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Chiral-phonon-induced current in helical crystals
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In this paper, we theoretically show that in a helical crystal, a current is induced by chiral phonons representing
the microscopic local rotation of atoms. By treating the rotational motion as a perturbation, we calculate the
time-dependent current by using the adiabatic Berry phase method. The time average of the current along
the helical axis becomes finite in the metallic phase but it vanishes in the insulating phase. On the other hand,
the current in the hexagonal plane changes with time, but its time average vanishes due to the threefold rotation
space-time symmetry. We show that the time evolutions of the current follow the space-time symmetries of the
helical systems. Moreover, we explain the reason for the vanishing of the time average of the current in the
insulating phase from the aspect of the Chern number in the parameter space.
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I. INTRODUCTION

Chirality is a fundamental property which reveals sym-
metry breaking of elementary particles. In condensed matter
physics, electronic states around Weyl points become chiral,
leading to many unconventional transport phenomena, such as
chiral anomaly [1,2], Klein tunneling [3], and unconventional
Landau bands [4]. Recently, the induced current involving
chirality, such as the circular photogalvanic effect in Weyl
semimetals without inversion and mirror symmetries, has
been proposed [5] and the helicity-dependent photocurrent in
topological insulators has been discovered [6]. This effect is
a second-order chiral response which is generated by circular
polarized light distinguished by left-handed and right-handed
polarizations. It is similar to the chiral phonons at K and K ′
valleys in which the exchange of phonon angular momentum
is excited through absorbing circularly polarized photon and
emitting a chiral valley phonon [7,8].

A similar kind of chiral nature of eigenmodes in k space
also appears in phonons. Studies of chiral phonons in the
honeycomb lattice have revealed that phonons can have a mi-
croscopic local rotation of atoms in crystals, and this rotation
is formulated as an angular momentum of phonons [9,10].
Various phenomena related to the phonon angular momentum
have been investigated, such as the orbital magnetic moments
of phonons [11–16], magnon-phonon interconversion [17,18],
the phonon Hall effect [19–23], and spin-phonon processes
[24,25]. In particular, phonon-induced magnetization related
to spin has been vigorously pursued for several years. One
can show that in the presence of spin-orbit coupling, the
microscopic local rotation can induce magnetization [26,27].
On the other hand, it has been reported that in a helical
crystal structure, a magnetization along a helical axis can
be induced by an electric current [28–30]. Combining the
fact between the chiral-phonon-induced magnetization and
the current-induced magnetization, a natural question arises:

Is it possible that a magnetization and a current are coupled
together when the chiral phonons meet the helical crystal
structure with chirality? Because a magnetization and a cur-
rent satisfy similar symmetry properties [31,32], we expect
that rotational motions of atoms can induce a current in a
helical system. To exhibit chiral-phonon-induced current, in-
version symmetry should be broken. Among various systems
without inversion symmetry, in this paper we choose helical
crystals as an example because helical systems, having right-
handed and left-handed ones, are good for discussing various
symmetry properties.

In this paper, we theoretically propose that in a helical crys-
tal with honeycomb-lattice layers, a current along the helical
axis is induced by the microscopic local rotation of atoms.
We introduce a simple toy model which describes a helical
system comprising layers of honeycomb lattices and suppose
that the atoms are rotating with time due to a chiral phonon.
The coupling between chiral phonons and electrons can be
viewed as an adiabatic process, in which the electronic states
relate to the Berry phase. There has been a substantial amount
of study on chiral phonons, as well as effects arising from
Berry phase treatment of chiral phonons in the last few years
[33–37]. In the present paper, by treating the rotational motion
as an adiabatic perturbation, we use the Berry phase method
to calculate the time-dependent current. As a result, we obtain
a finite chiral-phonon-induced current along the helical axis,
and within the hexagonal plane its time average becomes zero
in the metallic phases. On the other hand, in the insulating
phases, the time average of the current along the helical axis
vanishes and it can be explained naturally from the zero Chern
number in the parameter space.

The remainder of the paper is organized as follows. In
Sec. II, we introduce a tight-binding model for a helical sys-
tem with chiral phonons. Section III presents the calculation
of the chiral-phonon-induced current. In Sec. IV, we dis-
cuss dependence of the chiral-phonon-induced current on the
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FIG. 1. Helical structure with honeycomb-lattice layers. (a) One
layer of the helical lattice, forming a honeycomb lattice. (b) Hopping
pattern in the left-handed helical crystal. (c) Hopping pattern in the
right-handed helical crystal.

on-site energy and the reason for vanishing of the current in
insulators. Then we propose a realization of Thouless charge
pumping. Section V concludes this paper. Some details of our
calculations are placed in the Appendix.

II. MODEL FOR A HELICAL SYSTEM WITH PHONON
ANGULAR MOMENTUM

A. Toy model with helical structure

First, we assume a helical crystal structure which is com-
posed of an infinite stack of honeycomb lattice layers as
shown in Fig. 1 with one s-like orbital per site. In Fig. 1(a),
the red and blue balls represent the A and B atoms at the
two sublattices, respectively. The primitive translation vectors
are chosen as a1 = a(1, 0, 0), a2 = a(1/2,

√
3/2, 0), a3 =

(0, 0, c) with lattice constants a in the xy plane and c along the
z direction. The vectors which connect the nearest-neighbor
atoms are d1 = a0(

√
3/2, 1/2, 0), d2 = a0(−√

3/2, 1/2, 0),
d3 = a0(0,−1, 0), where a0 = a/

√
3 represents the length

of the nearest-neighbor bond. For convenience, we label
the vectors b1 = a1, b2 = a2 − a1, and b3 = −a2, which
connect the next-nearest neighbor atoms. We introduce a
three-dimensional tight-binding model with intra- and inter-
layer hoppings of electrons. Here, we consider a spinless
tight-binding Hamiltonian for electrons given by

Ĥ0 = t1
∑
〈i, j〉

ĉ†
i ĉ j +

∑
μ=A,B

∑
[i, j]

tμĉ†
μ,iĉμ, j + λν

∑
i

ξiĉ
†
i ĉi, (1)

where t1, tA, tB, λν are real parameters and ĉi (ĉ†
i ) refers to an

annihilation (a creation) operator at site i. The first term rep-
resents the nearest-neighbor hoppings within the honeycomb
lattice layers. The second term represents the helical hoppings
between the neighboring honeycomb layers. In this term, we

put a subscript μ = (A, B) to distinguish two sublattices. We
consider two models having different patterns of the helical
hoppings, right-handed and left-handed ones. In the right-
handed helical hoppings shown in Fig. 1(b), the directions
of interlayer hoppings between A sites are ±(−bi + a3) and
those between B sites are ±(bi + a3). Similarly, in the model
with the left-handed helical hoppings shown Fig. 1(c), the
directions of hoppings between A sites are ±(bi + a3) and
those between B sites are ±(−bi + a3). Meanwhile, we sup-
pose that the atoms A and B have the different helical hopping
parameters tμ, μ = A, B. The existence of the helical hopping
term breaks inversion and mirror symmetries which are held
by the structure consisting of the honeycomb lattice layers
without the helical hoppings. The third term is a staggered
on-site energy ξiλν , where ξi is +1 and −1 for A and B
sublattices, respectively.

Let HR
0 (k) and HL

0 (k) denote the k-dependent Bloch
Hamiltonians with the right-handed and left-handed hoppings,
respectively. The Bloch Hamiltonians are represented as

Hα
0 (k) = dα

0 (k)σ0 + dx(k)σx + dy(k)σy + dα
z (k)σz, (2)

where σ0 is a 2 × 2 identity matrix, σi are Pauli matrices,
and α = R, L represents the two helical structures. Here the
functions di(k) (i = x, y) and dα

j (k) ( j = 0, z) are

dR,L
0 (k) = (tA + tB) cos(kzc)

3∑
i=1

cos (k · bi )

± (tA − tB) sin(kzc)
3∑

i=1

sin (k · bi ), (3)

dx(k) = t1[1 + C1(k) + C2(k)], (4)

dy(k) = t1[S1(k) + S2(k)], (5)

dR,L
z (k) = λν + (tA − tB) cos(kzc)

3∑
i=1

cos (k · bi )

± (tA + tB) sin(kzc)
3∑

i=1

sin (k · bi ), (6)

where

C1(k) = cos (k · a1),C2(k) = cos (k · a2),

S1(k) = sin (k · a1), S2(k) = sin (k · a2). (7)

More details about the connection between the tight-binding
Hamiltonian Eq. (1) and the Bloch Hamiltonian Eq. (2) are
placed in the Appendix. We notice that the helix is distin-
guished by the functions dα

z (k) and dα
0 (k), in which α = R, L

correspond to the right-handed and left-handed helical struc-
tures, respectively.

B. Microscopic local rotation as a perturbation

Next, we introduce a perturbation term due to the micro-
scopic local rotation of atoms as a special phonon mode. Here
we consider chiral phonons at the � point of the Brillouin
zone, which have been treated for the study of magnetization
in recent years [15,26,38–41]. At the � point, two optical
phonon modes with displacement within the xy plane are
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FIG. 2. Two modes of microscopic rotation for the left-handed
and right-handed helices related by the mirror reflection Mx with
respect to the yz plane. (a-1) The left-handed helix with the CW
(clockwise) phonon mode. (a-2) The right-handed helix with the
CCW (counterclockwise) phonon mode. (b-1) The left-handed helix
with the CCW phonon mode. (b-2) The right-handed helix with the
CW phonon mode.

degenerate, and they are circularly polarized phonon modes
corresponding to the microscopic local rotation of atoms. In
this case of the phonon at the � point, the atoms in the same
sublattices rotate with the same phase in the hexagonal plane,
and the phase difference of the rotational motion between
atoms A and B is π . In general, the rotational motion of atoms
around the equilibrium position has two directions, the clock-
wise (CW) rotation and the counterclockwise (CCW) rotation.
When the rotational motions within the hexagonal plane ap-
pear in the helical systems, we have four possibilities shown in
Fig. 2. Here we only consider the patterns in Figs. 2(a-1) and
2(a-2). The patterns in Figs. 2(b-1) and 2(b-2) are obtained
from Figs. 2(a-1) and 2(a-2) by the twofold rotation C2y with
respect to the y axis.

In Fig. 2(a-1), we put the displacement vectors in the left-
handed helix of atom A and atom B at time t to be

rL
A = rA

0 (− cos ωt, sin ωt ), rL
B = −rB

0 (− cos ωt, sin ωt ), (8)

where L labels the left-handed helix, and the angular velocity
corresponding to the rotation of atoms is set to be ω. The
displacement vector from atom A to atom B is

rL = rL
B − rL

A = −r+(− cos ωt, sin ωt ), (9)

with r+ = rA
0 + rB

0 . Then we assume that the lattice deforma-
tion rL modifies the nearest-neighbor hopping parameter as
t1 → t1 + δtL

a [26,42], where a = 1, 2, 3 represents the three
directions of da corresponding to the nearest-neighbor hop-
pings. Then the first term in the Hamiltonian Eq. (1) obtains
an extra term depending on the time t due to the microscopic

local rotation of atoms. The extra term is defined as

ĤL
h =

∑
〈i, j〉

δtL
i j (t )ĉ†

i ĉ j, (10)

where δtL
i j is the modulation of the nearest-neighbor hop-

ping parameter. It is natural to assume that the tight-binding
hopping parameters for the s-like orbital depend only on the
distance between atoms, and we set the modulation to be
proportional to the length change along the direction of the
nearest-neighbor hopping, which is given by rL(t ) · (da/a0).
Thus, the modulation of the nearest-neighbor hopping param-
eter is written as

δtL
a (t ) = − t1

a2
0

rL(t ) · da. (11)

Therefore, the modulated Bloch Hamiltonian is given by

HL
h (k, t ) = Hc(k)δt cos ωt + Hs(k)δt sin ωt, (12)

where

Hc(k) =
√

3

2
{−[1 − C1(k)]σx + S1(k)σy},

Hs(k) = 1

2
{[1 + C1(k) − 2C2(k)]σx + [S1(k) − 2S2(k)]σy},

(13)

with δt = r±t1/a0.
Next, we define the displacement vector rR in the right-

handed helix with CCW phonons in Fig. 2(a-2). We choose
rR = −r+(cos ωt, sin ωt ) so it should be related to Fig. 2(a-2)
by the mirror symmetry Mx with respect to the yz plane.

Finally, the total Bloch Hamiltonian considering a periodic
microscopic local rotation of atoms for the left-handed helix
with CW phonons depicted in Fig. 2(a-1) is

HL(k, t ) = HL
0 (k) + Hc(k)δt cos ωt + Hs(k)δt sin ωt, (14)

and similarly, the total Bloch Hamiltonian for the right-handed
helix with CCW phonons depicted in Fig. 2(a-2) is written as

HR(k, t ) = HR
0 (k) − Hc(k)δt cos ωt + Hs(k)δt sin ωt . (15)

III. CHIRAL-PHONON-INDUCED CURRENT

The motion of atoms in the chiral phonon mode will affect
the electronic states. In previous studies [13,35], an adiabatic
circular current produced by chiral phonons has been studied.
In this section, we study an adiabatic linear current arising
from Berry phase treatment of chiral phonons. We calculate
expectation values of the current for the time-dependent peri-
odic Hamiltonian by using the Berry phase method [26,27].

A. Berry phases in adiabatic process

For our purpose, we review the general method of calculat-
ing an expectation value of an operator X̂ , given by

X̂ (t ) = ∂λĤλ(t ), (16)

where we introduce a parameter λ into the Hamiltonian, fol-
lowing Refs. [26,27]. We assume that the Hamiltonian Ĥλ(t )
has a periodic adiabatic dependence on time t , and let |ψn,λ(t )〉
be its instantaneous eigenstate of the band n at time t with an
instantaneous eigenvalue En,λ(t ), where n is the band index.
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Suppose that the change of Hamiltonian Ĥλ(t ) is slow enough
that the band index n does not change at all with the change
of the Hamiltonian. It means that the energy gap �nm between
the band n and another band m satisfies the adiabatic condition
�nmT/h̄ � 1 with the time period T = 2π/ω. The expecta-
tion value of the operator X̂ (t ) is defined as

X ≡ 1

T

∫ T

0
dt tr[ρ̂(t )X̂ (t )], (17)

where ρ̂(t ) is the density matrix obeying the von Neumann
equation ih̄∂t ρ̂(t ) = [Ĥλ(t ), ρ̂(t )]. In the absence of the time
evolution, we set the density matrix to be identical to a
projection to the nth instantaneous eigenstate |ψn,λ〉〈ψn,λ|
only. It acquires contributions from other states satisfying
Ĥλ(t )|ψm,λ(t )〉 = Em,λ(t )|ψm,λ(t )〉 due to the time evolution.
The matrix elements of the density matrix between the bands
n and m are given by

〈ψm,λ(t )|ρ̂(t )|ψn,λ(t )〉 = ih̄
〈ψm,λ(t )|∂t |ψn,λ(t )〉

Em,λ(t ) − En,λ(t )
. (18)

Next, the matrix elements of X̂ (t ) = ∂λĤλ(t ) between bands
n and m are written as

〈ψn,λ(t )|X̂ (t )|ψm,λ(t )〉
= [Em,λ(t ) − En,λ(t )]〈ψn,λ(t )|∂λ|ψm,λ(t )〉 (19)

by using the Sternheimer equation

∂λ[Ĥλ(t ) − En,λ(t )]|ψn,λ(t )〉
= [En,λ(t ) − Ĥλ(t )]|∂λψn,λ(t )〉. (20)

By combining these equations and summing over the oc-
cupied states n, the expectation of the operator X̂ (t ) is written
as

X (t ) =
occ∑
n

(
∂λEn,λ(t ) + Fn,λ(t )

)
, (21)

where

Fn,λ(t ) ≡ ih̄∂t 〈ψn,λ(t )|∂λψn,λ(t )〉
− ih̄∂λ〈ψn,λ(t )|∂tψn,λ(t )〉 (22)

is the Berry curvature corresponding to the band n in the
(t, λ) space and

∑occ
n represents a sum over the occupied

states. Since in the time-periodic systems we can choose the
instantaneous eigenstates to satisfy |ψn,λ(t )〉 = |ψn,λ(t + T )〉,
the general expression is written as

X (t ) =
occ∑
n

(
X inst

n (t ) + X geom
n (t )

)
, (23)

with

X inst
n (t ) ≡∂λEn,λ(t )

=〈ψn(t )|X̂ (t )|ψn(t )〉, (24)

X geom
n (t ) ≡ h̄

∑
m( �=n)

{
X̂nm(λ, t )Amn(λ, t )

En,λ(t ) − Em,λ(t )
+ c.c.

}
, (25)

where X̂nm(λ, t ) = 〈ψn(t )|∂λĤ (t )|ψm(t )〉 and Amn(λ, t ) =
〈ψm(t )|(−i∂t )|ψn(t )〉 are the matrix elements of the operator
X̂ (t ) and the Berry phase, respectively.

B. Chiral-phonon-induced current as an adiabatic process

Now we apply this method to calculate an expectation
value of the current operator, which is written as the derivative
of Bloch Hamiltonian H(k) with respect to the wave vector k,

Ĵ = −e

h̄
∂kH(k), (26)

where −e is the electron charge. Here we assume that the
phonon frequency is much smaller than the excitation gap
at each k, and therefore the coupling between phonons and
electrons is viewed as an adiabatic process. This assumption
will be discussed and justified later in Sec. IV A. We use the
Berry phase method to calculate the expectation value of the
current operator Ĵ. From Eqs. (24) and (25), the expectation
value of the current operator at a fixed k0 point for a multiband
model is written as

Ĵ(t )|k0 =
occ∑
n

〈ψn,k(t )|Ĵk(t )|ψn,k(t )〉|k0

+ h̄
occ∑
n

∑
m( �=n)

{
Ĵnm(k, t )Amn(k, t )

En,k(t ) − Em,k(t )

∣∣∣∣∣
k0

+ c.c.

}
,

(27)

where Ĵnm(k, t ) = 〈ψn,k(t )|Ĵk(t )|ψm,k(t )〉 and Amn(k, t ) =
〈ψm,k(t )|(−i∂t )|ψn,k(t )〉 are the matrix elements of the current
operator and the Berry connection, respectively. Consider-
ing the contributions from all the k points, the total current
is expressed as a summation over the entire first Brillouin
zone. Therefore, the total expectation value of the current
operator is

Ĵ(τ ) =
occ∑
n

[
jinst
n (τ ) + jgeom

n (τ )
]
, (28)

with

jinst
n (τ ) = −e

V

∑
k

v̂nn(k, τ ), (29)

jgeom
n (τ ) = −eω

V

∑
k

∑
m( �=n)

{
v̂nm(k, τ )Amn(k, τ )

En,k(τ ) − Em,k(τ )
+ c.c.

}
,

(30)

where V is the total volume of the crystal. We intro-
duce a dimensionless quantity τ = ωt to replace time
t , where ω represents the phonon frequency. Here we
define the matrix elements of the velocity v̂nm(k, τ ) =
〈ψn,k(τ )|∂kH(k, τ )|ψm,k(τ )〉, and the Berry connection is
rewritten as Amn(k, τ ) = 〈ψm,k(τ )|(−i∂τ )|ψn,k(τ )〉. The ex-
pectation value of the current is divided into two parts; the
first part jinst

n (τ ) is called instantaneous current for the band n
at the rescaled time τ and the second part jgeom

n (τ ) is dubbed
geometric current, which is associated with Berry connection
in the adiabatic process.
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C. Symmetry analysis

We consider symmetries in our model and study symmetry
properties of the current. The time-dependent Bloch Hamilto-
nian Eq. (14) for the left-handed helix with CW phonons and
Eq. (15) for the right-handed helix with CCW phonons are
rewritten as

HL(k, τ ) = HL
0 (k) + Hc(k)δt cos τ + Hs(k)δt sin τ, (31)

HR(k, τ ) = HR
0 (k) − Hc(k)δt cos τ + Hs(k)δt sin τ, (32)

with the rescaled time τ . In the absence of phonons, only
the spatial symmetries need to be considered. The inversion
symmetry is broken by the staggered on-site energy in our
model. As we mentioned before, the right-handed and left-
handed structures are connected with each other by the mirror
symmetry Mx with respect to the yz plane. On the other hand,
each helical structure holds the threefold rotation symmetry
C3z with respect to the z axis because the layers are composed
of honeycomb lattice within the xy plane. In the presence of
phonons, the lattice structure is deformed slightly and peri-
odically with time. In this case, the spatial symmetries are no
longer enough, and the extra space-time symmetries should be
taken into account.

The instantaneous Hamiltonian Hα (k, τ ) (α = R, L) pre-
serves the time-reversal symmetry, where the time-reversal
operator for the spinless system is expressed as � = K , with
K being the complex-conjugate operator, namely, the time-
dependent Bloch Hamiltonian satisfies

�Hα (k, τ )�−1 = Hα (−k, τ ), α = R, L (33)

without changing the sign of the rescaled time τ because of
�Hc(s)(k)�−1 = Hc(s)(−k). Thus, the instantaneous eigen-
states |ψα

n,k(τ )〉 and the instantaneous eigenenergy Eα
n,k(τ )

satisfy

�
∣∣ψα

n,k(τ )
〉 = ∣∣ψα

n,−k(τ )
〉
, Eα

n,k(τ ) = Eα
n,−k(τ ), (34)

which lead to the symmetry properties of the instantaneous
matrix elements for the velocity v̂α

nm(k, τ ) and the Berry con-
nection Aα

mn(k, τ ) as

v̂α
nm(k, τ ) = 〈

ψα
n,k(τ )

∣∣∂kHα (k, τ )
∣∣ψα

m,k(τ )
〉

= 〈
ψα

n,−k(τ )
∣∣(−∂−kHα (−k, τ ))

∣∣ψα
m,−k(τ )

〉
= −v̂α

nm(−k, τ ) (35)

and

Aα
mn(k, τ ) = 〈

ψα
m,k(τ )

∣∣(−i∂τ )
∣∣ψα

n,k(τ )
〉

= 〈
ψα

m,−k(τ )
∣∣(i∂τ )

∣∣ψα
n,−k(τ )

〉
= −Aα

mn(−k, τ ). (36)

From these relations, we directly notice that the instantaneous
current jinst,α

n (τ ) in Eq. (29) becomes zero since the terms at
k and −k cancel in the summation over the first Brillouin
zone. Hence, only the geometric current is nontrivial and it
contributes to the time-averaged current induced by chiral
phonons.

For the geometric current jgeom
n (τ ) in Eq. (30), we note the

following two space-time symmetries. First, mirror reflection
gives the relationship of the geometric current between the

left-handed helix with CW phonons [Fig. 2(a-1)] and the
right-handed helix with CCW phonons [Fig. 2(a-2)]. At any
rescaled time τ , the mirror reflection transfers the position
rR(τ ) of atoms in the right-handed helix into the position rL(τ )
in the left-handed helix. Second, the system preserves the
space-time symmetry, which is represented by the threefold
rotation operation followed by ∓T/3 time translation. The
time-dependent Bloch Hamiltonian under these space-time
symmetries imposes the following conditions. First, the mirror
reflection connects the right-handed and left-handed helices

U1HR(kx, ky, kz, τ )U −1
1 = HL(−kx, ky, kz, τ ), (37)

where

U1 =
(

1 0
0 e−ik·a1

)
. (38)

Second, the threefold rotation operation gives

U2HL(k, τ )U −1
2 = HL

(
C3zk, τ − 2π

3

)
, (39)

U2HR(k, τ )U −1
2 = HR

(
C3zk, τ + 2π

3

)
, (40)

where

U2 =
(

eik·a2 0
0 1

)
(41)

and C3zk = (−kx/2 − √
3ky/2,

√
3kx/2 − ky/2, kz ).

Under these two space-time symmetries, the relations
between the right-handed and left-handed helices for the
instantaneous matrix elements of the velocity v̂nm and the
Berry connection Amn are obtained. First, the mirror re-
flection gives the instantaneous matrix elements of the
velocity

vR
nm,x (kx, ky, kz, τ ) = −vL

nm,x (−kx, ky, kz, τ ), (42)

vR
nm,y(kx, ky, kz, τ ) = vL

nm,y(−kx, ky, kz, τ ), (43)

vR
nm,z(kx, ky, kz, τ ) = vL

nm,z(−kx, ky, kz, τ ), (44)

and the instantaneous Berry connection:

AR
mn(kx, ky, kz, τ ) = AL

mn(−kx, ky, kz, τ ). (45)

Second, the rotation operation gives the instantaneous matrix
elements of the velocity

v̂α
nm(k, τ ) = C−1

3z v̂α
nm

(
C3zk, τ ∓ 2π

3

)
, (46)

and the instantaneous Berry connection

Aα
mn(k, τ ) = Aα

mn

(
C3zk, τ ∓ 2π

3

)
, (47)

with the minus (plus) sign for α = L (α = R). Therefore, the
relations of the time-dependent geometric current between
the two helical structures connected by the space-time mirror
reflection satisfies

jgeom,R
n,x (τ ) = − jgeom,L

n,x (τ ), (48a)

jgeom,R
n,y(z) (τ ) = jgeom,L

n,y(z) (τ ), (48b)
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FIG. 3. Band structure for the helical model of a stacked hon-
eycomb lattice without phonons. The lattice constants are a = 1,
c = 2 and the hopping parameters are set to be tA = 0.5t1, tB = 0.8t1.
(a) The first Brillouin zone of the model. (b) The metallic band
dispersion with the on-site energy value λν = 3t1. (c) The insulating
band dispersion with the on-site energy value λν = 5t1.

and for each helical structure, the geometric current satisfies

jgeom,α
n (τ ) = C−1

3z jgeom,α
n

(
τ ∓ 2π

3

)
. (49)

We numerically calculate the geometric current jgeom(τ )
for our two-band spinless model. The electronic energy band
structure along the high-symmetry points [see Fig. 3(a)] with-
out phonons is shown in Figs. 3(b) and 3(c), whose on-site
energy is set to be λν = 3t1 and λν = 5t1, representing metal-
lic and insulating phases, respectively. Meanwhile, we set
the modulated hopping term arising from chiral phonons to
be δt = 0.1t1, which is smaller than other parameters and
can viewed as a perturbation term to calculate the induced
currents. It means that the displacement is around 10% of the
lattice constant. We plot the geometric current for the metallic
phases with λν = 3t1 in Fig. 4 and that for the insulating
phases with λν = 5t1 in Fig. 5. We compare the time evo-
lution of the geometric current between two opposite helical
structures. We see that the symmetry properties in Eqs. (48a),
(48b), and (49) are indeed satisfied. On the other hand, in
the xy plane, the geometric currents rotate and its trajectory
forms a trianglelike cycle as shown in Figs. 4(a-2), 4(b-2)
and Figs. 5(a-2), 5(b-2) for the metallic and insulating phases,
respectively. The time average of the geometric currents in
the xy plane over one period vanishes due to the space-time
threefold rotation symmetry. Here we notice that the time-

averaged z component of the geometric current is finite for
the metallic phases but vanishes for the insulating phases.

IV. DISCUSSION

In this section, we discuss two aspects of the chiral-
phonon-induced current. The first one is the dependence of
the geometric current on the on-site energy λν . The second
aspect is to explain why the time-averaged z component of
the geometric current vanishes in the insulating phases. More
precisely, we show that this time-averaged current in insula-
tors with a periodic change of parameters is quantized, but
in systems with chiral phonons the quantized value is zero.
To illustrate this quantization, we propose a toy-model real-
ization of the charge pumping apart from systems with chiral
phonons.

A. Dependence of the chiral-phonon-induced current
on the on-site energy λν

Here we focus on the right-handed helix with CCW
phonons, and the geometric current for the on-site energies
λν = 5t1, 4t1, 3t1, 2t1 are shown in Figs. 6(a-1)–6(d-1). In
Fig. 6(a-1), (λν = 5t1), the z component of the geometric
current vanishes because it is an insulator. As the on-site
energy decreases, the two energy bands gradually become
close to each other in the Brillouin zone and the system
becomes metallic. In the metallic phases, the z component
of the geometric current becomes finite. On the other hand,
the x and y components rotate in the xy plane with a tri-
anglelike trajectory due to the threefold rotation symmetry.
The shape of the trajectory formed by the x and y compo-
nents changes with the change of the on-site energy while
preserving the threefold rotation symmetry under the time
evolution.

Next, we pay more attention to the z component of the
geometric current and discuss how it depends on the band
structure. In our model, the time-dependent perturbation
causes the dynamical change of the energy band. The time-
dependent geometric current can be rewritten as

occ∑
n

jgeom
n (τ )

= −eω
∑

k

occ∑
n

∑
m( �=n)

{
v̂nm(k, τ )Amn(k, τ )

En,k(τ ) − Em,k(τ )
+ c.c.

}

= −eω
∑

k

occ∑
n

unocc∑
m

{
v̂nm(k, τ )Amn(k, τ )

En,k(τ ) − Em,k(τ )
+ c.c.

}
, (50)

where
∑unocc

n represents a sum over the unoccupied states
m. Here, the summation over m is replaced from that with
m �= n to that over the unoccupied states. We can see that
the geometric current is proportional to the inverse of the
energy difference between the nth occupied band and the mth
unoccupied band [En,k(τ ) − Em,k(τ )]−1, and the magnitude of
the geometric current becomes larger when the gap is small,
as shown in Fig. 7(a). Within the range of λν > 3t1, the band
gap gradually becomes larger for a larger value of λν so the z
component of the geometric current decreases with the on-site
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FIG. 4. Results of the calculation of the geometric current for the metallic phases with tA = 0.5, tB = 0.8, δt = 0.1t1, and λν = 3t1. For
the left-handed helix with CW phonons, (a-1) is the geometric current in x, y, z directions and (a-2) represents the evolution of the geometric
current for one period in the xy plane. For the right-handed helix with CCW phonons, (b-1) is the geometric current in x, y, z directions and
(b-2) represents the evolution of the geometric current for one period in the xy plane.

energy. The magnitude of the geometric current, however,
is not only dependent on the energy difference but also the
product of the matrix element for the velocity and the Berry
connection in the numerator of Eq. (50). Within the range of
λν < 3t1, the z component of the geometric current increases
with an increase of the on-site energy. For these on-site ener-
gies λν = 2t1, 3t1, 4t1, 5t1, we show the contribution to the
z component of the geometric current from the energy band
in Figs. 7(b)–7(e). Here we show the time average of the
energy band under the time-dependent perturbation, namely,
we plot the time-averaged energy eigenvalue 〈En(k)〉 along
the high-symmetry lines, where

〈En(k)〉 = 1

2π

∫ 2π

0
dτ 〈ψn,k(τ )|H(k, τ )|ψn,k(τ )〉, (51)

and the time-averaged geometric current for the z component:

〈
jgeom
z,n (k)

〉 = −eω

2π

∫ 2π

0
dτ

×
∑

m( �=n)

{
v̂z,nm(k, τ )Amn(k, τ )

En,k(τ ) − Em,k(τ )
+ c.c.

}
. (52)

The results show that in the metallic phases, the z component
of the geometric current comes from the band degeneracy
along the high-symmetry line KH , in which the denominator
in Eq. (52) vanishes and the magnitude 〈 jgeom

z,n (τ )〉 becomes

larger as shown in Figs. 7(b) and 7(c). Once the on-site energy
is too large to let the band touch, as shown in Figs. 7(d) and
7(e), the magnitude 〈 jgeom

z,n (τ )〉 becomes smaller until the z
component of the geometric current eventually vanishes in the
insulating phases.

Now we revisit the condition for adiabatic treatment dis-
cussed in Sec. III B. The adiabatic method is justified when
the denominator En,k(τ ) − Em,k(τ ) is larger than the phonon
frequency ω. This holds for sufficiently low frequency ω in
most cases, except when band degeneracy is at the Fermi
energy. Thus, in our study we can safely use the adiabatic
approximation.

B. Why does the chiral-phonon-induced
current vanish in insulators?

As the on-site energy increases, a gap opens between the
two bands to become an insulator. In the gapped case, the
time-averaged expectation value of the z component of the
geometric current Eq. (29) is written as

〈
jgeom
z

〉 = eω

2πV

∫ 2π

0
dτ

×
∑

k

occ∑
n

∑
m( �=n)

{
v̂z,nm(k, τ )Amn(k, τ )

En,k(τ ) − Em,k(τ )
+ c.c.

}
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FIG. 5. Results of the calculation of the geometric current for insulating phases with tA = 0.5, tB = 0.8, δt = 0.1t1, and λν = 5t1. For the
left-handed helix with CW phonons, (a-1) is the geometric current in x, y, z directions and (a-2) represents the evolution of the geometric
current for one period in the xy plane. For the right-handed helix with CCW phonons, (b-1) is the geometric current in x, y, z directions and
(b-2) represents the evolution of the geometric current for one period in the xy plane.

FIG. 6. Dependence of the geometric current on the on-site energy λν with the parameter values tA = 0.5, tB = 0.8, and δt = 0.1t1 for the
right-handed helix with CCW phonons. The on-site energies are set to be (a-1), (a-2): λν = 5t1, (b-1), (b-2): λν = 4t1, (c-1), (c-2): λν = 3t1,
and (d-1), (d-2): λν = 2t1. (a-1)–(d-1) are the results of the geometric current induced by the chiral phonon. (a-2)–(d-2) are the trajectories
of the current vector jgeom,R within the xy plane. The arrows show the direction of time evolution and these trajectories form the trianglelike
cycles.

184412-8



CHIRAL-PHONON-INDUCED CURRENT IN HELICAL … PHYSICAL REVIEW B 105, 184412 (2022)

FIG. 7. Contribution to the z component of the geometric current from the respective time-averaged energy band with the parameter values
tA = 0.5, tB = 0.8, and δt = 0.1t1 for the right-handed helix with CCW phonons. (a) Dependence on the on-site energy of the z component
of time-averaged geometric current. (b)–(e) Time-averaged energy bands with the color map showing the contribution to the time-averaged
geometric current. The on-site energies are set to be (b) λν = 2t1, (c) λν = 3t1, (d) λν = 4t1, and (e) λν = 5t1.

= eω

2πV

∫ 2π

0
dτ

∑
k

occ∑
n

2Im

〈
∂ψn,k

∂τ

∣∣∣∣∂ψn,k

∂kz

〉

= eω

2π

∫
dkxdky

(2π )2
C(kx, ky), (53)

where C(kx, ky) is defined as

C(kx, ky) =
occ∑
n

∫ 2π

0
dτ

∫ π

−π

dkz

2π
2Im

〈
∂ψn,k

∂τ

∣∣∣∣∂ψn,k

∂kz

〉
. (54)

It is the Chern number for the occupied bands in the parameter
(kz, τ ) space and it is quantized to be an integer for gapped
systems. Therefore in gapped systems, C(kx, ky) is an integer
independent of kx and ky, and we get〈

jgeom
z

〉 = eω

2πSxy
C, (55)

where C ≡ C(kx, ky) is the Chern number, and Sxy is the two-
dimensional unit cell size within the xy plane. Thus, the time
average of the induced current along the z axis is quantized
in insulators. The total charge Q carried in one cycle per two-
dimensional unit cell within the xy plane is

Q = T Sxy
〈
jgeom
z

〉 = Ce, (56)

which is an integer multiple of the electron charge. Therefore,
if the Chern number for the occupied bands is nonzero, it
realizes the Thouless pumping [43] with quantized pumped
charge per cycle.

In our model, however, it vanishes in the insulating phases
as shown in Fig. 6(a-1), and it indicates that the Chern number
C = 0. To see this, we note that the Chern number can be
reinterpreted as a total monopole charge of Weyl nodes in
a parameter space in the following way. The Hamiltonian
Eq. (14) is written as

HL(k, tc, ts) = HL
0 (k) + tcHc(k) + tsHs(k), (57)

with tc = δt cos ωt , ts = δt sin ωt . Then, the Chern number
C is the total Berry flux penetrating across the cylinder
t2
c + t2

s = δt2 within the tc-ts-kz space when kx and ky are
fixed. It is equal to the total monopole charge of Weyl nodes
inside the cylinder. In the present case, the system is gapped

everywhere within the cylinder and no Weyl node exists,
resulting in C = 0.

C. Toy model for topological charge pumping

Apart from the setup of the electronic system modulated
by chiral phonons, we can propose a realization of the charge
pumping with nonzero C by a toy model. Here we demonstrate
how to realize topological charge pumping with the nontrivial
Chern number, which is called Thouless pumping [43]. To
characterize topological properties of the model Eq. (14), we
define tc = δt0 cos ωt and ts = δt0 sin ωt as time-dependent
parameters, and its trajectory is a circle in the tc-ts plane
with a radius δt0. Then the Hamiltonian is defined in the
five-dimensional parameter space (kx, ky, kz, tc, ts), and the
Chern number C in the (kz, τ ) plane is the Chern number (i.e.,
the total Berry flux) on the cylinder t2

c + t2
s = δt2

0 within the
tc-ts-kz space.

As discussed before, in insulators, the pumped charge per
cycle per unit cell within the xy plane is equal to Ce, which
is an integer multiple of the electron charge. In electronic sys-
tems with hoppings modulated by atomic motions as studied
in the present paper, the Chern number C is zero, and the
pumped charge is zero in most cases, and so far we have not
found any electronic models with atomic motions to realize
nontrivial charge pumping. Meanwhile, apart from electronic
models with atomic motions, we can find a three-dimensional
model with temporal modulation to realize nontrivial topo-
logical charge pumping. In this subsection, we propose a toy
model with nontrivial charge pumping, i.e., Thouless pump-
ing, whose Hamiltonian is written as

H(kx, ky, kz, tc, ts)

= [(1 + cos kz )tc − (2 − cos kx )]σx + sin kzσy

+ [(1 + cos kz )ts − (2 − cos ky)]σz, (58)

where σi(i = x, y, z) are Pauli matrices. As we explain later,
it has a nontrivial Chern number C = 1 on the cylinder t2

c +
t2
s = δt2

0 in the (tc, ts, kz ) space, when δt0 is sufficiently large.
Before discussing the topological properties of the model, we
briefly explain how to construct this model.
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FIG. 8. Toy model for topological charge pumping.
(a) Monopole inside the cylinder at the kz = 0 plane in the
three-dimensional parameter space (tc, ts, kz ). (b) Gapless area in the
five-dimensional parameter space (kx, ky, kz, tc, ts ). (c) Trajectory
formed by tc and ts encircles the gapless area to realize the charge
pumping. (d) Distribution of Weyl points on the kz = 0 plane and
their monopole charges with tc = ts = 1.

1. Construction of the model

The Chern number C for the cylinder is equal to the num-
ber of monopole charges for Weyl nodes inside the cylinder.
Therefore, to make the Chern number on the cylinder be
nontrivial, the simplest idea is to have a Weyl node in the
(kz, tc, ts) space [see Fig. 8(a)],

H(kz, tc, ts) = tcσx + kzσy + tsσz,

which preserves the time-reversal symmetry, H∗(kz, tc, ts) =
H(−kz, tc, ts). Since we are considering three-dimensional
systems, we need to include kx and ky dependence, and we
can implement it as

H(kz, tc, ts) = (
tc − k2

x

)
σx + kzσy + (

ts − k2
y

)
σz

to preserve time-reversal symmetry, which leads to
H∗(kx, ky, kz, tc, ts) = H(−kx,−ky,−kz, tc, ts). Next, we
need to put the system on a lattice to define the Chern
number. A straightforward way is to make the Hamiltonian as

H(kz, tc, ts) = [tc − (1 − cos kx )]σx

+ sin kzσy + [ts − (1 − cos ky)]σz.

However, a new problem arises here. Because the gap closes
when sin kz = 0, i.e., kz = 0, π , there are two Weyl points
with opposite monopole charges, one at kz = 0 and the other
at kz = π , within the kz-tc-ts space. Their contributions to the
Chern number sum up to zero. To make the Chern number
nontrivial, we bring the Weyl point at kz = π outside of the
cylinder, (tc, ts) = (∞,∞), by introducing a kz dependence

into the coefficients of tc and ts. This leads to the toy model in
Eq. (58).

2. Topological properties of the model

Let us discuss topological properties of the model Eq. (58).
For any fixed value of kx and ky, the gap closes at kz =
0, tc = 1 − 1

2 cos kx, ts = 1 − 1
2 cos ky, Therefore, there are

four Weyl points whose coordinate are kαβ

0 = (α arccos 2(1 −
tc), β arccos 2(1 − ts), 0) (α, β = ±) with a monopole charge
−αβ(= 1,−1), whose distribution is symmetric due to the
broken inversion symmetry and preserved time-reversal sym-
metry [44]. For example, Fig. 8(d) shows the distribution
of the Weyl points on the kz = 0 plane and their monopole
charges with tc = ts = 1. These Weyl points exist within the
parameter range 1

2 � tc � 3
2 and 1

2 � ts � 3
2 as shown in

Fig. 8(b). In the temporal change of the parameters tc and ts
with ts = δt0 sin τ and tc = δt0 cos τ , their trajectory forms a
cycle in the tc-ts plane as shown in Fig. 8(c). Once the trajec-
tory encircles the gapless area [Fig. 8(b)] for a given radius
δt0, for any value of kx and ky, there is only one monopole
inside the cylinder as shown in Fig. 8(a). Therefore, the Chern
number defined on the cylinder in Eq. (54) is equal to one.

From these considerations, it is difficult to achieve Thou-
less charge pumping in the present setup of electronic systems
with chiral phonons. Because its realization requires nonzero
C ≡ C(kx, ky) for every value of (kx, ky), the gap should
be closed somewhere inside the cylinder for every value of
(kx, ky). It means that the energy modulation by the change
of parameters (tc, ts) should be larger than the bandwidth.
Meanwhile, the phonon energy is usually much smaller than
the bandwidth and, therefore, the Thouless charge pumping
cannot be realized by chiral phonons.

V. CONCLUSION

In summary, we considered a microscopic local rotation of
atoms in a helical structure with the honeycomb-lattice layers.
By treating the rotational motion as a time-dependent pertur-
bation, we calculated the time-dependent current by using the
Berry phase method under the adiabatic approximation. The
results show that the time-averaged current is separated into
two parts: the instantaneous current and the geometric current.
The instantaneous current is trivially given by the diagonal
instantaneous matrix element of the velocity which can be
viewed as a snapshot process, and this term vanishes under the
time-reversal symmetry. The geometric current is expressed as
a product of the instantaneous matrix element for the velocity
and the Berry connection, and is proportional to the phonon
frequency ω. We calculated the geometric current induced by
chiral phonons in the metallic and insulating phases. The time
average of the current becomes finite along the helical axis
in the metallic phases. However, it vanishes when the on-site
energy is large to become an insulator. On the other hand, in
the hexagonal plane, the current changes with time, but the
time average of the current vanishes due to the space-time
threefold rotation symmetry.

In this paper, our model is intended to be a minimal model
to demonstrate the chiral-phonon-induced current, so we re-
tain only a few terms necessary for our discussion. We have
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shown that even in a simple toy model with helical structure,
the chiral phonons induce a current. Actually, in real mate-
rials, the crystal structure and the electronic bands are much
more complex than the toy model used in this paper. Our the-
oretical prediction is generally applied to real materials, and
chiral-phonon-induced current is expected in real materials
with chiral crystal structure.

In the present paper, we studied the effect of chiral phonons
at the � point. In thermal equilibrium, however, the �-point
phonons are doubly degenerate between chiral phonons with
opposite handedness, which makes the net current zero. To
get a net nonzero current, one would need an asymmetric
population of chiral phonons between the right-handed and
left-handed circular polarizations. This could, for example,
be achieved through phonon pumping with terahertz pulses
[38] or through some other mechanisms. On the other hand,
a natural question arises as to an effect of chiral phonons
at general non-� high-symmetry points. In fact, our results
in the present paper have some implications on the effect of
chiral phonons at general non-� points. Chiral phonons at
general non-� high-symmetry points can always be brought to
the � point by appropriately enlarging the unit cell. Thereby,
the above results similarly hold in such cases. Details of the
properties of the chiral-phonon-induced current due to the
non-� chiral phonons are left as future works.
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APPENDIX: DERIVATION OF THE HELICAL
BLOCH HAMILTONIAN

In this Appendix, we give more details on the derivation of
the helical tight-binding Hamiltonian Eq. (1), and the connec-
tion between Eq. (1) and its the Bloch Hamiltonian Eq. (2).

First, we note that although the positions of the lattice sites
look like a nonhelical one as shown in Fig 1, in general, the
positions of the lattice sites in the tight-binding models are not
necessarily the same as the the positions of all the atoms. We
assume the crystal structure, i.e., the atomic positions to be
chiral, whereas the lattice sites are located in a nonchiral way,
which leads to two patterns, the left-handed and right-handed
helices [see Figs. 1(b) and 1(c)]. This helical hopping along
the z direction in Eq. (1) is specifically expressed as

ĤL,R
0,2nd =

∑
r

3∑
i=1

tAĉ†
A,rĉA,r±bi+a3 + tBĉ†

B,rĉB,r∓bi+a3 + H.c.,

where vectors bi are defined in Sec. II A.
Applying the Fourier transformation

ĉμ,r = 1√
N

∑
k

ĉμ,keik·r, (A1)

ĉ†
μ,r = 1√

N

∑
k

ĉ†
μ,ke−ik·r (A2)

to Eq. (1) for the two sublattices μ = A, B, the matrix representation of the Bloch Hamiltonian Eq. (2) for the left-handed helix
is

HL
0 (k) =

(
λν + 2tA

∑3
i=1 cos [k · (bi + a3)] t1(1 + e−ik·a1 + e−ik·a2 )

t1(1 + eik·a1 + eik·a2 ) −λν + 2tB
∑3

i=1 cos [k · (−bi + a3)]

)
, (A3)

and for the right-handed helix is

HR
0 (k) =

(
λν + 2tA

∑3
i=1 cos [k · (−bi + a3)] t1(1 + e−ik·a1 + e−ik·a2 )

t1(1 + eik·a1 + eik·a2 ) −λν + 2tB
∑3

i=1 cos [k · (bi + a3)]

)
. (A4)

Some parameters shown here have already been defined in the main text. Here we can see that the helical hopping term along the
z direction appears between the same sublattices, which corresponds to the second term in the tight-binding Hamiltonian Eq. (1).
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