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After decades of debate, now there is a rough consensus that at zero temperature the spin-1/2 Heisenberg
antiferromagnet on the triangular lattice is three-sublattice 120° magnetically ordered, in contrast to a quantum
spin liquid as originally proposed. However, there remains considerable discrepancy in the magnetization
reported among various methods. To resolve this issue, in this work we revisit this model by the tensor-network
state algorithm. The ground-state energy per bond E;, and magnetization per spin M, in the thermodynamic limit
are obtained with high precision. The former is estimated to be £, = —0.18334(10). This value agrees well with
that from the series expansion. The three-sublattice magnetic order is firmly confirmed and the magnetization
is determined as M, = 0.161(5). It is about 32% of its classical value and slightly below the lower bound
from the series expansion. In comparison with the best estimated value by Monte Carlo and density-matrix
renormalization group, our result is about 20% smaller. This magnetic order is consistent with further analysis
of the three-body correlation. Our work thus provides benchmark results for this prototypical model.
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I. INTRODUCTION

One challenging task in modern condensed matter physics
is to search for exotic states of matter both experimentally
and theoretically. In this long journey, systems with geometric
frustration have emerged as a flourishing research area. In
usual magnets, spins freeze into some periodic patterns upon
cooling, associated with a phase transition from a paramag-
netic phase to an ordered phase. The transition temperature, in
comparison with the Curie-Weiss temperature, may be drasti-
cally suppressed by geometric frustration. Actually, in 1973,
Anderson already proposed that some frustrated magnets may
remain disordered even at zero temperature, which is now
known as the quantum spin liquid [1-5]. Ever since then,
a large amount of interest has been attracted to search for
such exotic states [6,7]. Particularly, in Anderson’s original
paper [1], the spin-1/2 antiferromagnetic Heisenberg model
on the triangular lattice (TAHM) was conjectured to be such a
candidate. Moreover, Anderson proposed that its ground state
may be a resonating valence-bond state (RVB) rather than a
state with three-sublattice 120° magnetic order (TMO) in its
classical counterpart.

In the past decades, to clarify the nature of its ground
state, TAHM has been extensively studied by a variety of
analytical and numerical methods [8-30]. For example, Huse
and Elser examined this model by variational Monte Carlo
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[8]. They chose a trial wave function with three-spin terms.
By comparing its ground-state energy with that of RVB-type
wave functions, they found that the former is energetically
favored, and its magnetization is finite, about 68% of its
classical value. On small clusters, exact diagonalization (ED)
calculations were performed by several groups but their con-
clusions are conflicting [11-14]. The Green’s function Monte
Carlo (GFMC) [15] and density-matrix renormalization group
(DMRG) [16] calculations, which were on moderate clusters,
concluded the existence of an ordered ground state with a
consistent magnetization My = 0.205. As far as we know,
so far the smallest but finite magnetization reported is My =
0.1625(30), obtained by GFMC with fixed node approxima-
tion [17]. Now it is mostly believed that the ground state of
the TAHM is a TMO state with strongly suppressed magneti-
zation.

However, whereas such progress has been made, the de-
bate has never ceased completely so far. For example, recent
numerical analyses based on bold diagrammatic Monte Carlo
[18] and ED [14] supported the absence of magnetic order.
Moreover, even in those works supporting the existence of
TMO, the discrepancy of the magnetization is quite large,
with its value ranging from 0.1625(30) to 0.36 [17,19]. And
finally, from the experimental perspective, various compounds
with triangular geometry have been synthesized and finger-
prints of quantum spin liquids were reported [31,32], but their
nature remains controversial. As a prototypical model with
geometric frustration, precise understanding of the TAHM
is important and necessary. In particular, an accurate esti-
mate of the magnetization may help us to understand related
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experiments and serve as a benchmark for newly developed
numerical algorithms. It is fair to say that the present knowl-
edge remains unsatisfactory and thus calls for further studies
on this model.

For this purpose, we revisit this model by the tensor-
network state (TNS) method [33-37], which is under rapid
development and has drawn great attention due to its suc-
cessful applications in strongly correlated condensed matter
physics [38—40], statistical physics [41-43], quantum field
theory [44—46], machine learning [47,48], etc. To be specific,
the TAHM is described by the Hamiltonian

H=7) 88, (1)
(i)

where J > 0 is the antiferromagnetic coupling. Hereafter we
set J =1 as the energy unit. S; is the spin operator at site
i. (---) means a summation over the nearest-neighbor pairs.
We use the projected entangled simplex state (PESS) ansatz
[49] to represent the ground-state wave function and employ
the corner transfer-matrix renormalization group (CTMRG)
method [39,50,51] to estimate the physical quantities, such as
E},, My, and many-body correlation [52].

The rest of the paper is organized as follows. In Sec. 1I, we
introduce some details of the algorithm employed in our work.
The numerical results for Ej,, M,, and many-body correlation
are present in Sec. III. In Sec. IV, we summarize our work.

II. METHODS

Frustration in TAHM makes it difficult to be investigated
with traditional numerical methods such as Monte Carlo,
which suffers from the infamous sign problem and strong
finite-size effect. Generally, the TNS method is free of the sign
problem and can study this model in the thermodynamic limit
directly by assuming a translationally invariant wave function.
Therefore, it is drawing increasing attention nowadays.

In the TNS family, PESS is a wave function ansatz [49]
generalized from the popular projected entangled pair state
(PEPS) ansatz [35] and is believed to be suitable for frustrated
systems. In this work, the PESS ansatz is defined as

W) =D TS AP (ow] )] O ),
{o}
2

which is illustrated in Fig. 1. Here (1, v) denotes the location
of the upward triangles and (A, w) denotes the location of the
lattice sites. A rank-3 simplex tensor S is defined at the center
of each upward triangle and a rank-4 projection tensor A is de-
fined at each lattice site. {7, j, k} and {0’} are the virtual indices
and physical basis associated with the tensors, respectively.
The two virtual indices associated with the same bond take
the same values. Tr is over all the repeated virtual indices and
> is over all the basis configurations.

To employ the translational invariance, we use a 3 x 3
periodicity, which means that

S(u,v) — S(/J,+3m,u+3n) A(A,w) — A(A+3m,w+3n) (3)
where m, n are integers. In other words, we totally have nine
different S and nine different A in the ansatz (2). The corre-
sponding unit cell is illustrated by a dashed rhombus in Fig. 1.

FIG. 1. Schematic diagram of the PESS wave function ansatz
on the infinite triangular lattice. The blue lines are the bonds of the
lattice, which are marked by x, y, and z, respectively. The green lines
represent virtual bonds of the wave function. The tensors sitting at
the center of the triangles are the simplex tensors S and the tensors
covered by red circle are the projection tensors A. The rhombus with
dashed lines marks a 3 x 3 unit cell of the trial wave function. The
physical indices are perpendicular to the plane and not shown here.

It is known that the bond dimension, D, which is the
maximal value of the virtual indices, controls the number of
independent parameters and thus the numerical accuracy. In
this work, D is up to 13. The ground-state wave function
is optimized by a simple update algorithm [53,54]. Though
the full update strategy [55] might be more accurate, it is
much more costly. To verify the result, we compared the
magnetizations at D = 6 so that the full update and the recent
automatic differentiation [56] can be performed. The simple
update approach gives an estimation of about 0.2448. Starting
from such a wave function, full update and automatic differ-
entiation [57] can further reduce the magnetization down to
0.2395 and 0.2382, respectively. The difference among these
results is of the order 1073, In viewing the computational cost,
we choose the more efficient simple update scheme in this
work. The numerical accuracy can be remedied by larger D. In
order to avoid the bias and reduce the Trotter error, we started
from a wave function randomly generated in complex field
and gradually reduced the Trotter step t from a large value,
say 0.2. The final 7 is smaller than 103, which turns out to be
sufficiently small to estimate the magnetization of TAHM.

Physical observables are calculated via the CTMRG
method, which was developed for an arbitrary unit cell on the
square lattice [39]. In Fig. 1, we show the PESS ansatz de-
fined on a honeycomb skeleton. First, we formally deform the
skeleton to a square by simply combining S with A together to
form a single tensor 7, e.g.,

Tinalo] = 2 SIRAL o], )

J
This is done in all the upward triangles coherently, as illus-
trated in Fig. 2(a). Hence the reduced network (W |W¥), which
appears in expectation value calculation, see Eqs. (5) and
(6), can be represented as a two-dimensional tensor network
with a 3 x 3 periodicity, as illustrated in Fig. 2(b), and then
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FIG. 2. (a) Converting the tensor network skeleton from the hon-
eycomb lattice to a square lattice by one-step contraction, e.g., in the
direction of the bonds surrounded by dashed ellipses. (b) The 3 x 3
unit cell obtained after deformation in the reduced network (W |W).
Here the environment tensors of the unit cell are shown explicitly,
e.g., LY are the edge tensors associated with the left of 731,

the standard CTMRG method can be applied directly to con-
tract the network. Finally, the local physical observables can
be calculated efficiently from the local environment tensors
{L,R,U, D, C}. Similarly, the bond dimension yx of the en-
vironment tensors is a tunable parameter which controls the
accuracy in CTMRG. In our calculation, the maximal y is no
less than D? to ensure a reliable result [58].

III. RESULTS

A. Ground-state energy

The ground-state energy usually serves as a key criterion
for trial wave functions, particularly in the variational Monte
Carlo simulations. This is exactly how Huse and Elser ex-
cluded the quantum spin liquid ground state in TAHM [8].
From this aspect, an accurate estimate of the ground-state
energy is important. Therefore, first we need to check whether
our numerical results are reliable, by comparing the ground-
state energy with that in previous works.

The ground-state energy for a given bond (ij) is given by

(WIS, - S;|w)

) 5
(W) ®

(ijy =
where |W) is the PESS representation of the ground-state
wave function; see Eq. (2). Since our system is translationally
invariant, the bond energy Ej, can be estimated by averaging
E ;) over all bonds in one unit cell.

As stated in the previous section, the accuracy of the wave
function is controlled by D and that of the expectation is
controlled by x. Therefore, to obtain accurate results for a
given D, the expectation values are calculated with a series
of x in which the largest one is no less than D? and then
extrapolated as y — oo.

For the smallest D = 4 in our simulations, the ground-state
energy is E, = —0.18226(9), which is already lower than that
obtained by GFMC [15], —0.18193(3), and is also lower than
that obtained by the infinite-PEPS calculation whose ansatz
is defined on the decorated square latice [59] with D = 4,
—0.1813. To provide an intuitive impression, in Fig. 3, we plot
E} as a function of 1/x for D = 10, 11, 12, and 13. It seems
that £, depends very weakly on D when x becomes large and
all the data points are well below those from GFMC.
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FIG. 3. Ground-state energy E, for D =10, 11, 12, and 13 is
plotted as a function of x. The numerical error is on the fifth digit
and they are not shown for a clear vision. The data obtained by
GFMC [15] and SE [21] are also shown for comparison. Our data
are obviously below that from GFMC but agree well with that by SE
(within the error bar).

As yx increases, Ej; roughly decreases monotonically, but
they oscillate in a small interval as a function of D. For the
data points with largest x in Fig. 3, E}, is between —0.18328
and —0.18336. With the available y, this nonmonotonic be-
havior with regard to D makes it difficult to extrapolate our
data and hinder us to obtain more accurate results. As a com-
promise, we first extrapolate the data for D = 10, 11, 12,
and 13 to the infinite x limit, respectively, and then average
them. Our final result is E, = —0.18334(10), which agrees
well with that obtained by the series expansion (SE) [21] and
the coupled cluster method [28].

In Table I, we summarize some recent works for com-
parison. These data indicate that our PESS wave function
represents a good approximation of the ground state of
TAHM.

B. Magnetization

The main debate about this model is whether the ground
state is a TMO state or a quantum spin liquid. From Table I,
we can see that, even in those works advocating TMO, the
magnetization M, differs significantly. For example, if the
error bar is taken into account, the low bound given by SE [26]
is smaller than half of that given in Ref. [19]. This motivates us
to calculate the magnetization in this work. Given the ground
state | W), three components of the magnetization vector M; at
the site i are given by

o (WISHw)

e , a=2xYz (6)
(VW)

from which the magnetization at site i reads

M=)+ (04" + (05

and the relative angles between neighboring spins are im-
mediately available. In the calculation, we found that the
magnetization is almost independent of the sites. For sim-
plicity, hereafter we show only the overall magnetization M,
which is obtained by averaging over all the M; within one
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TABLE I. E, and M, obtained by various methods are shown for
comparison. SB, CC, SWT, VMC, FN, and FNE denote Schwinger
boson mean field theory, coupled cluster, spin-wave theory, vari-
ational Monte Carlo, fixed node, and fixed node with effective
Hamiltonian, respectively. For the three CC references, the maximal
parameters n used in the lattice-animal-based subsystem (LSUB#n)
scheme are listed and indicated by superscript (x), while, for the
other methods, the maximal lattice sizes used in the calculations are
summarized. For almost all the finite-size calculations listed here,
the estimated results are obtained by polynomial extrapolation with
respect to either lattice size or the LSUB parameter.

Method E, M, Year  Max. size
This work —0.18334(10)  0.161(5) 2020 00
SB+1/N [30] 0.224 2018 432
DMRG [29] —0.1837 (7) 2016

CC [28] —0.1838 0.21535 2016 10*
SB [26] 0.2739 2015 00
SWT [26] 0.2386 2015 o0
SE [26] 0.198(34) 2015 00
CC [27] —0.18403(7) 0.198(5) 2015 10*
CC [24] —0.1843 0.1865 2014 10*
VMC [25] —0.18163(7) 0.2715(30) 2014 324
SWT [26] —0.18228 0.24974 2009 00
VMC [22] —0.18233(3) 0.265 2009 576
DMRG [16] 0.205(15) 2007 ~140

FN [17] —0.17996(1) 0.1625(30) 2006 324
FNE [17] —0.18062(2) 0.1765(35) 2006 324
SE [21] —0.18340(13)  0.19(2) 2006 00
VMC [19] —0.1773(3) 0.36 2006 108
ED [13] —0.1842 0.193 2004 36
DMRG [20] —0.1814 2001 144
GFMC [15] —0.18193(3) 0.205(10) 1999 144

unit cell. Similar to the calculation of Ej, for a given D, we
extrapolate M as a function of 1/ to the infinite x limit.
The results for D from 7 to 13 are illustrated in Fig. 4. We
notice that, for D = 9, our result is already smaller than most
recent results; see Table I. Clearly, it shows that M decreases
roughly as a monotonic function of 1/D. To get a more accu-

0.30 . . .
[ —— 0.161+870x (1/D)*"®
A 0.161+156x (1D /,
=L === 0.1574546x (1/D)" 7 7
M r .

020}

opsEe ]
000 005 010 015 020

1/D

FIG. 4. M, marked as [J, is plotted as a function of 1/D. All the
data points have already been extrapolated to the infinite-x limit. The
lines are different numerical fittings: solid line is obtained from all
D, while dot-dashed line and dashed line are obtained from even and
odd D only, respectively.

TABLE II. Angles (in unit of degree) of the magnetization vec-
tors between nearest neighbors are shown. Location of the upward
triangles in the unit cell is listed explicitly. x, y, and z are the three
directions in the triangle lattice, as marked in Fig. 1. They indicate
the corresponding bonds of the triangle here.

D=4x=32 D=13,x =170

(@, v) X y b4 X y z

(1, 1) 120.004 120.000 119.996 120.010 119.988 120.002
(1,2) 119.999 120.000 120.001  119.985 119.994 120.021
(1,3) 119.997 120.000 120.003  120.005 119.993 120.002
(2, 1) 120.004 120.000 119.996  120.005 120.012 119.983
(2,2) 119.999 120.000 120.001  119.992 120.013 119.994
(2,3) 119.997 120.000 120.003  120.004 120.013 119.983
(3,1) 120.004 120.000 119.006 120.003 120.001 119.996

(3.2
(3.3

119.999 120.000 120.001
119.997 120.000 120.003

119.993 120.993 119.986
120.004 119.994 120.998

rate estimate, we try to fit them with two typical formulas. One
is a power-law formula, i.e., M = My + a x (1/D)", yielding
My = 0.161. The other is an exponential formula, i.e., M =
My + a x exp(—bD), with My = 0.164 for the best fit.

With a careful inspection of Fig. 4, we notice that there is
a tiny even-odd oscillation in the magnetization as a function
of D, which suggests we fit the magnetization for even and
odd D separately. Using the power-law formula, we obtain
My = 0.161 and My = 0.157 for even and odd D, respectively.
Defining the error bar as the standard deviation among the
four different M, obtained above, we conclude that My =
0.161(5), which is very close to the lower bound obtained by
SE [21,26]. One may notice that this value is also very close
to that in Ref. [17], but their ground-state energy is obviously
not optimal. More details can be found in Table I.

We would like to emphasize that the magnetization we
obtained is slightly smaller than 1/3 of its classical value.
In particular, it is smaller than all that obtained in previous
works. On one hand, such a small magnetization requires a
careful finite-size analysis to obtain a quantitatively reliable
estimation in numerical calculations such as the ED, DMRG,
and Monte Carlo. On the other hand, generally, the TNS
method usually tends to overestimate the magnetization in
frustrated systems when D is finite [40]. This suggests that
probably our smallest result for finite D is the upper bound
of the magnetization. Therefore, it is quite likely that M, has
been overestimated in previous works.

In Table II, we present the data of the angles between all the
nearest neighbors in the unit cell, for two sets of parameters,
i.e., D =4 with x =32 and D = 13 with x = 170. It shows
that (I) the 120° angles between nearest neighbors are almost
perfect, in the sense that the largest error bar is as small as
0.021° with D up to 13, and (II) in contrast to the magnetiza-
tion, the angles are almost independent of D and y, as long as
they are not too small. Therefore, we can safely conclude the
existence of the TMO.

C. Larger unit cell

The result of TNS simulation might also depend on the size
of the unit cell; thus we need to check whether the unit cell we
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FIG. 5. E, and M are shown as a function of x for 6 x 6 and
3 x 3 unit cells. Our results show that they agree well, suggesting
that the 3 x 3 unit cell is large enough for TAHM.

used in the wave function ansatz is sufficiently large. For this
purpose, we compare our results from the 3 x 3 unit cell with
those from the 6 x 6 unit cell. In Fig. 5, we plot E, and M
as a function of x for D = 10 and 6. The data is in excellent
agreement for the two different unit cells and the differences
at all data points are negligible compared to the error bar. This
suggests that the 3 x 3 unit cell in our work is already large
enough for TAHM.

D. Many-body correlation

The motivation to study the many-body correlation in this
model comes from two perspectives. On one hand, the exis-
tence of TMO indicates that in each triangle there is probably
some three-body correlation that is essentially different from
the two-body correlation. Actually, this is one reason why we
use the PESS ansatz to study this model. On the other hand,
from the view of quantum information, for mixed many-body
states, generally the total correlation leaks more information
than the part peculiar to quantum states only, i.e., entan-
glement, which has no classical counterpart [52]. Moreover,
though PESS is believed to be able to capture the many-body
correlation better, there is no direct numerical evidence yet to
demonstrate the existence of such correlation in the obtained
wave function. Therefore, the frustrated TAHM offers such an
opportunity to study the many-body correlation, especially the
three-body correlation in a triangle.

To be specific, we envisage that the three spins {o,, 0, 0.}
in a triangle comprise a mixed quantum state, which can
be characterized by the reduced-density matrix p©® defined
below:

pir =) 1) (Wi, (7)
J

where I denotes the composite index {o,, o3, 0.} and J rep-
resents all the rest spins. Similarly we can define p'" for one
spin and p® for a pair of spins sharing one bond.

Once the three kinds of mixed states are defined, we
can calculate the von Neumann entropies, S = —Trp In p,
for these states. For simplicity, we use S;, S;;, and S;j
to denote the entropies corresponding to spin o;, spin
pair {o;,0;}, and spin simplex {o;, 0}, 0%}, respectively,

030 ;/0_2)_0’4:)/0—5———0\:)—4) 1
0.25 D/\H\DA—D_D\H -
= 020F N
2 o ®
5]
Té 015 —o—1@ i
S 1w
0.10 i
0.05F oo oo —0o—o
—©
o 4//
0.00 4~ L L . .
4 6 8 10 12

FIG. 6. Correlation measured by mutual information in one tri-
angle of the ground-state wave function. Here, /® denotes the total
pair correlation, namely I® = I, + I, + I,. See Egs. (8) and (9).

with i, j,k = a, b, c. Then we measure the correlations in
this small triangle through the following quantities defined
below:

I, =S4,
Iab = Sa + Sb - Sabs
19 =S, + Sy + Se — Saes ®)

where I, and I® are the two-body and three-body mutual
information which are used to measure the total correlation for
a general quantum system [52], respectively. Other terms can
be obtained similarly. Moreover, the true tripartite correlation
Il(f ), which is more relevant in this context, can be identified
from I® by excluding the pair correlation contributions, i.e.,

It(f) = 1(3) — dab — Ihc - Ica- (9)

The obtained results are shown in Fig. 6. We can see
clearly that in this frustrated system, as D becomes larger,
pair correlation becomes weaker, while simplex correlation
becomes stronger. More importantly, it shows that, as D in-
creases, the true tripartite correlation It(f ) becomes more and
more significant, which coincides with the fact that the TMO
can be argued to have imposed a global constraint on the
three spins simultaneously, not just a local constraint on each
pair in the triangle. This makes us more confident that the
ground state should be of TMO and that the PESS wave func-
tion can indeed grasp well the many-body correlation in this
model.

IV. SUMMARY

In summary, using tensor-network algorithms with a
PESS-type trial wave function, we have studied the spin-
1/2 antiferromagnetic Heisenberg model on the triangular
lattice. This wave function was optimized by the simple up-
date imaginary-time evolution method and the expectation
values were estimated by the multisublattice CTMRG algo-
rithm. By comparing the ground-state energy to that in other
works, we confirmed that the wave function converges to
the ground state and it is a TMO state. In particular, the
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magnetization is My = 0.161(5), which is smaller than that
reported in previous calculations like GFMC and DMRG.
Although frustration and quantum fluctuation do introduce
some unusual properties into the model, such as rotonlike
excitations [21], its ground state remains magnetically or-
dered. This result is consistent with the correlation analysis,
which shows that, as D increases, the two-body correlation
becomes weaker gradually, while the three-body correlation
becomes increasingly significant. In view of the experience
that the TNS method, especially when simple update strat-
egy is used, may tend to overestimate the magnetization of
frustrated systems a little bit for a finite D (as evidenced by
the comparison for D = 6 in the main text, for example),

we believe that our work provides benchmark results for this
model.
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