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Two-dimensional attractive Hubbard model and the BCS-BEC crossover
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Recent experiments with ultracold fermionic atoms in optical lattices have provided a tuneable and clean re-
alization of the attractive Hubbard model (AHM). In view of this, several physical properties may be thoroughly
studied across the crossover between weak [Bardeen-Cooper-Schrieffer, (BCS)] and strong [Bose-Einstein
condensation (BEC)] couplings. Here we report on extensive determinant Quantum Monte Carlo (DQMC)
studies of the AHM on a square lattice from which several different quantities have been calculated and should be
useful as a road map to experiments. We have obtained a detailed phase diagram for the critical superconducting
temperature 7, in terms of the band filling (n) and interaction strength U from which we pinpoint a somewhat
wide region |U|/t & 5 £ 1 (¢ is the hopping amplitude) and (n) ~ 0.79 £ 0.09 leading to a maximum 7; =~ 0.16¢.
Two additional temperature scales, namely, pairing 7, and degeneracy T, have been highlighted: The former sets
the scale for pair formation (believed to be closely related to the scale for the gap of spin excitations in cuprates),
whereas the latter sets the scale for dominant quantum effects. Our DQMC data for the distribution of doubly
occupied sites for the momentum distribution function, and for the quasiparticle weight show distinctive features
on both sides of the BCS-BEC crossover, being also suggestive of an underlying crossover between Fermi- and

non-Fermi liquid behaviors.
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I. INTRODUCTION

In its simplest form, the attractive Hubbard model (AHM)
[1] is composed of fermions moving in a single band (nearest-
neighbor hopping integral ¢) subject to an on-site interaction
U < 0, which favors the formation of local pairs. Over the
years this model has played an important role in describing
many aspects of superconductivity. For instance, this model
naturally contemplates Cooper pair formation within a certain
temperature scale T, > T, where T, is the critical temper-
ature for superconductivity when pairs actually condense
[2—4]. This behavior, absent in the Bardeen-Cooper-Schrieffer
(BCS) pairing theory [5], has been suggested to be relevant
to pseudogap phenomena in high-temperature cuprate super-
conductors [6]. Another important feature of the AHM is the
possibility of smoothly interpolating between two limits: from
weak coupling where one has BCS behavior with large pair
coherence length to strong coupling where pairs are tightly
bound with short coherence length and undergo Bose-Einstein
condensation [1,7-9].

With the continuing development of optical lattices exper-
iments in which ultracold fermionic atoms are loaded and the
interaction amongst them is controlled through an external
magnetic field [10-13], the Hubbard model has been exper-
imentally studied in an unprecedented way; we note that here
we will refer to superconductivity of neutral ultracold atoms
as their superfluidity. This was followed by yet another impor-
tant advance, the quantum-gas microscope [14], which paved
the way to visualize the atomic distribution on the lattice and
draw quantitative conclusions. Indeed, several properties of
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the attractive Hubbard model on a square optical lattice were
measured this way, including correlation functions [15-17].

Notwithstanding the progress achieved so far, several is-
sues still need attention both theoretically and experimentally.
First, accurate theoretical estimates for the critical temper-
ature on the square lattice T,.(n,U) are only available for
limited sets of either band filling n or U. Indeed, for U =
—4t, data for T.(n, —4t) obtained from determinant quantum
Monte Carlo (DQMC) simulations yield a maximum 7, ~
0.15¢/kp (kp is the Boltzmann constant, which from here
on will be omitted) around n ~ 0.7 [18]; subsequent DQMC
simulations at n = 0.7 [4] found a maximum 7, ~ 0.17¢ near
U = —5t. These estimates should be compared with the low-
est temperatures reached so far in experiments on the AHM,
namely, T ~ 0.4t ~ 22 nK [15]. Thus, the search for an AHM
“sweet spot” (i.e., a range of combinations of n and U giving
rise to the maximum T7;) is of crucial importance to guide
experimental studies of the phase transition on a square optical
lattice.

Another aspect demanding a more quantitative description
is that of temperature scales, such as the degeneracy temper-
ature and the pairing temperature. The former sets the scale
below which quantum effects dominate, whereas the latter is
usually associated with pair formation and gap opening in spin
excitations [2,3,19-23]. Placing these temperature scales in a
T. x U phase diagram should, therefore, provide interesting
insights.

A third point needing attention concerns the BCS-BEC
crossover. So far, most of the experimental studies of this
crossover in ultracold atoms have been carried out in the
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continuum [9], which includes pseudogap behavior [24]; on
the theoretical side, some direct comparison between contin-
uum and lattice behaviors in the ground state can be found
in Ref. [25], whereas several features have been highlighted
with the aid of dynamical mean field theories [26-33]. On
an optical lattice one has at our disposal very accurate imag-
ing techniques which can provide quantitative measures of
double occupancy so that a distribution of double occupancy
should be very helpful to gain further quantitative insight
into this crossover. On the solid-state front, the BCS-BEC
crossover has been recently studied by gate-controlled doping
the layered material ZrNCI with Li" intercalation [34], thus,
allowing for measurements of both critical and pseudogap
temperatures.

In actual fact one may envisage yet another crossover:
Whereas at weak coupling the normal phase may be described
by a Fermi liquid (FL), one should not expect such a simple
behavior at strong coupling since one has tightly bound pairs
whose interactions may be thought of as being mediated by
the unpaired fermions, which may be indicative of a non-
Fermi-liquid (NFL) regime [26,27,30,31].

With the purpose of providing some quantitative insights
into these unresolved issues, here we report on results of
extensive determinant quantum Monte Carlo (DQMC) sim-
ulations on the attractive Hubbard model. The layout of the
paper is as follows. In Sec. II we discuss the model and
highlight the main aspects of DQMC, including the different
quantities used to probe the physical properties of the system.
In Sec. III we present the phase diagrams, which include the
critical, degeneracy, and pairing temperatures. Proposals to
probe the BCS-BEC crossover are discussed in Sec. IV, and
Sec. V presents our final conclusions.

II. MODEL AND METHODOLOGY

The attractive Hubbard Hamiltonian reads

H=—t Z (c;”cj,g +H.c.) — /LZni,g

(iLj).o

— U1 Y (i = 12)(miy, — 1/2), (1)

where the sums run over sites of a square lattice with (i, j)
denoting nearest-neighbor sites. ciTU (¢;,) is a creation (anni-
hilation) operator of an electron on a given site i with spin
o, and nj, = ciTU ¢;, being fermionic number operator in the
conventional second quantization formalism. The first term on
the right-hand side of Eq. (1) describes particle hopping with
H.c. denoting the Hermitian conjugate, whereas the second
term controls the band filling through the chemical potential
. The last term corresponds to the local attractive interac-
tion between electrons with coupling strength |U|. Here, the
hopping integral ¢ sets the energy scale.

We investigate the finite temperature properties of the
AHM by performing DQMC simulations [35-39]. The
DQMC method is an unbiased numerical approach based
on an auxiliary-field decomposition of the interaction, which
maps onto a quadratic form of free fermions coupled to
bosonic degrees of freedom S(i, 7) in both spatial and (imag-
inary) time coordinates. This method is based on a separation

of the noncommuting parts of the Hamiltonian by means of
the Trotter-Suzuki decomposition, i.e.,

Z =Tre# = Tr[(e rFbHu M)

~ Tr[e—At ’Hoe—Ar ’Hue—Ar Hoe—At Hu . .. ]’ (2)

where ﬁo contains the terms quadratic in fermion creation
and destruction operators, whereas Hy contains the quartic
terms. For the AHM, the discrete Hubbard-Stratonovich trans-
formation used to deal with the quartic terms leads to positive
“Boltzmann factors,” and the simulations are free from the
infamous “minus-sign problem” [36-39]. We take § = M At
with At being the grid of the imaginary-time coordinate axis.
This decomposition leads to an error proportional to (A1),
which can be systematically reduced as At — 0. Here, we
choose At < 0.1 (depending on the temperature), which is
small enough so that systematic errors are comparable to the
statistical ones (from the Monte Carlo sampling).

We collect DQMC data for several quantities probing
superconductivity. The s-wave pair correlation function is de-
fined as

CijA = (b; bj +H.c.), 3)
where,

by =ccy and b =l “4)

respectively, annihilates and creates a pair at site i. The decay
of CijA with the distance rj; = |i — j| probes the resilience of
pair coherence at a given temperature. The Fourier transform
of CijA at q = 0 defines the s-wave pair-field structure factor,
P, = (ATA + AAT), ®)

with
1 ;
A= — § b, 6
VN & ©

being the pair-field operator.

The finite-size scaling (FSS) behavior of P is, therefore,
obtained upon integration of CijA over a two-dimensional sys-
tem of linear dimension L [18,40],

Po= LM f(L/8),
where n(T,) = 1/4 [41,42], and

L>1, T-—>TH 7

§ ~exp [ (8)

(T —T)'? }

with A being a constant independent of temperature.
As discussed previously [18], estimates for the critical tem-

perature obtained through an exponential correlation length

Eq. (8) must be supplemented by an analysis of the superfluid

density p, for accuracy; the latter can be expressed in terms of

the current-current correlation functions as [43,44]

= 2 At —aT) ©)
P = ame T 4 ’
where D; is the superfluid weight, and
A" = lim Ax(qr, gy =0, 0, = 0), (10)
4
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and

AT = hmO Axx(q,\" = 0, 4y, Wp = 0)’ (11)
qvﬁ

are, respectively, the limiting longitudinal and transverse re-
sponses with

oo
Anq o)=Y / dr T TA L (0T, (12)
P 0

where w,, = 2nn T},

A (L, 7) = (Jx(£, 7)jx(0, 0)), 13)

where

STy =€ [it D (Copsocto — cL,(,cH,a)}e”f (14)
is the x component of the current density operator; see
Ref. [43] for details.

At the Kosterlitz-Thouless (KT) transition, the follow-
ing universal-jump relation involving the helicity modulus
holds [45]:

T.=Zpr 15

c — 2 Ios ’ ( )

where p,~ is the value of the helicity modulus just below the

critical temperature. We, therefore, calculate both AL and AT

by DQMC simulations to obtain p, through Eq. (9). T is then

determined by plotting p,(7T) and looking for the intercept
with 27 /7 [18,46-48]; see below.

For our purposes here, the magnetic properties are probed
by the uniform susceptibility,

1 B
= ;/0 de(Sir)-S0).  (16)

where S; = (1/2)m; with the components of the magnetiza-
tion operator being

m; = c:¢Ci¢ + cﬁcm, (17a)
m) = —i(clc;, — ), (17b)
mf = niy — Ny (17C)

Throughout this paper our simulations were carried out
on L x L square lattices with periodic boundary conditions
(PBCs) such that L < 18. Typically our data have been ob-
tained after 5-10 x 10° warming-up steps followed by 2—6 x
10° sweeps for measurements, depending on the temperature,
interaction strength, and electronic density.

III. RESULTS

A. Critical temperature

In discussing the critical temperature, we first recall that
charge-density wave (CDW) and singlet superconducting
(SS) correlations are degenerate at half-filling, thus, lead-
ing to a three-component order parameter: By virtue of the
Mermin-Wagner theorem, there is no long-range order at fi-
nite temperatures, and 7, = 0 for any U. As one dopes away
from half-filling, CDW correlations are suppressed, but the
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FIG. 1. Pairing correlation function as a function of distance
along the diagonal direction (see the inset) on an 18 x 18 lattice
for different inverse temperatures 8 with U/t = —5 and electronic
density (n) = 0.5. PBC limits the farthest distance to La/~/2, where
a is the lattice spacing.

two-component SS correlations remain so that a Kosterlitz-
Thouless (KT) transition at finite temperatures 7, takes place.

Let us then consider the behavior of the pairing correlation
functions away from half-filling, as the temperature is varied.
Figure 1 presents Ci? along the diagonal direction of the lattice
for fixed (n) = 1/2, and U/t = —5. At high temperatures the
steady decay of CijA reflects the lack of pair coherence along
the lattice as expected. The situation changes completely at
low temperatures 8¢ 2 5 with the correlations now reaching
a finite value at long distances, compatible with long-range
order in the ground state. This long-range behavior is also
manifested in the pairing structure factor Eq. (5) as displayed
in Fig. 2(a): P, stabilizes at low temperatures as a result of
the range of correlations being limited by the finite size of the
lattice but, nonetheless, experiencing a steady increase with L.

As mentioned in Sec. II, we may use the FSS ansatz for
P at finite temperatures, Eq. (7), to determine 7. Figure 2(b)
shows the collapse of the data appearing in panel (a) in which
T. and A are considered as independent variables, adjusted
through a least-squares fit. The inset of Fig. 2(b) illustrates
this process from which by minimizing the x2 function for
a polynomial fit of the data collapse, we are able to find the
most appropriate value for A, while keeping 7, fixed. When
this procedure is performed recursively for T, and A, we obtain
the best data collapse.

The helicity modulus provides an alternative way to esti-
mate the critical temperature, using Eq. (15) as illustrated in
Fig. 3 for the same filling and U as in Fig. 2: The intersection
of p, for each lattice size with the straight line 27" /7 yields
estimates for 7,. We note that the positions of the intersections
are not too sensitive to L—whether we take into account
the scatter of all intersections shown or just the data for the
largest lattice size, the final estimate will hardly differ from
T. = 0.150 £ 0.003 (in units of #), which is in agreement with
the value obtained from the data collapse.

We map out the critical temperature for other values of U
and (n), making use of the weak dependence of the superfluid
density with L: In what follows, most of the results for 7, have

184502-3



FONTENELE, COSTA, DOS SANTOS, AND PAIVA

PHYSICAL REVIEW B 105, 184502 (2022)

(a)

(n)=0.5

B o =10 [UIE=S ]

T A L=12 Y

A 10k o 1=14 y T o |
L v L=16 ANOAA- — = - & ]

/X
— /7 NS
! :“’E‘ e g
o7

0 1 | | | l l
3 4 5 6 7 8
Bt

T T T T T T -I T T T T
012 F 6r .
(N b

%] 5r -\ l.
a7 0.10 - N g
= 0.08L 020 025 |

0.06 - T=0.152(2)
0.04 | A=0.22(1)

| | L | L | s 1 L |

0 1 2 3 4 5 6
L exp[-A/(T-T "]

FIG. 2. (a) Pair structure factor as a function of the inverse of
temperature B for different lattice sizes, fixed (n) = 0.5, and U/t =
—5. (b) The data collapse of P, according to the Kosterlitz-Thouless
FSS analysis. The inset: the x? values of a polynomial fit to the data
collapse for fixed T = 0.152 (in units of ¢). The curves are guides to
the eye.

been determined from simulations on lattices with linear size
L = 14 or 16. Figure 4(a) shows the critical temperature as a
function of U/t for different fermionic densities, and we note
that it displays a maximum 7,"** at some value U,,, which
depends very weakly on (n) within the range considered here;
we will return to this point below, in connection with the
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FIG. 3. Temperature behavior of the superfluid density p, at fixed
(n) = 0.5 and U/t = —5 and for several lattice sizes.
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FIG. 4. Critical temperatures as functions of (a) the interaction
strength |U|/t and (b) the electronic density (n). The curves are
guides to the eye.

BCS-BEC crossover. It is also instructive to examine the de-
pendence of T, with the electronic density for fixed values of
U with the results shown in Fig. 4(b). We see that for each
fixed U, T. displays a broad maximum for 0.7 < (n) < 0.9,
and it drops sharply to zero at half-filling by virtue of the
Mermin-Wagner theorem; accordingly, in three dimensions
T.({n)) for fixed U displays a maximum around (n) ~ 0.9 but
reaches a finite value at (n) = 1 [3]. We also provide the esti-
mates for the critical temperature in tabular form (see Table I),
whereas the location of the sweet spot for 7 is highlighted in
Fig. 5. Our results for 7 are in good agreement with estimates
for T, using different methods on lattices and for the specific
sets of (n) and U available; see, e.g., Refs. [1,26,29,49].

B. Pairing temperature

As mentioned in the Introduction, the pairing temperature
provides a temperature scale around which Cooper pairs are
formed; the pair-breaking gap is, therefore, expected to be
related to a gap in spin excitations, which, in turn, may be
detected as a downturn in the uniform magnetic susceptibility
Xs as the temperature is lowered [2,3,19-22].

Accordingly, Fig. 6 shows our DQMC data for the tem-
perature dependence of the uniform susceptibility y, [see
Eq. (16)]Jat quarter-filling and for different strengths of the
attractive interaction. We first note that the magnitude of
xs decreases with increasing |U|, following the trend pre-
dicted within the random-phase approximation (RPA) xRPA =

184502-4
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TABLE I. Superconducting critical temperature 7., pairing temperature 7,,, and degeneracy temperature Ty, (all in units of ¢) for different
fermionic densities (rows) and different strengths of attraction (columns).

Scale (n) U/t=-3 U/t=-4 U/t=-5 U/t=-6 U/t=-8
0.20 0.061 % 0.002 0.077 + 0.006 0.091 + 0.003 0.089 = 0.003 0.077 £ 0.006
0.35 0.067 % 0.004 0.106 % 0.007 0.130 & 0.005 0.128 4 0.003 0.11 +0.01
T. 0.50 0.079 =+ 0.001 0.133 £ 0.002 0.152 =+ 0.002 0.153 =+ 0.002 0.130 = 0.002
0.70 0.105 % 0.006 0.149 + 0.002 0.164 + 0.003 0.161 = 0.005 0.139 = 0.004
0.87 0.114 £ 0.003 0.152 + 0.002 0.164 & 0.003 0.157 % 0.001 0.137 % 0.002
0.35 0.40 =+ 0.05 0.73 £ 0.06 1.34 £ 0.09 1.6 £0.1 26+0.1
T, 0.50 0.54 £ 0.03 0.73 £+ 0.03 1.25 £+ 0.09 17402 2740.1
0.70 0.44 £ 0.05 0.84 + 0.08 12+0.1 1.89 £ 0.07 28403
0.87 0.50 = 0.05 0.76 £ 0.03 14£03 20402 284+0.5
0.35 1.18 £ 0.07 1.06 + 0.06 0.95 + 0.05 0.87 +0.04 0.61 +0.06
i 0.50 1.5+0.1 1.5+0.1 1.34 £ 0.09 1.18 £ 0.07 1.06 £ 0.06
0.70 2440.1 2.22 +£0.05 2.13 £ 0.05 2.13 £ 0.05 1.96 + 0.04
0.87 3.03 + 0.09 3.03 +0.09 3.03 +0.09 3.03 +0.09 3.03 +0.09

Xxo/(1 + |U|xo0)- In addition, for fixed U we see that x, drops
steadily below some temperature, whose location depends on
U . In line with the idea that this downturn in y; signals the for-
mation of local pairs within some temperature scale [2,3,19—
22], we adopt the position of the maximum in y; as the pairing
scale T,(U). As Fig. 6 shows, at strong coupling the maxima
can be quite broad so that their position are determined by
inspection of the actual numerical output for y;, taking into
account its error bars; this yields a range of temperatures in
which the maximum lies. This somewhat flexible definition
is in line with the fact that we are dealing with a crossover,
hence, a temperature scale not with a sharp transition.

By repeating this procedure for different band fillings, we
generate the plots 7,,(U, (n)) shown in blue in Figs. 7(a)-7(d);
these data are also displayed in Table I. For comparison of
trends, we also include 7;.(U, (n)) in each panel of Figs. 7(a)—
7(d). We see that the difference between T, and T gets smaller
as U decreases, which is a manifestation of the fact that in
the BCS regime Cooper pairs are formed and condense at the
same temperature. By contrast, for large |U |, pairs are formed
at temperatures much higher than the condensation tempera-

T/t
.0.17

FIG. 5. Finite temperature phase diagram of the attractive Hub-
bard model in the square lattice.

ture: T, ~ |U|, whereas T, ~ |U |~'. Whenever comparison is
available, our results for 7, follow trends expected from other
methods [1,49].

C. Degeneracy temperature

At high temperatures, the fugacity of a Fermi gas is small,
7 < 1, whereas deep in the degenerate regime, fully domi-
nated by quantum effects, one has z > 1. We may, therefore,
define a temperature scale for degeneracy T, as the one in
which In z ~ 1, i.e., u = kgT. However, we note that in deal-
ing with tight-binding fermions on a lattice, the bandwidth is
finite and shifted from the continuum parabolic band. There-
fore, in order to keep the analogy with the Fermi gas, one
should shift the bottom of the band to zero, i.e., u = u +
4¢. Similarly, due to the Hubbard term in the Hamiltonian,
the Hartree shift must be taken into account when defining
T; [2] which leads to u — u + |U|[({n) — 1]/2. Thus, the

=05 o |Juy=3 |
015 F === A |U=4
K T - o |U=S
LB AM%$$AA- v |UJ/t=6 A
A
010 | eemteam 1
L “ /6’ ’vv,—?—g————a-ﬁ__v.
[ 5=~
005k, / & -
LTy,
L '<>’
4
000 _ 1 R 1 . 1 . 1 . 1
0.0 0.5 1.0 1.5 2.0 2.5
T/t

FIG. 6. The uniform spin susceptibility as a function of tem-
perature for different values of the on-site attraction |U| and at
quarter-filling (n) = 0.5 for a linear lattice size L = 14. The curves
are guides to the eye.
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FIG. 7. Critical (T.), pairing (T,,), and degeneracy (7;) temper-
atures (in units of 7) as functions of the interaction strength |U|/t,
obtained from DQMC simulations on a lattice with linear size L = 14
and different band fillings. The curves are guides to the eye.

degeneracy temperature is given by the solution of

U
w(T) = kgT — 4t — |2—|[(n) — 1] (18)

for fixed (n) and U. For instance, the data points in Fig. 8
represent the temperature dependence of the chemical poten-
tial giving rise to (n) = 0.5 for different values of U, whereas
the (blue) dashed line is the right-hand side of Eq. (18) for
fixed |U|/t = 10. Thus, the degeneracy temperature as a func-
tion of |U| for a given (n) is obtained by extracting the points
of intersection between the dashed curves (one for each value
of |U|) and the corresponding w(7") curves; the final outcome

05F vy, o7 0=0.5
\v\\"/
ARG ¢
-10F /,/ A\A\ .\\’\ i
— - ‘\k\’\’
A
b 150 .\'\\‘\\A\‘ i
=1 —mu—|U|/t=3 -
—A—|UJ/t=5 \m A
20L —e|U/=s ' \_ i
—v—[UJ/t=10
_____ Td
251 .
0.5 1.0 1.5 2.0

T/t

FIG. 8. Each set of data points represents the temperature depen-
dence of the chemical potential required to keep a constant fermionic
density (n) = 0.5 for a given U. The (blue) dashed line is the right-
hand side of Eq. (18) for |U|/t = 10, whose intersection with the
|U|/t = 10 data points determines 7, for this particular U. The
(black) dashed-dot line is the locus of the intersections for different
values of |U|.

for this filling is displayed as the (black) dashed-dotted line in
Fig. 8.

The results for the degeneracy temperature appear in
Figs. 7(a)-7(d) as well as in Table I. For fixed (n), we see
that 7; decreases with |U |, whereas for fixed |U| it increases
with (n). The relative positions between T; and 7, in the dif-
ferent regimes of the pairing interaction allows us to form an
intuitive picture of the mechanisms at play. First, we note that
as the temperature is lowered in the weaker-coupling part of
the diagrams, fermionic particles first enter into a degenerate
Fermi-liquid regime, then they pair up, and finally condense
into a superfluid at lower temperatures. By contrast, in the
strong-coupling region the strength of the interaction forces
fermions to first pair up forming bosonic particles before they
enter into the degenerate regime at a lower temperature. In this
regime, the effective density of unpaired fermions is smaller
than the nominal (n) so that a lower temperature is required to
make their wave packets overlap. At a given temperature, the
unpaired fermions act mostly as glues mediating the formation
of the superfluid condensate (more on this below).

IV. CHARACTERIZATION OF THE BCS-BEC CROSSOVER

Whereas there is consensus over the main qualitative
differences between the BCS and the BEC regimes, a quan-
titative characterization is still lacking especially highlighting
quantities accessible through quantum gas microscope mea-
surements in optical lattices. Having established the different
temperature scales, we now discuss some quantities which
could be followed throughout the crossover.

The average double occupancy on a given site is defined as

di = (nipmyy ), (19)

and ranges from O to 1. We note that in the extreme limit of
|U| - ocand T — 0, sites would be either doubly occupied
by fermions or empty: A distribution of d; would be peaked at
both d; = 0 and d; = 1. In the opposite limit of weak coupling,
d; should be strongly peaked at d; = 0. Accordingly, Figs. 9
and 10 follow the evolution of the double-occupancy distri-
bution with the strength of attraction at a fixed temperature
but for different band fillings. For n = 0.5, a peak near d; = 1
starts developing at |U|/t =~ 4.5 £ 0.5, and as |U| increases
this peak becomes more pronounced while moving towards
di =1. For n =0.87, the d; = 1 peak starts developing at
smaller values of |U|, namely, at |U|/t = 3.5 = 0.5. The rea-
son for this decrease in |U| must be attributed to the larger
number of fermions available to pair up. This also explains
the fact that for a given |U|, it is more likely to find doubly
occupied sites at larger fermionic densities.

Another interesting crossover probe is the density distribu-
tion in momentum space,

nk = (e} Cy)s (20)

where, for brevity, the spin index was omitted in ni since
nky = niy, in the absence of a symmetry-breaking magnetic
field. The results are displayed in Fig. 11 for (n) = 0.5 and
for increasing values of |U|/t. We see that while on the
weak-coupling side of the crossover the distribution bears
some resemblance with one with a Fermi surface, on the
strong-coupling side the fermions are distributed way beyond
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UI1t=3.0

1U/t=6.0

P(dy)

1UI/t=8.0

FIG. 9. Histograms of the normalized statistical weight of the
double occupancy for different values of the attractive interaction
U /t, for fixed fermionic density (n) = 0.5, temperature 7/t = 0.2,
and lattice size L = 14.

the noninteracting Fermi surface. One may, therefore, regard
this as a crossover between a FL at weak coupling and a
NFL at strong coupling. Interestingly, the NFL regime seems
to appear when the occurrence of double occupancy is sig-
nificant: This can be interpreted as indicating that unpaired
fermions are also strongly tied to the tightly bound bosonic
quasiparticles, which renders the FL framework inapplicable.

This can be put in a more quantitative way by calculating
the quasiparticle weight, given in a form amenable to DQMC

(b) |
UI/t=4.0 ]

(@

UI/t=3.0

1UI/t=6.0

P(dy)

0.06 UI/t=8.0
0.04
0.02
0 04 06 08 10 02 04 06 08 1

FIG. 10. Same as Fig. 9 but for density (n) = 0.87.

U|/t=4.0

—n-nf2 0 w2 7-n-n/2 0 m2 ™
ky
FIG. 11. Contour plot of momentum distribution for different
values of |U|/t. Data are for density (n) = 0.5, temperature T/t ~

0.42, and linear lattice size L = 16. The red curve is the noninteract-
ing Fermi surface for the same electronic density.

simulations [50-54],

Jw

7 (1 B 1Y (w)

-1
a)—>0)
—1
) 9
w,—0

where ¥’ is the real part of the self-energy, ¥, and w, =
(2n+ 1)nT are the Matsubara frequencies. Here, we obtain
the self-energy by performing ~~'(k, 10,) = Gk, 1w,) —
1w, — [e(k) — u] with (k) being the noninteracting disper-
sion and G~'(k, 1w,) directly calculated through a Fourier
transform with respect to the imaginary time [50].

Figure 12 shows the temperature dependence of the
quasiparticle weight for (n) = 0.5. The locus of critical tem-
peratures 7.(U) for the different values of U/t reminds us
that any attempt to identify a FL behavior for T < T, is
doomed to failure due to the opening of a superconducting
gap. Nonetheless, we may draw some interesting conclusions
from the behavior at T > T.(U): The decrease in the quasipar-
ticle weight with decreasing temperature is steeper at strong
coupling than at weak coupling, in line with the crossover
FL-NFL alluded to in relation to Fig. 11. Indeed, since the
effective quasiparticle mass m* >~ m/z(kp), where m is the
bare fermionic mass, heavy quasiparticles are more strongly
interacting, hence, farther from the FL paradigm than light
ones or closer to NFL behavior.

~ (1 B Im[X(w,)] 1)

Wy
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10F T T T T =
/5/5’/‘5
08F " .
& .
[ /<+>?v
0.6} o -
~\ %\ / ¥
o4 ' I /@ —
N 04+ ‘ & / (0)=0.5
A /
o2L A N —0—[UJ=3  —v—[UJ/t=6 ]
<>’®?/ —A—|UJit=4 |UJ/t=8
ok —o—Ujt=s  ---T, ]
00 1 1 L 1 " 1 1 1
0.0 0.2 0.4 0.6 0.8
T/t

FIG. 12. Quasiparticle weight as a function of temperature for
different values of |U|/t at quarter-filling. The crosses define the
values of z(kr ) at the respective critical temperatures with the dashed
line being a guide to the eye.

V. CONCLUSIONS

Motivated by experimental attempts to investigate the su-
perfluid transition of ultracold atoms in optical lattices with
attractive on-site interactions, we have studied the region
of optimal critical temperatures in terms of strength of in-
teractions and fermionic density. By means of DQMC, we
have been able to pinpoint a somewhat wide region around
[U|/t 5% 1 and (n) =~ 0.79 £ 0.09 with a critical temper-
ature 7, =~ 0.16¢, which, under the experimental conditions
reported in Ref. [15], amounts to 7. ~ 8.8 nK. We have
also examined two other temperature scales, namely, the

degeneracy temperature and the pairing temperature. While
the degeneracy temperature describes the region below which
quantum effects dominate, the pairing temperature 7}, sets the
scale for the pair formation, which is believed to be closely
related to the temperature for gapped spin excitations. The
fact that 7,,(U) does not show a strong dependence with (n)
adds credence to its association with spectral properties. We
have also discussed possible scenarios for a breakdown of
FL theory across the BCS-BEC crossover through analyses
of DQMC data for the distribution of double occupancy, for
the momentum distribution function, and for the quasiparticle
weight. The picture that emerges is that of a FL at weak cou-
pling, which progressively breaks down when the dominant
role played by unpaired fermions becomes that of mediat-
ing the interaction between tightly bound bosonic pairs. The
possibility of both BCS-BEC and FL-NFL crossovers taking
place within the same range of interaction strengths, although
appealing, cannot be ascertained at this point.
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