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Violation of the magnonic Wiedemann-Franz law in the strong nonlinear regime

Kouki Nakata ,1 Yuichi Ohnuma,2 and Se Kwon Kim 3

1Advanced Science Research Center, Japan Atomic Energy Agency, Tokai, Ibaraki 319-1195, Japan
2Research Center for Advanced Science and Technology (RCAST), The University of Tokyo, Meguro, Tokyo 153-8904, Japan

3Department of Physics, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea

(Received 25 January 2022; revised 20 March 2022; accepted 2 May 2022; published 12 May 2022)

The celebrated Wiedemann-Franz (WF) law, which governs the relation between charge and heat transport
traces back to the experimental discovery in 1853 by Wiedemann and Franz. Despite the fundamental difference
of the quantum-statistical properties between fermions and bosons, the linear-in-T behavior of the WF law at low
temperatures has recently been found to be the universal property by the discovery of the WF law for magnon
transport. However, the WF law is for the linear response, and whether or not the universal law is valid even in
the nonlinear regime of Bose systems remains an open issue. Here we provide a solution to this fundamental
challenge. We show that the ratio of the thermal to spin transport coefficient of magnons in topologically trivial
insulating magnets exhibits a different behavior from the linear response and the universal law breaks down in
the strong nonlinear regime. This finding is within experimental reach with current device and measurement
technologies. Our discovery is the key ingredient in magnon-based spintronics, in the evaluation of the figure of
merit for thermomagnetic conversion elements of spintronics devices.
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I. INTRODUCTION

The research on thermoelectric properties of materials
started more than two centuries ago and it has a long history.
The celebrated Wiedemann-Franz (WF) law, which dictates
the linear relation between charge and heat transport traces
back to the experimental discovery in 1853 by Wiedemann
and Franz [1] that the ratio of the thermal κ to electrical
conductivity σ of several metals reduces to approximately the
same value for a fixed temperature. Lorenz established that
this ratio is linear in the absolute temperature T and the pro-
portionality constant takes a material-independent value [2].
Using quantum theory on solids, Sommerfeld appropriately
derived the universal constant, dubbed the Lorenz number Le,
which is independent of any material parameters [3]. Thus the
WF law has been formulated [4,5] at low temperature in the
form of

κ

σ

→= LeT,

Le := π2

3

(
kB

e

)2

,

where e is the elementary charge and kB the Boltzmann con-
stant. This universal law characterizes the figure of merit for
thermoelectric conversion elements and has been playing a
central role in electronics.

Toward efficient transmission of information that goes be-
yond what is offered by conventional electronics, the last two
decades have seen a rapid development of spintronics, aiming
at utilizing another degrees of freedom of electrons, spins, by
means of spin transport [6,7]. For this holy grail, it is desirable
to formulate the spin analog of the WF law because the law

is expected to be a promising building block in spintronics,
in the evaluation of the figure of merit for thermomagnetic
conversion elements of spintronics devices.1 Then we have
established the magnon analog of the WF law, namely, the
WF law for magnon transport, in ferromagnets and antiferro-
magnets [8–10]. Magnons are bosonic magnetic excitations,
i.e., the quantized spin-waves. Since magnons carry the spin
angular momentum, spin currents are generated in the absence
of charge currents when magnons propagate in insulating
magnets. Thus the WF law for magnon transport, dubbed
the magnonic WF law, is defined as the ratio of the thermal
conductivity K1 within the linear response regime to spin
conductivity G of magnons. In the bulk of topologically trivial
insulating magnets at sufficiently low temperatures compared
to the magnon energy gap, the ratio reduces to [9]

K1

G
→= L1T, (1a)

L1 := 5

2

(
kB

gμB

)2

, (1b)

where g is the g factor of the constituent spins and μB the Bohr
magneton. The thermomagnetic ratio is linear in temperature.
In analogy to charge transport in metals, we refer to this
behavior as the magnonic WF law. The constant L1 analogous
to the Lorenz number, i.e., the magnetic Lorenz number of

1We refer to the spin analog of the figure of merit for thermoelectric
conversion elements as that for thermomagnetic ones Zs, i.e., Zs :=
S2G/K , where S, G, and K are the spin Seebeck coefficient, the spin
conductivity, and the thermal conductivity of magnons, respectively.
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magnons, is independent of any material parameters except
the g factor, which is material specific. The role of the charge
e is played by gμB.

Magnons are bosonic excitations, while electrons are
fermions. Still, remarkably, the magnonic WF law exhibits
the same linear-in-T behavior at low temperatures as the one
for electronic transport despite the fact that the quantum-
statistical properties of bosons and fermions are fundamen-
tally different, particularly in the low temperature regime
where quantum effects dominate. In that sense, the linear-in-T
behavior of the WF law is found to be the universal property.

As spintronics technologies develop, there has recently
been a growing interest in the properties of the nonlin-
ear response [11–19]. However, the existing theory for the
magnonic WF law is intended to be applied only for the linear
response regime. Whether or not the universal law is valid
even in the nonlinear regime remains an open issue. In this
paper, we provide a solution to this fundamental challenge by
using the Boltzmann equation. This is the main aim of this
paper.

This paper is organized as follows. In Sec. II we investi-
gate longitudinal thermal transport of magnons in the bulk
of insulating magnets, and study the validity and violation
of the magnonic WF law in the nonlinear response regime.
Then, we remark on several issues in Sec. III. Finally, we
give an estimate for the experimental feasibility in Sec. IV
and summarize in Sec. V. Technical details are described in
the Appendix.

II. NONLINEAR THERMAL TRANSPORT

We consider longitudinal transport of magnons in the bulk
of a topologically trivial three-dimensional insulating mag-
net,2 subjected to a temperature gradient, where the magnon
of the energy dispersion relation εk = Dk2 + � with the
group velocity vk = ∂εk/(∂ h̄k) carries the spin angular mo-
mentum −1 in units of the reduced Planck constant h̄: In
which k := |k| denotes the magnitude of the wavenumber
k = (kx, ky, kz ), D represents the spin stiffness constant, and
� is the magnon energy gap, e.g., due to an external magnetic
field, a spin anisotropy, etc. Throughout this paper assuming
that the magnon energy gap takes a nonzero value � �= 0
and that the nonequilibrium Bose distribution function of
magnons fk is described by the Boltzmann equation within
the quasiparticle approximation, we study magnon transport
at low temperatures using a relaxation time approximation.3

Note that if one assumed a magnon energy dispersion in-
cluding the k-linear term, nonreciprocal responses [20], e.g.,
the Doppler shift of spin-waves [21], could arise in certain
materials with broken inversion symmetry, which is outside
the scope of this paper: See Ref. [22] for the generation of the
magnon nonreciprocity in the absence of a finite energy gap,
i.e., nonreciprocal transport of gapless spin-waves.

The applied temperature gradient ∇T = (const.) induces a
magnonic spin current along the longitudinal direction, which

2We refer to the magnet where Berry curvatures are zero as the
topologically trivial magnet.

3See the Appendix for details.

leads to an accumulation of magnons at the boundaries and
builds up a nonuniform magnetization in the magnet. This
magnetization gradient plays a role of an effective magnetic
field gradient ∇B, which works as the gradient of a nonequi-
librium spin chemical potential [23–26], and drives magnon
currents [9,27–29]. Therefore, magnon transport subjected to
the temperature gradient along the x axis ∂xT = (const.) is
characterized including the nonlinear response by the longitu-
dinal transport coefficient Li j for i ∈ N and j ∈ N as(

js
x

jE
x

)
=

(
L11 L12 L13 L14 L15 L16

L21 L22 L23 L24 L25 L26

)

×

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

∂xB
− ∂xT

T
(∂xB)2

−(
∂xT
T

)
(∂xB)(

∂xT
T

)2

−(
∂xT
T

)3

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

, (2)

where the spin current density js = ( js
x, js

y, js
z ) and the energy

current density jE = ( jE
x , jE

y , jE
z ) are defined as [9]

js := −
∫

d3k
(2π )3

gμBvk fk, (3a)

jE :=
∫

d3k
(2π )3

εkvk fk, (3b)

respectively. The transport coefficient L11 is identified with the
spin conductivity of magnons [28] G := L11. In contrast to the
junction system [8,30], the second-order response vanishes4 in
the bulk of topologically trivial insulating magnets due to the
property of the odd function in kx:3

L13 = L14 = L15 = L23 = L24 = L25 = 0. (4)

Note that since the third-order response to the tempera-
ture gradient O((∂xT )3) can become dominant at sufficiently
low temperatures compared to the magnon gap,3 we ne-
glect the other third-order terms such as O((∂xT )2(∂xB)1),
O((∂xT )1(∂xB)2), and O((∂xB)3).

In analogy to charge transport [5] and using Eq. (2), we for-
mulate thermal transport of magnons in the nonlinear response
regime. Under the applied temperature gradient, the magnonic
spin current is generated and this leads to an accumulation
of magnons at the boundaries. Consequently, the nonuniform
magnetization is developed and this effective magnetic field
gradient ∂xB generates a counter-current of magnons. Then,
the system reaches a stationary state such that in- and out-
flowing magnonic spin currents balance each other js

x = 0,
which results in ∂xB = ∂xB∗ with

∂xB∗ := L12

L11

∂xT

T
+ L16

L11

(∂xT

T

)3
. (5)

Thus the thermal conductivity is measured. This effective
magnetic field gradient in the new quasiequilibrium state ∂xB∗
brings the nonequilibrium spin chemical potential [23], being

4This result changes in general if one assumes a magnon energy
dispersion with the k-linear term.
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peculiar to the system out of equilibrium, and contributes
to the thermal conductivity associated with the heat current
density [9,23], jQ

x = L21∂xB∗ − L22∂xT /T − L26(∂xT /T )3, as

jQ
x = −K1∂xT − K2(∂xT )2 − K3(∂xT )3, (6)

where

K1 := 1

T

(
L22 − L12L21

L11

)
, (7a)

K2 = 0, (7b)

K3 := 1

T 3

(
L26 − L16L21

L11

)
, (7c)

and K1 represents the thermal conductivity in the linear re-
sponse regime and K2(3) is the thermal transport coefficient of
the second-order (third-order) nonlinear response. Note that
in the stationary state under the applied temperature gradient,
the heat current density jQ

x is different from the energy current
density jE

x [9,23,31],

jQ
x �= jE

x , (8)

in that

jQ
x = L21∂xB∗ − L22

∂xT

T
− L26

(∂xT

T

)3
, (9a)

jE
x = 0 − L22

∂xT

T
− L26

(
∂xT

T

)3

. (9b)

We remark that if one wrongly omits the contribution of
∂xB∗ associated with the counter-current and identifies jE

x as
the heat current density in theoretical calculation, the ratio of
the thermal to spin conductivity would not obey the magnonic
WF law, breaking the linear-in-T behavior, even in the lin-
ear response regime [9]. Note that for thermal transport of
electrons in metals, the contribution of the counter-current is
strongly suppressed by the sharp Fermi surface of fermions
at temperatures kBT , which is much smaller than the Fermi
energy even at room temperature. This is the crucial difference
in the thermal conductivity between magnons and electrons,
i.e., bosons and fermions, respectively.

We evaluate the thermal transport coefficient of the third-
order nonlinear response K3. The Onsager relation holds
L12 = L21 and at low temperatures kBT � �, it reduces to [9]
L12/L11 = L21/L11

→= −�/(gμB). Thus, the thermal transport
coefficient of the third-order nonlinear response at low tem-
perature is recast into

K3
→= 1

T 3

(
L26 + �

gμB
L16

)
. (10)

A straightforward calculation using the Boltzmann equation
provides the transport coefficients of the nonlinear response at
low temperatures as3

L16
→= −gμBFe−b

[
�3

(βD)7/2
A3 + 3D�2

(βD)9/2
A4 + O(T 11/2)

]
,

(11a)

L26
→= Fe−b

[
�4

(βD)7/2
A3 + 4D�3

(βD)9/2
A4 + O(T 11/2)

]
, (11b)

where An := √
π (2n)!/[22n+1(n!)] is the Gaussian integral for

n ∈ N, F := (2D/h̄)4[τ 3β3/(10π2)], the inverse temperature

β := 1/(kBT ), b := β�, and the relaxation time τ . Note that
at low temperatures the relaxation time takes a constant value
of being temperature-independent: At sufficiently low temper-
atures, the effect of magnon-magnon interactions and that of
phonons are negligibly small, and impurity scattering makes
a major contribution to the relaxation. Under the assumption
that impurities are dilute and scattering is elastic and spa-
tially isotopic with the impurity potential localized in space,
the relaxation time at low temperatures reduces to [31] τ

→=
h̄/(2α�), where α is the Gilbert damping constant. Since the
Gilbert damping constant is little influenced by temperature
[32] (i.e., the temperature dependence is negligibly small), the
relaxation time at low temperatures takes a constant value of
being temperature-independent.

At low temperatures the thermal transport coefficient of the
third-order nonlinear response reduces to

K3
→= 1

T 3
Fe−b D�3

(βD)9/2
A4, (12)

and the spin conductivity to G
→= (gμB)2e−bτ (kBT )3/2/

(4π3/2 h̄2
√

D). Thus, we find at low temperatures kBT � �

that the ratio of the thermal transport coefficient of the third-
order nonlinear response to the spin conductivity is given as

K3

G
→= L3

1

T 3
, (13a)

L3 := 32τ 2D�3A4

5
√

π h̄2(gμB)2
. (13b)

The thermomagnetic ratio in the nonlinear regime is propor-
tional to 1/T 3 [Eq. (13a)]. This is in contrast to the one in
the linear response regime K1/G, which exhibits the linear-
in-T behavior [Eq. (1a)]. The proportionality constant L3,
which is independent of temperature, is less universal than the
magnetic Lorenz number L1 [Eq. (1b)] in that the constant
depends on other material parameters as well as the g factor,
such as the spin exchange interaction, the spin anisotropy, the
spin length, the lattice constant, etc. Note that each transport
coefficient does not diverge even at low temperature T

→= 0 as
K3 ∝ e−b/T 3/2 →= 0 and G ∝ T 3/2e−b →= 0.

Finally, we discuss the validity and violation of the
magnonic WF law in the nonlinear response regime. The
magnonic WF law is originally for the linear response
[Eq. (1a)]. Instead of the thermal conductivity K1, it is recast
in terms of the heat current density jQ

x = −K1∂xT as jQ
x /G =

−[L1(∂xT )]T , which states that the ratio of the heat current
density to the magnonic spin conductivity G is linear in tem-
perature for a fixed temperature gradient (∂xT ) = (const.).
This is the magnonic WF law in terms of the heat current
density. Since the heat current density includes the nonlinear
response [Eq. (6)], it can be concluded that the magnonic
WF law does hold even in the nonlinear response regime if
the ratio of the heat current density to the magnonic spin
conductivity G exhibits the linear-in-T behavior for the fixed
temperature gradient: This is the criterion for the magnonic
WF law in the nonlinear response regime.

From Eq. (6) the ratio of the heat current density including
the nonlinear response to the magnonic spin conductivity G
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becomes

jQ
x

G
= −K1

G
(∂xT ) − K2

G
(∂xT )2 − K3

G
(∂xT )3. (14)

Since the thermal transport coefficient of the second-order
nonlinear response vanishes K2 = 0 [Eq. (7b)], the magnonic
WF law holds even in the nonlinear regime if the ratio of the
thermal transport coefficient of the third-order nonlinear re-
sponse to the spin conductivity, K3/G, exhibits the linear-in-T
behavior. However, we find from Eq. (13a) that the ratio K3/G
is proportional to 1/T 3 and does not exhibit the linear-in-T
behavior. Thus, it is concluded that the magnonic WF law
violates in the nonlinear regime.

We remark that the magnonic WF law breaks down in
the strong nonlinear regime where the third-order nonlinear
response to the temperature gradient O((∂xT )3) becomes rel-
evant by the large temperature gradient. It is not until the
third-order response contributes that the law violates. Since
the thermal transport coefficient of the second-order nonlinear
response vanishes K2 = 0, the universal law remains valid
even in the nonlinear regime where the temperature gradient
is large but not enough for the third-order response to become
relevant: We refer to this region as the weak nonlinear regime
for convenience. In conclusion, in the bulk of topologically
trivial insulating magnets, the magnonic WF law remains
valid even in the weak nonlinear regime but breaks down in
the strong nonlinear regime.

III. DISCUSSION

In contrast to the bulk of topologically trivial materials
studied in this paper [Eq. (4)], the second-order nonlinear
response does not vanish in junction systems [8,30], including
quantum dot systems, and it contributes to thermal transport.
Therefore, in the quantum dot system [33,34] the WF law
for electronic transport violates in the weak nonlinear regime
due to the second-order response. Thus, we find that in the
bulk of topologically trivial materials the WF law is more
robust against the nonlinear effect compared with in junction
systems, in that the law breaks down in the strong nonlinear
regime for the bulk of topologically trivial materials, while it
violates in the weak nonlinear regime for junction systems.

Note that throughout this paper, we focus on longitudinal
thermal transport in the bulk of topologically trivial insulating
magnets where Berry curvatures are zero, and find that the WF
law breaks down in the strong nonlinear regime. In the bulk
of topological materials5, however, the WF law for electronic
Hall transport violates in the weak nonlinear regime due to the
second-order response arising from nonzero Berry curvatures
[18]. Thus, it is concluded that in the bulk of topologically
trivial materials the WF law is more robust against the nonlin-
ear effect compared with in the bulk of topological materials.

In this paper, we have studied magnon transport in the
nonlinear response regime under the assumption that the en-
ergy dispersion of magnons is gapped and parabolic in terms
of k. We remark that the second-order nonlinear response
[Eq. (4)] does not vanish in general if one assumes a magnon

5See Ref. [50] for topological magnon systems.

energy dispersion including the k-linear term. In that case, the
magnon nonreciprocity [20], e.g., the spin-wave Doppler shift
[21], could arise in certain materials with broken inversion
symmetry. See Ref. [22] for nonreciprocal transport in a gap-
less spin-wave system, i.e., the magnon nonreciprocity in the
absence of a finite energy gap.

In general, there exists a spin anisotropy in magnets, which
causes the magnon energy gap. Therefore, toward the devel-
opment of various functions of spintronics devices, it is of
importance to establish the fundamental principle of magnon
transport even in the gapped systems. Hence, we studied
the gapped magnonic systems. In the gapped system, the
magnonic WF law holds only at low temperature kBT � �

and the linear-in-T behavior violates at higher temperatures
even within the linear response [8,9]. Therefore, in this paper
focusing on the gapped magnonic system at such low temper-
atures, we have studied the effect of the nonlinear response
on the magnonic WF law (i.e., the linear-in-T behavior). We
also remark that if the magnon gap is much smaller than
the thermal energy, then there would be a large number of
low-energy magnons and therefore frequent interactions be-
tween magnons. In this case, we would need to consider the
magnon-magnon interaction to capture the transport proper-
ties well. In this paper, we focused on the systems with the
magnon gap larger than the thermal energy in part so that
the magnon-magnon interactions can be neglected. Studying
the effect of magnon-magnon interactions is beyond the scope
of our current paper. For these reasons, in this paper, we have
focused on the gapped magnonic system at low temperatures.
Still, it will be of significance to develop our work into the
gapless magnon mode that possesses appropriate symmetry
and include the magnon-magnon interaction. We leave the
advanced study for future work.

By manipulating the applied magnetic field, magnon and
phonon thermal conductivities can be distinguished experi-
mentally [35] because the former does depend strongly on
the field whereas the latter does not. In fact, in Ref. [35], it
has been experimentally shown that thermal conductivities of
phonons and magnons in a magnetic insulator can be sepa-
rately characterized at low temperatures T � O(1)K. For this
reason, we focus only on magnon thermal conductivity in our
paper.

IV. ESTIMATES FOR EXPERIMENTS

In the bulk of topologically trivial insulating magnets, the
heat current density [Eq. (6)] consists of the linear response
K1∂xT and the third-order nonlinear response K3(∂xT )3. When
the large temperature gradient is applied enough that the
third-order nonlinear response begins to contribute in that the
ratio of the nonlinear to linear response amounts to 1/10,
K3(∂xT )3/(K1∂xT ) = 1/10, we identify it with the strong
nonlinear regime. Thus, for observation of the violation of the
magnonic WF law in the bulk of insulating magnets, the tem-
perature gradient needs to reach |∂xT | = √

(1/10)(K1/K3) =:
T , where K1/K3 = 25

√
π h̄2k2

BT 4/(64τ 2D�3A4). The crite-
rion for observation of the violation is whether or not the
temperature gradient exceeds the value of T .

For an estimate, we assume the following experimental
parameter values [36,37] for Cr2O3: D = 10 meV(nm)2, � ∼
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4 meV, α = O(10−3), and T = 4 K. This results in T =
O(10) K/mm. In addition, since the value of T is propor-
tional to the Gilbert damping constant and it takes [32,38]
α = O(10−4) or even α < O(10−4) for YIG depending on the
shape, it is roughly estimated as T = O(1) K/mm or even
T < O(1) K/mm for YIG, respectively. In both cases, those
temperature gradients are experimentally realizable [39].

Observation of long-distance transport of spin-wave spin
currents [40] and measurement of the nonequilibrium spin
chemical potential [25], the magnonic spin conductivity
[24,41], and the thermal conductivity [42] have been reported.
References [43–45] develop magnonics technologies at low
temperatures. Given these estimates, we expect that observa-
tion of the magnonic WF law and the violation, while being
challenging, seem within experimental reach with current de-
vice and measurement techniques. The key is to decrease the
overall temperature while the temperature gradient is main-
tained constant.

V. SUMMARY

Focusing on longitudinal transport of magnons at low
temperatures in the bulk of topologically trivial insulating
magnets, we have studied the validity and have found the
violation of the magnonic Wiedemann-Franz law in the non-
linear response regime. In terms of the heat current density,
the magnonic Wiedemann-Franz law is recast into the form
that the ratio of the heat current density to the magnonic
spin conductivity is linear in temperature for a fixed temper-
ature gradient. Then we have shown that the universality of
the Wiedemann-Franz law, the linear-in-T behavior, breaks
down in the strong nonlinear regime. In contrast to the lin-
ear response, the ratio of the thermal transport coefficient of
the third-order nonlinear response to the spin conductivity
is proportional to 1/T 3, and the proportionality constant is
less universal in that it depends on other material parameters
as well as the g factor. Thus, the universal law violates in
the strong nonlinear regime where the third-order nonlinear
response becomes relevant by the large temperature gradient.
Since the second-order nonlinear response vanishes in the
bulk of topologically trivial insulating magnets, the magnonic
Wiedemann-Franz law remains valid even in the weak nonlin-
ear regime but breaks down in the strong nonlinear regime.
Those findings are within experimental reach with current
device and measurement technologies. Toward efficient trans-
mission of information that goes beyond what is offered by
conventional electronics, our discovery is a promising build-
ing block in magnon-based spintronics, in the evaluation of
the figure of merit for thermomagnetic conversion elements
of spintronics devices.
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APPENDIX: TRANSPORT COEFFICIENTS OF MAGNONS
IN THE NONLINEAR RESPONSE REGIME

In this Appendix, we provide some details of the straight-
forward calculation for the transport coefficient Li j of the
nonlinear response in the bulk of topologically trivial insu-
lating magnets, and make a few remarks. Under the relaxation
time approximation, the Boltzmann equation of the quasiparti-
cle approximation describes the transport property of a steady
state in terms of time as [23,27–29,46,47](

vk · ∇T
∂

∂T
− gμBvk · ∇B

∂

∂εk

)
fk = − fk − f 0

k

τ
, (A1)

where τ is the relaxation time, the Bose distribution function
of magnons out of equilibrium fk, and the one in equilibrium
f 0
k := (eβεk − 1)−1. Defining the deviation from equilibrium

gk := fk − f 0
k , it is described as

gk = −τ

(
vk · ∇T

∂

∂T
− gμBvk · ∇B

∂

∂εk

)(
f 0
k + gk

)
. (A2)

Using the method of successive substitution for gk, the devia-
tion up to O(τ 3) is given as

gk = g1 + g2 + g3 + O(τ 4), (A3a)

g1 := −τ
(

vk · ∇T
∂

∂T
− gμBvk · ∇B

∂

∂εk

)
f 0
k , (A3b)

g2 := τ 2
(

vk · ∇T
∂

∂T
− gμBvk · ∇B

∂

∂εk

)2
f 0
k , (A3c)

g3 := −τ 3
(

vk · ∇T
∂

∂T
− gμBvk · ∇B

∂

∂εk

)3
f 0
k , (A3d)

where g1 = O(τ ), g2 = O(τ 2), and g3 = O(τ 3). From
∂/(∂T ) = −(εk/T )[∂/(∂εk )], the component g3 is recast into

g3 = τ 3
(

vk · ∇T
εk

T
+ gμBvk · ∇B

)3 ∂3 f 0
k

∂εk
3
. (A4)

Focusing on sufficiently low temperatures compared
to the magnon gap and thus assuming �/(kBT ) 

gμB∂xB/(kB∂xT ), the third-order response to the temperature
gradient O((∇T )3) becomes dominant. This condition can
be met when the system has a sufficiently large magnetic
anisotropy and the resulting magnon gap, such as � ∼ 4 meV
= O(10) T for [9,36,37] Cr2O3, � ∼ 2 meV = O(10) T for
[48] SrRuO3, and � ∼ 0.4 meV = O(1) T for [49] CrI3.
Then, the component reduces to

g3
→= − τ 3(vk · ∇T )3 ∂3 f 0

k

∂T 3
+ O((∇T )2(∇B)1)

+ O((∇T )1(∇B)2) + O((∇B)3), (A5)
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and we neglect the other third-order terms such as
O((∇T )2(∇B)1), O((∇T )1(∇B)2), and O((∇B)3). Using the
relation at low temperatures kBT � �,

∂3 f 0
k

∂T 3

→= e−βεk
(βεk )3

T 3
, (A6)

we obtain the component as

g3
→= −τ 3(vk · ∇T )3e−βεk

(βεk )3

T 3
. (A7)

Assuming magnons, which carry the spin angular momentum
−1 in units of h̄, we define the spin current density js and the
energy current density jE as

js = −
∫

d3k
(2π )3

gμBvkgk, (A8a)

jE =
∫

d3k
(2π )3

εkvkgk. (A8b)

Substituting the function gk = g1 + g2 + g3 into each current
density and performing the Gaussian integrals, we obtain the
transport coefficient of the nonlinear response at low temper-
atures as

L13 = L14 = L15 = L23 = L24 = L25 = 0, (A9a)

L16
→= −gμBFe−b

[
D3

(βD)13/2
A6 + 3D2�

(βD)11/2
A5

+ 3D�2

(βD)9/2
A4 + �3

(βD)7/2
A3

]
, (A9b)

L26
→= Fe−b

[
D4

(βD)15/2
A7 + 4D3�

(βD)13/2
A6 + 6D2�2

(βD)11/2
A5

+ 4D�3

(βD)9/2
A4 + �4

(βD)7/2
A3

]
, (A9c)

L26

L16

→= − �

gμB
, (A9d)

where An := √
π (2n)!/[22n+1(n!)] for n ∈ N, F :=

(2D/h̄)4[τ 3β3/(10π2)], and b := β�. The second-order
response vanishes due to the property of the odd function,
and this results in K2 = 0. See Ref. [9] for the transport
coefficient of the linear response, where the Onsager relation
holds L12 = L21. At low temperatures, it reduces to [9]
L12/L11 = L21/L11

→= −�/(gμB). Therefore, the thermal
transport coefficient of the third-order nonlinear response K3

at low temperature is given as

K3
→= 1

T 3

(
L26 + �

gμB
L16

)
. (A10)

Finally, substituting L26 and L16 into Eq. (A10) we obtain
the thermal transport coefficient of the third-order nonlinear
response K3 at low temperatures in the main text.

Next, we remark on the relaxation time. The relaxation
time is different from the lifetime of magnons in general.
Those are distinct quantities. However, under the assumption
that impurities are dilute and scattering is elastic and spatially
isotopic with the impurity potential localized in space (i.e.,
the relaxation time depends solely on the magnitude of the
wavenumber), the relaxation time coincides with the lifetime.
At low temperatures kBT � �, the relaxation time reduces
to [31]

τ
→= 1

2α

h̄

�
, (A11)

where α is the Gilbert damping constant. Since the Gilbert
damping constant is little influenced by temperature [32] (i.e.,
the temperature dependence is negligibly small), it is con-
cluded that at low temperatures the relaxation time takes a
constant value of being temperature-independent. Note that at
sufficiently low temperatures, the effect of magnon-magnon
interactions and that of phonons are negligibly small, and im-
purity scattering makes a major contribution to the relaxation.
See Ref. [31] for details.

Lastly, we comment on the Boltzmann equation. Through-
out this paper, we study magnon transport using the conven-
tional Boltzmann equation of the quasiparticle approximation.
From the viewpoint of quantum field theory, under the as-
sumption that the variation of the center-of-mass coordinates
is slow compared with that of the relative coordinates, the
quantum kinetic equation of the lowest order gradient approx-
imation becomes the quantum Boltzmann equation, which
reduces to the conventional Boltzmann equation in the limit
of the quasiparticle approximation [46,47]. Therefore, the
criterion for magnon transport to be described by the conven-
tional Boltzmann equation is whether or not the quasiparticle
approximation is applicable to the system. From Ref. [31],
this results in the condition � 
 h̄/(2τ ). Since h̄/(2τ )

→= α�

at low temperatures and α � O(10−3) for insulating magnets
[32,38], the condition is satisfied. Thus, it is concluded that
magnon transport we study in this paper is described by the
conventional Boltzmann equation.
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