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We use a hydrodynamic approach to investigate dynamic spin susceptibility of the antiferromagnetic spin-1/2
Heisenberg chain with a uniform Dzyaloshinskii-Moriya (DM) interaction in the presence of an external
magnetic field. We find that transverse (with respect to the magnetic field) spin susceptibility harbors two
(respectively, three) spin excitation modes when the magnetic field is parallel (respectively, orthogonal) to the
DM axis. In all cases, the marginally irrelevant backscattering interaction between the spinons creates a finite
energy splitting between optical branches of excitations at k = 0. Additionally, for the orthogonal geometry, the
two lower spin branches exhibit avoided crossing at finite momentum which is determined by the total magnetic
field (the sum of the external and internal molecular fields) acting on spinons. Our approximate analytical cal-
culations compare well with numerical results obtained using matrix-product-state (MPS) techniques. Physical
consequences of our findings for the electron spin resonance experiments are discussed in detail.
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I. INTRODUCTION

Quantum spin liquids (QSL) continue to attract widespread
interests of physicists due to numerous novel features arising
from their topological characters such as long-ranged quan-
tum entanglements, fractional exciations, and emergent gauge
fields [1–4] as well as promising application to topological
quantum computations [5,6]. The antiferromagnetic spin-1/2
chain [7] with its critical ground state without conventional
long-range magnetic order but with long-range (power-law)
correlations serves as a paradigmatic model of a QSL in one-
dimension (1d). The elementary excitations of the spin chain,
neutral spinons with spin-1/2, exhibit two-spinon continuum
which have been observed in inelastic neutron scattering
measurements of various quasi-1d spin-1/2 antiferromagnets
such as, for example, CuSO4 · 5D2O [8] and KCuF3 [9].
Unexpected doublet-like structure of the spinon continuum
near zero momentum, discovered in electron spin resonance
(ESR) experiments [10,11], was explained by the internal
spin-orbital field produced by the uniform Dzyaloshinskii-
Moriya (DM) interaction [12,13].

More recently, some of the previously unexplained features
of the small-momentum spinon response, such as a field-
dependent finite energy splitting of the spinon continuum at
k = 0 and the curved dispersions of the spin-1 excitations
at small k, noticed both experimentally [14] and numerically
[15], were explained as originating from the backscattering
interaction gbs between spinons in finite magnetic field [16].

In this manuscript, we develop this point of view further by
reformulating it as hydrodynamics of magnetization densities
and currents. This hydrodynamic formulation provides for a
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very efficient description of the dynamical susceptibility of the
spin chain with the uniform DM interaction and subject to the
external magnetic field oriented at an arbitrary angle with the
DM axis. We show that the interspinon interaction produces
qualitative changes to the noninteracting spinon picture [10]
and describe its key consequences for ESR experiments.

The paper is organized as follows. Sections II and III
describe the spin model and its low-energy field-theoretic
formulation in terms of chiral spin currents. Section IV ex-
plains the hydrodynamic approximation that is used in Sec. V
to derive dynamic spin susceptibility χ (k, ω) at small mo-
menta for the important cases of the parallel (h ‖ D) and
orthogonal (h ⊥ D) orientations between the magnetic field
and the DM axis. For the arbitrary angle between them we,
for simplicity, restrict the consideration to χ (k = 0, ω). Phys-
ical consequences of the backscattering interaction for ESR
experiments are described in Sec. VI. Our analytical results
are critically compared with accurate, unbiased numerical re-
sults obtained using matrix-product-state (MPS) techniques in
Sec. VII. Section VIII concludes the manuscript. Some of the
more technical results are presented in Appendices.

Throughout the paper operators are denoted by hats on top
of them, vectors are denoted by bold letters, and calligraphic
letters are reserved for matrices.

II. THE MODEL

Consider a 1d antiferromagnetic spin-1/2 Heisenberg
chain with a uniform DM interaction D in the presence of an
external magnetic field H [10,17–19]

Ĥ =
∑

n

(
JŜn · Ŝn+1 − D · Ŝn × Ŝn+1 − h · Ŝn

)
, (1)

where h = gμBH.
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In the case of the magnetic field parallel to the DM axis,
say, the z axis, an important general consideration is possible
on the level of the lattice Hamiltonian. We carry out unitary
transformation to rotate spins about z axis as [10,20,21]

Ŝ+
n = ˆ̃S+

n e−ikdmna, Ŝz
n = ˆ̃Sz

n, (2)

where a is the lattice constant and

kdm = tan−1(D/J )/a ≈ D/(Ja). (3)

In the following, we set a = 1. The Hamiltonian (1) trans-
forms into

ˆ̃H =J̃
∑

n

[
1

2
( ˆ̃S+

n
ˆ̃S−

n+1 + ˆ̃S−
n

ˆ̃S+
n+1) + � ˆ̃Sz

n
ˆ̃Sz

n+1

]
− h

∑
n

ˆ̃Sz
n.

(4)

Here we see that (4) is just a chain without the DM interac-
tion with exchange interaction J̃ = √

J2 + D2 ≈ J + D2/(2J )
and anisotropy parameter � = J/J̃ ≈ 1 − D2/(2J2). For the
chain with D � J , which is the case of our interest, these
quadratic deviations can be neglected.

The most important consequence of the simple transforma-
tion (2) is that the dynamic structure factor S+−(k, ω) of the
Hamiltonian (1),

S+−(k, ω) =
∑

n

∫
dteiωt e−ikna〈Ŝ+

n (t )Ŝ−
0 (0)〉Ĥ , (5)

where the expectation value 〈. . . 〉Ĥ is taken with the respect
to the equilibrium density matrix of the Hamiltonian Ĥ (1),
reduces to that of the rotated ˆ̃H (4),

S̃+−(k + kdm, ω) =
∑

n

∫
dteiωt e−ikna

×〈e−ikdmna ˆ̃S+
n (t ) ˆ̃S−

0 (0)〉 ˆ̃H , (6)

but with the boosted momentum k + kdm.
The same relation also apply to the transverse dynamical

susceptibility, defined by the retarded Green’s function of the
spin operators S+

n and S−
0 ,

χ+−(k, ω) = −i
∑

n

∫ ∞

0
dteiωt e−ikna〈[S+

n (t ), S−
0 (0)]〉Ĥ . (7)

It is connected with the dynamic structure factor by the Fluc-
tuation Dissipation theorem,

S+−(k, ω) = −2(n(ω) + 1)Im[χ+−(k, ω)]. (8)

Here n(ω) = 1/(eω/T − 1) is the Bose function so that in the
zero-temperature limit, T → 0, the right-hand side of (8) is
nonzero only for ω > 0.

The equivalence of the structure factors (5) and (6) trans-
lates into that of the susceptibilities [10,18],

χ+−(k, ω) = χ̃+−(k + kdm, ω), (9)

where χ̃+−(q, ω) is the transverse susceptibility of the chain
described by ˆ̃H (4) (equivalently, within our approximation of
neglecting D2/J2 → 0 in (4), by Eq. (1) with no DM term,
D = 0).

It is also easy to see that for the transverse susceptibility
for the opposite, “−+”, circulation,

χ−+(k, ω) = −i
∑

n

∫ ∞

0
dteiωt e−ikna〈[S−

n (t ), S+
0 (0)]〉Ĥ ,

(10)
the DM-induced shift occurs in the opposite direction,

χ−+(k, ω) = χ̃−+(k − kdm, ω). (11)

Finally, the longitudinal susceptibility does not experience the
DM-induced shift of k at all, χ zz(k, ω) = χ̃ zz(k, ω).

This crucial feature of the spin chain with the uniform
DM interaction turns the standard ESR experiment, which
measures k = 0 response, into a finite-momentum probe of
the dynamic correlations at k = kdm and allows us to explore
details of the small-momentum response of the spin-1/2 chain
in the magnetic field with accuracy greatly exceeding that of
the inelastic neutron scattering experiments.

III. LOW-ENERGY DESCRIPTION

Within the field-theoretic description of the spin chain spin
operators are approximated by the sum of uniform and stag-
gered components [17,19]

Ŝn → a[ĴL(x) + ĴR(x) + (−1)x/aN̂(x)], (12)

where x = na is the coordinate of the nth spin along the chain,
ĴR/L is the right/left (R/L) chiral spin current, describing the
uniform spin density, and N̂ is the staggered (Néel) component
of the spin density. Spin currents obey the Kac-Moody algebra
[22,23] [

Ĵa
R/L (x), Ĵb

R/L (x′)
] = ∓i

4π
δ′(x − x′)δab +

+iδ(x − x′)εabcĴc
R/L (x), (13)

where prime on the delta function denotes derivative with re-
spect to its argument. Commutation relation (13) is the crucial
element of our theory.

The low-energy Hamiltonian of the spin chain (1) is written
in the Sugawara form [24]

Ĥ = Ĥ0 + Ĥbs + V̂ , (14)

Ĥ0 = 2πv

3

∫
dx : ĴR · ĴR + ĴL · JL :, (15)

Ĥbs = −gbs

∫
dx : ĴR · ĴL :, (16)

V̂ = −
∫

dx (h · (ĴR + ĴL ) + D̃ · (ĴR − ĴL )), (17)

where v = πJa/2 is the spinon velocity and columns : :
denote normal ordering. The backscattering interaction, pa-
rameterized by the coupling constant gbs, plays the key role in
our study. It describes marginally irrelevant, in the renormal-
ization group sense, residual interaction between otherwise
independent right- and left- spin currents. The right-hand side
of (16) is allowed to have an additional term [17] ∝ λ : Ĵd

R Ĵd
L :,

where Ĵd
R/L denotes along-the-DM component of the chiral

current and λ ∼ D2/J2 � 1 is the anisotropy parameter. In the
case of the weak DM interaction D � J , which is the natural
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limit we focus on, this small DM-induced anisotropy can be
neglected, λ → 0. This is equivalent to the neglect of D2/J2

terms in (4).
The last term, V̂ in (17), describes Zeeman magnetic field

h and DM interaction D̃ acting on spin currents. The vector D̃
is directly proportional to the DM one, D, and the proportion-
ality constant is fixed below. Notice that the two terms of V̂
transform oppositely under the parity x → −x transformation:
the Zeeman term is even under it while the DM term is odd,
in agreement with the lattice Hamiltonian (1).

It is convenient to introduce the magnetization M̂ and the
magnetization current Ĵ operators

M̂ = ĴR + ĴL, Ĵ = ĴR − ĴL (18)

in terms of which (17) is expressed as

V̂ = −
∫

dx (h · M̂ + D̃ · Ĵ). (19)

IV. HYDRODYNAMIC EQUATIONS

Given the commutator (13) and the Hamiltonian (14), it
is easy to write down Heisenberg equations of motion for
the chiral spin currents ĴR/L (x, t ) = eiĤt ĴR/L(x)e−iĤt (see Ap-
pendix A). We find

∂t ĴR/L (x, t ) = ∓v∂xĴR/L(x, t ) − (h ± D̃) × ĴR/L(x, t )

±gbs

(
1

4π
∂xĴL/R(x, t ) + ĴR(x, t ) × ĴL(x, t )

)
, (20)

where the upper/lower signs apply to right/left currents, cor-
respondingly. The second line of this equation is due to the
backscattering interaction (16) between chiral currents.

Taking the sum and the difference of (20), we readily find
equations of motion for the magnetization M̂(x, t ) and the
magnetization current Ĵ(x, t ),

∂t M̂(x, t ) = −v(1 + δ)∂xĴ(x, t )

− h × M̂(x, t ) − D̃ × Ĵ(x, t ), (21)

∂t Ĵ(x, t ) = −v(1 − δ)∂xM̂(x, t )

− h × Ĵ(x, t ) − D̃ × M̂(x, t )

− 4πvδ M̂(x, t ) × Ĵ(x, t ). (22)

Here we introduced dimensionless interaction parameter δ =
gbs/(4πv). Interaction enters these equations in two different
ways. It renormalizes terms with spatial derivatives, thanks to
the ∂xδ(x − x′) term in (13). It also makes equation for the
current Ĵ nonlinear, as the last line of (22) shows.

It is worth noting that (21) represents the spin continuity
equation. Naturally, finite h and D̃ violate the continuity and
cause precessional motion of the spin density. They play the
role, correspondingly, of the temporal and spatial components
of the effective background non-Abelian field [25–27]. Equa-
tion (21) for the ath component of magnetization M̂a shows
that the spatial derivative and the DM field appear in the
combination ∂xJa + (D̃ × Ĵ)a/(v(1 + δ)) that is independent
of the angle between the magnetic field h and the DM inter-
action D̃. This observation, when applied to the case of their
parallel orientation h ‖ D, allows one to fix the coefficient of
proportionality between D and D̃, see (43) below.

The Zeeman and DM fields (19) induce nonzero equi-
librium values of the magnetization and spin current in the
ground state. In the noninteracting chain with gbs = 0 they
are given by m0 = 〈M̂〉 = χ0h and j0 = 〈Ĵ〉 = χ0D̃, where
χ0 = 1/(2πv) is the susceptibility of one-dimensional non-
interacting Dirac fermions. Due to the opposite parity of the
Zeeman and DM terms the two expectation values do not mix
with each other.

Finite backscattering interaction induces corrections to
these results via internal exchange or “molecular” fields ∝
gbs 〈ĴR/L〉 acting on L/R currents correspondingly. (The ter-
minology follows Leggett’s paper [28].) Within this simple
mean-field approximation, we approximate the backscattering
(16) as

Ĥbs ≈ −gbs

∫
dx(jR · ĴL + ĴR · jL ), (23)

where jR/L = 〈ĴR/L〉 is the equilibrium value of the chiral
current in the ground state. (In the more technical terms, this
corresponds to the normal ordering of Ĥbs with respect to the
ground state with finite jR/L. Diagrammatically, these averages
correspond to a tadpole diagram for the fermion self-energy.)
As a result, the effective one-body potential experienced by
the currents becomes

V̂ = −
∫

dx (h + D̃ + gbsjL )ĴR + (h − D̃ + gbsjR)ĴL.

This leads to simple self-consistent equations

1

2
χ0(h + D̃ + gbsjL ) = jR,

1

2
χ0(h − D̃ + gbsjR) = jL,

that are solved by

jR/L = 1

2
χ0(

h
1 − δ

± D̃
1 + δ

).

Therefore the equilibrium magnetization m of the interacting
spinon liquid is

m = jR + jL = 〈M̂〉 = χ0

1 − δ
h, (24)

while its equilibrium magnetization current is

j = jR − jL = 〈Ĵ〉 = χ0

1 + δ
D̃, (25)

where δ = gbsχ0/2 as defined previously.
Equations of motion (21) and (22) can now be linearized

to the first order in fluctuating quantum fields

δm̂(x, t ) ≡ M̂(x, t ) − m, δĵ(x, t ) ≡ Ĵ(x, t ) − j. (26)

We obtain the following linear vector equations

∂tδm̂(x, t ) = −v(1 + δ)∂xδĵ(x, t )

− h × δm̂(x, t ) − D̃ × δĵ(x, t ), (27)

∂tδĵ(x, t ) = −v(1 − δ)∂xδm̂(x, t )

− 1 − δ

1 + δ
D̃ × δm̂(x, t ) − 1 + δ

1 − δ
h × δĵ(x, t ),

(28)
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where in the last equation we omitted the term δm̂(x, t ) ×
δĵ(x, t ) as being of the higher (second) order in fluctuations.
Note that constant terms appearing in the equation for δĵ
add up to zero, h × j + D̃ × m + 4πvδm × j = 0, thanks to
relations (24) and (25). This constitutes a consistency check
of our mean-field approximation (23). Last two terms in (28)
account for “molecular” field corrections to the DM and
Zeeman interactions, respectively. This is easy to see by not-
ing that, for example, gbsm = 2δ h/(1 − δ) and the fact that
(1 + δ)/(1 − δ) = 1 + 2δ/(1 − δ).

In Fourier space, the linearized hydrodynamic equa-
tions (27) and (28) can be written in a compact matrix form

ωδψ̂(k, ω) = A(k)δψ̂(k, ω), (29)

where we introduce the vector δψ̂ =
(δm̂+, δm̂−, δm̂z, δ ĵ+, δ ĵ−, δ ĵz )T and a 6 × 6 matrix

A =
(

Ah AD
1−δ
1+δ

AD
1+δ
1−δ

Ah

)
, (30)

that is composed of 3 × 3 matrices

Ah =
⎛
⎝h 0 0

0 −h 0
0 0 0

⎞
⎠, (31)

AD =
⎛
⎝(1 + δ)vk + D̃z 0 −D̃+

0 (1 + δ)vk − D̃z D̃−

− 1
2 D̃− 1

2 D̃+ (1 + δ)vk

⎞
⎠.

(32)

Here and in the following, the magnetic field direction is
chosen along the ẑ axis, h = (0, 0, h), and transverse com-
ponents of fluctuating fields are assembled into circular ±
polarizations so that δm̂± = δm̂x ± iδm̂y, and δ ĵ± as well as
D̃± are defined similarly.

To check the approach, we first consider the case of the
ideal spin chain with D = 0. In this limit, matrices Ah,AD

are diagonal and opposite circular components decouple from
each other, as well as from the longitudinal fluctuations. We
obtain, for example,

(ω − h) δm̂+ = (1 + δ)vk δ ĵ+,(
ω − 1 + δ

1 − δ
h

)
δ ĵ+ = (1 − δ)vk δm̂+. (33)

This simple system of equations reproduces complete
spin dispersion relations ω±(k) (41) derived previously in
Ref. [16], see also Sec. V B below. Moreover, it shows that
at k = 0 the uniform magnetization precesses at the Zeeman
frequency ω−(k = 0) = h, in accordance with the Larmor the-
orem, while the magnetization current precesses at the higher
frequency ω+(k = 0) = h(1 + δ)/(1 − δ). The residue of the
magnetization-current mode at k = 0 is, however, exactly
zero, A+(k = 0) = 0 [16], see also (42) in Sec. V B below.
At finite k, the two modes hybridize.

V. GREEN’S FUNCTIONS

Physics of the problem is encoded in the dynamical sus-
ceptibility which is given by the matrix of retarded Green’s

functions

Gab(x, t ; x′, t ′) = −iθ (t − t ′) 〈[δψ̂a(x, t ), δψ̂b(x′, t ′)]〉 .

(34)

It obeys the standard equation of motion

∂tGab(x, t ; x′, t ′)

= −iδ(t − t ′) 〈[δψ̂a(x, t ), δψ̂b(x′, t )]〉
− iθ (t − t ′) 〈[∂tδψ̂

a(x, t ), δψ̂b(x′, t ′)]〉 . (35)

In Fourier space, Eq. (35) is solved with the help of (29) in a
compact form

G(k, ω) = [ω − A(k) + i0+]−1F (k), (36)

where the matrix of commutators is given by

F =
(
Fm F j

F j Fm

)
(37)

with

Fm =
⎛
⎝ 0 2m 0

−2m 0 0
0 0 0

⎞
⎠, (38)

F j =
⎛
⎝ 0 k

π
+ 2 jz − j+

k
π

− 2 jz 0 j−

j+ − j− k
2π

⎞
⎠. (39)

A. Brief overview

The retarded Green’s function depends strongly
on the relative orientations between h and D. Below
we discuss transverse susceptibilities χ+−(k, ω) =
G12(k, ω), χ−+(k, ω) = G21(k, ω) as well as the longitudinal
susceptibility χ zz(k, ω) = G33(k, ω) for specific cases h ‖ D
and h ⊥ D, and then present analytical result for G(k = 0, ω)
for the general case of the arbitrary angle between h and D.

In Sec. V B, we discuss the parallel geometry, h ‖ D, which
is the simplest case. In agreement with the unitary transforma-
tion argument of Sec. II, we find below that finite DM simply
shifts the wave vector of the transverse susceptibility by kdm

but otherwise does not affect the two-mode structure of χ+−.
Tilting h away from D destroys the U (1) symmetry of

the problem and couples magnetization and magnetization-
current modes with the longitudinal one, resulting in the
three-pole structure of the susceptibility. In the case of
the perpendicular geometry, h ⊥ D, in Sec. V C, the k depen-
dence of these coupled spin modes and their spectral weights
can be understood in much details analytically. One of the in-
teresting findings there is the avoided crossing between modes
ω1 and ω2, which takes place at finite k, as illustrated in Fig. 2.

The case of the arbitrary angle between h and D is pre-
sented in Sec. V D. Here, calculations at finite k become too
complicated algebraically and we focus on the ESR-related
k = 0 limit only. In this limit, the susceptibility (59) can again
be expressed in terms of two modes �± (58) (the third mode,
as well as its residue, vanish at k = 0).

These findings make it possible to discuss ESR in Sec. VI
and open the way for the direct comparison with the un-
biased numerical simulations based on matrix-product-state
techniques in Sec. VII.
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FIG. 1. (a) The excitation energies (41) and (b) spectral weights
(42) of transverse susceptibilities χ+− and χ−+ for h ‖ D with h =
0.5 (in units of J). The dotted vertical line indicates ±kdm = ±D =
±0.1. Blue and orange indicate modes of χ+− while green and red
indicates those of χ−+. Solid lines are for δ = 0.12 and dashed lines
are for δ = 0.

B. h ‖ D

For h ‖ D, we set D̃ = D̃ẑ in (36) and obtain for the trans-
verse susceptibility

χ+−(k, ω) = χ0

(
A+(k)

ω − ω+(k) + i0+

+ A−(k)

ω − ω−(k) + i0+

)
, (40)

ω±(k) = h

1 − δ
±

√(
δh

1 − δ

)2

+(1−δ2)v2

(
k+ D̃

v(1+δ)

)2

,

(41)

A±(k) = h

1 − δ
±

−δ( h
1−δ

)2 + (1 + δ)v2
(
k + D̃

v(1+δ)

)2√
( δh

1−δ
)2 + (1 − δ2)v2

(
k + D̃

v(1+δ)

)2
.

(42)

Observe that k shows up only in the combination k̃ = k +
D̃/(v(1 + δ)) in these equations. The unitary rotation argu-
ment in Sec. II tells us that momentum k is boosted as k →
k̃ = k + kdm, see (3). This allows us to identify the momentum

FIG. 2. (a) The excitation energies (B5) and (b) spectral weights
of transverse susceptibilities χ+− and χ−+ [(B9)] for h ⊥ D with
h = 0.5 and D = 0.1 (in units of J). Blue, orange, and green indicate
modes ω0, ω1, and ω2, respectively. Solid and dotted-dash lines are
for δ = 0.12 and dotted lines are for δ = 0. The dotted vertical line
indicates vk = B/2, where B is the total magnetic field (57). We find
that A−+

0+ is about 103 times smaller than A+−
0+ and do not plot it in the

figure.

boost kdm = D/J with D̃/(v(1 + δ)) and thereby obtain the
relation between the DM parameter of the lattice Hamiltonian
(1) and the parameter D̃ of the continuum low-energy theory
(17),

D̃ = v(1 + δ)
D

J
. (43)

For sufficiently small magnetic field v ≈ πJ/2 and thus D̃ ≈
π (1 + δ)D/2. Transverse spin susceptibility for the opposite
circulation, χ−+, follows from the Onsager’s relation (time-
reversal transformation), χ−+(k, ω)|h = χ+−(−k, ω)|−h (do
not confuse k with k̃ here).

It is worth noting that dispersion (41) equally well follows
from (33) with k → k̃.

Several features of χ+−(k, ω) (40) are worth mention-
ing. The lower branch of excitations, ω−(k), represents the
Larmor mode—its frequency approaches the external Zee-
man field h in the limit k̃ ≡ k + D/J → 0, ω−(0) = h, while
its residue approaches χ0A−(k̃ = 0) = 2χ0h/(1 − δ) = 2m,
according to (24). At the same time, the upper branch
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has higher frequency, ω+(k̃ = 0) = (1 + δ)h/(1 − δ), but its
residue vanishes A+(k̃ = 0) = 0. Also note that the spin ve-
locity v is renormalized to ṽ = √

1 − δ2 v.
For finite D �= 0, the residue A+(k) of the upper mode

remains finite at k = 0 (which means k̃ = kdm = D/J), as (42)
and (43) show.

Aside from the momentum shift k → k + kdm, the func-
tional form of Eq. (40) coincides with the one derived in
Ref. [16] for the ideal spin chain without DM interaction. It
was recently used in Ref. [29] to explain experimental ESR
data in the spin chain with the uniform DM interaction.

Longitudinal spin fluctuations are not affected by the DM
in this parallel geometry,

χ zz(k, ω) = χ0ṽk

2(1 − δ)

(
1

ω−ωz(k) + i0+ − 1

ω+ωz(k)+i0+

)
,

ωz(k) =
√

1 − δ2 vk = ṽk. (44)

Energies of the spin-1 excitations (41) and their respective
spectral weights (42) are plotted in Fig. 1. Notice that in agree-
ment with our discussion eigenenergies and their residues
of the χ+− susceptibility are dependent on the combination
k + kdm and hence are shifted to the left along the k axis,
while those of the χ−+ susceptibility depend on k − kdm and
are shifted in the opposite direction, to the right.

C. h ⊥ D

For h ⊥ D, we set D̃ = D̃x̂ so that D̃z = 0, D̃± = D̃ in
(32). Accordingly, the spin current develops finite expectation
value j± = χ0D̃/(1 + δ) but jz = 0. The problem lacks any
continuous spin symmetry and transverse and longitudinal
fluctuations are now coupled.

Solving the characteristic equation

det(ω − A(k)) = 0, (45)

we find excitation energies ωi(k), where i = 0, 1, 2. It is ac-
tually possible to solve the matrix equation (36) analytically
and details are provided in Appendix B. Extensive algebraic
manipulations of (36) lead to

χab(k, ω) =
2∑

i=0

∑
η=±

Aab
iη (k)

ω − η ωi(k) + i0+ , (46)

where a, b = +,−, z. These results are illustrated in Figs. 2
and 3 which plot excitation energies ωi in (B5) of the spin-1
excitations and their respective spectral weights A+−

i+ (B9) and
Azz

i+ (B10) as a function of momentum k.
With the goal of understanding the ESR experiments, here

we present relevant spin susceptibilities at k = 0. We find
Azz

1±(0) = Azz
2±(0) = A+−

0± (0) = A+−
2± (0) = 0, as can also be

seen from Figs. 2 and 3, and

χ+−(0, ω) = χ0[
A+−

1+ (0)

ω − ω1(0) + i0+ + A+−
1− (0)

ω + ω1(0) + i0+ ],

(47)

χ−+(0, ω) = χ0[
−A+−

1− (0)

ω − ω1(0) + i0+ + −A+−
1+ (0)

ω + ω1(0) + i0+ ],

(48)

FIG. 3. The spectral weights of longitudinal susceptibility χ zz

(B10) for h ⊥ D with h = 0.5 and D = 0.1 (in units of J). Blue,
orange, and green indicate modes ω0, ω1, and ω2, respectively. Solid
lines are for δ = 0.12 and dotted lines are for δ = 0. The dotted
vertical line indicates vk = B/2.

χ zz(0, ω) = χ0

[
Azz

0+(0)

ω − ω0(0) + i0+ − Azz
0+(0)

ω + ω0(0) + i0+

]
.

(49)

Close similarity between transverse susceptibilities χ+− and
χ−+ is the consequence of the Onsager’s relation. Spin exci-
tation energies at k = 0 are given by

ω0(0) =
√(1 + δ

1 − δ

)2
h2 + 1 − δ

1 + δ
D̃2, (50)

ω1(0) =
√

h2 + 1 − δ

1 + δ
D̃2, (51)

ω2(0) = 0, (52)

and the residues are

A+−
1± (0) = h

1 − δ
±

h2

1−δ
+ 1

2
D̃2

1+δ

ω1(0)
, Azz

0 (0) = 1

2

D̃2

1+δ

ω0(0)
. (53)

We observe that at k = 0 there is a single pole in χ+− – the
system responds at the frequency

ω1(0) =
√

h2 + (1 − δ2)(vD/J )2 > h, (54)

where we used (43) for D̃.
The absence of ω0(0) (50) in χ+−(0, ω) follows from the

geometry of the problem, h ⊥ D, and is specific to k = 0
limit. A short manipulation of (27) and (28) with k = 0,
h = (0, 0, h) and D̃ = (D̃, 0, 0) shows that six linear equa-
tions (29) factorize into two groups of three equations each.
The first of these “triplets” describes coupled motion of
(δm̂+, δm̂−, δ ĵz ),⎛

⎝ω − h 0 D̃
0 ω + h −D̃

(1−δ)D̃
2(1+δ) − (1−δ)D̃

2(1+δ) 0

⎞
⎠

⎛
⎝δm̂+

δm̂−

δ ĵz

⎞
⎠ = 0. (55)

It is solved by ω = 0, which is (52), and ω = ±ω1(0) (51).
This explains the absence of the resonant response of χ+− ∼
〈δm̂+δm̂−〉 at the frequency ω0(0), (50).
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The second group is made of (δ ĵ+, δ ĵ−, δm̂z ) and is de-
scribed by⎛

⎜⎝ω − (1+δ)h
1−δ

0 (1−δ)D̃
1+δ

0 ω + (1+δ)h
1−δ

− (1−δ)D̃
1+δ

1
2 D̃ − 1

2 D̃ 0

⎞
⎟⎠

⎛
⎝δ ĵ+

δ ĵ−
δm̂z

⎞
⎠ = 0. (56)

It is solved by ω = 0 and ω = ±ω0(0), (50). The mixing
of δ ĵ± spin currents with longitudinal magnetization fluctu-
ations δm̂z explains why the longitudinal susceptibility χ zz ∼
〈δm̂zδm̂z〉 responds at ω = ω0(0) but not at ω1(0).

Equations (27) and (28) show that at finite k �= 0 these two
groups of spin fluctuations hybridize, leading to complicated
evolution of the dispersions and the spectral weights at finite
k, shown in Figs. 2 and 3. It is worth adding that spin suscep-
tibilities in Figs. 2 and 3 also possess an interesting avoided
level crossing between ω1 and ω2 branches at the momentum
k0 = B/(2v), where

B =
√(

h

1 − δ

)2

+
(

D̃

1 + δ

)2

=
√(

h

1 − δ

)2

+
(

vD

J

)2

,

(57)
represents the total magnetic field, the sum of the external
and internal molecular fields, experienced by spinons. The
splitting between two branches is found from the general

expressions in Appendix B to be πDhδ/(
√

2
√

h2 + (vD/J )2)
and is therefore due to the combined effect of finite D, h
and the interaction gbs. Its experimental observation requires
high-precision measurements at finite momenta.

The fact that both ω1(0) and A+−
1+ (0) remain finite even in

the h → 0 limit implies that finite energy absorption rate is
present even without the applied external field, in agreement
with earlier experimental observations and the noninteracting
spinon theory [10].

Broken spin-rotational symmetry leads to the finite absorp-
tion in the longitudinal sector, χ zz(0, ω), as well. It takes
place at the higher frequency ω0(0), that is distinct from the
spin-current frequency ω+(k = 0) of the previous Sec. V B.
The residue of this signal Azz

0 (0) is finite, but its observation
requires Voigt geometry when the microwave field is polarized
along the direction of the external field h.

Notice that in the h → 0 limit ω0(0) = ω1(0) and hence
the residues coincide too, Azz

0 (0) = A+−
1+ (0), see (53). This

is the case of zero-field absorption when χ zz(0, ω)|h=0 and
χ+−(0, ω)|h=0 describe transverse, with respect to the “built-
in” DM field D̃, response that is coupled linearly to the
magnetization current Ĵ and is oriented along the x̂ axis.

D. Arbitrary angle θ between h and D

We choose D and h to be in the xz plane, set D̃ =
D̃(sin θ x̂ + cos θ ẑ) and focus on analyzing the uniform dy-
namic susceptibility χab(k = 0, ω) below. At k = 0, the
eigenvalues of (29) are given by the simple expression

�2
μ=±(θ ) = 1 − δ

1 + δ
D̃2 sin2(θ ) +

( h

1 − δ

+μ

√( hδ

1 − δ

)2 + 1 − δ

1 + δ
D̃2 cos2(θ )

)2
. (58)

FIG. 4. The excitation energies of susceptibilities χ+−, χ−+, and
χ zz as a function of θ for the case h in arbitrary directions with D with
h = 0.5 and D = 0.1 (in units of J). Blue and orange indicate modes
�+ and �−, respectively. Solid lines are for δ = 0.12 and dotted lines
are for δ = 0.

This expression can be understood as a result of the hybridiza-
tion between the positive and negative frequency branches of
δm̂± and δ ĵ± fluctuations with δ ĵz and δm̂z modes, corre-
spondingly. This hybridization is mediated by D̃± = D̃ sin(θ )
terms in (32).

Equation (58) is seen to interpolate between ω±(k = 0) in
(41) for θ = 0, for the case of h ‖ D, to ω0,1(0) in (50) and
(51) for the h ⊥ D case, when θ = π/2. It is easy to see that
for θ > 0 these energies are finite, �± �= 0, as long as D �= 0.

The k = 0 but θ -dependent χab(k = 0, ω; θ ) ≡ χab(ω; θ )
dynamic susceptibility is found to be

χab(ω; θ ) = χ0

∑
μ=±

∑
η=±

Ãab
μη(θ )

ω − η�μ(θ ) + i0+ , (59)

where a, b = +,−, z. Similar to dispersions �±(θ ), spectral
weights Ãab

μη(θ ) interpolate from (42) at θ = 0 to (53) at
θ = π/2. Their explicit forms are listed in (C4) and (C5) and
plotted, together with (58), in Figs. 4 and 5 versus angle θ .
More details are in Appendix C.

Figure 4 shows that the splitting between �+ and �− is
finite for all θ , in a contrast to the noninteracting, δ = 0,
situation for which the dispersions are shown by the dashed
lines. In that case the splitting ∝ D̃ cos(θ ) and vanishes in the
orthogonal configuration θ = π/2. [10]

This quantitative difference between δ �= 0 and δ = 0 sit-
uations is, however, partially compensated by the nontrivial
evolution of spectral weights Ã+−

±+ with the angle, as illustrated
in Fig. 5(a). There, one observes that the spectral weight
Ã+−

++(θ ) of the upper mode �+(θ ) actually vanishes at θ =
π/2. That is, similar to the noninteracting case, for θ = π/2,
there is only one resonance frequency �−(π/2) in the trans-
verse dynamic susceptibility χ+−(ω; π/2).

Figure 5(b) shows that at the same time the longitudi-
nal susceptibility χ zz(ω; π/2) demonstrates complimentary
behavior. Here, the only resonant frequency present at θ =
π/2 is �+(π/2) because the spectral weight Ãzz

−+(θ ) of the
�−(π/2) pole vanishes at θ = π/2.
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FIG. 5. The spectral weights of susceptibilities (a) χ+− and
(b) χ zz as a function of θ for the case h in arbitrary directions with D
with h = 0.5 and D = 0.1 (in units of J). Blue and orange indicate
modes �+ and �−, respectively. Solid lines are for δ = 0.12 and
dotted lines are for δ = 0.

Both of these features are special to h ⊥ D and k = 0 limits
and are explained in the preceding Sec. V C, see Eqs. (55) and
(56) and discussion there.

VI. INTERACTION EFFECT ON THE ELECTRON SPIN
RESONANCE

Electron spin resonance is a uniquely sensitive probe of
the spin dynamics at k = 0 and is particularly well suited
for probing physics described in this paper, as was convinc-
ingly demonstrated previously [10,11,29]. Within the linear
response theory, the rate of the energy absorption per unit
length, which is measured by ESR, is given by the intensity

I (ω) = −1

2
H2

radω Im χnn(k = 0, ω), (60)

where Hrad is the amplitude of the radiation (microwave)
field that the sample is radiated with. In the continuum
limit this is described by the monochromatic perturbation
V (t ) = − ∫

dxHrade−iωt n · M̂(x) and Hrad is linearly polar-
ized along the direction n. In the frequently employed
Faraday geometry n is chosen to be in the plane nor-
mal to the static field h. For example, for n = x, the rate
of absorption is controlled by the spin-flip processes and
is determined by [Im χ+−(k = 0, ω) + Im χ−+(k = 0, ω) +
Im χ++(k = 0, ω) + Im χ−−(k = 0, ω)]/4. [Typically, con-

FIG. 6. The resonant fields h±(θ ) and intensities I+−
±+ of suscep-

tibilities χ+− as a function of θ for the case h in arbitrary directions
with D with h = 0.5, D = 0.1, and ω = 0.65 (in units of J). Blue and
orange indicate modes �+ and �−, respectively. Solid lines are for
δ = 0.12 and dotted lines are for δ = 0. Note that the noninteracting
intensities for the resonant fields are the same and constant.

tributions from χ±±(k = 0, ω) are very small, their spectral
weight ∝ D2.] As noted previously, to probe longitudinal sus-
ceptibility Im χ zz(k = 0, ω), one needs to use Voigt geometry
when n is directed along the external field h.

In addition, actual ESR measurements are done at the fixed
frequency ω, specific to the resonant cavity in which the sam-
ple is held, as a function of varying magnetic field h. Given
(58), the resonant fields h± corresponding to �±(θ ) are

h±(θ ) =
(√

ω2 − ṽ2d2 sin2 θ

∓
√

δ2(ω2 − ṽ2d2) + ṽ2d2 cos2 θ
)
/(1 + δ), (61)

where we used (43) for D̃ and (44) for ṽ, and abbreviated d =
D/J . Observe that the excitation frequency is bounded from
below by ω = ṽd ≈ √

1 − δ2πD/2, which is just (58) in the
case of the vanishing magnetic field h = 0. Figure 6(a) shows
h±(θ ) for the specific choice of parameters D = 0.1, δ =
0.12, ω = 0.65, in units of exchange interaction J .
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Using (59), the intensity as a function of ω is

I (ω) = π

2
H2

radχ0ω
∑
μ=±

∑
η=±

Ãab
μη(θ )δ(ω − η�μ(θ )). (62)

To write it as a function of the external field h, we need to
“solve” the delta function by using �μ(h) = �μ(hμ) + (h −
hμ)�′

μ, where �′
μ = (d�μ/dh)|h=hμ

. Note that by construc-
tion �μ(hμ) = ω. Then δ(ω − �μ=±) = δ(h − hμ)/|�′

μ| and
one obtains

I (h) =
∑
μ=±

Iab
μ+(h, θ )δ(h − hμ(θ )), (63)

where partially intensities Iab
μ+ describe contributions orig-

inating from modes �μ (μ = ±) of the dynamic spin
susceptibility χab, with a, b = (+,−, z).

Figure 6(b) shows the so obtained intensities at the res-
onant field h+, (μ, η) = (+,+), and h−, (μ, η) = (−,+)
of the transverse susceptibility χ+−, (a = +, b = −). Being
interested in relative intensities, we set πH2

radχ0ω/2 = 1 in
the plot. In agreement with the discussion in the previous
section we observe the upper mode intensity ∝ Ã+−

++(θ ) to
vanish in the orthogonal configuration θ = π/2. Therefore,
for this specific angle there is only one resonance, at the field
h−. For all other values of the angle between h and D, there
are two resonances, at fields h+ and h−. Figure 6(b) shows
that intensity of the h− resonance is generally greater than
that of the h+ one. We believe this simple feature of our
theory explains experimental data on the angular dependence
of modes M− and M+, presented in Fig. 8 of Ref. [11]. It is
seen there that mode M+, that is the signal at the resonant field
h+ corresponding to the upper mode �+(θ ), is observed only
within a finite angular interval of (approximately) θ � π/3.
The explanation is that the intensity of this mode falls below
experimentally detectable value for bigger θ .

Another notable feature of (63) is that generally I+−
μ+ is

the biggest. This is easy to understand by recalling that in
the absence of the DM interaction the only susceptibility that
contributes to the ESR is χ+−. However, for finite D and
relatively small angles between h and D, θ � π/4, there also
is a noticeable contribution from χ−+ susceptibility, espe-
cially for small magnetic field h ≈ D. This contribution is
most prominent in the parallel configuration, θ = 0, and has
been observed experimentally in Ref. [29]. Relative smallness
of this contribution is a consequence of the small D/J ratio
– the k = 0 signal from χ−+ is present only because the
spin-rotational symmetry of the chain is broken by the DM
interaction.

More extended discussion of this and other features of the
theory relevant to modern ESR experiments are presented in
Appendix C.

We conclude this section with a brief comparison of the
noninteracting spinon description of the DM-induced ESR
doublet [10] with the more complete interacting spinon theory
presented here and, for the parallel configuration θ = 0, in
Ref. [29]. Within the former description, the splitting between
�± modes vanishes for θ = π/2. As a result, the double reso-
nance reduces to the single one (two contributions at the same
frequency/resonant field) [10]. For the interacting spinons the
splitting is always finite, see Fig. 6(a). But the relative inten-

sity of the two contribution varies greatly with the relative
angle between the field and the DM vector, and vanishes in
the orthogonal configuration as Fig. 6(b) shows. Therefore,
�+ remains distinct from �−, but its spectral weight disap-
pears at θ = π/2. Therefore, in both considerations, only one
resonance is present at θ = π/2.

VII. NUMERICAL SIMULATIONS

We now compare our analytical predictions with numer-
ical simulations using matrix-product-state techniques. Our
numerical calculations are carried out using the ITensor li-
brary [30]. To obtain the spectral function (5) we first obtain
the ground state of the system, |�gs〉 using density matrix
renormalization group (DMRG) [31]. We then perform time
evolution of the quenched state Ŝ−

0 |�gs〉 (where n = 0 cor-
responds to a site in the middle of the chain) up to times
tmax = 40J−1. To this end we use time evolving block dec-
imation (TEBD) [32] employing a 4th order Suzuki-Trotter
decomposition with a time step of dt = 5 × 10−3. Our analy-
sis is done on finite systems of length N = 200 sites with open
boundary conditions. Employing the symmetry of the Hamil-
tonian upon inversion of the DM interaction vector D → −D
followed by spatial inversion, we perform a symmetrization of
the real-space spin-spin correlations using simulations carried
out for both DM orientations. To further improve the fre-
quency resolution, we use linear prediction [33] extrapolating
the correlations in momentum space up to times 2tmax. We
then apply a Gaussian windowing function exp[−t2/(2t2

max)]
to avoid ringing effects.

The strength of the backscattering interaction gbs can be
tuned in the lattice model by a second-neighbor exchange
interaction J2. We employ this fact to check the behavior
of the dynamical correlations in the noninteracting limit,
corresponding to J2,c � 0.24J . We note however that in the
presence of DM interactions, tuning to the noninteracting
limit requires simultaneously introducing a second-neighbor
DM term D2 whose strength is given by (D3) (see Appendix D
for more details).

Below we discuss the numerical results for different ori-
entations of the magnetic field with respect to the DM axis.
In all cases, we observe excellent agreement with the ana-
lytical results obtained in the vicinity of k = 0, as can be
seen from the fits of the dispersions obtained numerically
to the analytical form in each case. We note that while we
observe some variations in the effective low energy velocity
v/J and dimensionless interaction strength δ depending on
the orientation of the field, these could arise due to the finite,
and not particularly small, value of DM interaction strength
D/J = 0.3 used in the simulations in order to achieve a better
numerical accuracy.

A. h ‖ D

When the magnetic field is parallel to the DM axis we
observe that the dynamic structure factor S+−(k, ω) is indeed
boosted to momentum k + kdm as expected from the discus-
sion in Sec. II and the detailed analysis in Sec. V B. The
structure factor S−+(k, ω) is boosted in the opposite direction
to k − kdm. This can be clearly seen in Figs. 7(a) and 7(b),
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FIG. 7. Spectral functions obtained numerically for h ‖ D. (a),(b) The transverse correlations S+−(k, ω), and S−+(k, ω), respectively, for
h/J = 1, D/J = 0.3. Dashed lines indicate fits to the analytical dispersions ω±(k, h) given by Eq. (41) [and shown by blue and orange lines
in Fig. 1(a)] in (a) and ω+(−k, −h) [shown by green line in Fig. 1(a)] in (b) yielding δ = 0.16, v/J = 1.43. (c) Cuts of S+−(ω) along k = 0
for different values of D, showing a nonvanishing spectral weight of the two branches.

respectively. Considering the dynamical correlations S+−(ω)
at k = 0 one can now observe two peaks whose position and
intensity depends on the strength of the DM interaction [see
Fig. 7(c)]. According to (8) and (42), this result should be
compared with A±(k = 0, h) in Fig. 1(b). And, indeed, the
intensity A+(k = 0, h) of the upper, magnetization-current-
like mode is increasing as function of the DM parameter D
which enters (42) via kdm given by (3).

B. h ⊥ D

Next we consider the case of magnetic field perpendicular
to the DM axis. The transverse and longitudinal components
of the dynamical susceptibility, which are now coupled, are
shown in Figs. 8(a) and 8(b), respectively. These plots need
to be compared with Figs. 2 and 3, and the agreement is ex-
cellent. Avoided crossing between ω1(k) and ω2(k) branches,
predicted in Sec. V C, is very clearly visible in the numerical
data. The near invisibility of ω0,1(k) branches in Szz(k, ω),
Fig. 8(b), is fully consistent with their very small spectral
weights as shown in Fig. 3.

Tuning to the limit of vanishing backscattering interaction
by including second-neighbor exchange term J2 = 0.24J and
DM term D2 given by (D3), we obtain transverse dynamical
correlations shown in Fig. 8(c). As expected, in this case the

gap at k = 0 closes and we observe two linearly dispersing
branches. The third, “acoustic” branch ω2(k) in (B21), is not
visible due to its exceedingly small spectral weight, as illus-
trated by green lines in Fig. 2(b) [see also discussion following
(B27)].

C. Arbitrary angle θ between h and D

Finally, we consider the case of an arbitrary angle θ be-
tween the field and the DM axis, focusing on the response
at k = 0. Transverse correlations S+−(θ, ω) are shown in
Fig. 9 both in the Heisenberg limit (J2 = 0) and the limit of
vanishing back-scatterinig (δ = 0). The data is in agreement
with analytical analysis in Sec. V D regarding both the angular
dependence of the excitation energies, (58) and Fig. 4, and
the intensities, Fig. 5(a). Note, for example, that while for
strongly interacting spinons the intensity of the upper mode
is much smaller than that for the lower mode, Fig. 9(a), for
the noninteracting ones, Fig. 9(b), the situation is somewhat
reversed. This is also present in Fig. 5(a) where dotted blue
line, corresponding to the intensity of �+(θ ) for δ = 0 lies
above the dotted orange one for the intensity of �−(θ ).

Once again, the analytical hydrodynamic approximation
captures (and explains) all essential features of the spin chain
response at small momentum.

FIG. 8. Spectral functions obtained numerically for h ⊥ D for h/J = 1, D/J = 0.3. [(a) and (b)] Transverse and longitudinal correlations
S+−(k, ω), and Szz(k, ω), respectively. Dashed lines indicate fits to the analytical dispersions ω0,1,2 in (B5) with δ = 0.12, v/J = 1.43.
(c) Transverse correlations S+−(k, ω) in presence of a second-neighbor exchange J2/J = 0.24 and second-neighbor DM D2 given by (D3)
corresponding to vanishing backscattering interactions. Dashed lines are fits to analytical dispersions (B21) for noninteracting spinons, δ = 0,
yielding v/J = 1.17.
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FIG. 9. Spectral functions S+−(θ, ω) for k = 0 obtained numer-
ically for h/J = 1, D/J = 0.3. (a) J2 = D2 = 0, (b) J2/J = 0.24,
and D2 given by (D3). Dashed lines are fits to �± in (58) yielding
δ = 0.15, v/J = 1.35 in (a), and δ = 0, v/J = 1.18 in (b). The
relative intensity of the two branches as the angle is varied can be
seen in the insets. A qualitative agreement with the spectral weights
obtained analytically and shown in Fig. 5(a) is clearly observed.

VIII. DISCUSSION

Majority of spectral weight in Figs. 7 and 8 is contained
in spinon continua that become very pronounced away from
k ≈ 0 regime on which we focus in this work. Theoretical
description of these continua is well established within the
standard framework of bosonization [24] as well as nonlinear
bosonization corrections to it [18,34,35]. At this point, we
only note that faint but visible low-energy spectral weight
near k = ±π ∓ B/v visible in Fig. 8(a) is the contribution
of the staggered dimerization operator which admixes to the

transverse spin response in this low-symmetry geometry, see
Ref. [19] for more details (notice that magnetic field is ori-
ented along the x̂ axis there). Much bigger spectral weight at
the same k = ±π ∓ B/v in Fig. 8(b) is the standard longitudi-
nal spin contribution from Nz component of the Neél operator
[24].

In the region of our interest k ≈ 0, however, the spectral
lines are very narrow and very well approximated by delta-
function peaks as predicted by our hydrodynamic theory. This
feature has to do with the linear dispersion of Dirac fermions
that underline our low-energy Hamiltonian (14). Deviations
of the dispersion from the strictly linear form, which become
important away from zero momentum, will give spectral lines
finite width even at small k [34]—this interesting theoretical
problem is outside the scope of the current study.

Symmetry-breaking DM interaction, that provides
magnetization-current-like branches of spin excitations
with finite intensity at k = 0, is also responsible for the finite
linewidth of the ESR spectra, as described in Refs. [36,37].
Our linearized hydrodynamic approximation does not account
for the self-energy corrections of that kind. For completeness,
we mention also that in a quantum wire setting the linewidth
mostly comes from the coupling to gapless charge degrees of
freedom [38,39],

To summarize, the presented hydrodynamic approach cap-
tures all essential features of the nearly uniform, i.e., k ≈ 0,
dynamic spin response of the Heisenberg chain perturbed
by the uniform DM interaction. The described approach is
simple, internally consistent, and provides an intriguing con-
nection of this interacting spinon liquid picture with existing
literature on spin dynamics of neutral Fermi liquids [28]. Our
theory is supported by extensive comparison with numerical
MPS-based simulations reported here. Its key predictions for
the ESR experiments have been successfully verified very
recently [29]. Experimental verification of the avoided level
crossing, such as reported in Figs. 2(a), 8(a), and 8(b), which
requires inelastic neutron scattering measurements, is highly
desirable.
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APPENDIX A: DERIVATION OF HEISENBERG EQUATIONS OF MOTION FOR THE CHIRAL SPIN CURRENTS (20)

In order to derive the Heisenberg equations of motion for the chiral spin currents (20), we need to compute the commutator
i[Ĥ0 + Ĥbs + V̂ , Ĵa

r (x)]. Here, r = R = +1 and r = L = −1. Calculate i[Ĥ0, Ĵa
r (x)] first,

i
[
Ĥ0, Ĵa

r (x)
] = i

[
2πv

3

∫
dx′ : Ĵb

r′ (x′)Ĵb
r′ (x′) :, Ĵa

r (x)

]
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= i
2πv

3

∫
dx′ lim

ε→0

{
Ĵb

r′

(
x′ + ε

2

)[
Ĵb

r′

(
x′ − ε

2

)
, Ĵa

r (x)

]

+
[

Ĵb
r′

(
x′ + ε

2

)
, Ĵa

r (x)

]
Ĵb

r′

(
x′ − ε

2

)}
, (A1)

where we have used the definition of point-splitting to resolve the singularity of the product Ĵb
r′ (x′)Ĵb

r′ (x′) at the same point x′.
Then we use the Kac-Moody algebra (13) and find

i
[
Ĥ0, Ĵa

r (x)
] = i

2πv

3

∫
dx′ lim

ε→0

{
Ĵb

r′

(
x′ + ε

2

)
iδr′r

[−r′

4π
δ′

(
x′ − ε

2
− x

)
δba + δ

(
x′ − ε

2
− x

)
εbacJc

r

(
x′ − ε

2

)]

+ iδr′r

[−r′

4π
δ′

(
x′ + ε

2
− x

)
δba + δ

(
x′ + ε

2
− x

)
εbacJc

r

(
x′ + ε

2

)]
Ĵb

r′

(
x′ − ε

2

)}
. (A2)

Finally, we use the operator product expansion [22,24,40]

Ja
r (x)Jb

r′ (x′) = −δrr′δab

8π2(x − x′)2
+ −rδrr′εabc

2π (x − x′)
Jc

r (x′),

where x − x′ → 0+, to evaluate products of Ĵb
r′ (x′ + ε

2 )Jc
r (x′ − ε

2 ) and Jc
r (x′ + ε

2 )Ĵb
r′ (x′ − ε

2 ), and find that

i
[
Ĥ0, Ĵa

r (x)
] = −2πv

3
lim
ε→0

{[
r

4π
∂xĴa

r (x + ε) + εbacĴb
r (x + ε)Jc

r (x)

]
+

[
r

4π
∂xĴa

r (x − ε) + εbacJc
r (x)Ĵb

r (x − ε)

]}
(A3)

= −2πv

3

{
r

2π
∂xĴa

r (x) + lim
ε→0

εbac

[−rεbcd

2πε
Jd

r (x) + −rεcbd

2πε
Jd

r (x − ε)

]}
(A4)

= − rv

3

(
∂xĴa

r (x) + 1

ε
εabcεdbc

[
Ĵd

r (x) − Ĵd
r (x − ε)

])

= −rv∂xĴa
r (x), (A5)

where we used εabcεdbc = 2δad . The other two terms in the commutator are simpler to evaluate,

i[Ĥbs, Ĵr (x)] = rgbs

[
1

4π
∂xĴr̄ (x) + ĴR(x) × ĴL(x)

]
, (A6)

i[V̂ , Ĵr (x)] = −(h + rD̃) × Ĵr (x). (A7)

Equation (20) follows from (A5)–(A7).

APPENDIX B: THE TRANSVERSE AND LONGITUDINAL
SUSCEPTIBILITIES FOR THE CASE H ⊥ D at finite k

The characteristic equation (45) gives an even sextic equa-
tion

ω6 + d2ω
4 + d1ω

2 + d0 = 0, (B1)

where

−d2 = 3(1 − δ2)(vk)2 + 2
1 + δ2

(1 − δ)2
h2 + 2

1 − δ

1 + δ
D̃2, (B2)

d1 = 3[(1 − δ2)(vk)2]2 +
[

1 + δ2

(1 − δ)2
h2 + 1 − δ

1 + δ
D̃2

]2

+ 4

(
δh

1 − δ

)2[
(1 − δ2)(vk)2 −

(
h

1 − δ

)2]
, (B3)

and

−d0=(1 − δ2)(vk)2

[
(1 − δ2)(vk)2−

(
1 + δ

1 − δ
h2+1 − δ

1 + δ
D̃2

)]2

.

(B4)

Since (B1) is an cubic equation of ω2, the solutions can be
constructed from the Viète’s formula,

ω2
i (k) + d2

3
=2

√
−α1

3
cos

[
1

3
cos−1

(
3α0

2α1

√
−3

α1

)
− 2π

3
i

]
,

(B5)

where i = 0, 1, and 2, α1 = (3d1 − d2
2 )/3, and α0 = (2d3

2 −
9d2d1 + 27d0)/27. From (36), the analytical form of the lon-
gitudinal and transverse dynamical retarded susceptibilities
can be expressed as

χ+−(k, ω) = χ0

2∑
i=0

∑
η=±

A+−
iη (k)

ω − ηωi(k) + i0+ , (B6)

χ−+(k, ω)|h = χ+−(−k, ω)|−h, (B7)

χ zz(k, ω) = χ0

2∑
i=0

∑
η=±

Azz
i+(k)

ω − ηωi(k) + i0+ , (B8)
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where (B7) is the Onsager relation and the spectral weights
are given by

A+−
jη (k) = ηa0 + a1ω j + ηa2ω

2
j + a3ω

3
j + ηa4ω

4
j + a5ω

5
j

2ω j
(
ω2

j − ω2
j+1

)(
ω2

j − ω2
j+2

) ,

(B9)

Azz
jη(k) = η

b0 + b2ω
2
j + b4ω

4
j

2ω j
(
ω2

j − ω2
j+1

)(
ω2

j − ω2
j+2

) , (B10)

for j = (0, 1, 2). Here indices j + 1, j + 2 are a short-hand
notation for j + 1, j + 2 mod(3) and η = ±. The coefficients
are

a0 = 2(1 + δ)(kv)2

[
(1 − δ2)(kv)2 −

(
1 − δ

1 + δ
D̃2

+ 1 + δ

1 − δ
h2

)]2

, (B11)

a1 = −2(1 + δ)3h(kv)2

[
(kv)2 −

(
D̃

1 + δ

)2

+
(

h

1 − δ

)2]
,

(B12)

a2 = −(1 − δ2)(1 + δ)

[
4(vk)4 +

(
D̃

1 + δ

)4

+ 2

(
h

1 − δ

)4

+ (1 + δ)(−3 + (2 − 3δ)δ)

(
D̃

1 + δ

)2( h

1 − δ

)2

+ (1 − δ2)(vk)2

[
−

(
D̃2

1 + δ

)
+ 2(1 + 3δ)

(
h

1 − δ

)2]
,

(B13)

a3 = 2
1 + δ

1 − δ
h

[
2δ(vk)2 − ((1 − δ)

(
D̃

1 + δ

)2

+ (1 + δ)

(
h

1 − δ

)2]
, (B14)

a4 = 2(1 + δ)(vk)2 + 2h2

1 − δ
+ D̃2

1 + δ
, (B15)

a5 = 2h

1 − δ
, (B16)

b0 = (1 + δ)(vk)2

[
(1 − δ2)(vk)2 −

(
1 − δ

1 + δ
D̃2

+ 1 + δ

1 − δ
h2

)]2

, (B17)

b2 = (1 − δ)

(
− D̃4

(1 + δ)2
− 2(vk)4(1 + δ)2

− (1 + δ)(1 + δ2)2h2(vk)2

(1 − δ)3
+ D̃2

[
(vk)2 − h2

1 − δ2

])
,

(B18)

and

b4 = D̃2

1 + δ
+ (1 + δ)(vk)2. (B19)

The limit of noninteracting spinons, δ = 0, leads to dra-
matic simplifications. We note that for δ = 0 coefficients of
(B1) depend only on vk and the total field � ≡

√
h2 + D̃2,

which is δ = 0 version of the field B in (57). Moreover,
substitution y = ω2 − v2k2 reduces (B1) to the very simple
factorized form

y((y − �2)2 − 4�2v2k2) = 0, (B20)

from which we find noninteracting analogues of (50)–(52)

ω0(k) = � + v|k|, ω1(k) = � − v|k|,
ω2(k) = v|k|. (B21)

Here D̃ = vD/J , see (43). Dispersions (B21) are shown by
dashed lines in Fig. 2(a). Spectral weights associated with
these modes of noninteracting spinons are [see (46)]

A+−
0± = ±� + vk

4

(
1 ± h

�

)2

, (B22)

A+−
1± = ±� − vk

4

(
1 ± h

�

)2

, (B23)

A+−
2± = ±1

2
(
D̃

�
)2vk, (B24)

Azz
0± = ±� + vk

4

(
D̃

�

)2

, (B25)

Azz
1± = ±� − vk

4

(
D̃

�

)2

, (B26)

Azz
2± = ±1

2

(
h

�

)2

vk. (B27)

Our DMRG data on the “noninteracting” chain, Fig. 8(c),
agree with these analytical results very well. The “optical”
branches ω0,1(k) with highly linear dispersion are very well
resolved, in agreement with (B21)–(B23). The absence of the
“acoustic” branch ω2(k) in Fig. 8(c) is naturally explained by
the smallness of the spectral weight (B24) in D/� ratio as
well as its linear in k form. All these features are also clearly
illustrated by our Fig. 2(b), where both noninteracting (dashed
lines) and interacting (δ = 0.12, solid lines) spectral weights
are plotted.

APPENDIX C: DYNAMIC SUSCEPTIBILITIES AT k = 0
FOR THE GENERAL CASE OF THE ANGLE θ BETWEEN H

AND D

The analytical form of the longitudinal and transverse dy-
namical retarded susceptibilities at k = 0 for the case H in
arbitrary directions with D can be expressed as

χ+−(ω, θ ) = χ0

∑
μ=±

∑
η=±

Ã+−
μη (θ )

ω − η�μ(θ ) + i0+ , (C1)

χ−+(ω, θ )|h = χ+−(ω, θ )|−h, (C2)

χ zz(ω, θ ) = χ0

∑
μ=±

∑
η=±

Ãzz
μη(θ )

ω − η�μ(θ ) + i0+ , (C3)
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FIG. 10. The reduced frequencies �+(θ ) − h (blue line) and �−(θ ) − h (orange line) as a function of the field h for θ = 0, π/4, and π/2.
Solid lines are for δ = 0.12 and dotted lines are for δ = 0. Dotted vertical line shows the crossover field hc = 1−δ

1+δ
D̃ cos θ ≈ (1 − δ) π

2 D cos θ .

where (C2) is the Onsager relation, and the spectral weights
are (μ = ±, η = ±)

Ã+−
μη (θ ) = ηã0 + ã1�μ + ηã2�

2
μ + ã3�

3
μ

2�μ

(
�2

μ − �2−μ

) , (C4)

Ãzz
μη(θ ) = η

(sin θD̃)2

1 + δ

b̃0 + �2
μ

2�μ

(
�2

μ − �2−μ

) ,

(C5)

with

ã0 = −2
(1 + δ)2

(1 − δ)3
h4 − (1 − δ)(3 + 2 cos 2θ )

2(1 + δ)2
D̃4

+ 1 + 7 cos 2θ + 4 sin2 θδ − (7 + cos 2θ )δ2

2(1 − δ2)(1 − δ)
h2D̃2,

(C6)

ã1 = −2h

1 − δ

[(
1 + δ

1 − δ
h

)2

− δ + cos 2θ

1 + δ
D̃2

]
, (C7)

ã2 = 2h2

1 − δ
+ 3 + cos 2θ

2(1 + δ)
D̃2, (C8)

ã3 = 2h

1 − δ
, (C9)

and

−b̃0 = h2 + 1 − δ

1 + δ
D̃2. (C10)

We plot the reduced frequency �±(θ ) − h as a function of
the field h for θ = 0, π/4, and π/2 in Fig. 10, corresponding
spectral weights are plotted in Fig. 11. For θ = 0, there is a

kink in the lower branch, at hc = 1−δ
1+δ

D̃ ≈ (1 − δ)π
2 D. This is

explained [29] by the “switching” of the contribution from
χ−+ for h < hc to that from χ+− for h > hc. This is also
seen from (58) since at θ = 0 the μ = −1 expression reads

�−(0) = | h
1−δ

−
√

( hδ
1−δ

)
2 + 1−δ

1+δ
D̃2|. The kink happens when

the argument of the absolute value changes sign.
For any θ �= 0, the lower branch smoothens out, as (58)

predicts, although the minimum at hc ≈ (1 − δ)π
2 D cos(θ )

can still be observed for θ � π/4. For h � hc, the spectral
weight of the lower mode of χ−+, Ã−+

−+, is always finite and
bigger than that for χ+−, except for θ = π/2. Hence hc is also
the crossover magnetic field such that the spectral weight of
the lower mode for χ+− starts to exceed that of χ−+.

APPENDIX D: J1-J2 CHAIN WITH DM INTERACTIONS

Backscattering interaction gbs in (16), more specifically,
its bare (or, initial) value, is a function of exchange interac-
tions J1 and J2 between nearest and next-nearest spins of the
Heisenberg J1-J2 spin chain. The bare gbs is known to change
sign at the critical J2,c ≈ 0.241J1 and is described by gbs =
c(J2,c − J2), with c > 0, in the vicinity of the critical point
[41]. This feature allows one realize the limit of noninteracting
spinons (within the low-energy effective theory approxima-
tion) by tuning the spin chain to the critical J2 = J2,c point,
and was exploited successfully in Ref. [16].

For the chain with DM interaction, Eq. (1), this argument
requires modifications beyond the addition of the J2 inter-
action J2Ŝn · Ŝn+2 to the right-hand-side of (1). In fact, one
needs to simultaneously add the DM interaction D2 between
the next-nearest spins, that is D2 · Ŝn × Ŝn+2. The reason for
this term is the need to compensate for the generation of the
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FIG. 11. The spectral weights Ã+−
++ (blue line), Ã+−

−+ (orange line) Ã−+
++ = 0 (purple line), Ã−+

−+ (red line) as a function of the field h for θ = 0,
π/4, and π/2. Solid lines are for δ = 0.12 and dotted lines are for δ = 0. Dotted vertical line shows the crossover field hc = 1−δ

1+δ
D̃ cos θ ≈

(1 − δ) π

2 D cos θ .

DM-like terms from the J2 part of the Hamiltonian under
the unitary rotation (2). It is straightforward to show that the
modified Hamiltonian

Ĥ1+2 =
∑

n

JŜn · Ŝn+1 + J2Ŝn · Ŝn+2

− Dẑ · Ŝn × Ŝn+1 − D2ẑ · Ŝn × Ŝn+2 (D1)

transforms under the rotation (2), with kdm given by (3), into

ˆ̃H1+2 =
∑

n

J
√

1 + d2
1

1

2
( ˆ̃S+

n
ˆ̃S−

n+1 + ˆ̃S−
n

ˆ̃S+
n+1) + J ˆ̃Sz

n
ˆ̃Sz

n+1

+ J2
1 + d2

1

1 − d2
1

1

2
( ˆ̃S+

n
ˆ̃S−

n+2 + ˆ̃S−
n

ˆ̃S+
n+2) + J2

ˆ̃Sz
n

ˆ̃Sz
n+2, (D2)

provided that D2 is chosen to be

D2 = J2
2d1

1 − d2
1

. (D3)

Here we abbreviated d1 = D/J . Equation (D2) is the gener-
alization of (4) to the case of the interaction between both
nearest and next-nearest neighbors. The effective anisotropy
parameters for the nearest spins are � ≈ 1 − d2

1 /2 [the same
as for (4)] and �2 ≈ 1 − 2d2

1 for the next-nearest ones. Pro-
vided that d2

1 � 1, which is well satisfied in all considered
cases, the Hamiltonian (D2) is approximated very well by that
of the simple J1-J2 model.

Correspondingly, Ĥ1+2 (D1) with D2 given by (D3) rep-
resents the lattice version of the noninteracting spinon limit
when J2 is tuned to the vicinity of J2,c. This is the lattice
Hamiltonian used in our numerical simulations reported in
Figs. 8(c) and 9(b). Note that for D = 0.3J used in that cal-
culation, the required value of D2 = 0.66J2,c ≈ 0.16J is not
particularly small. Still, the absence of any visible splitting
between ω0 and ω1 branches in Fig. 8(c), as well as an excel-
lent linearity of the obtained spectra near k = 0, confirm the
validity of the described procedure.
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