)

con
where C is a pure number. The dependence of C on pairing

strength g and U is plotted in Fig. 9. Generally, the coefficient
C have a smaller value in HK superconductors than in BCS,
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demonstrates a stronger tendency to form a superconductor.
This result is surprising but consistent with what we know
about the cuprates in which the pairing temperatures are
greatly enhanced despite the local repulsions. In this case,
enhancement arises because of the singly-occupied region.
The minimum value C &~ —2 can be achieved at a specific
point U smaller than the chemical potential and quickly goes
back to the BCS ratio C = —1 as U > u, where the double
occupancy region £2, goes away, and the boundary between
Q) and €2, is removed. This observation again emphasizes
the significance of the single occupancy region boundary in
the HK superconductor. It may imply a mechanism to enhance
the superconductivity by adding the occupancy boundary,
where the Copper pair formation is enhanced.

F. Heat capacity

Even when the superconducting gap develops continuously
at the BCS transition, the heat capacity C(T") undergoes a
jump discontinuity AC with the universal ratio AC/C,(T;) =
12/7¢(3) ~ 1.43, where C,(T.) is the heat capacity in the
normal phase at T = T,.. The discontinuity obtains because
the BCS Hamiltonian is an effective one that varies with the
temperature through the gap parameter A(7T). The same is
true of HK even with a first-order transition as can be seen
from the simple argument. With the free energy given by
—TIntre /T = (H) — TS, any system with a temperature-
independent Hamiltonian has a heat capacity coefficient
C/T = 3rS = B3((H — (H))?) that varies continuously with
the spectrum of H. However, because the gap is temperature
dependent, the heat capacity

_ g3 2y A 94
C/T =p°|((H = (H))") = A—(H) (43)

oT
has an explicit temperature derivative. This term introduces
a jump discontinuity at T = T, since A(T) ~ /T, — T (so
Adr A ~ —1) on the superconducting side of the transition
whereas A(T) = 0 (so Adz A = 0) on the normal side.

In the HKSC where the gap changes discontinuously,
the heat capacity still undergoes such a jump discontinuity,
although the size of the discontinuity AC no longer scales uni-
versally with C,(7;). Rather as we will see, it depends on the
Mott scale U as well. When the gap changes discontinuously
with temperature, the entropy also changes discontinuously so
that the heat capacity C = T 9rS is singular at the transition.
We show its behavior in Fig. 10, omitting the singularity. As
is evident, Mottness, as tracked by increasing U, enhances the
heat capacity jump at 7,, the temperature of the first-order
transition. Similar enhancements will be seen as well for the
ultrasonic attenuation and the spin-lattice relaxation rate.

G. NMR

The key feature of BCS is computability with the mean-
field formalism. The same can be done here as we know all the
excited states and hence can calculate all of the experimental
quantities delineated by BCS. As an example, we compute the
spin-lattice relaxation rate, which in a BCS superconductor
exhibits a peak [30] below 7. The spins of atomic nuclei relax
by exchanging energy with their environment. As the spins in

10; — uw=0
/ UIW=02 |
r UW=04 |
_//1 — UIW=06

— UIW=0.8

C/C(T,)
=B NEES N.

— uw=1

0.99 1.00 1.01 1.02

T/ Tp

97 0.98

FIG. 10. Heat capacity C near the phase transition at 7 = T,, at
pair coupling g/W = 0.53 and for representative values of the Mott
coupling U. C is normalized by its value C,(T,,) on the normal side
of the phase transition.

a superconductor are in phase, there is an enhancement below
T.. The relaxation rate 1/7; of nuclei in an electronic environ-
ment is related to the transverse dynamic spin susceptibility
of the quasiparticles, by [34]

1

. 2kp ,3Ix%(q, w)
— = lim —— E A _
TTy — o0 20 & Aa(@F =

(44)

where y, is the electron gyromagnetic ratio, Ay (q) is the
hyperfine coupling of the contact interaction with electron
spins, and I * is the imaginary part of the spin susceptibility.
In a normal metal state, ‘XT‘“) ~ N(0)?2. This leads to a lin-
ear dependence of the nuclear relaxation rate on temperature,
referred to as Korringa relaxation law [35]
1 2kp

— ~ —N(0)* ) |An(g)|* = constant.

45
T~ T 45)

q

In a BCS superconductor, we need to take account of
the strongly ener%y-dependent quasiparticle density of states
£ ;
N (E) —> N(0) Nk 'If we further agsume a point contact
interaction, A(g) = A is a constant with respect to g, the
relaxation rate becomes

00 d 2
oc/ dE —f —E )
A dE ) E2 — A2

which generates the Hebel-Slichter peak right below the tran-
sition temperature 7., which is shown in Fig. 11 as U =0
(blue curve).

By contrast, in the HKSC model, there is no fermionic
quasiparticle excitation of the ground state. As a result, we
shall calculate the susceptibility x*(g, @) from its basic defi-
nition. The dynamical susceptibility in imaginary time is

Xap(@> 1vn) = (Ma(q@)Mp(—q))

T (46)

B :
= / (Ma(q, T)Mp(—q, 0))e™ . (47)
0

For a spin-isotropic system, we have x,(¢) = da,x*(q). Thus,
we can calculate the z-axis response to a field applied along z:
x*(q) = (M:(q)M:(—q)). Since

M.(q) = Z(Cl,q,TCk,T — Ch_q.1 k1 );
K

(48)
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FIG. 11. The NMR relaxation rate 1/77; [normalized by the
1/TT, value at the transition temperature (7' = 7;) in normal state]
as a function of temperature at superconducting pairing strength
g = 0.53, with varying value of U. The temperature is scaled by
the gap-opening temperature, 7; = 7, (second-order transition) for
U=0,U=0.2, and T; =T, (first-order transition) for others. To
regulate the divergence of the delta function when doing momentum
summation, we introduced a small imaginary damping rate ie to the
frequency where e /W = 0.01.

we find that
x'(q, T) = (M. (q, T)M(—q, 0)) = x-(q, T) — Xa(q, T),
(49)
where
X(g.7) =D {ef_g 0 (Do (), (0)ck—q.0(0))
k,o
Xa(@:T) =Y (€h_q0(Mero (@)l g 70)c 1 7(0) (50)
k,o

are the regular and anomalous parts of the correlation func-
tion. The anomalous term is nonzero only if the ground state
no longer conserves the particle number as in the supercon-
ducting phase. The imaginary part of spin susceptibility takes
the form

Imy (g, v —i0")

= Z Z (pf;pi;,q—pi(p{:_q)HMu | }M” |
Ko i, ]
+M’J Mﬂ 7M;(Jq01‘_41:;;+q3]5(v (wf _a)lj(zq))
(51)

where (E[, [¥{))i=1,..16 is the e1gensystem of Hx, pi =
e ﬁEk/Zk is a Boltzmann weight, a)k = E’ Eli is an exci-
tation energy, and M o <1/fk|Ckg |1pk) Thus we can write the

NMR relaxation rate as
1 Slx(q, v —id)]
E— a _—
TT1 Z Vv

q v—0
=33 (e + 1) (Phg + Ply)
q k.o i,ji,j

< [ )M 8o — oy, (52)

where M, T 0.0 is the term inside the square bracket from
Eq. (51) and f(x) =1/’ +1) is the Fermi-distribution
function. The NMR relaxation rate of the HKSC model can
be calculated numerically. Thus we use the expression given
above together with the self-consistent pair amplitude to ob-
tain the temperature dependence of 1/7 7). Figure 11 shows
the temperature dependence of 1/7T7; at g = 0.53. For U <
0.4, we have a second-order superconducting transition and
as U increases, the HS peak shrinks and is completely absent
when the first-order transition takes place at U > 0.4. At
sufficiently low temperature, 1 /7 T} has an exponential depen-
dence on temperature. Once again, we see that Mottness is the
culprit in leading to significant deviations from the standard
BCS theory. Previous study [31] has attributed the absence
[27-29] of the HS peak in the cuprates to spin fluctuations.
In the current paper, such fluctuations are absent. Hence, we
advocate that Mott physics alone, the tendency to have single
occupancy below the chemical potential, is sufficient to kill
the Hebel-Slichter peak.

H. Ultrasonic attenuation

Alongside the nuclear spin relaxation rate, another stan-
dard observable that probes the superconducting gap is the
attenuation rate « of ultrasonic phonons transmitted through
the sample. The attenuation rate,

a(g) =T(g,v = w,), (53)

of phonons with momentum ¢ is given by the on-shell de-
cay rate I'(¢q, v = w,) of the phonon propagator, where w,; ~
vphq is the phonon dispersion at small momenta g. Typical
experiments are conducted with phonon frequencies on the
order of f ~ 107 Hz [36]. Supposing a speed of sound vy, ~
10* m/s in the sample, these phonons have energy Epn/kp =
m2m f/kg ~5 x 107* K and momentum g =27 f/s ~ 6 x

107 A~1. Since Eon/kp K T. and g < kg ~ A1, we focus
on the limit
a=a(g— 0). (54)
At weak electron-phonon coupling, the decay rate
(g, v) = 3x' (g, v —i07) (55)

is given in turn by the electronic charge susceptibility

B .
xg, iv,) = / dt """ x (g, 1) (56)
0

evaluated at the bosonic Matsubara frequency v, = 2wn/f. In
imaginary time,

XN TV = D g0 (Do (D)0 0 0o (D))o
k,k' 0,0’

(57)

= xr(q, T) + Xa(q, T), (58)

where y, and y, are the regular and anomalous correlation
functions introduced in the previous section. The sign between
the two terms is reversed relative to the spin susceptibility.
This prevents any coherence peak in the ultrasonic attenuation
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FIG. 12. Ultrasonic attenuation rate ¢« in the superconducting
phase, at pair coupling g/W = 0.53 and for representative values
of the Mott coupling U. « is normalized by its value «,(7,) on
the normal side of the phase transition at 7' = T},. The curves for
U/W = 0.6 and 0.8 are difficult to see here because they are covered
by the U/W =1 curve.

rate here, just as it does for BCS superconductors. At small
momenta ¢, the attenuation rate takes the form

a@)~ o, Y (pk+pl) Pk +pL)

k.o i), j

XS (@M 8 (vmma — (@ —aly), (59

analogous to Eq. (52) for the spin relaxation rate. Its con-
vergence in the limit ¢ — O can be seen as follows for the
standard context [37], i.e., in d = 3 dimensions and with an
isotropic quadratic dispersion & = k?>/2m — w. The sum is
dominated by the excitation between the ground state and the
lowest-lying odd-parity level, for which (i, j) = (i’ j') and
the delta function resolves to §(vphg — q - Viawj, ). Pulling this
back to a form that can be formally integrated over %, i.e.,
8(k — ko)/|- - |, then extracts a factor of 1/¢, resulting in an
overall g dependence given by the product w,/q ~ vph.

For general parameters the attenuation rate o« must be
evaluated numerically, as shown in Fig. 12. In line with
the NMR relaxation rate calculation, we take an isotropic
dispersion that is cut off at some magnitude of the crys-
tal momentum. Unlike the NMR calculation, however, the
probe momentum ¢ is taken asymptotically to zero instead
of being summed over, so it is necessary in this case to
perform the integral directly in momentum space. For the fig-
ure, we have used vy /(@W) = 1072 and ¢ = 10~ /a. The
resulting attenuation rate « decreases monotonically in the
superconductor from the normal-phase value «,(7},), chang-
ing discontinuously at the phase transition when the gap A
opens discontinuously. At low temperatures it decays ex-
ponentially as e~/". This allows the gap to be extracted
from the ultrasonic attenuation rate in the HKSC. Once
again, we see that as the overall precipitous fall-off of the
ultrasonic attenuation rate is accented as the Mott param-
eter U increases. In principle, this trend is experimentally
testable.

TABLE II. Summary of the superconducting properties in the
HK model and a Fermi liquid(FL). x represents the pair suscepti-
bility, A is the pairing gap, H. S. stands for the Hebel-Slichter [26]
peak, a key feature of BCS superconductors.

Property FL Mottness (HK)
x divergent at T. T.(=1T>)

A opens at T. 1,> Tr)
limg_,0 2A¢/kg T, 353 00
Econd/]v(o)Az -1 [_2s _1]
Quasiparticles Bogoliubons PHYons*
Ginzburg reduced #; ~107° ~1071
NMR 1/TT, H-S peak no H-S peak

Landau expansion a=at’,b>0 a=at,b<0,c>0
Ultrasonic attenuation @ ~e~2/T below T, ~e~2/T below T, < T.

4linear combinations of Holon and Doublon [19].
®r = X and a > 0 for both cases.

III. FINAL REMARKS

The primary difficulty in unlocking how superconductiv-
ity arises in a doped Mott insulator is computation with a
controlled theory. The HK model enables such an analysis
as it represents a fixed point for quartic Fermionic theories
that break the Z, symmetry of Fermi liquids. Since this in-
cludes the Hubbard model, it suffices to analyze the tractable
HK model. An analogy with Fermi liquids is relevant here.
The relevant physics of a Fermi liquid follows from the free
quadratic theory of Eq. (2) as all short-range repulsions are
irrelevant. That such repulsions are irrelevant follows from
the simple fact that Fermi liquids are local in momentum
space. Destruction of this state, except for pairing, requires
an equally local interaction in momentum space. The HK
interaction is just the most relevant interaction in momentum
space that suffices as it maximally breaks the Z, symmetry
of a Fermi liquid. Carrying out a pairing analysis from this
starting point should reveal the key differences with how su-
perconductivity obtains from doped Mott insulator as opposed
to a Fermi liquid.

Table II catalogs the differences between superconductivity
from a FL with the Mott counterpart. As determined here, the
first key difference is the appearance of two energy scales, the
pairing temperature 7, and the temperature at which the sus-
ceptibility diverges. In the absence of Mottness, only a single
scale characterizes superconductivity. Nonetheless, in the HK
model we still find that the mean-field theory is essentially
exact as the Ginzburg reduced temperature is vanishingly
small. A key prediction here is that Mottness makes the under-
lying transition first order. This can be confirmed by careful
measurements of the latent heat in the cuprates. Another key
prediction here is that the Hebel-Slichter peak is killed by
the strong correlations of the Mott state. While it had been
speculated that antiferromagnetic correlations diminish the re-
laxation rate [31], what we find here is that in a model that has
Mott physics but no antiferromagnetism, the HS peak does not
survive. Experimentally, the best NMR data [27-29] indicate
that on the Cu or O sites, no Hebel-Slichter peak exists. Our
study indicates that the suppression of the HS peak is due
entirely the bifurcation of the spectrum into upper and lower
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Hubbard bands. Such a bifurcation prevents the coherence that
is typically thought to be the mechanism behind the HS peak.
It is these strong correlations of the Mott state that lead to a
deviation as well from the standard Bogoliubov quasiparticles
and the onset of the composite excitations, PYHons [19], as
the new quasi-excitations above the superconducting ground
state. Such correlations also enhance the condensation en-
ergy and lead to a divergence of limr_o2Ao/T. in the HK
superconductor. As all of these trends are traceable to the
strong correlations of the Mott state, we conclude that Table 11
should provide the blueprint for superconductivity in doped
Mott insulators.
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APPENDIX
Stiffness

The superfluid stiffness is defined by

F[6] = F[0] +/ddx%,ox(V9)2, (A1)

where F = —é log Z is the free energy and 6 is the phase of
the superfluid. Consider applying the following twist:

¢ — c;e“”"v* .

(A2)

For charge-ne superconductivity, VO = n¢x and we can cal-
culate the stiffness by

11 92F[¢]
n2N 93¢? $=0

111[0;Z2  [(8,2\°
nNB| Z V4 $=0

Here we have set the lattice constant to 1, and N is the total
number of unit cells. In order to derive the correct stiffness for
an HK superconductor, we work with the Hamiltonian

g —

(A3)

H =Y ecl,cko + Y Unpng, + Hy, (Ad)
ko k
where H), is the general superconducting pairing term
(AS)

H,= gz AlAg
q

and Aq = )\ Ck+q1C—k, is the copper pair creation operator
with momentum ¢q. Under the twist we introduced in Eq. (A2),
the fourier transform of the fermion operator becomes

T iker;
ie

. 1
Ck = WZC

1 —_—
E tikeri+igr; .
— — C.e ’
VN =
—
= Cigo,- (A6)

Thus the Hamiltonian under the twist

H$l =) excl o, kit (A7)
ko
+ Y Unipniy + Hylg] (A8)
k
Hyl¢1 =g  All$1Aq[¢]
q
Aqlp] = D irqrgancirgal = Aqrage,,  (A9)

k

where the HK term and the superconducting pairing terms do
not change under the twist. Thus,

Hlg] — HI0] = ) (€x — €x—g2.)Cly Cko -

ko

(A10)

We expand the Hamiltonian to second order in ¢ to obtain

HI] — HIO] = —pJ, + 1¢°T,, (A1)
Je = Y ko (. €x)et o (A12)
Te = Y1y (0 66)Chy O (A13)

with J, the total current in the x direction and 7 is the kinetic
energy arising from hopping in the x direction. The partition

104 —u=0 T
5000

N

d

[}

< 1000!
500

00 02 04 06 08 10 1.2
TIT,

FIG. 13. Finite temperature superfluid stiffness. For the sake of
illustrating the Ginzburg criterion, we keep the multiple solutions
to the self-consistent gap equation even though only one of them
represents the true global minimum of the free energy. The first-order
transition happens at 7, where the solid lines change into dotted
points for U = 0.2, 0.5, 0.8.
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function and its derivatives are

Zlpl =tr e PHI9]

— tr e PHIOI Tej;)ﬁ dT¢J(1)— 3 ¢*To(1)] (A14)
0s7Z 1 B
"’_W‘ _ _tre—ﬁH[O]T[/ dl’]x]
Z lp=o Z2 0
=B{k) =0 (A15)

022191
Z

1 B 2 B
= —tre PHIOIT (/ erx) —/ drT,
=0 Z 0 0

B
= /3([0 dT(Jx(T)Jx)> — B(Ty). (A16)

Finally, the superfluid stiffness is

1 B
oy = W(w - /0 dr<JX(r>Jx>>.

The decrease of the superfluid stiffness in the HK model [19]
was calculated at 7 = 0. For finite temperature, especially
near T,, we expect that the ratio p,/ A? remains finite. Fig-
ure 13 shows the temperature dependence of the superfluid
stiffness for multiple value of U/W. Near zero temperature the
HK pairing reduce the stiffness by approximately two times.
The stiffness close to T, however, was increased drastically
up to 10 times. The increased stiffness guarantees that the
Ginzburg reduced temperature is small in the HK model, and
thus proved the applicability of the mean-field theory of HK
superconducting model.
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