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Excitonic condensation and metal-semiconductor transition in AA bilayer graphene
in an external magnetic field
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In this paper, the effects of the external transverse magnetic field B (perpendicular to the surface of the layers)
on electronic and excitonic properties are studied in AA-stacked bilayer graphene (BLG). The effects of the
Coulomb interactions and excitonic pairing have been taken into account and analyzed in detail within the bilayer
Hubbard model. Both half-filling and partial-filling regimes have been taken into account and the magnetic
field dependence of a series of physical parameters was found. It is shown that the difference between the
average electron concentrations in the layers vanishes at some critical value of magnetic field Bc and the chemical
potential is calculated numerically above and below that value. The role of the Coulomb interactions on the
average carrier concentrations in the layers has been analyzed and the excitonic order parameters have been
calculated for different spin orientations. We found a possibility for the particle population inversion between
the layers when varying the external magnetic field. The calculated electronic band structure in AA-BLG shows
the presence of a metal-semiconductor transition, governed by the strength of the applied magnetic field or the
interlayer interaction potential. We show that for high magnetic fields, the band gap is approaches the typical
values of the gaps in the usual semiconductors. It is demonstrated that, at some parameter regimes, AA-BLG
behaves like a spin-valve device by permitting the electron transport with only one spin direction. All calculations
have been performed at the zero-temperature limit.
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I. INTRODUCTION

Bilayer graphene (BLG) systems have been the subject of
many theoretical and experimental investigations due to their
interesting physical properties [1–8]. Recently, stable AA-
BLG structures have been obtained experimentally, which are
promising for technological applications [9–12]. The opening
of the band gap in the single-particle excitation spectrum of
AB-stacked BLG systems under the influence of the elec-
tric field classified the AB-BLG among the semiconducting
materials with a controllable gap parameter, which opened
opportunities for their technological applications [1–4]. De-
spite many efforts to observe such a gap in the single-particle
excitation spectrum of AA-BLG, the band structure of this
system has been found with no excitation gap [3,13] and
with linear energy spectrum. Recently, a possible band-gap
opening issue was reported in Ref. [14], where the authors
evaluated the transmission and reflection probabilities in AA-
BLG with the layers encapsulated in the dielectric. The band
gap found in their research is about 40 meV and is caused
by the induced mass terms via the dielectric medium. This
value of the gap is slightly larger than the value of the band
gap found in single-layer graphene when using the substrates
of SiC or h-BN (Eg ∼ 20 meV) [15,16]. Another interesting
band-gap opening is related to the effect of spin-orbit coupling
(SOC) in graphene, which is indeed found to be very small
(ESO ∼ 10 μeV) [17,18]. In a series of works, the authors
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showed the opening of the very small band gaps when includ-
ing the effects of SOC [17–20]. These results are promising,
mostly for studying the spin-Hall states in AA-BLG systems
[19].

Concerning the theoretical side of studies, many interesting
works have studied the metal-insulator transition and band-
gap opening (in the low-U limit) in doped AA-BLG [21,22],
the influence of antiferromagnetism on the physical properties
in AA-BLG [23–26], the coexistence of the antiferromagnetic
and excitonic insulator phases [23–25], the dynamical insta-
bilities in AA-BLG [25], the optical plasmonic gap opening
[27], etc. Recently, an electronic transport gap was demon-
strated in Ref. [28], and the charge-carrier dependence on
the spin relaxation time was analyzed. Moreover, BLG-based
spin-valve devices have been proposed in this context. In
Ref. [29], a very large band-gap opening has been shown
in unbiased AA-BLG with variable interlayer separation dis-
tance c0, starting from van der Waals-like distances with c0 =
3.58 Å to small separation distances, allowing the chemical
bondings between the carbon atoms situated in different layers
in the bilayer. A series of phase transitions have been found,
from the semimetal to the wide band-gap semiconducting one,
when passing from van der Waals to covalent bond regimes.

The effect of the magnetic field on the electronic and
transport properties in AA-BLG has been studied in a series
of theoretical works [30–41]. The magnetic filed dependence
of thermal properties in doped AA-BLG has been considered
theoretically in Refs. [30,34], where the presence of both
electron- and hole-type contributions in transport properties
has been shown in AA-BLG. However, up to now, few works
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FIG. 1. The structure of biased AA-stacked bilayer graphene sys-
tem with the applied external electric field potential V (with potential
+V/2 applied to the layer � = 2 and −V/2 at the bottom layer � = 1)
and transverse magnetic field B (see thick red-arrow in the picture),
in the direction of the z axis. Different layers in the AA-BLG have
been shown with two sublattice sites A, B in layer � = 1 and Ã, B̃ in
layer � = 2.

have paid attention to the influence of the magnetic field on
the charge redistribution and band-gap opening in pristine
AA-BLG.

In this paper, we consider the effects of the magnetic field
on the excitonic properties in the system and we show the
possibilities of the excitonic condensates states in AA-BLG
at different values of the magnetic field. We show the possi-
bility of formation of different direct band gaps in the energy
spectrum of AA-BLG under the influence of the transverse
magnetic field (see Fig. 1). First, we show the existence of a
critical value of the magnetic field above which the physical
parameters in the system change their behavior. We show
theoretically that the complete charge neutrality (CN) (when
the average total charge densities in both layers get equal val-
ues) could be achieved at the half-filling case and the average
electron population inversion occurs only in the case of partial
filling. The CN in the AA-BLG system could be also obtained
when varying the interlayer interaction potential. This effect
is also discussed in the present paper. The CN of the entire
BLG system is important for its nondestructive applications
in modern technological devices. To achieve the CN in such
construction, a huge number of internal and external physical
parameters should be properly considered and tuned [37]. This
also requires an important experimental setup and effort to
calibrate the BLG system at the CN [38]. The electronic and
transport properties at the CN and away from it have been
discussed in a number of works [42–47].

Furthermore, we calculate the band gaps in the system
and how that they are spin dependent and totally controllable
by the strength of the applied magnetic field. Our numeri-
cal calculations demonstrate that the opened band gaps are
comparable with the band gaps in typical direct low-band-
gap semiconducting systems of types AIIIBV or AIVBVI [48].
Particularly, we show that in the regime of noninteracting
layers (and in the presence of the magnetic field), a very
large band gap opens in the electronic band structure with the
value of the band gap Eg ∼ 200 meV (much larger than those
obtained from SOC considerations [17–20]), The transition
from semiconducting to weak-metallic states occurs when in-

creasing the interlayer Coulomb potential. Meanwhile, when
varying the magnetic field, from zero up to high values, an
opposite transition occurs (at half filling), from the metallic
to the semiconducting state with a sufficiently large band gap
of order Eg ∼ 150.6 meV, typical for semiconducting systems
of types AIIIBV or AIVBVI [48]. Our results suggest that, for
the given range of parameters and conditions imposed on the
system, one can quench the electronic conductivity in one spin
channel (for example, σ = ↑), while the other one (σ = ↓)
remains open. Those results are purposeful for the use of
AA-BLG as the spin-valve device [49,50], for examining the
spin-controlled quantum transport at the nanoscale [51–56]
and excitonic condensation phenomena, not observed yet ex-
perimentally [57–59].

The present paper is organized as follows: In Sec. II, we
introduce the AA BLG within the generalized Hubbard model.
In Sec. III, we obtain the electronic band structure and we
give the set of self-consistent (SC) equations. In Sec. IV, we
present the numerical results for the important physical quan-
tities in the system we discuss different band-gap formations.
In Sec. V, we give a conclusion to our paper. In Appendix A,
we obtain the system of SC equations and in Appendix B the
mean-field decouplings procedures are discussed.

II. HAMILTONIAN OF THE INTERACTING AA-BLG

A. Bilayer Hubbard Hamiltonian with magnetic field

We consider here the BLG structure composed of two
layers, and each atom in the top layer is stacked on top of
a similar atom in the bottom layer. Moreover, there is no shift
in their local atomic space position r. This type of stacking
order is called AA stacking. The Hamiltonian of the AA-BLG
in the presence of the external static electric field-potential V
and magnetic field B (oriented along the z axis, perpendicular
to the planes of the layers) could be written in the following
form:

ĤAA = Ĥγ0 + Ĥγ1 + ĤU + ĤW + ĤV + Ĥint + Ĥμ, (1)

where

Ĥγ0 = −γ0

∑
〈r,r′〉

∑
σ

(â†
σ (r)b̂σ (r′) + H.c.)

− γ0

∑
〈r,r′〉

∑
σ

( ˆ̃a†
σ (r) ˆ̃bσ (r′) + H.c.) (2)

is the intralayer electron hopping Hamiltonian and the inter-
layer hopping term is given by the Hamiltonian

Ĥγ1 = −γ1

∑
rσ

(â†
σ (r) ˆ̃aσ (r) + b̂†

σ (r) ˆ̃bσ (r) + H.c.). (3)

The operators âσ (r), b̂σ (r), ˆ̃aσ (r), and ˆ̃bσ (r) describe the de-
struction of electrons at the given lattice site positions and the

operators â†
σ (r), b̂†

σ (r), ˆ̃a†
σ (r), ˆ̃b†

σ (r) are the electron creation
operators. The index σ denotes the spin variable, which takes
two possible directions: σ = ↑ or σ = ↓. The electrons enter
into covalent bonds in the graphene’s layers and are attached
with the atoms near atomic sites A, B (in the layer with � = 1)
and Ã, B̃ (in the layer with � = 2) (see the picture in Fig. 1).
The parameter γ0 is the energy necessary for the hopping of
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electrons between the adjacent lattice sites in the layers. The
summations 〈...〉 in Eq. (2) are taken over the nearest-neighbor
lattice site positions r, r′ in the separate graphene layers. The
energy parameter γ1, in Eq. (3), describes the local hopping
of electrons between adjacent layers � = 1 and � = 2. The
values, found experimentally, for the hopping parameters are
γ0 ∼ 3 eV and γ1 = 0.257 eV, as reported in Ref. [60]. Next,
the summations in Eq. (3) are over the lattice sites positions
r = 1, 2 . . . , N and the electron spin configurations with σ =
↑,↓. The Coulomb interaction terms ĤU and ĤW are given
as

ĤU = U
∑

rη

n̂η↑(r)n̂η↓(r) (4)

and

ĤW = W
∑
rσσ ′

n̂aσ (r)n̂ãσ ′ (r) + W
∑
rσσ ′

n̂bσ (r)n̂b̃σ ′ (r), (5)

where U in Eq. (4) is the on-site Coulomb repulsion between
the electrons in the layers � = 1, 2. We suppose that the
value of it is uniform in both layers. The second summation
in Eq. (4) is over all sublattice variables η = a, b, ã, b̃. The
parameter W in Eq. (5) denotes the local interlayer Coulomb
interaction between the electrons at the same sublattice sites
A, Ã and B, B̃ in different layers. The operators n̂η↑(r) and
n̂η↓(r) in Eq. (4) are the electron density operators for σ = ↑
and σ = ↓ and they are given as

n̂ησ (r) = η̂†
σ (r)η̂σ (r). (6)

The Coulomb potential W , in Eq. (5), is coupled to the product
of particle density operators n̂ησ and n̂η̃σ ′ in different layers
(with η �= η̃ and σ, σ ′ = ↑↓), defined in Eq. (6).

Next, the couplings with the external electric potential and
magnetic fields are given by the terms ĤV and Ĥint in Eq. (1).
We have

ĤV = V

2

∑
r

(n̂2(r) − n̂1(r)), (7)

where V is the electric field potential with the value +V/2 at
the top layer � = 2 and the value −V/2 at the bottom layer
� = 1 (see Fig. 1). The operators n̂1(r) and n̂2(r) in Eq. (7)
are total density operators in the individual layers, i.e.,

n̂1(r) = n̂a(r) + n̂b(r),

n̂2(r) = n̂ã(r) + n̂b̃(r). (8)

In turn, the operators n̂η(r), on the right-hand sides of Eqs. (8)
are given in the form

n̂η(r) =
∑

σ

n̂ησ (r). (9)

Furthermore, the coupling with the magnetic field is given as

Ĥint = −gμBBz

∑
rη

(n̂η↑ − n̂η↓). (10)

The parameter g in Eq. (10) is the Landé g-factor and its
value can be derived naturally from Dirac’s equation (g ∼ 2,
according to recent experimental measurements of this phys-
ical parameter in graphene structures [61]). Next, μB, in

Eq. (10), is the Bohr magneton [62] (intrinsic magnetic mo-
ment of an electron), which we put equal to 1 (here, we use
the convention h̄ = 1) throughout this paper. We consider here
the magnetic field in the z direction, perpendicular to the
layers in the AA-BLG (see the thick-red arrow in Fig. 1). The
Hamiltonian Ĥμ, in Eq. (1), is the chemical potential term and
is given as

Ĥμ = −μ
∑

r

n̂(r). (11)

We ignored in Eq. (1) the spin-obit coupling due to the fact
that the effect on the band-gap, resulting from this type of
interaction, is very small [17–19].

Furthermore, we introduce the fermionic Grassmann com-
plex variables at the place of usual electron operators and
write the expression of the partition function of the system
in terms of the Grassmann field variables (see a similar de-
scription in Ref. [63]). We write the partition function Z of
the AA-BLG system in the formalism based on the fermionic
path integrals (see, in Refs. [63,64]),

Z = Tre−βH =
∫ ∏

η

[Dη̄Dη]e−S , (12)

where H is the total Hamiltonian of the AA-BLG and pa-
rameter β, in the exponential, in Eq. (12), is given after the
imaginary-time Matsubara formalism (with 0 < τ < β) [65],
and we have β = 1/T , where and T is the thermodynamic
temperature. Here, we used the units where the Boltzmann is
kB = 1.

Furthermore, we note S = S[ā, a, b̄, b, ¯̃a, ã, ¯̃b, b̃] as the
total fermionic action of the system in terms of Grass-
mann variables. It is given in the imaginary time Matsubara
representation. It can be expressed with the help of total
Hamiltonian HAA(τ ) as

S =
∫ β

0
dτHAA(τ ) +

∑
η

SB[η̄, η]. (13)

Next, SB[η̄, η], are the electronic Berry terms [66] and they
are given by

SB[η̄, η] =
∑
rσ

∫ β

0
dτ η̄σ (rτ )∂τησ (rτ ). (14)

B. Linearization of the quadratic density terms

In fact, the nonlinear density terms, figuring in the Hub-
bard interaction Hamiltonians, in Eqs. (4) and (5) could be
decoupled with the help of a series of Hubbard-Stratanovich
(HS) transformations, which are indeed equivalent to the usual
mean-field approximations. A detailed description of such
procedures in given in Appendix B. Here, we present only
the resulting contributions to the total Hamiltonian and action
of the BLG system coming from such decouplings. First, the
contribution from the linearization procedure of the Coulomb-
U term in Eq. (4) is following

δSU = −
∑

rη

∫ β

0
dτ

U

2
n̄ηnη(rτ ) (15)
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V. APINYAN AND T. K. KOPEĆ PHYSICAL REVIEW B 105, 184503 (2022)

and the contribution to the total Hamiltonian in Eq. (1) is
straightforward:

δHU = U

2

∑
rη

n̄ηnη(rτ ). (16)

Here, the notation n̄η means the grand canonical average of
the density function nη(rτ ), i.e., in usual writing, we have
n̄η = 〈nη〉. It could be calculated exactly with the help of the
partition function, in Eq. (12), as

〈...〉 = 1

Z

∫ ∏
η

[Dη̄Dη]...e−S . (17)

When deriving the result in Eq. (16), we have supposed
that the average densities, corresponding to opposite spin
orientations, are equal: 〈nη↑(rτ )〉 = 〈nη↓(rτ )〉. Next, the con-
tributions coming from the decouplings of the interlayer
Coulomb interaction terms in Eq. (6) have been obtained in
the forms

δSW = −
∑
rσ

∑
λ

∫ β

0
dτ�(λ)

σ λ†
σ (rτ )λ̃σ (rτ ) (18)

and

δHW = −
∑
rσ

∑
λ

�(λ)
σ λ†

σ (rτ )λ̃σ (rτ ), (19)

where the summation index λ takes two values a and b and
�(λ)

σ is the interlayer excitonic order parameter corresponding
to the formation of the excitons between the electrons and
holes at the sublattice site positions A-Ã or B-B̃, which define
the summation parameter λ. We have

�(λ)
σ = W 〈λ†

σ (rτ )λ̃σ (rτ )〉. (20)

Then the total Hamiltonian in Eq. (1) could be rewritten in
the form which is linear in fermionic densities. In Grassmann
variable notations, we have

HAA = Hγ0 + Hγ1 + δHU + δHW + HV + Hint + Hμ.

(21)

In the next section, we will use this form of the Hamiltonian
for writing the expression of the inverse Green’s function
matrix of the considered system and to derive the set of SC
equations.

III. THE PARTICLE EXCITATION QUASIENERGIES

A. The inverse Green’s function and electronic band structure

In the following sections, we will use total fermionic
action, written in Eq. (13), to calculate the Green’s func-
tions matrices and to derive the single quasiparticle excitation
quasienergies which form the electronic band structure in the
AA-BLG system. We will pass into the reciprocal space rep-
resentation for the creation and annihilation operators η̄σ (rτ )
and ησ (rτ ). For this, we perform the Fourier transformation
into the reciprocal space representation (k, νn),

ησ (rτ ) = 1

βN

∑
kνn

ησ (kνn)ei(kr−νnτ ), (22)

where N is the number of the reciprocal lattice points and the
summation on the right-hand side of Eq. (22) is over the recip-
rocal wave vectors k and fermionic Matsubara frequencies νn

with νn = π
β

(2n + 1) [65], where n in an integer number (i.e.,
n = 0,±1,±2, . . .). Next, we introduce the Nambu spinors
[63] �̄σ (kνn) and �σ (kνn) for the considered problem. We
have

�σ (kνn) =

⎛
⎜⎜⎜⎜⎝

aσ (kνn)

bσ (kνn)

ãσ (kνn)

b̃σ (kνn)

⎞
⎟⎟⎟⎟⎠ (23)

and

�̄σ (kνn) = (
āσ (kνn), b̄σ (kνn), ¯̃aσ (kνn), ¯̃bσ (kνn)

)
. (24)

Then, the total fermionic action could be written in the Fourier
transformed form:

S[�̄,�] = 1

βN

∑
kνn

∑
σ

�̄σ (kνn)G−1
σ (kνn)�σ (kνn).

(25)

Indeed, the forms of the inverse Green’s functions, corre-
sponding to the opposite spin directions, are different as we
will see later on. In other words, the total action of the sys-
tem becomes composed of two parts S[�̄,�] = S↑[�̄,�] +
S↓[�̄,�]. For the matrices G−1

↑ (kνn) and G−1
↓ (kνn), we get

the following analytical expressions:

G−1
σ (kνn) =

⎛
⎜⎜⎜⎝

E1σ (νn) −γ̃0k −(γ1 + �σ ) 0

−γ̃ ∗
0k E1σ (νn) 0 −(γ1 + �σ )

−(γ1 + �σ ) 0 E2σ (νn) −γ̃0k
0 −(γ1 + �σ ) −γ̃ ∗

0k E2σ (νn)

⎞
⎟⎟⎟⎠. (26)

The diagonal elements Eiσ (νn) (with i = 1, 2) in the matrices
Eq. (26) represent the shifted single-particle quasienergies and
are given by the following expressions:

Eiσ (νn) = −iνn − (−1)i V

2
+ xiσ . (27)

In turn, the interaction-normalized parameters xiσ , in Eq. (27)
are given via the expressions

x1σ = 2W − μ + (−1)σ gγ0B̃ + U

2
n̄a,

x2σ = −μ + (−1)σ gγ0B̃ + U

2
n̄ã, (28)
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where

(−1)σ =
⎧⎨
⎩

+1, if σ = ↑

−1, if σ = ↓.

(29)

Here, we have put B̃ ≡ μBB/γ0 and the averages n̄a

and n̄ã signify the spin-summed average fermionic den-
sities at the lattice sites in sublattices A and Ã (see
Fig. 1). Next, the parameters γ̃0k are renormalized hopping
amplitudes:

γ̃0k = γ0

∑
δ

e−ikδ. (30)

The vectors δ, in Eq. (30), represent the nearest-neighbor
vectors in different layers � = 1, 2. The components of δ are
the same for � = 1, 2 (δ�=1

i = δ�=2
i ≡ δi with i = 1, ..3) and

are given by

δ =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

δ1 = (
a

2
√

3
, a

2

)
δ2 = (

a
2
√

3
,− a

2

)
δ3 = (− a√

3
, 0
)
,

(31)

where a = √
3a0 in Eq. (31) is the sublattice constant, while

a0 is the carbon-carbon length in the graphene layers (with
a0 = 1.42 Å). Furthermore, the expressions of spin-dependent
coefficients xiσ in Eqs. (28) could be written with the help
of the inverse filling coefficient κ and average charge density
difference δn̄ between the layers. For sublattices A and Ã in
the AA-BLG (see Fig. 1), these parameters could be defined
in the following form:

n̄a + n̄ã = 1

κ
,

n̄ã − n̄a = δn̄

2
. (32)

Here, the coefficient κ describes the inverse of the total num-
ber of particles at the given lattice site position. It can be

expressed with the help of the filling coefficient nfill, i.e.,
κ = 1/nfill. The maximum number of parameter κ is equal
to 0.25, which corresponds to the fully filled lattice sites. If
κ = 0.25, then we have the maximum average total number
of particles in both layers (at the same given lattice site r in
both layers) equal to 4, according to the Pauli principle. If
κ = 0.5, then we have the half-filling case with nfill = 2. In
the latter case, we have only one particle per sublattice site
corresponding to the fermions of type a and ã. The number
δn̄ signifies the average charge density imbalance between the
layers and is defined as

δn̄ = n̄2 − n̄1, (33)

where the average charge densities n̄l (with the layers indices
� = 1, 2) mean the total average fermionic charge densities
in the separate layers in the AA-BLG. Similar expressions
could also be written for the sublattice charge densities
n̄b and n̄b̃ attached to lattice sites B and B̃, respectively.
The average charge densities n̄a and n̄ã could be expressed
as

n̄a = 1

2

(
1

κ
− δn̄

2

)
,

n̄ã = 1

2

(
1

κ
+ δn̄

2

)
. (34)

Then we present the calculations results for the total single-
particle quasienergies in AA-BLG, corresponding to different
spin-directions. Those quasienergies define the electronic
band structure in AA-BLG in various interactions regimes
and are the subject for further consideration in the present
paper. As mentioned earlier, we consider two different spin
configurations in the system, i.e., σ = ↑, σ = ↓, and corre-
sponding secular determinants det G−1

σ (kνn). The eigenvalues
of the inverse Green’s function matrices (for two different
spin directions) could be obtained by solving the equations for
secular determinants det G−1

σ (kνn) = 0. The solutions of those
equations give the exact band structure in the AA-BLG with
excitonic correlations and interaction effects considered here.
For the given spin σ , we have

εiσ (k) = 1

2

[
−x1σ − x2σ − (−1)i+1

√
(x1σ − x2σ − V )2 + 4(�̃2

σ + |γ̃0k|2) − 4|γ̃0k|
√

(x1σ − x2σ − V )2 + 4�̃2
σ

]
, (35)

and

ε jσ (k) = 1

2

[
−x1σ − x2σ − (−1) j+1

√
(x1σ − x2σ − V )2 + 4(�̃2

σ + |γ̃0k|2) + 4|γ̃0k|
√

(x1σ − x2σ − V )2 + 4�̃2
σ

]
, (36)

where i = 1, 2, j = 3, 4, and �̃σ = �σ + γ1. Furthermore, we will show that the electronic band structure energies, given in
Eqs. (35) and (36), are different for different spin orientations due to the presence of the external magnetic field B

.
B. Self-consistent equations and total energy

Indeed, for calculating numerically the electronic band
structure and total energies related to the concrete spin direc-
tion, we need to solve a set of SC equations for the chemical
potential (μ in our theory is a physical quantity that we cal-

culate exactly after solving the SC equations), the average
charge density difference function between the layers (δn̄ =
n̄2 − n̄1), and the excitonic order parameters �↑ and �↓ (those
parameters are not equal �↑ �= �↓). In Appendix A, we give
the detailed derivation of the SC equations in the AA-BLG.
Here, we just present the final form of those equations. We
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get

1

κ
= 1

N

∑
k

4∑
i=1

∑
σ

(αikσ + βikσ )nF (μ − εiσ (k)),

δn̄

2
= 1

N

∑
k

4∑
i=1

∑
σ

(βikσ − αikσ )nF (μ − εiσ (k)),

�σ = W (�σ + γ1)

N

∑
k

4∑
i=1

γikσ nF (μ − εiσ (k)). (37)

The normalization factor N in Eqs. (37) is the number of
the reciprocal lattice vectors k = (kx, ky). For each crystallo-
graphic direction ki (with i = x, y), we have chosen 100 ki

points, thus totally having a number of N = 104 ki points,
considered in the numerical evaluations. The function nF (x)
entering the right-hand sides of the equations in Eqs. (37) is
the Fermi-Dirac distribution function

nF (x) = 1/(eβ(x−μ) + 1), (38)

where μ is the chemical potential in the system and should
be calculated exactly after solving the above SC equations.
Particularly, the first equation in Eqs. (37) defines the chem-
ical potential in the system (see, also, the discussion in
Appendix A). The second of the equations in Eqs. (37) is the
equation for density difference function δn̄, which is defined
in Eqs. (37) above. The k-dependent parameters αikσ , βikσ ,
and γikσ are defined in Appendix A at the end of the paper. The
third equation in Eqs. (37) is the subject of two separate SC
equations for the excitonic order parameters �↑ and �↓. The
system of SC equations in Eqs. (37) could be solved with high
precision by employing the finite-difference approximation
method which retains the fast convergent Newton’s algorithm
[67].

The total k-integrated sum of the single-excitation
quasienergies in the region close to the first Brillouin zone
is given by the expression

Eσ = 1

N

∑
k

4∑
i=1

εiσ (k). (39)

The results are plotted in Fig. 2 for both spin directions σ = ↑
and σ = ↓. We have shown, in Fig. 2, the dependence of total
energies Eσ on the magnetic field for different values of the
normalized intralayer Coulomb interaction parameter U/γ0.
The plots in red show the total energies for two spin directions
σ = ↑,↓ and for the small value of the Coulomb interaction
parameter: U = γ0 = 3 eV. The plots in blue show the total
energies for the large U limit with U = 4γ0 = 12 eV. We
considered, in Fig. 2, the general case of the partial filling and
put κ = 1. The interlayer Coulomb interaction parameter is
set at the value W = 2γ0 = 6 eV and the external electric field
potential is fixed at V = 2γ0 = 6 eV. We observe, in Fig. 2,
that at zero value of the external magnetic field (B̃ = 0), the
total energies are single valued for both values of the Coulomb
interaction parameter U , i.e., E↑ = E↓. When augmenting the
magnetic field B̃ �= 0, we get an effect similar to the usual
spin-Zeeman one [29] and the energy bands, corresponding
to different spin orientations, get split. Similar effects have
been observed recently in Refs. [30,31], concerning the study

FIG. 2. Total k-summed energies for different spin orientations
E↑ and E↓ in AA-stacked bilayer graphene. We see in the picture
the dependence on magnetic field B. Zeeman-like field splitting was
observed for the nonzero values of the external magnetic field. Dif-
ferent limits of the intralayer Coulomb interaction parameter have
been considered during the calculations. The lines in blue correspond
to the case U = 4γ0 and the red lines correspond to the small value
of the interaction parameter U = γ0. The inverse filling coefficient κ

was set at κ = 1, i.e, that is the case of partial filling. The temperature
is set at T = 0.

of the magnetic field properties in AA-stacked BLG quan-
tum dots and the energy spectrum of a magnetic quantum
dot in graphene. The values of energy splitting depend on
the strength of the external transverse magnetic field B. It is
worth mentioning here that each point in Fig. 2 was calculated
after solving the system of SC equations in Eqs. (37) (see
next section) and putting the obtained values of the physical
parameters μ, δn̄, �↑, and �↓ in Eq. (38). For U = 3 eV,
the absolute value of the total splitting between E↑ and E↓ at
B̃ = 1 is equal to �E = |E↑ − E↓| = 4.8 meV. At the higher
magnetic field B̃ = 3, we get a large value for the splitting
energy �E = 14.4 meV. We see in Fig. 2 that the variation
of parameter U doesn’t considerably change the total energy,
corresponding to a given spin direction. In the inset in Fig. 2,
we calculated the ratio δ = (E↑ − E↓)/E↑. We observe that
the ratio δ increases continuously with B̃ in the low magnetic
field limit, i.e., when B̃ ∈ (0, 1). At high magnetic field values,
i.e., when B̃ � 1, the ratio δ is stabilizing nearly to 1, i.e.,
δ ∼ 1 and the principal contribution to the total energy �E is
due to the spin direction σ = ↓.

IV. NUMERICAL RESULTS

A. Magnetic field effect

In the present section, we give the numerical results after
solving the system of SC equations, given in Eqs. (37) at
the end of the Sec. III. In Fig. 3, we solved the system of
SC equations in Eqs. (37) for different values of the exter-
nal magnetic field parameter B̃ = μBB/γ0. In Fig. 3(a), we
have shown the B̃ dependence of the ratio of excitonic order
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FIG. 3. The magnetic-field dependence of the principal physical
parameters in the AA-BLG system. The results have been obtained
after solving the set of self-consistent equations, given in Eqs. (37).
In different panels, we have shown B̃ dependence (with the magnetic
field parameter B̃ = μBB/γ0) of (a) the ratio δ = |�↑/�↓|, (b) the
average charge density difference function between the layers δn̄,
and (c) the chemical potential. The interlayer Coulomb potential W
is fixed at the value W = 2γ0. The inverse filling coefficient is set at
the value κ = 0.5, which corresponds to the half-filling regime, and
the results have been plotted for T = 0.

parameters �↑ and �↓ defined as δ = |�↑/�↓|. The inter-
layer Hubbard potential is fixed at the value W = 2γ0, the
electric field potential is set at the value V = 2γ0, and the
half-filling case is considered here with κ = 0.5. It is clear
from Fig. 3(a) that �↑ = �↓ for all limits of the intralayer
Hubbard potential U considered in the picture. We observe in
Fig. 3(a) that there exists a critical value of the magnetic field
parameter B̃, above which the excitonic gap parameter �↑
vanishes, while �↓ �= 0 and the maximum difference between
them is observed at the intermediate values of the external
magnetic field B̃ ∈ (1, 1.5). Here we realize that the men-
tioned critical value is equal to B̃C = 2. We see in Fig. 3(b)
that the average charge density difference between the lay-
ers δn, which defined the charge imbalance in the AA-BLG,
vanishes at the same value B̃C of the external magnetic field.
We observe that for the small values of the external magnetic
field, the parameter δn̄ is increasing, thus the average electron
population in the top layer with � = 2 (see Fig. 1 in Sec. II)
increases with B̃, then it passes through a maximum (see
the maximum of δn̄ at B̃ = 0.9 when U = γ0) and starts to
decrease until the average CN occurs in the system: δn̄ = 0,
which means that the average electron populations in both
layers become equal, i.e., n̄2 = n̄1, and the AA-BLG system
becomes charge neutral. Thus the critical value B̃C of the
magnetic field could be called the CN point. The vanishing
of parameter δn̄ could be important in many aspects of the
applicability of the AA-BLG system as the nonperturbative
structure device for use in modern nanomicroelectronics with
the self-screened CN. Furthermore, in Fig. 3(c), we calculated
the chemical potential μ after SC equations in Eqs. (37).
A very interesting degenerated behavior could be observed
for the values of magnetic field parameter B̃ in the interval
B̃ ∈ (0, B̃C ). When B̃ > B̃C , this degeneracy is suppressed and
a huge band solution appears at high magnetic field values.
In Fig. 4, we presented the numerical results for the same
parameters, as in Fig. 3, but for the case of partial filling
with κ = 1. Moreover, we considered different limits of the
interlayer Hubbard potential W . We observe in Figs. 3(a)–3(c)
that the critical value of the magnetic field is smaller in this
case with B̃C = 1. Meanwhile, from the behavior of δn̄ in
panel (b), in Fig. 3(b), it is clear that the CN never occurs
in the limit of partial filling. Indeed, the parameter δn̄ never
vanishes in this case [see Fig. 4(b)], but takes the constant
values δn̄0 when passing above the critical point B̃C . Those
constant values are different in different limits of the intralayer
and interlayer Hubbard potentials and we observe a change
in signs of δn̄ and δn̄0 when passing from the high-W limit
to the small-W limit (see, for example, the pair of plots in
black and darker green). In the high-(U,W ) limit we have
δn̄ > 0 and δn̄0 > 0, while in the low-(U,W ) limit we get
negative signs δn̄ < 0 and δn̄0 < 0. The physical meaning
of the observed behavior is simple: the fact that the average
electron population in the top layer is higher (i.e., n̄2 > n̄1)
or smaller (n̄2 < n̄1) than the average electron population in
the bottom layer depends on the strengths of the Hubbard
interaction parameters U and W . Thus, by varying the interac-
tion potentials, we can achieve the situation when the average
electron population inversion takes place in the AA-BLG.
Different constant values of the parameter δn̄ at B̃ > B̃C could
also have their technological implementations as they imply
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FIG. 4. The magnetic-field dependence of the principal physical
parameters in the AA-BLG system. The results have been obtained
after solving the set of self-consistent equations given in Eqs. (37).
In different panels, we have shown B̃ dependence (with the magnetic
field parameter B̃ = μBB/γ0) of (a) the ratio δ = |�↑/�↓|, (b) the
average charge density difference function between the layers δn̄, and
(c) the chemical potential. Different limits of the Hubbard interaction
potentials U and W have been considered. The inverse filling coeffi-
cient is set at the value κ = 1, which corresponds to the partial-filling
regime, and the results have been plotted for T = 0.

FIG. 5. The average charge density difference δn̄, as a function
of the intralayer Coulomb interaction parameter U . The results have
been obtained after solving the set of self-consistent equations, given
in Eqs. (37). In panels (a) and (b), we show the behavior of function
δn̄ in the limit of partial filling with κ = 1 (a) and half-filling κ = 0.5
(b). Different values of magnetic field parameter B̃ have been consid-
ered in both panels. The interlayer Coulomb interaction potential W
and electric field potential V are set at the values W = V = 2γ0. The
results have been obtained for T = 0.

that the AA-BLG system becomes a two-layer device with the
desired average electron concentrations in different layers. In
turn, the Hubbard interaction potentials could be tuned either
by varying the applied electric field potential V or by changing
the interlayer separation distance c0 in the AA-BLG.

Another important observation in Fig. 4 is related to the
degenerated chemical potential μ for all values of the ap-
plied magnetic field [see Fig. 4(c)]. Especially, the negative
branch of the chemical potential solution at small values of the
Hubbard interaction potentials [see the plot in darker green,
in Fig. 4(c)] is a purposeful limit for the observation of the
excitonic condensation phenomena in the AA-BLG system,
i.e., when a macroscopic number of the excitonic pairs en-
ter simultaneously into the fundamental states with the wave
vector k = 0. On the contrary, in the case of the half-filling
regime considered in Fig. 3, such condensation is possible for
magnetic fields up to the critical value B̃C = 2. Moreover, we
see in Fig. 4(c) that the chemical potential starts to decrease
when passing through point B̃C = 1 and is always negative for
small values of the Hubbard potentials U and W . Due to the
fact that the excitonic order parameter �↑ = 0, for B̃ > B̃C we
conclude that excitonic condensation in the AA-BLG system
(with μ < 0) is due principally to the spin direction σ = ↓
vis-àà-vis the excitonic order parameter �↓, remaining in this
case [see Fig. 4(a)].

B. Average charge density difference and interaction potentials

In Figs. 5 and 6, we show the local Hubbard interac-
tion effects on the average charge density difference δn̄ for
two different values of magnetic field parameter B̃. Partic-
ularly, in Fig. 5, we give the numerical results for δn̄ as
a function of intralayer Hubbard potential U . The inter-
layer Hubbard potential is set at the value W = 2γ0 and
the external gate potential is set at the value V = 2γ0. The
partial-filling and half-filling regimes have been considered
in Fig. 5(a) with κ = 1 and in Fig. 5(b) with κ = 0.5. In
both cases, we observe a nearly linear decrease of δn̄ as a
function of U and the average charge imbalance between
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FIG. 6. The average charge density difference δn̄ as a function
of the interlayer Coulomb interaction parameter W . The results have
been obtained after solving the set of self-consistent equations given
in Eqs. (37). In panels (a) and (b), we show the behavior of function
δn̄ in the limit of partial filling with κ = 1 (a) and half-filling κ = 0.5
(b). Different values of interaction potential U have been considered
in both panels. The electric field potential V is set at the value V =
2γ0. The magnetic field parameter is fixed at the value B̃ = 1 and the
results have been plotted for T = 0.

the layers is larger in the case of a small magnetic field
(see the plots in red, corresponding to the magnetic field
B̃ = 0.5). The general observation in Fig. 5 is that the in-
tralayer Hubbard-U potential is stabilizing the average charge
imbalance between the layers, nevertheless, the CN never
occurs in this case, even for the reasonably high values of
parameter U .

Furthermore, in Fig. 6, we have calculated the average
charge density difference δn̄ as a function of the interlayer
Hubbard-W interaction potential. Again, the partial-filling
[see in Fig. 6(a)] and half-filling [see in Fig. 6(b)] regimes
have been considered and the magnetic field is set at the
value B̃ = 1. The external gate potential is fixed at the value
V = 2γ0. We see that at the intermediate values of the inter-
layer Coulomb potential W0 (which depends on the parameter
κ), the function δn̄ crosses the W axis and δn̄ = 0. It is
remarkable to note that the crossing point is the same for
both strong and weak Hubbard-U interaction limits and the
function δn̄ changes its sign when passing through the CN
point. Thus, by varying the interlayer Coulomb potential, we
can tune the CN limit for function δn̄ and also achieve the
average electron population reversion by the change of sign
of the function δn̄, i.e., δn̄ < 0 for W < W0 and δn̄ > 0, for
W > W0. It is also important to notice here that the function
δn̄ is always increasing with W , which means that the high
values of W bring the system out of the CN equilibrium
position.

C. The excitonic condensation and magnetic field

In Fig. 7, we have shown the k-map for the excitonic
order parameters �↑(k) and �↓(k) at the zero value of the
external magnetic field, i.e., B̃ = 0. The half-filling case was
considered during the numerical evaluations corresponding to
the inverse filling parameter κ = 0.5. The other parameters
are set as shown in the Fig. 7, i.e., W = U = γ0 = 3 eV and
κ = 0.5 [see Fig. 7(a)], U = γ0 = 3 eV, W = 2γ0 and κ =
0.5 [see Fig. 7(b)] and U = γ0 = 3 eV, W = 2γ0 and κ = 1
[see Fig. 7(c)]. The external electric field potential is set at

FIG. 7. The total k map for the excitonic order parameter �σ (k).
The plots are shown for both spin directions σ = ↑, ↓ and for the
zero value of magnetic field B̃ = 0. The other parameters are set as
U = γ0, κ = 0.5 and W = γ0 (a), U = γ0, κ = 0.5 and W = 2γ0

(b), and U = γ0, κ = 1 and W = 2γ0 (c). The large white sockets
are formed in (a), which join each other in the form of hexagonal
starlike hole-pocket (b) when increasing W . In the middle of the
hole-star vertices (b), large exciton condensate peaks appear. The
peaks coincide for different spin orientations. The plot for the case
away from the half filling (this is the case of the partial-filling with
κ = 1) is shown in (c). The temperature is set at T = 0.

the value V = 2γ0 = 6 eV. We see that there are condensate
peaks in the middle of the hexagonal sockets, formed in the
reciprocal k space for W = γ0. When augmenting the inter-
layer interaction parameter [see Fig. 7(b)], the hexagonally
arranged sockets are larger in this case and they stick together
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by forming a starlike (with six vertices) pocket topology in the
plane (kx, ky ). Moreover, in the middle of the starlike vertices,
the large and dense exciton condensate peaks appear [see
Fig. 7(b)]. We observe also that the excitonic order param-
eters corresponding to different spin orientations are equal,
i.e., �↑ = �↓. Therefore, the interlayer Coulomb interaction
influences considerably and contributes to the formation of the
excitonic pairs and condensate states. In Fig. 7(c), we have
evaluated the parameters �↑ and �↓, away from the half-
filling regime, and we put κ = 1. The interaction parameter
W is set at the value W = 2γ0 as in the case of Fig. 7(b).
We see in Fig. 7(c) that the holey starlike pocket topology
is present in that case and, moreover, the excitonic pairing
states are not zero in this limit and form a surface in the
reciprocal space. The change in the order parameter �σ from
the peaklike condensate structure to the surface of pairing
could be attributed to the partial filling considered in Fig. 7(c)
(with κ = 1).

In Fig. 8, we give the k-= map for B̃ = 1 and for W = U =
γ0 = 3 eV. We see that the magnetic field induces the differ-
ences between the excitonic order parameters �↑ and �↓ and
�↑ �= �↓, in this case [see Figs. 8(a) and 8(b)]. Moreover,
there exist excitonic pairings with low- and high-energy states
in this case, which are shown in Figs. 8(a), 8(b) (with high
energy excitonic states), and 8(c) (with low energy excitonic
states). Particularly, in Fig. 8(a), the high energy excitonic
states appear for σ = ↑ in the form of separated red rings in
the k space. This topology of the excitonic pairing is further-
more transformed into the entire surfacelike pairing topology
for σ = ↓. Moreover the excitonic condensate peaks appear
on the light-blue background surface of excitonic pairing
states with σ = ↓ [see Fig. 8(b)]. These high-energy excitonic
condensate peaks are more intense than the similar peaks in
the case B̃ = 0 [see Fig. 8(b)]. In Fig. 8(c), we have shown
the excitonic order parameters �↑ and �↓, in the low-energy
scale. We see that the topological disklike regions in pink [see
Fig. 8(a) for �↑] and red [see Fig. 8(b) for �↓] appear in
the form of two embedded cups (concavities) in Fig. 8(c). It
follows from the picture in Fig. 8(c) that �↑(k) > �↓(k) at
the low-energy scale.

In Fig. 9, we have shown the k map for the excitonic order
parameters at the high magnetic field limit with B̃ = 2 at the
half-filling case with κ = 0.5. In Fig. 9(a), the k dependence is
shown for the excitonic gap parameter �↑(k). The interlayer
Coulomb interaction is set at the value W = 2γ0. We see in
Fig. 9 that a single, large excitonic condensate peak appears
at the origin of the Brillouin zone, i.e., at the value of the
reciprocal wave vector |k| = 0. This isolated pure-condensate
peak shows clearly that the excitonic condensation is possible
in AA BLG at the high magnetic field regime. Furthermore, in
Fig. 9(b) we see that for the opposite spin direction (σ = ↓),
the excitonic condensate islands appear and form a hexagonal-
like lattice structure in the reciprocal k space, surrounded by
the sea of the excitonic pairs. Next, a hole pocket appears at
the origin |k| = 0 [i.e., at the place of the condensate peak
shown in Fig. 9(a)]. In Fig. 9(c), we have shown both order
parameters (�↑(k),�↓(k)) and we see how the excitonic con-
densate peak, observed in Fig. 9(a) merges with the excitonic
pair formation surface [see Fig. 9(b)], exactly at the origin
|k| = 0 of the reciprocal space.

FIG. 8. The total k map for the excitonic order parameter �σ (k).
The plots are shown for both spin directions σ = ↑, ↓ and for the
magnetic field B̃ = 1. The other parameters are set as U = γ0, W =
γ0, and V = 2γ0. Half-filling case is considered in the calculations,
i.e., κ = 0.5 (one particle per site). The figures from left to right [(a)–
(c)] show the k map for �↑(k) (a), �↓(k) (b) and the mixture of them
(�↑(k),�↓(k)) [see in (c) the low-energy cutoff of previous images].
The excitonic order parameters are not the same for different spin
orientations and exciton condensate peaks appear only in the case of
σ = ↓ [see the peaks on the light-blue background of the excitonic
pair formation surface, in (b)]. The temperature is set at T = 0.

D. Band structure

1. The role of the interlayer coupling

Hereafter, we present results for the electronic band
structure in the AA-BLG system. The various values of
the interlayer Coulomb interaction parameter W have been
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FIG. 9. The total k map for the excitonic order parameter �σ (k).
The plots are shown for both spin directions σ = ↑, ↓ and for the
high magnetic field value B̃ = 2. The other parameters are set as
U = γ0, W = γ0, and V = 2γ0. Half-filling case is considered in the
calculations, i.e., κ = 0.5 (one particle per-site). The figures from left
to right [(a)–(c)] show the k map for �↑(k) (a), �↓(k) (b), and the
mixture of them [�↑(k),�↓(k)] (c). The excitonic gap parameters
are not the same for different spin orientations and an islolated
exciton condensate peak appears in (a) for σ = ↑ at the origin of the
k space |k| = 0. The excitonic pair formation regions are surrounded
by the strongly pronounced condensate peaks for σ = ↓ (b) and a
hole remains at k = 0 for �↓. The temperature is set at T = 0.

FIG. 10. The electronic band structure in AA bilayer graphene
for different values of the interlayer Coulomb interaction parameter
W [(a)–(c)]. The magnetic field is fixed at the value B̃ = 1 and the
partial filling is considered in the layers with κ = 1. Eight different
energy bands are shown in the pictures ε↑(k) ∪ ε↓(k) (see colored
arrows near each energy band with the given spin direction). The
temperature is set at T = 0.

considered in Fig. 10. For the other physical parameters in the
system, we have chosen the following values: B̃ = μBB/γ0 =
1, U = γ0 = 3 eV, and κ = 1 (the case of partial filling in
the layers). The external electric gate potential is set at V =
2γ0 = 6 eV. The results plotted in Fig. 10 have been ob-
tained for three different values of the interaction potential W :
W = 0 [see Fig. 10(a)], W = 0.8γ0 = 2.4 eV [Fig. 10(b)], and
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FIG. 11. The electronic band structure in AA bilayer graphene
for different values of the interlayer Coulomb interaction parameter
W [(a)–(f)]. The magnetic field is fixed at the value B̃ = 1 and the
partial filling is considered in the layers with κ = 1. Four different
energy bands are shown in different panels corresponding to each
spin direction σ = ↑ or ↓. The results of the band structure in
left panels (a), (c), and (e) correspond to σ = ↑ and the results in
right panels (b), (d), and (f) correspond to σ = ↓. The narrow-range
energy structure was shown in the panels, which demonstrates the
band-gap opening in the electronic band structure. The band-gap
opening is due to the effect of the interlayer Coulomb interaction
W . The temperature is set at T = 0.

W = U = γ0 = 3 eV Fig. 10(c)]. The band structure for both
spin directions σ = ↑,↓ have been shown in the picture. To
distinguish different energy branches (eight in our case) in
Fig. 10, which correspond to different spin orientations σ =
↑,↓, we have put small arrows near each energy band εiσ (k)
(with i = 1, ...4). We see that for the noninteracting layers,
i.e., when W = 0 [Fig. 10(a)], we have a big discrepancy
between the band structures corresponding to different spin
directions σ = ↑ and σ = ↓. This effect of splitting is caused
by the influence of the external magnetic field B. Furthermore,
this displation narrows for the nonzero values of the parameter
W [see Figs. 10(b) and 10(c)]. Those band structures (for
σ = ↑ and σ = ↓) get very close when W = U = γ0 = 3 eV
[see Fig. 10(c)]. Thus, when U = W (this is the most realistic
case when estimating the scales of Coulomb interactions in
BLG structures), the region embedded between the linearly
crossing energy bands gets very small. Additionally, we obtain
a doubled number of such embedded regions [see in combined
view ε↑(k) ∪ ε↓(k)] due to the linear crossing (with no possi-
ble band gap) of the energy bands, corresponding to different
spin directions. For all considered values of the interlayer
Coulomb interaction parameter W , we have the intersections
ε2↑ ∩ ε1↓, ε2↑ ∩ ε3↓, ε4↑ ∩ ε1↓, ε4↑ ∩ ε3↓. It is worth mention-
ing that those additional regions embedded in the middle of
the intersection points are gapless for all values of parameter
W and external magnetic field B. In Figs. 11(a)–11(d), the
electronic band structure at the narrow regions of ε↑(k) and
ε↓(k), where the band gap is opening in the system. The

values of the physical parameters in the system are the same
as in Fig. 10. We see in Figs. 11(a) and 11(c) that at W = 0
a very large single band gap Eg opens in the system of order
Eg = 200.97 meV, for σ = ↑ in the direction � → K on the
|k| axis, and Eg = 200.95 meV for σ = ↓.

The value of the band gap for σ = ↑ decreases drastically
for W = 0.8γ0 = 2.4 eV (with slightly displaced value of |k|
point in the direction � → K) and we have E (1)

g = 67.38 meV
(see in panel (b), in Fig. 11(b). Nevertheless, the value of
the band gap is still very large for the spin direction σ =
↓, and we have Eg = 273.95 meV. Moreover, for σ = ↑, a
second smaller gap opens in the direction K → M with the
value E (2)

g = 45.6 meV. Indeed, this second gap in the direc-
tion K → M is totally absent for the spin direction σ = ↓
[Fig. 11(e)].

In Figs. 11(b) and 11(d), we considered the large value
of the interlayer interaction parameter W and calculated the
band structure for W = γ0 = 3 eV. The value of the band
gap for σ = ↑ decreases drastically for W = γ0, attaining
the value of order of E (1)

g = 40.8 meV [Fig. 11(b)], while
in the channel σ = ↓ the band gap still very large and we
get E (1)

g = 116.74 meV [Fig. 11(d)]. Moreover, for both spin
channels σ = ↑ and σ = ↓, a second smaller gap E (2)

g opens
in the direction K → M with the value E (2)

g = 23.03 meV for
σ = ↑ for the spin channel σ = ↑ and we obtain a very large
value for the second gap for σ = ↓ with E (2)

g = 83.43 meV.
The band gap E (2)

g for σ = ↓ is greater from the value of
E (1)

g for σ = ↑ by nearly a factor of 2. It is particularly worth
mentioning that the distance |�k| between the |k| points at
which those two gaps are opening narrows for the large values
of W , and this observation is true for both spin directions σ =
↑ and σ = ↓. Due to the narrow energy range of excitations,
those energy band gaps could be observed experimentally
by fast light-emitting photon sources such as x-ray lasers
[68]. Another important observation is related to the induced
large excitation gap E (2)

g (with the value of the gap E (2)
g =

83.43 meV) in the energy spectrum of ε↓(k), in the direction
K → M [see Fig. 11(d)] and nearly flat band-energy regions at
the large value of W . Indeed, surprisingly, a sufficiently large
k-space region is found in the band structure corresponding to
the direction of spin opposite to the magnetic field (σ = ↓),
where the usually crossing bands along direction K → M
get largely separated and flattened near the zero value of the
energy axis [see Fig. 11(d)]. The general observation resulting
from Fig. 11 is that the interlayer Coulomb interaction W
plays a destructive role on the band gaps E (1)

g for σ = ↑
[Figs. 11(a) and 11(c)]. Thus, we have demonstrated in Fig. 11
that the increase of the interlayer interaction potential at the
fixed nonzero value of the external magnetic field (experi-
mentally, the changes in W could be realized by changing the
separation distance between the layers [36] in the AA-BLG)
has a destructive effect on the band gaps in the system and
a phase transition from semiconducting to the weak-metallic
state occurs in this case for the spin channel σ = ↑. This result
is very similar with the results in Ref. [36].

2. The role of the magnetic field

In Fig. 12, we examined the role of the external magnetic
field B̃ on the electronic band structure and energy gaps in
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FIG. 12. The electronic band structure in AA bilayer graphene
for different values of the external magnetic field B̃ [see panels (a)–
(f)]. The narrow-range energy structure is shown in panels, where
we present the principal regions on the |k| axis at which the band
gap opens in the AA BLG. The band gaps in panels (a) and (d) at
B̃ = 0 are due to the effect of the interlayer interaction parameter,
which is fixed at the value W = 2γ0 = 6 eV. The partial-filling case
is considered with κ = 1, and the temperature is set at T = 0.

the AA BLG and we considered both low [see Figs. 12(a)
and 12(c)] and high magnetic field limits [see Figs. 12(b) and
12(d)]. We fixed the interaction parameter W to a sufficiently
high value W = 2γ0, and the partial-filling case is considered
with the inverse filling coefficient κ = 1. The temperature is
set at the value T = 0 and the intralayer Coulomb interaction
is set at the value U = γ0. We see that even at B̃ = 0 there ex-
ist two gaps E (1)

g and E (2)
g in both energy spectrums ε↑(k) and

ε↓(k) [see Figs. 12(a) and 12(c)] and they are exactly the same
due to the spin-symmetry in the case and the absence of the
Zeeman splitting. We obtain E (1)

g (σ = ↑) = E (1)
g (σ = ↓) =

119.8 meV and E (2)
g (σ = ↑) = E (2)

g (σ = ↓) = 41.76 meV).
The second small gap E (2)

g is comparable with the values of
the band gap obtained via SOC interaction effects [17–20].
Next, when increasing the magnetic field parameter B̃, given
in Figs. 12(b) and 12(d), the band gaps E (1)

g for σ = ↑,↓ get
increased considerably by approaching with their values to the
band-gap energies in the usual direct band-gap semiconduc-
tors of type AIIIBIV or AIVBIV [48]; namely, we have E (1)

g (σ =
↑) = 201.18 meV, E (2)

g (σ = ↓) = 204.9 meV. The energy
band gaps E (2)

g decrease drastically for both spin channels and

we obtain very small values of order of E (2)
2 = 6.6 meV for

σ = ↑ and, for σ = ↓, we observe that E (2)
g = 10.35 meV. It

is worth mentioning that the energy band gaps E (2)
2 obtained

here are still much larger than the band gaps obtained in
Refs. [17–20] when considering the SOC only. We observe
in Fig. 12 that for the partial filling considered there (with
κ = 1), the semiconducting state is well-defined in the system
for all values of the magnetic field parameter B̃.

Next we compare the results for the band gaps, obtained
in Fig. 12, with the results of calculations at the half-filling

FIG. 13. Electronic band structure in AA bilayer graphene for
different values of the interlayer Coulomb interaction parameter W
[(a)–(f)]. The low-energy picture was shown here, corresponding
to the band structure in Fig. 10. We show the principal regions,
where the band gap is opening in the AA bilayer, caused by the
effect of the interlayer Coulomb interaction. The magnetic field is
fixed at the value B̃ = μBB/γ0 = 1. Four different energy bands
are shown in pictures for each spin direction. The results in top
panels (a)–(c) correspond to σ = ↑ and the results in the right panels
(d)–(f) correspond to σ = ↓. The half-filling case is considered with
κ = 0.5, and the temperature is set at T = 0.

limit, i.e., when κ = 0.5 presented in Fig. 13. As we can see in
Figs. 13(a)–13(c), the values of the gaps E (1)

g are considerably
smaller, in the case of zero magnetic field (we get E (1)

g =
49.27 meV for both spin channels), and the energy band gaps
E (2)

g are completely absent (i.e., E (2)
g = 0) for κ = 0.5 and

B̃ = 0.
The large values for E (1)

g (σ ) have been obtained in the
limit of high magnetic fields with B̃ = 2 [see Figs. 13(b) and
13(d)] with E (1)

g (σ = ↑) = 150.63 meV and E (1)
g (σ = ↓) =

145.26 meV. Contrary to the previous case of partial filling
(κ = 1), we have a large decrease of the gaps E (1)

g (σ = ↑)
and E (2)

g (σ = ↓) for all values of the external magnetic field
B̃. Thus, for the half-filling case (with κ = 0.5), the increase
of the magnetic field parameter leads to the passage from the
weak-metallic state into the semiconducting one.

E. Discussion and perspectives

The results obtained for the excitonic order parameters for
different spin directions above show that the AA-BLG system
could be an ideal candidate for the observation of the excitonic
condensation phenomena at T = 0. Particularly, in Fig. 9, the
excitonic condensate peak was observed in the centrum of the
k space and for the large value of the magnetic field parame-
ter. The numerical results presented in Figs. 10–13 show the
large applicabilities of the biased AA-BLG systems when it is
exposed to the action of the external transverse magnetic field
B (see Fig. 1). Based on the appropriate parameter regime,
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discussed in the previous sections, AA-BLG could be a
purposeful candidate for applications in modern nanotech-
nology and solid-state electronics as a direct band-gap
semiconductor with a fully tunable band structure and band
gaps. Both the Coulomb interaction (which could be tuned
by varying the interlayer separation distance [29]) and the
magnetic field tunability could be used to obtain the large
energy gaps in the energy spectrum of the AA-BLG. Choosing
the parameters to be tuned in the system (for example, W or
magnetic field B̃), we can open or close the band gaps corre-
sponding to σ = ↑ or σ = ↓, which can result in excitation
states with only one spin direction σ = ↑ or σ = ↓. This
type of situation is achieved in Figs. 11(a)–11(d) when, by
increasing the interaction parameter W and fixing the mag-
netic field (namely, at the value B̃ = 1), we close the energy
band gap for the spin direction σ = ↑ [Figs. 11(a) and 11(b)],
while the other energy gap corresponding to σ = ↓ is still
very large for all values of parameter W [see Figs. 11(c) and
11(d), in the picture], comparable to those in direct band-gap
semiconductors [48]. Thus, for the spin direction σ = ↑ we
get, in Fig. 11, an inverse transition from semiconducting
state into the metallic one [Figs. 11(a)–11(c)]. Moreover,
in Figs. 12 and 13, we found transitions of weak metal-
semiconductor and metal-semiconductor types when tuning
the magnetic field parameter up to high values. In practice, this
type of spin-selective operation mode, with the appropriate
band-gap excitations, could be achieved by regulating the
photon’s emitters (with the appropriate range of wavelength
selection) at the corresponding modes (|k|ph,�ph ), where
the components |k|ph and �ph determine the crystallographic
direction and the corresponding frequency (or energy) of pho-
tons emitted by the source. Thus, the AA-BLG could also be
applied as a spin-valve device, where, in one spin direction,
we get the blockage of the electron transport [see the results
in Figs. 11(c) and 11(d) for σ = ↓], while in another spin
channel σ = ↑ we get the possibilities for the electron exci-
tations into the conduction band and electronic transport [see
Fig. 11(b) for σ = ↑]. Such a spin-controlled transport in AA-
BLG demonstrated here and the spin-valve effects could also
be purposeful for building the new quantum algorithms, im-
portant for quantum computations and quantum information
theory.

The results presented here have been performed at the
zero-temperature limit. We have shown the AA-BLG system
is purposeful for obtaining the stable excitonic condensate
states and the metal-semiconductor or semiconductor-metal
transitions at zero temperature limit. In this context, the room
temperature excitonic and metal-semiconducting transitions
in AA-BLG will represent fundamental steps toward new
possibilities for fast and safe electronics and quantum infor-
mation.

V. CONCLUDING REMARKS

In the present paper, we considered the effects of external
magnetic and electric fields on the physical properties in AA-
stacked excitonic BLG. By using the bilayer generalization of
the usual Hubbard model, we derived a set of SC equations for
the excitonic order parameters, the average charge density
difference between the layers and the chemical potential in

the system. Both partial and half-filling regimes have been
discussed and the role of the Hubbard interactions has been
revealed. We have calculated the magnetic field dependence
of those quantities and found the critical value of the magnetic
field at which the CN occurs in the system at the half-filling
regime. Moreover, we have shown that above that critical
value, the excitonic order parameter for the spin direction
σ = ↑ gets quenched, which opens the possibility for the
spin-controlled electronic transport in the AA-BLG structure
and its use as a spin-valve device in modern nanotechnol-
ogy. Furthermore, the behavior of the chemical potential in
the partial-filling regime shows explicitly the possibilities
for the excitonic condensation of the preformed excitonic
pairs in such a system. Additionally, the role of the Hubbard
interaction potentials on the average charge density imbal-
ance function has been analyzed and the principal differences
between the actions of the Hubbard-U and Hubbard-W cou-
plings have been discussed.

Indeed, we studied the out-of-plane magnetic field, which
causes the Zeeman splitting. Moreover, we considered the
case of the uniform and static magnetic field. For this reason,
we neglected the orbital magnetic field, which is generally
included in the form of the Peierls phases, associated to the
electrons.

We have shown the effects of the external transverse mag-
netic field on the excitonic pair formation and condensation in
the AA-stacked BLG structure. An ideally isolated excitonic
condensate peak appears for the large values of the magnetic
field and the excitonic pairing regions have been found in
the reciprocal space, corresponding to both spin directions.
We have found that the excitonic order parameters with the
spin directions opposite to the magnetic field are in general
larger than those corresponding to the spin direction paral-
lel to the magnetic field. We have calculated the electronic
band structure for different values of the external magnetic
field B and interlayer Coulomb interaction parameter W . We
showed that both contribute considerably to the energy spec-
trum in AA-BLG and result in the opening of the large energy
band gaps in the system comparable to the known values of
the band gaps in the usual semiconducting heterojunctions
[48]. We observed that the energy band gaps are large for
the spin direction opposite to the external magnetic field
and this observation is true for most values of the magnetic
field and interlayer Coulomb interaction parameter consid-
ered in the paper. We have demonstrated that a very-large
band gap is opening (with Eg = 200.97 meV) even for the
noninteracting layers (i.e., when W = 0) when the external
magnetic field is present, B �= 0. Furthermore, when aug-
menting the interlayer interaction potential at the same fixed
value of the external magnetic field, the band gap decreases
for σ ↑↑ B (up to the value E (↑)

g = 40.8 meV) and is still
very large for the spin directions opposite to the magnetic
field σ ↓↑ B (with E (↓)

g = 116.74 meV). We have shown that
even at B = 0 a very large energy band gap opens in the
energy spectrum when considering the interlayer Coulomb
interaction W �= 0. Particularly, when W = 2γ0 = 6 eV, we
get E (↑)

g = E (↓)
g = 119.8 meV, for partial-filling κ = 1 and

E (↑)
g = E (↓)

g = 49.27 meV, for the half-filling regime with
κ = 0.5. Furthermore, these gaps become large when aug-
menting the magnetic field parameter. For B̃ = 2, we get very
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large values for the band-gap parameter Eg, for both limits of
the average electron occupation numbers at the atomic lattice
sites positions (partial filling and half filling). For the partial
filling, we get E (↑)

g = 201.18 meV and E (↓)
g = 204.9 meV.

For the half-filling regime, we get E (↑)
g = 150.63 meV and

E (↓)
g = 145.26 meV. The general observation coming from

our calculations is that the energy band gap is smaller for the
half-filling case and Eσ

g (κ = 0.5) < Eσ
g (κ = 1). Moreover, a

second energy band gap opens near the value of the reciprocal
wave vector |k| = M(2π/3, 0) (point M, at which the usual
linear bands cross in the ungapped pristine AA-BLG) and we
have also discussed the values of this second energy-gap in the
paper. The second small band gap is zero only in the regimes
when B̃ �= 0, W = 0 (for the partial filling) or ˜B = 0, W �= 0
(for the half filling). Thus, we have shown the possibility of a
metal-semiconductor transition in the biased AA-BLG in the
presence of the external transverse magnetic field B. We have
shown that such transition could happen either by changing
the interlayer interaction potential (at partial filling and with
fixed value of the magnetic field) or by changing the applied
magnetic field with the fixed value of the interlayer potential
(in the case of half filling). Additionally, we established that
the semiconducting state is much stronger in the limit of
partial filling, i.e., when κ = 1.

The calculations presented here are still valid for a very
large interval of temperatures, although the results are not
shown here. Therefore, the results obtained within this paper
could also be useful for studies of the excitonic condensate
states and could help also the experimenters to find the exci-
tonic condensates regimes, not yet observed experimentally
in graphene-based heterostructures. The results obtained in
the present paper concern the artificially obtained AA-BLG
heterostructures (obtained by deposition from single graphene
layers) rather than the pristine or epitaxially obtained
BLG.

The spin-selective band-gap formation in the AA-BLG
structure, observed in the present paper, opens a very in-
teresting future for technological applications of AA-BLG
as systems with spin-valve effect, as quantum spin selectors
for quantum nanoelectronics, as spin-controlled electronic
transistors, quantum spin-transport systems for quantum in-
formation applications, and as the spin-injector systems. In
our strong conviction, the AA-BLG system under the external
field conditions discussed in the present paper could com-
pete with Bernal stacked AB-BLG structures due to the large
values of the energy band gaps, approaching the band-gap
parameters in the usual direct band-gap semiconducting mate-
rials [48]. Another interesting observation resulting from our
calculations is that the AA-BLG system considered here could
be used as a system in which the perfect excitonic condensate
states could be observed experimentally in the high magnetic
field limit.

APPENDIX A: SELF-CONSISTENT
EQUATIONS FOR AA-BLG

In the present Appendix, we give the details of calculations
of the set of SC equations in the considered AA-BLG system,
discussed in Sec. III B. In the real-space notations, those SC

equations read as

n̄a + n̄ã = 1

κ
,

n̄ã − n̄a = δn̄

2
,

�σ = W 〈 ¯̃aσ (rτ )aσ (rτ )〉. (A1)

The average fermionic densities n̄a, and n̄ã are given as n̄a =
n̄a↑ + n̄a↓ and n̄ã = n̄ã↑ + n̄ã↓. Here, we have considered the
excitonic order parameter �σ as real, i.e., �σ = �̄σ . This
corresponds to the case of a homogeneous AA-BLG system,
where the pairing between electrons and holes is translation-
ally invariant. The first equation in the system of equations in
Eqs. (A1) defines the dynamical chemical potential, which
should be calculated numerically. The second equation in the
system in Eqs. (A1), is written for the average charge density
difference δn̄ (with δn̄ = n̄2 − n̄1) between the layers in the
AA-BLG.

For calculating the fermionic Green’s functions, we rewrite
the expression of the partition function in terms of the
Grassmann-Nambu spinors introduced in Sec. III A,

Z =
∫

[D�̄][D�]e−S[�̄,�], (A2)

where the action in exponential on the right-hand side in
Eq. (A2) is given in Eq. (17) in Sec. II A. Taking into account
two spin directions σ = ↑,↓, we can rewrite for Z the fol-
lowing expression:

Z = Z↑Z↓. (A3)

Furthermore, for the considered spin σ , we write each compo-
nent in the product in Eq. (A3) in their general forms, which
include the auxiliary sources J (kνn) and J̄ (kνn):

Zσ =
∫

[D�̄σ ][D�σ ]e− 1
2

∑
kνn �̄σ (kνn )G−1

σ (kνn )�σ (kνn )

× e
1
2

∑
kνn �̄σ (kνn )Jσ (kνn )+�σ (kνn )J̄σ (kνn ). (A4)

The auxiliary sources Jσ (kνn) and J̄σ (kνn) are the Grassmann-
Nambu spinors with four components, which are defined
in the same way as the spinors �̄(kνn) and �(kνn). Then,
we effectuate the HS transformation for the four-component
Grassmann fields �̄ and �, in the same way as it is done
usually for two-component fermionic field [69]. We get for
the two components Z↑ and Z↓ in Eq. (A3)

Z↑ = 1∏
kνn

det G↑(kνn)
e

1
2

∑
kνn J̄↑(kνn )G↑(kνn )J↑(kνn ),

Z↓ = 1∏
kνn

det G↓(kνn)
e

1
2

∑
kνn J̄↓(kνn )G↓(kνn )J↓(kνn ). (A5)

The functions Gσ (kνn) in Eqs. (A5) are the Green’s functions
for our problem. Furthermore, the set of SC equations in
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Eqs. (A1) will be rewritten in the following expanded form:

1

κ
= 1

βN

∑
kνn

∑
m=1,3

∑
σ

Ammσ (kνn)

det G−1
σ (kνn)

,

δn̄

2
= 1

βN

∑
kνn

∑
m=1,3

∑
σ

im+1 Ammσ (kνn)

det G−1
σ (kνn)

,

�σ = W

βN

∑
kνn

A13σ (kνn)

det G−1
σ (kνn)

. (A6)

The functions A11σ (x), A33σ (x), and A13σ (x) in the numera-
tors, on the right-hand sides of these equations, are indeed

the polynomials of third [A11σ (x) and A33σ (x)] and second
[A13σ (x)] orders. They are given as

A11σ (x) = x3 + a1σ x2 + b1σ (k)x + c1σ (k),

A33σ (x) = x3 + a2σ x2 + b2σ (k)x + c2σ (k),

A13σ (x) = a3σ x2 + b3σ x + c3σ (k), (A7)

where x = −iνn and the coefficients aiσ , biσ , ciσ with i =
1, 2, 3 are expressed with the help of parameters xiσ defined
in Eqs. (28) in Sec. III A. We obtained

a1σ = x1σ + 2x2σ + V

2
,

b1σ (k) = 2x1σ x2σ + x2
2σ + x1σV − V 2

4
− �̃2

σ − |γ̃k|2,

c1σ (k) = 1

8

[−(V + 2x2σ )
(
V 2 + 2x2σV − 2x1σ (2x2σ + V ) + 4�̃2

σ

)+ 4(V − 2x1σ )|γ̃k|2
]
,

a2σ = x2σ + 2x1σ − V

2
,

b2σ (k) = 2x1σ x2σ + x2
1σ − x2σV − V 2

4
− �̃2

σ − |γ̃k|2,

c2σ (k) = 1

8

[
(−V + 2x1σ )

(−V 2 − 2x2σV + 2x1σ (2x2σ + V ) − 4�̃2
σ

)− 4(V + 2x2σ )|γ̃k|2
]
,

a3σ = �̃σ ,

b3σ = (x1σ + x2σ )�̃σ ,

c3σ (k) = �̃σ

4

[
(2x1σ − V )(2x2σ + V ) + 4|γ̃k|2

]
. (A8)

Next, after summing over the fermionic Matsubara frequencies νn in Eqs. (A6), we get the system of SC equations, in Eqs. (37),
in Sec. III B. The coefficients αikσ , βikσ , and γikσ (with i = 1, . . . 4) in Eqs. (37) are defined with the help of the polynomials in
Eqs. (A7). We obtain

αikσ = (−1)i+1

{
A11σ (εiσ (k))

ε1σ (k)−ε2σ (k)

∏
j=3,4

1
εiσ (k)−ε jσ (k) , if i = 1, 2

A11σ (εiσ (k))
ε3σ (k)−ε4σ (k)

∏
j=1,2

1
εiσ (k)−ε jσ (k) , if i = 3, 4,

(A9)

βikσ = (−1)i+1

{ A33σ (εiσ (k))
ε1σ (k)−ε2σ (k)

∏
j=3,4

1
εiσ (k)−ε jσ (k) , if i = 1, 2

A33σ (εiσ (k))
ε3σ (k)−ε4σ (k)

∏
j=1,2

1
εiσ (k)−ε jσ (k) , if i = 3, 4,

(A10)

and

γikσ = (−1)i+1

{ A13σ (εiσ (k))
ε1σ (k)−ε2σ (k)

∏
j=3,4

1
εiσ (k)−ε jσ (k) , if i = 1, 2

A13σ (εiσ (k))
ε3σ (k)−ε4σ (k)

∏
j=1,2

1
εiσ (k)−ε jσ (k) , if i = 3, 4.

(A11)

By solving numerically the system of equations in
Eqs. (A6), we get the important physical parameters in
the system, such as the energy necessary for the single-
quasiparticle excitations (creation or annihilation) μ, the
average charge density imbalance function δn̄, which de-
scribes the dynamical changes of the average electron
densities in the layers, and the excitonic order parameter �σ

as well.

APPENDIX B: HUBBARD-STRATANOVICH DECOUPLING
OF THE NONLINEAR DENSITY TERMS

1. Decoupling of the Coulomb-U term

Now we effectuate the HS transformation of the nonlin-
ear density terms in the Hamiltonian in Eq. (1). The density
operators in Eqs. (6), (8), and (9) are now given in terms of
simple Grassmann complex variables, and we can write for the
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product nη↑nη↓ in the U term in Eq. (4) the following relation:

nη↑(rτ )nη↓(rτ ) = 1

4

[
n2

η(rτ ) − (nη(rτ )σ̂z)2
]
. (B1)

The vector-operator n̂η(r) in Eq. (B1) is a two-dimensional
vector, given as

n̂η(r) = (n̂η↑(r), n̂η↓(r)). (B2)

The product nη(rτ )σ̂z on the right-hand side of Eq. (B1) is
indeed the charge-density difference between different spin
configurations σ = ↑ and σ = ↓, i.e.,

nη(rτ )σ̂z = nη↑(rτ ) − nη↓(rτ ). (B3)

Then, the HS transformation looks like

e− U
4

∑
r

∫ β

0 dτn2
η (rτ )

=
∫

[DVη]e
−∑r

∫ β

0 dτ
(

V 2
η (rτ )

U −inη (rτ )Vη (rτ )
)
. (B4)

The integration on the right-hand side of Eq. (B4) is evaluated
over the auxiliary complex field Vη(rτ ). We can calculate this
integral by using the saddle-point approximation of it. Indeed,
this procedure is equivalent, in some sense, to the usual mean-
field approximation. Moreover, the procedure described here
is more precise, since it deals with a more general form of the
generating function. In the exponential on the right-hand side
of Eq. (B4), we have a function f [Vη, nη], given as

f [Vη, nη] =
∑

r

∫ β

0
dτ

(
−V 2

η (rτ )

U
+ inη(rτ )Vη(rτ )

)
,

(B5)

and we approximate the integral as∫
[DVη]e f [Vη,nη] = e f [V0η,nη], (B6)

where V0η is the saddle-point value of the variable Vη(rτ ). We
calculate the saddle-point value by solving the equation

f ′[Vη] = 0. (B7)

Then we get for V0η:

V0η = iU

2
〈nη〉. (B8)

Here, 〈nη〉 is the grand canonical average of the density func-
tion nη(rτ ). It could be calculated exactly with the help of the
partition function in Eq. (12) as

〈...〉 = 1

Z

∫ ∏
η

[Dη̄Dη]...e−S . (B9)

Next, the contribution to the action in Eq. (13), coming from
the decoupling given in Eq. (B4) is

S[V0η] = −
∑

r

∫ β

0
dτ

U

2
n̄ηnη(rτ ) (B10)

and the contribution to total Hamiltonian in Eq. (1) is

�HU = U

2

∑
r

n̄ηnη(rτ ). (B11)

The decoupling of the quadratic charge density difference
term (U/4)

∫ β

0 dτ
∑

r(n̂η(rτ )σ̂z)2 is also obvious:

e
U
4

∑
r

∫ β

0 dτ (nη (rτ )σ̂z )2

=
∫

[Dζ ]e
−∑r

∫ β

0 dτ
(

ζ2
η (rτ )

U −ζη (rτ )nη (rτ )σ̂z

)
. (B12)

Within the same saddle-point approximation procedure, we
can calculate the average values of the decoupling field
ζη(rτ ). (Indeed, the average value obtained within this method
is equivalent to the one calculated within the usual mean-field
theory). We get

ζ0η = U

2
〈nη(rτ )σ̂z〉. (B13)

Indeed, we suppose the equal average spin populations in the
system at equilibrium, thus, we have 〈nη↑(rτ )〉 = 〈nη↓(rτ )〉,
therefore, we get 〈nη(rτ )σ̂z〉 = 0. Thus, we put ζ0η = 0.

2. Decoupling of the Coulomb-W term

A simple operator calculus shows that the interlayer
Coulomb interaction term W can be rewritten in a more ef-
ficient form by using the auxiliary excitonic operators

ξ̂
(a)
σσ ′ (r) = â†

σ (r) ˆ̃aσ ′ (r) (B14)

and

ξ̂
(b)
σσ ′ (r) = b̂†

σ ′ (r) ˆ̃b†
σ (r). (B15)

We can write

HW = 2W
∑

r

∑
η=a,b

n̂η(r) − W
∑

rσσ ′λ

|ξ̂ (λ)
σσ ′ (r)|2, (B16)

where λ = a, b, according to definitions in Eqs. (B14) and
(B15). Then we can decouple the biquadratic fermionic term
in Eq. (B16) by employing again the Grassmann-field path
integration techniques and then the saddle-point approxima-
tion for the auxiliary fermionic fields �̄

(λ)
σσ ′ (rτ ) and �

(λ)
σσ ′ (rτ ),

introduced above. The HS decoupling of the W term is

exp

(
W
∑

r

∑
σσ ′

∑
λ

∫ β

0
dτ |ξ (λ)

σσ ′ (rτ )|2
)

=
∫ ∏

λ

[
D�̄(λ)D�(λ)]e− 1

W

∑
r

∑
σσ ′

∑
λ

∫ β

0 dτ |�(λ)
σσ ′ (rτ )|2

×e
∑

r

∑
σσ ′

∑
λ

∫ β

0 dτ (�̄(λ)
σσ ′ (rτ )ξ (λ)

σσ ′ (rτ )+�
(λ)
σσ ′ (rτ )ξ̄ (λ)

σσ ′ (rτ )).

(B17)

Next, we consider the function in the exponential on the
right-hand side of Eq. (B17) and we replace the integral by
the saddle-point value of the exponential function at points
�̄

(λ)
0σσ ′ and �

(λ)
0σσ ′ . In turn, those saddle-point values could

be obtained after functional derivation of the integral on the
right-hand side of Eq. (B17) and we get the following values:

�
(λ)
0σσ ′ = W

〈
ξ

(λ)
σσ ′ (rτ )

〉
,

�̄
(λ)
0σσ ′ = W

〈
ξ̄

(λ)
ησσ ′ (rτ )

〉
. (B18)
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Indeed, the parameters �
(λ)
0σσ ′ and �̄

(λ)
0σσ ′ obtained above rep-

resent the mean-field values of the excitonic gap parameters
�

(λ)
σσ ′ and �̄

(λ)
σσ ′ , i.e.,

�
(λ)
0σσ ′ = �

(λ)
σσ ′,

�̄
(λ)
0σσ ′ = �̄

(λ)
σσ ′ . (B19)

Furthermore, we suppose them as real and we put σ = σ ′
(this corresponds to the case of pairing between electrons and
holes with opposite spin directions). On the other hand, for the
homogeneous AA-BLG system, we have �

(a)
σσ ′ = �

(b)
σσ ′ and we

can omit the sublattice index λ. Thus, we have

�̄
(λ)
σσ ′ = �

(λ)
σσ ′ = �(λ)

σ ≡ �σ . (B20)

Then, the contribution to total Hamiltonian in Eq. (1) coming
from the decoupling procedure will be

�HW = −
∑
rσ

∑
λ

�σ ξ (λ)
σ (r). (B21)

It is interesting to remark at the end of this Appendix that
the quadratic terms in 〈nη〉, �0ησσ ′ , and �̄0ησσ ′ , appearing
when putting back those saddle-point values in the respective
functions in exponentials, give just the constant contributions
to the total Hamiltonian of the system and, therefore, we
neglect them for the first treatment.
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