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Berry phase in the rigid rotor: Emergent physics of odd antiferromagnets
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The rigid rotor is a classic problem in quantum mechanics, describing the dynamics of a rigid body with its
center of mass held fixed. It is well known to describe the rotational spectra of molecules. The configuration space
of this problem is SO(3), the space of all rotations in three dimensions. This is a topological space with two types
of closed loops: trivial loops that can be adiabatically shrunk to a point and nontrivial loops that cannot. In the
traditional formulation of the problem, stationary states are periodic over both types of closed loops. However,
periodicity conditions may change if Berry phases are introduced. We argue that time-reversal symmetry allows
for only one new possibility—a Berry phase of π attached to all nontrivial loops. We derive the corresponding
stationary states by exploiting the connection between SO(3) and SU(2) spaces. The solutions are antiperiodic
over any nontrivial loop; i.e., stationary states reverse sign under a 2π rotation about any axis. Remarkably,
this framework is realized in the low-energy physics of certain quantum magnets. The magnets must satisfy the
following conditions: (a) the classical ground states are unpolarized, carrying no net magnetization, (b) the set of
classical ground states is indexed by SO(3), and (c) the product N × S is a half-integer, where N is the number of
spins and S is the spin quantum number. We demonstrate this result in a family of Heisenberg antiferromagnets
defined on polygons with an odd number of vertices. At each vertex, we have a spin-S moment that is coupled to
its nearest neighbors. In the classical limit, these magnets have coplanar ground states. Their quantum spectra, at
low energies, correspond to “spherical top” and “symmetric top” rigid rotors. For integer values of S, we recover
traditional rigid-rotor spectra. With half-integer S, we obtain rotor spectra with a Berry phase of π .
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I. INTRODUCTION

The rotation of a rigid body is a fundamental problem
in classical and quantum mechanics. It is one of the early
problems where quantum spectra could be worked out and
compared against experiments. It laid the foundation for the
field of microwave rotational spectroscopy [1,2], with applica-
tions ranging from laboratory organic chemistry to interstellar
space [3]. The solutions of the quantum rigid rotor have
been known since the work of Casimir in 1931 [4]. Over the
decades, this problem has been expanded to include details
such as asymmetries, centrifugal distortion, etc. In this article,
we revisit this problem and show that it allows for a nontrivial
Berry phase structure. This can be viewed as reframing the
problem with a new boundary condition that is consistent with
the underlying topology. We evaluate the resulting spectrum
and suggest magnetic realizations where this Berry phase
structure is realized.

The Berry phase or geometric phase can play a strong
role in quantum mechanics [5]. As a simple illustration, we
consider a particle on a circle—a one-dimensional space with
periodic boundaries. Solving the Schrödinger equation leads
to wavelike solutions. Periodic boundary conditions then
restrict the particle to quantized levels. If the circle were
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threaded by a magnetic flux, the particle accrues an Aharonov-
Bohm phase with every revolution. This changes the boundary
condition and, thereby, the spectrum of the particle. The sym-
metries of the system strongly constrain the Aharonov-Bohm
phase. For example, time-reversal symmetry only allows for
two values: 0 or π . In the latter case, the wave function at a
given point cannot be defined uniquely. It must necessarily
be double-valued as it switches sign after one revolution.
The Aharonov-Bohm phase is a particular example of a more
general notion—the Berry phase, which may arise even in
the absence of external fields. For example, in crystalline
solids, Bloch wave functions may accrue phases over loops
in the Brillouin zone [6]. This phenomenon serves as the
starting point for the field of topological insulators. These
phases are strongly constrained by time-reversal symmetry,
space group symmetries, etc. They may even give rise to wave
functions that are multivalued. In this article, we consider
Berry phase structure in the rigid rotor, constrained by time-
reversal symmetry. We discuss magnetic realizations where
the Berry phase is intrinsic and can be switched on or off by
changing the spin quantum number. Our results can be viewed
in analogy with the “Haldane gap” in one-dimensional spin
chains, where Berry phase effects lead to a qualitative change
in the excitation spectrum [7,8].

We present a class of magnetic systems as realizations
of these ideas. We consider rotationally symmetric magnets
with Heisenberg couplings. In the classical limit, they possess
degenerate ground states that are related to one another by
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FIG. 1. Left: SO(3) as a solid sphere. Each point within the
sphere corresponds to a unique rotation. The direction from the origin
to the point represents the axis of rotation. The distance from the
origin to the point represents the angle of rotation. Center: A “trivial”
loop consisting of a closed path that can be smoothly shrunk to a
point. Right: A “nontrivial” loop, consisting of a path that connects
antipodal points on the surface.

rotations. We focus on magnets where each classical ground
state can be associated to a unique rotation operation. In
such systems, the quantum problem shows a characteristic
low-energy spectrum, precisely that of a rigid rotor. For cer-
tain system sizes and values of the spin quantum number S,
this “emergent” rotor accrues a nontrivial Berry phase. This
modifies the eigenvalues and degeneracies, resulting in a new
spectrum that is markedly different from the traditional rigid
rotor. We support these assertions with analytic arguments and
exact diagonalization results on a family of antiferromagnets.

II. THE RIGID ROTOR AND THE TOPOLOGY OF SO(3)

The elements of SO(3) can be expressed in various repre-
sentations [9]. We use the axis-angle representation as it best
brings out the connectivity of the space. Following Euler’s
rotation theorem, any rotation in three dimensions can be
characterized as R(n̂, θ ) using two quantities: an axis n̂ (a unit
vector) and an angle θ . We can view any given rotation as a
vector �ρ = θ n̂, with orientation fixed by the axis and length
set by the angle. We can restrict the length of the vectors
to θ � π , using a property of rotations about opposite axes:
R(n̂, π + θ ) ≡ R(−n̂, π − θ ). With these arguments, we can
give a geometric interpretation to SO(3). It corresponds to a
solid sphere of radius π , with each point within the sphere
corresponding to a unique rotation operation as depicted in
Fig. 1 (Left). However, careful attention must be paid to
the surface of this sphere. As R(n̂, π ) ≡ R(−n̂, π ), antipodal
points on the surface are identified. That is, each point on the
surface is, in fact, the same as its partner at the other end of a
diagonal passing through the center.

We now seek to characterize closed loops within this space
[10]. We have simple loops as shown in Fig. 1 (center). They
can be smoothly deformed to a point. We have a second
type consisting of loops that connect antipodal points on the
surface. While these loops are closed, they cannot be shrunk
to a point. We designate these two classes of loops as trivial
and nontrivial respectively. A loop of any complexity, e.g.,
one that passes through several pairs of antipodal points, can
be smoothly deformed into one of these classes.

The SO(3) space is the configuration space of a rigid rotor.
To see this, consider an object that is free to rotate, with its
center of mass held fixed. We may designate a particular con-
figuration of the object as our reference, say the configuration

at a particular instant of time. The configuration at any other
time can be obtained by effecting a rotation, R(n̂, θ ), on the
reference configuration. In other words, the configuration at
any time can be described using a rotation matrix, R(n̂, θ ).
When this problem is quantized, we arrive at a wave function
defined on SO(3) space, ψ (n̂, θ ). The system is described by
the Hamiltonian

Ĥ = L̂2
x

2Ix
+ L̂2

y

2Iy
+ L̂2

z

2Iz
, (1)

where L̂x/y/z are angular momentum operators defined in the
body-fixed frame along the three principal axes. The quan-
tities Ix/y/z represent the corresponding moments of inertia.
In the rest of this article, in the interest of simplicity, we
will consider two cases: (i) Ix = Iy = Iz ≡ I0, known as the
“spherical top.” This case arises when the rotating object is a
perfect sphere. (ii) Ix = Iy = Iz/α ≡ I0, with α �= 1. This case
is known as the “symmetric top,” arising in the context of an
ellipsoidal rigid body.

The spectrum of this problem was first worked out by
Casimir in 1931. Eigenstates can be labeled by three quan-
tum numbers, j, m, and m′. The first, j, represents the total
angular momentum. It takes non-negative integer values, j =
0, 1, 2, 3, etc. The second and third quantum numbers denote
angular momenta in the body-fixed frame and in the space-
fixed frame, respectively [11]. They are both defined with
respect to an arbitrarily chosen z axis. Each takes one of (2 j +
1) possible values with m, m′ ∈ {− j,− j + 1, . . . , j − 1, j}.
The eigenstates (wave functions) are complex functions de-
fined over SO(3) space, given by Wigner D matrices [12–14],

ψ j,m,m′ (n̂, θ ) = D j
m′,m(n̂, θ )∗, (2)

where

D j
m′,m(n̂, θ ) = 〈 j, m′|e−iθ n̂· �̂L| j, m〉. (3)

Here, �̂L = (L̂x, L̂y, L̂z ) is the angular momentum vector and
| j, m〉′s are the usual spherical harmonics. Note that we
have expressed the Wigner D matrices in the axis-angle rep-
resentation here, as opposed to the more commonly used
Euler angle representation [15]. In the spherical top rotor,
the eigenenergies are given by ε j = h̄2

2I0
j( j + 1). As the en-

ergies only depend on j, each level has a (2 j + 1)2-fold
degeneracy—corresponding to all possible values of m and
m′. In the symmetric top rotor, eigenenergies are given by
ε j,m = h̄2

2I0
[ j( j + 1) − γ m2], where γ = 1 − α. Each level has

a degeneracy of (2 j + 1), corresponding to different choices
for m′.

III. BERRY PHASE STRUCTURE IN THE RIGID ROTOR

We consider the Berry phase attached to a loop in a generic
time-reversal-symmetric system. A loop can be traversed in
two directions, which will result in opposite values for the
Berry phase. However, two trajectories that correspond to
motion in opposite directions are time-reversed copies of one
another. In a system with time-reversal symmetry, they must
accrue the same Berry phase. With these arguments, the Berry
phase must satisfy θB ≡ −θB. This has two possible solutions:
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θB = 0 or π . As these are two discrete values, we argue that
Berry phase should be a topological quantity that is invari-
ant under smooth deformations of the path. In particular, if
the Berry phase is π for a certain path, it must have the
same value for all topologically equivalent paths. A trivial
path in SO(3), by definition, can be smoothly deformed to
a point—a limiting case with no scope for a Berry phase.
We conclude that no trivial path can have an attached Berry
phase.

We next consider nontrivial paths as shown in Fig. 1 (right).
As argued above, time-reversal symmetry constrains the Berry
phase of a closed loop to be 0 or π . With either value, the
Berry phase must be robust to smooth deformations of paths.
In SO(3), it can be shown that all nontrivial paths are topolog-
ically equivalent [10]. That is, any two nontrivial paths can
be smoothly deformed into one another. As a result, there
are only two possibilities: (i) All trivial and nontrivial paths
have a Berry phase of zero. This is the traditional formulation
of the rigid-rotor problem whose solutions were discussed in
Sec. II above. (ii) All trivial paths have Berry phase of zero
while all nontrivial paths have a Berry phase of π . The latter
case is the focus of this article. It amounts to a nontrivial
boundary condition for the rigid-rotor problem. The stationary
states are smooth in the interior of the SO(3) sphere. However,
they reverse sign under a nontrivial path. This translates to
antiperiodic boundary conditions across any diameter of the
SO(3) sphere.

In the context of a rigid rotor, this situation can be de-
scribed as follows. Consider rotations about an arbitrary axis,
n̂, denoted as R(n̂, θ ). If θ is taken to run from −π to π , these
rotations lie on a diagonal in the SO(3) sphere of Fig. 1. As we
traverse this nontrivial loop connecting antipodal points, the
rigid body effectively rotates by 2π about a fixed axis. This
operation should attach a negative sign to the wave function.
In the usual problem of rigid-body dynamics, such a negative
sign does not arise. It cannot be easily realized in a physical
setup, say by distributing electric charge on the body and
threading a magnetic field. However, this situation naturally
arises in magnetic analogs of the rigid rotor as we show in the
following sections.

To conclude this section, we discuss a simpler problem
where the role of a π Berry phase can be easily understood.
Consider a particle on a circle, a space parametrized by an
angle variable, φ ∈ (0, 2π ]. The nontrivial paths here cor-
respond to a full revolution around the circle. If the circle
is threaded by a π flux, the particle’s wave function picks
up a negative sign after a revolution. The resulting wave
functions are of the form ei(n+ 1

2 )φ , where n is any integer.
These states reverse sign under φ → φ + 2π , but are peri-
odic under φ → φ + 4π . They are double-valued, with two
possible values for any given φ. These features are closely
mirrored by the rigid rotor when a Berry phase of π is
introduced.

IV. DRAWING SOLUTIONS FROM THE SU(2) ROTOR

We have established that time-reversal symmetry allows
for a situation in which nontrivial paths in SO(3) are associ-
ated with a π Berry phase. In order to find the corresponding
stationary states, we appeal to the SU(2) rotor. A generic

SU(2) matrix can be represented using three parameters: a
unit vector n̂, an angle θ ∈ [0, π ], and an Ising variable
μ = ±1,

RSU (2)(n̂, θ, μ) = μ ei θ
2 n̂·�σ , (4)

where �σ = (σx, σy, σz ) is a vector of Pauli matrices. This
form brings out the relation between SU(2) and SO(3) spaces
[13,16]. They bear a two-to-one relation, with SU(2) consist-
ing of two copies of the SO(3) solid sphere—one for each
value of μ. The two solid spheres of SU(2) share a common
boundary, with

RSU (2)(n̂, π,+1) = RSU (2)(−n̂, π,−1), (5)

which follows from the definition in Eq. (4).
The SU(2) rotor is very similar to the SO(3) rigid rotor,

with a Hamiltonian of the same form as in Eq. (1). Its sta-
tionary states are also similar, given by Wigner D matrices of
Eq. (3) above. However, in the SU(2) case, the total angular
momentum quantum number may take non-negative values
that are integers or half-integer. That is, j = 0, 1

2 , 1, 3
2 , 2,

etc. For each j, the m and m′ quantum numbers take values
from {− j,− j + 1, . . . , j − 1, j}. The stationary state wave
functions are also similar to the SO(3) case. However, careful
attention must be paid to continuity at the boundary of the
sphere, as we discuss below.

The Wigner D matrices are complex-valued functions of n̂
and θ . However, SU(2) space has an additional coordinate in
μ. In order to define wave functions in a consistent fashion,
we note that the Wigner D matrices satisfy

ψ (−n̂, π ) = (−1)2 jψ (n̂, π ). (6)

This relation, demonstrated explicitly in Appendix B, con-
nects the values of the wave function at antipodal points of
the sphere. We see that stationary states fall into two classes,
based on the value of j. Solutions with integer values ( j =
0, 1, 2, 3, . . .) have the same value at any pair of antipodal
points. Those with half-integer values ( j = 1

2 , 3
2 , 5

2 , . . .) have
a relative minus sign. To define wave functions that are smooth
over the SU(2) configuration space, we take

ψSU (2)(n̂, θ, μ) =
{

D j
m′,m(n̂, θ )∗, j = 0, 1, 2, . . . ,

μ D j
m′,m(n̂, θ )∗, j = 1

2 , 3
2 , . . . .

(7)

For integer-valued j’s, the wave functions are identical be-
tween the two spheres. For half-integer j’s, the wave functions
differ by a negative sign. These forms lead to smooth evo-
lution across the boundary that separates the two spheres
of SU(2). In the language of Ref. [16], integer and half-
integer j values correspond to even and odd representations,
respectively.

We now revert to the problem of the SO(3) rigid rotor
with a π Berry phase. We seek to find eigenstates of the
Hamiltonian in Eq. (1) that are smooth within the SO(3)
sphere and antiperiodic across diagonals. These requirements
are precisely met in the SU(2) solutions with half-integer j
values, as seen from Eq. (6). We conclude that the required
stationary states are Wigner D matrices with j = 1

2 , 3
2 , 5

2 , etc.
The expressions for the eigenenergies and level degeneracies
are the same as those given in Sec. II, but with j taking half-
integer values. In Table I, we describe the resulting spectrum
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TABLE I. Spectrum of the spherical-top rigid rotor with and without Berry phase.

Berry phase Total angular momentum quantum number m and m′ quantum numbers Eigenvalue Degeneracy

0 j = 0, 1, 2, 3, . . . m/m′ = − j, − j + 1, . . . , j − 1, j ε j = j( j + 1) (2 j + 1)2

π j = 1
2 , 3

2 , 5
2 , . . . m/m′ = − j, − j + 1, . . . , j − 1, j ε j = j( j + 1) (2 j + 1)2

and compare it with that of the traditional Berry-phase-free
formulation.

V. RIGID ROTOR AS AN EFFECTIVE DESCRIPTION: THE
TRIANGLE ANTIFERROMAGNET

The rigid rotor can emerge as the low-energy description
of certain quantum magnets. Our discussion below follows
a general principle laid down in Ref. [17]. The physics of a
quantum magnet, at low energies, resembles that of a single-
particle problem. The particle moves in the abstract space of
all classical ground states. This mapping is readily seen from
the low-lying portion of the magnet’s energy spectrum. Below,
we will consider a family of quantum magnets where the set
of classical ground states is isomorphic to SO(3). Their low-
energy physics corresponds to a particle moving in SO(3)—a
rigid rotor.

We begin with perhaps the simplest example—a three-spin
magnet with spin-S moments at the corners of an equilateral
triangle. Neighboring spins interact via an antiferromagnetic
Heisenberg coupling. The Hamiltonian for this system can be
written as

H = J
∑
( jk)

�̂S j · �̂Sk ∼ J

2

(∑
j

�̂S
)2

, (8)

where the sum over ( jk) runs over all pairs of spins. This can
be rewritten as the square of a sum over each spin. We have
expressed the Hamiltonian as the square of the total spin, by
removing a constant term. In the classical limit, the spins can
be viewed as three-component vectors. The classical energy
is minimized when the three spin vectors add to zero. This
can only happen if all three spins lie on a plane and form
the sides of an equilateral triangle. As is typical in frustrated
systems, there are, in fact, many classical ground states. The
choice of the ordering plane corresponds to a choice of normal
unit vector, n̂. Within the plane, the first spin may be oriented
in any direction. This corresponds to an angle variable, θ .
These two parameters, n̂ and θ , suggest that the space of
classical ground states is equivalent to SO(3) which is also
parametrized by a unit vector and an angle. Indeed, it can
be rigorously shown that any classical ground state can be
obtained from a reference ground state, by effecting a global
SO(3) rotation. We say that the set of classical ground states is
SO(3), i.e., the set of classical ground states has a one-to-one
and onto mapping with SO(3).

A. Low-energy effective theory

The low-energy physics of this magnet can be systemat-
ically studied using a nonlinear sigma model approach. A
detailed calculation, applicable to an entire family of magnets,
is outlined in Sec. VI A below. Here, we describe the final re-
sult for the case of the triangle magnet. The partition function

can be expressed within the spin path integral formalism. It
involves an integral over all paths in configuration space,

Z =
∫ {

3∏
j=1

DS j

}
e−L =

∑
loops

e−Lloop , (9)

Lloop = i�loop + J
∫ β

0
dτ

∑
( jk)

�S j (τ ) · �Sk (τ ). (10)

The loops lie within the space of all classical configurations
of spins. They run over imaginary time, from τ = 0 to β,
where β is the inverse temperature. Each loop contributes with
an action that has two terms, the Berry phase, �loop, and the
energy. The latter can be written as an expansion in powers of
S, with the leading O(S2) term corresponding to the classical
energy.

In the large-S low-energy regime, we may restrict the path
integral to configurations that are close to classical ground
states. Any “hard” deviation (one that increases the classical
energy) is exponentially suppressed. In this regime, we may
restrict our attention to loops that can be decomposed into
two pieces: (i) a closed loop within the space of classical
ground states, and (ii) a small fluctuation out of the ground
state space. The former determines the topological character
of the loop. Here, the space of classical ground states is SO(3).
As a result, a loop can be classified as trivial (shrinkable to a
point) or nontrivial, as shown in Fig. 1. The fluctuation out
of the ground state space represents a small deformation that
does not modify topological character.

After several simplifications, the action for a given loop
takes a remarkably simple form,

Lloop = 6π iSν − i�L′ · �V + β3 �L′2. (11)

Here, ν = 0, 1 is a topological index. It is 0 for a trivial path
within SO(3) and 1 for a nontrivial path. The remaining terms
have a standard form—the action of a spherical-top rigid
rotor. Here, �L′ represents the angular momentum, �V represents
angular velocity, and β3 is an energy scale, proportional to J .
Explicit expressions for these quantities are given in Sec. VI A
below.

We have arrived at a remarkable picture. The effective
theory for a triangle antiferromagnet is precisely a spherical
top rigid rotor. This result is well known and has been used
in field theoretic studies of triangular lattice antiferromagnets,
where each triangular motif is viewed as a rigid rotor [18–20].
However, the Berry phase term has not been adequately appre-
ciated in earlier studies. Our analysis shows that it can play a
strong role. For integer S, the Berry phase is inconsequential
as it is an integer multiple of 2π . This leads to an effective
theory of a traditional spherical top rotor. However, for half-
integer values of S, a Berry phase of π is attached to nontrivial
paths in SO(3). The effective theory is the spherical-top rigid
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rotor with a π Berry phase, precisely as described in Secs. III
and IV above.

B. Rigid rotor in the quantum spectrum

We now discuss the energy spectrum of the triangle antifer-
romagnet. As the Hamiltonian is proportional to the total-spin
squared, its eigenvalues are J

2 St (St + 1), where St is the total
spin. We arrive at a simple problem of angular momentum
addition,

S ⊗ S ⊗ S = {0 ⊕ 1 ⊕ 2 . . . ⊕ 2S} ⊗ S. (12)

We have added the first two spins before adding the third. The
final result depends on the nature of S.

We first consider integer values of S, where we find St ∈
{0, 1, 2, . . .}. The ground state, corresponding to St = 0, is
nondegenerate. The value St = 0 only arises in the case where
the sum of the first two spins is S. The first excited state
corresponds to St = 1, which occurs when the first two spins
add to S − 1, S, or S + 1. In each case, as St = 1 is a triplet, we
have an additional threefold degeneracy. This results in a net
ninefold degeneracy of the first excited state. Higher energy
levels can be found from similar arguments. We summarize as
follows: eigenstates correspond to St = 0, 1, 2, . . . with each
level having a degeneracy of (2St + 1)2. Note that this only
represents the low-energy spectrum—the pattern holds for
St � S. Remarkably, the low-energy spectrum is precisely that
of a spherical-top rigid rotor with no Berry phase, as described
in Sec. II.

For half-integer values of S, the spectrum is qualitatively
different as we have St = 1

2 , 3
2 , 5

2 , etc. The ground state corre-
sponds to St = 1

2 , which can occur when the first two spins
add to S ± 1

2 . In addition, each St = 1
2 level has an inher-

ent twofold degeneracy. This leads to a net fourfold ground
state degeneracy. On the same lines, the first excited state
corresponds St = 3

2 and is 16-fold degenerate. In summary,
eigenstates are labeled by St = 1

2 , 3
2 , 5

2 , . . ., with degeneracies
(2St + 1)2. This picture holds for St � S, representing the
low-energy spectrum. Remarkably, this is the spectrum of a
spherical-top rigid rotor with a Berry phase of π . The spec-
trum for the case of S = 5/2 is plotted in Fig. 2. The effective
description in terms of a spherical top with a π Berry phase
holds at low energies, for E � 35J

8 .
The energy spectra, obtained from analytical arguments,

are consistent with the low-energy theory outlined in Sec. V A
above. The triangular antiferromagnet, at low energies, is a
realization of the spherical-top rigid rotor. Depending on the
value of S, the rotor may have a Berry phase of zero or π .

VI. ODD-POLYGON ANTIFERROMAGNETS

We next consider the more general case of odd-polygon
antiferromagnets. We take polygons with N vertices, where
N = 3, 5, 7, 9, etc. We have spin-S moments at each vertex
with Heisenberg antiferromagnetic couplings between nearest
neighbors,

H = J
N∑

i=1

�̂Si · �̂Si+1, (13)

0 20 40 60 80 100 120

States

FIG. 2. The spectrum of a triangle antiferromagnet with a half-
integer value of S. The degeneracy of each level is shown in
parentheses. Within the low-energy window indicated, the spectrum
is quantitatively equivalent to that of a spherical-top rigid rotor with
a π Berry phase.

where �̂SN+1 ≡ �̂S1. Unlike the triangle antiferromagnet, this
Hamiltonian cannot be written as the square of the total spin.
Nevertheless, as we show below, its structure and high degree
of symmetry lead to an elegant low-energy description.

We first discuss the classical ground states of this problem.
For polygons with even N , there is no frustration. The classical
ground state is a Néel antiferromagnet at the ordering wave
vector π . Moments alternate between two opposite orienta-
tions as we move from one site to the next, reverting to the
initial orientation when we return to the starting point. How-
ever, when N is odd, Néel order cannot be accommodated.
Energy is minimized by ordering at π ± π/N . These are the
closest wave vectors to π that leave the system invariant
after N unit translations. Effectively, the classical ground state
is a coplanar state with the ordering-plane chosen sponta-
neously. Within the plane, neighboring spins subtend an angle
π ± π/N with one another. When moving from one site to the
next clockwise, the subtended angle is always the same, either
π + π/N or π − π/N . A rigorous discussion can be found in
Ref. [21].

Furthermore, all classical ground states can be reached
from an arbitrary reference state by effecting a global spin
rotation. The choice of ordering plane corresponds to choos-
ing a normal unit vector n̂. We may fix its orientation to
be parallel to �S2 × �S1. Within the plane, the orientation of
the first spin corresponds to choosing an angle θ . In order
to avoid double-counting, θ can be restricted from 0 to π

while n̂ ranges over all orientations. This parametrization is
equivalent to specifying an SO(3) rotation using the axis-angle
representation. We assert that the set of all classical ground
states is isomorphic to SO(3).

Below, we discuss a low-energy effective theory for odd-
N polygons. For N = 3, our theory yields a spherical-top
rotor while N > 3 gives rise to a symmetric top. Subse-
quently, we present the energy spectrum obtained from exact
diagonalization.

A. Effective theory

We derive a low-energy effective description using the
nonlinear sigma model approach. Our approach applies to the
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FIG. 3. Ordering in odd antiferromagnetic polygons. (a) A refer-
ence classical ground state on the pentagon. All spins lie on the same
plane with neighboring spins subtending an angle of 4π/5 with one
another. (b) Any classical ground state can be obtained by rotating
the reference state. The orientations of the five spins are shown. The
plane of ordering is fixed by the normal vector n̂ while the position of
the first spin is set by θ , measured from an arbitrary axis. All ground
states can be obtained by varying the normal vector n̂ or the angle θ .
(c) A reference ground state on a heptagon (N = 7). (d) A reference
ground state on a nonagon (N = 9).

entire family of odd-polygon antiferromagnets, where N =
3, 5, 7, 9, etc. For any N , the classical ground states are copla-
nar and accessible by global rotations acting on a reference
ground state as shown in Fig. 3. We define a reference state in
the x-y plane,

{�S1, �S2, . . . , �SN }ref ≡ S{n̂1, n̂2, . . . , n̂N−1, n̂N }
= S{ν̂φ, ν̂φ+θN , ν̂φ+2θN , . . . , ν̂φ+(N−1)θN }, (14)

where ν̂ξ = cos ξ x̂ + sin ξ ŷ and θN = π + π/N . The orien-
tation of the first spin is fixed by an angle φ ranging from 0
to 2π . A generic classical ground state can now be written
as {�S1, �S2, . . . , �SN } = SR(n̂, θ ){n̂1, n̂2, . . . , n̂N }, where the ro-
tation R(n̂, θ ) acts on each of the N unit vectors.

In the spirit of a low-energy theory, we introduce a
small deviation away from the ground state. The deviation
is parametrized by a vector, �L, which will turn out to be
proportional to uniform polarization,

�Si = S�̂i = SR(n̂, θ ){n̂i + Mi �L/S}√
1 + (Mi �L/S)2

≈ SR(n̂, θ )

{
n̂i

(
1 − �L · Mi �L

2S2

)
+ Mi �L/S

}
, (15)

where Mab
i = (δab − n̂a

i n̂b
i ) is a tensor operator that projects

onto the plane perpendicular to n̂i. When it acts on a vector
to the right, it picks out the component perpendicular n̂i.

Note that M2
i = Mi. In this parametrization, n̂ and θ represent

“soft” modes that preserve the classical energy. The vector,
�L, encodes modes that are canonically conjugate to the soft
modes, as we will show below. It represents a deviation that
cants each spin toward the direction of �L.

Apart from �L, we may introduce many other deformations
in Eq. (15), e.g., a staggered canting along each direction.
However, such fluctuations can be integrated out from the
path-integral action. We are interested in the low-energy
physics involving the soft modes and their conjugate degrees
of freedom.

We next describe the magnet using the well-known spin-
path-integral formalism [22,23]. The partition function is
written as a sum over loops in the space of all classical
configurations. Each loop is associated with an action that
has two terms: the Berry phase and the energy. We evaluate
these contributions using the low-energy spin parametrization
of Eq. (15).

Berry phase. This represents a geometric contribution, pro-
portional to the sum of solid angles swept out by each spin. It
can be written as

iS
∫ β

0
dτ

N∑
j=1

�A(�̂ j ) · ∂τ (�̂ j ), (16)

where �A(�̂ j ) is the vector potential of magnetic monopole at
the origin. With the parametrization of Eq. (15), the Berry
phase takes the form

iS
∫ β

0
dτ

N∑
j=1

�A
(

R

{
n̂ j + Mj

�L
S

})

· ∂τ

(
R

{
n̂ j + Mj

�L
S

})
+ O

(
1

S

)
. (17)

We retain terms of O(S0), in the spirit of an expansion in
powers of S. As we operate in the low-energy regime, we take
each trajectory to consist of two parts: a closed loop entirely
within the classical ground state space and a small deviation
out of it. The latter amounts to a small, smooth deformation
of the former. This picture, after some straightforward simpli-
fications, leads to a remarkably simple form,

2π iNSν − i�L′ · �V + O

(
1

S

)
. (18)

The leading O(S) term only depends on the trajectory within
the classical ground state space. This gives a topological
contribution, with ν = 0 for contractible loops and ν =
1 for nontrivial loops. This is explicitly demonstrated in
Appendix A.

In writing the O(S0) term, we have defined two new vari-
ables. The first is �L′ = ∑N

j=1
�S j = RM �L, where M is given

by
∑N

j=1 Mj = Diag{N/2, N/2, N}. The vector �L′ has a clear
physical interpretation, as the net magnetization of the system.
The second variable is Vα = − 1

2εαβγ {(∂τ R)R−1}βγ . If we take
R to denote the configuration of a rigid body, Vα represents its
angular velocity. From the linear coupling between �L′ and the
angular velocity, we see that �L′ is canonically conjugate to R.
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Energy. Using the parametrization of Eq. (15) in the
Hamiltonian of Eq. (13), we obtain

βECGS +
∫ β

0
dτE2. (19)

The leading O(S2) contribution is ECGS, the classical ground
state energy. We have ECGS = NJS2 cos θN , where θN is as
defined below Eq. (14). The O(S) contribution to the energy
vanishes as it is linear in �L. As we are expanding about an
extremum of the classical energy, all linear terms vanish. The
second term in Eq. (19) is O(S0), or equivalently O(L2). It is
given by

E2 = J

[
NL2 − 2

N∑
j=1

(n̂i · �L)2 − cos(θN )(M �L · �L)

+ cos(θN )
N∑

j=1

(n̂ j · �L)(n̂ j+1 · �L)

]

= βN �L′2 − γN (M �L)2
z = βN

�̃L2 − γN L̃z
2, (20)

where the explicit forms for βN and γN are given in

Appendix C. We have defined �̃L ≡ M �L as the net magneti-
zation in the body-fixed frame.

Putting together the Berry phase and energy terms, the
action for a given loop takes the form

Lloop ≈ 2π iNSν − i�L′ · �V + βN
�̃L2 − γN L̃2

z . (21)

We have neglected a constant contribution given by βECGS,
as well as O( 1

S ) contributions. The result is a recognizable
form—the action of a symmetric-top rigid rotor with an ad-
ditional Berry phase term. For integer values of S, the Berry
phase can be neglected as it is always an integer multiple of
2π . For half-integer S values, a π Berry phase is attached to
nontrivial loops. For N = 3, it turns out that the asymmetry
coefficient vanishes (γ3 = 0). This is a special case where we
obtain a spherical-top rotor.

The effective action above has characteristic symmetries.
It is invariant under rotations of the space-fixed frame. This
corresponds to a transformation R(n̂, θ ) → R0R(n̂, θ ) in the
parametrization of Eq. (15), where R0 is a constant SO(3)
matrix. In contrast, a rotation of the body-fixed frame corre-
sponds to modifying the choice of reference state in Eq. (14).
We immediately see that the action is independent of the
angle φ used in Eq. (14). A generic body-frame rotation may
also change the plane of ordering. This only modifies the last
term in the action, with L̃2

z → L̃2
n , where L̃n is the component

normal to the plane of the reference state.
The action of Eq. (21) corresponds to characteristic

patterns in the energy spectrum. The level-spacing and de-
generacies depend on the relative strengths of βN and γN

coefficients. In Appendix C, we discuss the variation of these
parameters with N . For the limiting value of N = 3, γ3 van-
ishes. This leads to the spectrum of a spherical-top rigid rotor,
with eigenvalues β3 j( j + 1). When S is a half-integer, j =
1
2 , 3

2 , 5
2 , . . ., as discussed in Sec. V A above. For all higher N ,

energy eigenvalues are given by βN j( j + 1) − γN m2. As long
as S is a half-integer, j = 1

2 , 3
2 , 5

2 , . . . with m = − j, . . . , j.
Each ( j, m) level has a (2 j + 1) degeneracy, arising from all

allowed values of the m′ quantum number. For all N > 3, we
find a small, positive value for the asymmetry coefficient γN ,
with γN � βN/2. In this regime, the ground state corresponds
to ( j = 1

2 , m = ± 1
2 ) with fourfold degeneracy; the first ex-

cited state corresponds to ( j = 3
2 , m = ± 3

2 ) with eightfold
degeneracy, and so on. The effective theory yields the same
pattern in the energy spectrum for all N > 3.

In the thermodynamic limit, where N → ∞, the effective
theory retains its symmetric-top-rotor character. The asym-
metry is small with γN/βN → 1

2 . However, both βN and γN

decrease as ∼1/N . This can be interpreted as stiffening of the
rotor with the moment of inertia increasing linearly with N .

B. Energy spectra using exact diagonalization

We have argued that odd-polygon antiferromagnets, at
low energies, acquire an emergent description in terms of
symmetric-top rigid rotors. We now support this assertion
with evidence from exact diagonalization spectra.

Methodology. We discuss the N-site antiferromagnetic
chain, where N is odd. The spectrum of the N = 3 problem
can be solved analytically, as presented in Sec. V B above.
Here, we discuss a numerical approach for N = 5, 7, 9, for
various S values. The Hilbert space is (2S + 1)N -dimensional,
growing rapidly with N and S. For larger values of N and
S, we use the following four symmetries to diagonalize the
Hamiltonian: (a) Invariance under global spin rotations about
the z axis. This divides the Hilbert space into orthogonal
sectors labeled by Stotal

z . (b) Invariance under a global spin
rotation by π about the spin x axis. This operation takes
Stotal

z → −Stotal
z . As this is a symmetry, we only need to solve

the problem in sectors with positive values of Stotal
z . (c) Invari-

ance under a unit translation in real space, i.e., �̂S1 → �̂S2 →
�̂S3 → · · · → �̂SN → �̂S1. This symmetry allows us to subdi-
vide the Hilbert space into blocks of different momenta, k =
2pπ/N , where p = 0, 1, 2, . . . , N − 1. (d) Invariance under
a mirror operation which transforms sites as (1, 2, . . . , N −
1, N ) → (N − 1, N − 2, . . . , 2, 1, N ). This symmetry relates
k = 2pπ/N and k = 2(N − p)π/N subsectors within a given
Stotal

z sector. For k �= 0, this reduces the computational effort
by half.

For smaller values for N and S (e.g., for N = 5, S � 9),
we diagonalize each block of the Hamiltonian matrix to find
the spectrum. For larger S, block sizes are too large for full
diagonalization. However, the Hamiltonian is sparse as it con-
sists only of nearest-neighbor couplings. This allows us to use
Lanczos diagonalization implemented using the ARPACKPP
package [24], focusing on the lowest few eigenvalues.

Ground state energy. We first discuss the ground
state energy, obtained by numerical diagonalization of the
Hamiltonian. Figure 4 plots the ground state energy per
bond (EGS/N) vs S for the pentagon (N = 5) and the hep-
tagon (N = 7). The points fall on smooth curves of the form
EGS/N ∼ aS2 + bS + c, where a, b, and c are obtained as
fitting parameters. We interpret the O(S2) term as the classical
energy, while the others are quantum corrections. From fitting
the data, the O(S2) terms comes out to be −0.808579JS2

for the pentagon and −0.900543JS2 for the heptagon. These
estimates are consistent with our semiclassical analysis to find
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FIG. 4. Top: Ground state energy per bond in the pentagon vs
spin (S). Data points are fitted to the curve, f (S) = 0.0347328 −
0.496368S − 0.808579S2. Bottom: Ground state energy per bond
in the hepatgon vs spin (S). Data points are fitted to g(S) =
−0.0019346 − 0.448329S − 0.900543S2. Energies are measured in
units of J .

the effective theory. The starting point of our analysis was the
assertion that the classical ground states are coplanar, with
neighboring spins subtending an angle π ± π/N with each
other. The resulting classical energy per bond is Ecoplanar/N =
cos(π + π/N )JS2, yielding −0.809017JS2 for the pentagon
and −0.900969JS2 for the heptagon. These are in excellent
agreement with the estimates obtained by fitting the numerical
data.

Energy spectrum of pentagon. Figure 5 shows numerically
obtained low-energy spectra for the pentagon (N = 5) for
various half-integer values of S. The low-lying levels show
a degeneracy pattern that is consistent with the effective
description—that of a symmetric-top rigid rotor with a π

Berry phase. To perform a quantitative comparison, for each
S, we fit the numerically obtained spectrum (within a suitable
low-energy window) to the form

E = −�5 + β5 j( j + 1) − γ5m2, (22)

where j = 1
2 , 3

2 , 5
2 , etc., and m = − j,− j + 1, . . . , j − 1, j.

We attach a degeneracy of (2 j + 1) to each ( j, m). The co-
efficient �5 represents a constant shift. The rotor coefficients
β5 and γ5 are found by a least-squares fit. As seen from Fig. 5,
we obtain excellent agreement with this form. Note that each
panel only shows a low-energy window where the spectrum is
in good agreement with Eq. (22). At higher energies, the nu-

merically obtained degeneracies deviate from the rigid-rotor
pattern.

The form in Eq. (22) is motivated by the effective the-
ory derived in Sec. VI A. The analytically obtained values
for the coefficients are β

eff theory
5 = 0.58541J and γ

eff theory
5 =

0.22361J (see Appendix C). For all S, the values obtained by
fitting the numerical data are close to the analytic result. As S
increases toward ∞, the fit values come closer to the analytic
result. This can be seen in Fig. 6, where the S dependence
of β5 and γ5 is plotted. As described in the caption, they can
be fitted to polynomial forms to extrapolate to the S → ∞
limit. This yields βS→∞

5 = 0.58507J and γ S→∞
5 = 0.22286J ,

respectively. These values are very close to the analytic result,
as we expect from the large-S approach of the effective theory.

As a counterpoint, we present results for integer values
of S in Fig. 7. The spectra show excellent agreement with a
symmetric-top rigid rotor without Berry phases. Note that the
degeneracy pattern is very different from those of half-integer
S. The change in pattern is a direct manifestation of the Berry
phase.

Spectrum of larger polygons. We follow the same nu-
merical approach and fitting procedure for heptagon (N = 7)
and nonagon (N = 9) antiferromagnets. Heptagon spectra for
half-integer and integer S values are presented in Figs. 8 and
9, respectively. Nonagon spectra with half-integer and integer
spins are shown in Figs. 10 and 11. In all cases, spectra re-
semble those of a symmetric-top rotor. Integer spins resemble
the case with no Berry phase, while half-integer spins carry
a Berry phase of π . For example, integer S always leads
to a nondegenerate ground state and a sixfold first excited
state. In contrast, half-integer S is invariably associated with a
fourfold degenerate ground state and an eightfold degenerate
first excited state.

VII. DISCUSSION

The topology of SO(3) has drawn the attention of physi-
cists for many decades. It is well known that the homotopy
group is Z2, with two types of closed loops—trivial and
nontrivial. We may expect this rich topological structure to
give rise to many observable consequences. However, rela-
tively few examples are known. Perhaps the best known is
the Z2 vortex. This represents a topological defect in SO(3)
field theories, with a textured SO(3) order parameter in two
dimensions [25]. While this concept has been explored in
many theoretical studies [26–28], it has recently been invoked
in experiments as well [29]. Our results bring out a more
direct consequence of SO(3)’s topology—at the level of a
single rotor, without requiring a field theory. Our results ap-
ply to a potentially large family of magnets. Our arguments
regarding the Berry phase hold for any magnet that satisfies
the three conditions listed in the abstract—as emphasized in
Appendix A.

As specific examples, we have discussed odd-polygon
antiferromagnets. Our discussion here builds upon previous
studies on antiferromagnetic chains. Our results are consistent
with early studies including analytic solutions for small spin
values [30] and observations from exact diagonalization spec-
tra [31–34]. Our analysis shows that features in low-energy
spectra can be cleanly understood in terms of an effective
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FIG. 5. Low-lying spectra of the pentagon antiferromagnet for various half-integer values of S. Plots show numerically obtained spectra
as well as fits to the effective theory. Fitting parameters are shown in each panel. Energies are measured in units of J . Numbers in parentheses
denote the degeneracy of each level.

rigid-rotor description. These include degeneracy and mo-
mentum carried by the ground state.

Effective low-energy theories offer a starting point to
understand spontaneous symmetry breaking [35]. Classical
ordering requires breaking the symmetries of the system.
However, this is not possible in any finite quantum system.
Rather, we obtain a characteristic spectrum of states, called
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0.230
0.232
0.234
0.236
0.238

FIG. 6. β5 and γ5 vs S. β5 values are fitted to the curve
β5(S) = 0.58507 + 0.07628/S − 0.11165/S2. Those for γ5 are fitted
to γ5(S) = 0.22286 + 0.09662/S − 0.12751/S2. Both quantities are
measured in units of J .

the “Anderson tower” or the “thin spectrum.” Our results can
be viewed in this perspective, as determining the nature of
the Anderson tower for noncollinear ordering in a class of
magnets. The tower of states corresponds precisely to rigid-
rotor spectra. We provide an effective low-energy theory for
polygons with N vertices. We support this with an analytic cal-
culation of the spectrum for N = 3 and numerically obtained
spectra for N = 5, 7 and 9.

A deeper view of our results reveals a propensity toward
ordering when N → ∞. In the effective rigid-rotor picture,
we find that the moment of inertia increases with N . In the
thermodynamic limit, we have a “massive” rotor that can be
easily pinned by an external symmetry breaking field. For-
mally, this can be stated as a sequence of limits. If a symmetry
breaking field is held at a fixed strength while N is increased,
the system will order. This order will persist if the external
field is then smoothly taken to zero. Within this paradigm,
our results show a qualitative difference between systems with
integer and half-integer S. The nature of the low-lying spectra
is different in the two cases. An interesting future direction is
to examine whether this leads to observable differences in the
approach to classical ordering.

The thin spectrum is of significant interest in numerical
studies on quantum magnets [36]. It serves as a signature
for classical ordering that is otherwise inaccessible in a
finite system. This line of reasoning has played an important
role in demonstrating the emergence of classical ordering
in the Heisenberg antiferromagnet on the triangular lattice
[37,38]. Rigid-rotor-based field theories have been used to
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FIG. 7. Low-energy spectra obtained from numerical diagonalization of the pentagon antiferromagnet for two integer values of S. Data
have been fitted to the rigid-rotor form, with fitting parameters shown in each panel. Energies are measured in units of J .

determine the thin spectrum in triangle-based antiferromag-
nets, with the structure also appearing in the entanglement
spectrum [39]. Our study highlights the role of the Berry phase
in this problem. This gives rise to an odd-even effect where the
spectrum oscillates between two characteristic patterns as S is
varied.
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APPENDIX A: BERRY PHASE IN SO(3)
ANTIFERROMAGNETS

In the main text, we discuss a specific family of odd-
polygon antiferromagnets. In this Appendix, we evaluate the
Berry phase for a more general case. We consider a generic
quantum magnet for which the classical ground state space
(CGSS) is isomorphic to SO(3). We restrict our attention to
magnets with unpolarized classical ground states, i.e., with no
net magnetization. We will make use of these restrictions in
the arguments below. We now determine the leading Berry
phase contribution, the O(S) term in Eq. (17) of the main text.

At low energies, closed paths in configuration space can be
viewed as smooth deformations of loops within the CGSS. As
a result, every closed loop is topologically equivalent to a tra-

jectory that lies entirely within SO(3) space. This component
within SO(3) gives the dominant contribution to the Berry
phase. As seen from Eq. (17) of the main text, this component
yields an O(S) contribution, while fluctuations out of SO(3)
contribute at O(S0).

Below, we will first demonstrate that the Berry phase is a
topological quantity—robust to smooth deformations within
SO(3). We will argue that any pair of topologically equivalent
loops must yield the same Berry phase. We will next explic-
itly calculate the Berry phase for the two classes of loops
within SO(3).

To show the topological nature of the Berry phase, we
follow the approach given in Ref. [18]. The O(S) Berry phase
accrued while traversing a loop is given by

C = iS
∫ β

0
dτ

N∑
j=1

�A(�̂ j ) · ∂τ (�̂ j )|�̂ j=R(τ )n̂ j
, (A1)

where the index j runs over each spin in the system, with the
jth spin oriented along the unit vector �̂ j . The orientation
changes with time, given by �̂ j = R(τ )n̂ j , where R(τ ) is a
time-dependent SO(3) rotation. The vector-valued function
�A satisfies εαβγ ∂βAγ (�̂ j ) = � jα . This can be viewed as the
vector potential generated by a magnetic monopole at the
origin [22].

Consider two proximate closed paths in SO(3). We denote
the first as R0(τ ) and the second as R0(τ ) + δR0(τ ), where
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FIG. 8. Low-energy spectra of the heptagon antiferromagnet for two half-integer values of S. Energies are measured in units of J .
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FIG. 9. Low-energy spectra of the heptagon antiferromagnet for two integer values of S. Energies are measured in units of J .

we have included a small time-dependent deformation with
respect to the first. We have

CR0(τ ) = iS
∫ β

0
dτ

N∑
j=1

�A(R0n̂ j ) · ∂τ (R0n̂ j ),

CR0(τ )+δR0(τ ) = iS
∫ β

0
dτ

N∑
j=1

�A((R0 + δR0)n̂ j )

· ∂τ ((R0 + δR0)n̂ j ). (A2)

Using εαβγ ∂βAγ (�̂ j )|�̂ j=Rn̂ j
= (Rn̂ j )α , we find the difference

in C to be

δC = CR0(τ )+δR0(τ ) − CR0 (τ )

= iS
∫ β

0
dτ εαβγ Rγ δ

0 (δR0)αν∂τ Rβρ

0

N∑
j=1

nδ
jn

ν
j n

ρ
j

= iS
∫ β

0
dτ εαγβ

(
R−1

0 ∂τ R0
)αα′(

R−1
0 δR0

)ββ ′
T α′β ′γ , (A3)

where T α′β ′γ ≡ ∑N
j=1 nα′

j nβ ′
j nγ

j . To arrive at the last step we
have used the identity, εαβγ Rαα′Rββ ′Rγ γ ′ = εα′β ′γ ′ . Note that
T has the following properties. It is symmetric under the
exchange of any two of the indices. In addition, it satisfies∑

α T ααβ = 0 as long as
∑

j n̂ j = 0. If the magnet is unpolar-
ized, we indeed have

∑
j n̂ j = 0.

Using these properties of T and the antisymmetric
character of (R−1

0 ∂τ R0) and (R−1
0 δR0), we find that δC

vanishes. The O(S) Berry phase is the same for any
two paths that are smooth deformations of each other.
This immediately implies that the O(S) Berry phase is a
topological quantity—with the same value for all paths within
each topological class.

As discussed in the main text, closed loops within SO(3)
fall under two classes—trivial and nontrivial. By definition,
trivial loops can be shrunk to a point. This corresponds to a
rotation matrix that remains constant in time. As seen from
Eq. (A1), this yields C = 0. By topological equivalence, C is
zero for every trivial loop.

In the nontrivial class, we evaluate C for a simple
example—a continuous family of rotations about an arbitrary
axis, n̂. At τ = 0, the angle of rotation is taken to be zero.
At τ = β, the angle is 2π . At intermediate times, the angle
increases linearly with time. This defines a closed loop in
the nontrivial class for which the Berry phase can be easily
evaluated. As we move along this path, each spin completes
a rotation about the axis as shown in Fig. 12. Note that the
angle subtended with the axis, θ j , remains constant during
time evolution. The Berry phase of Eq. (A1) can be recast in
a geometric form [22],

C = iS
∑

j

A j, (A4)
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FIG. 10. Low-energy spectra of the nonagon antiferromagnet for two integer spin values. Energies are measured in units of J .
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FIG. 11. Low-energy spectrum of the nonagon antiferromagnet
with S = 3

2 . Energies are measured in units of J .

where A j is the solid angle subtended by the orientation
vector of the jth spin. The solid angle may be defined with
respect to an arbitrary point on the sphere. Here, we choose
to measure solid angle from n̂, giving A j = 2π (1 − cos θ j ).
Adding the contribution from every spin, we obtain

C = i2πS

{
N −

∑
j

cos θ j

}
. (A5)

To simplify this, we note that cos θ j = n̂ · n̂ j . We rewrite
this as

C = i2πSN − i2π n̂ ·
{

S
∑

j

n̂ j

}
. (A6)

FIG. 12. The evolution of a spin as the system evolves along a
nontrivial path. The axis of rotation is taken to be the north pole. As
the spin rotates, it preserves the angle subtended with the axis, θ j .
The subtended solid angle is shown in gray.

In the second term, the term within braces is the net mag-
netization of the system. In a magnet where the classical
ground states are unpolarized, this term vanishes. We are left
with C = i2πNS as the Berry phase. As nontrivial paths are
topologically equivalent, they all accrue the same Berry phase.

With these arguments, we obtain the leading O(S) contri-
bution to the Berry phase given in Eq. (18) of the main text.

APPENDIX B: PERIODICITY OF HALF-INTEGER j WAVE
FUNCTIONS

Wigner D matrices are defined as

D j
m′,m(n̂, θ ) = 〈 j, m′|e−iθ n̂· �̂L| j, m〉, (B1)

where | j, m〉’s are angular momentum eigenkets with m and
m′ being the z projections of angular momentum. We now
introduce | j, jn〉’s, a new basis with momenta quantized along
n̂, rather than along ẑ. That is, they represent eigenstates of
the operator (n̂ · �L), with (n̂ · �L)| j, jn〉 = jn| j, jn〉 and jn =
− j,−( j − 1), . . . , ( j − 1), j.

We now reexpress the | j, m〉’s as linear combinations of the
new states. We write | j, m〉 = ∑

jn
c jn | j, jn〉. We obtain

e−iθ n̂· �̂L| j, m〉 =
∑

jn

cne−i jnθ
∣∣ j, jn

〉
. (B2)

With this basis change, the Wigner D matrices transform as

〈 j, m′|e−iθ n̂· �̂L| j, m〉 =
∑

jn′

∑
jn

c∗
n′cne−i jnθ 〈 j, jn′ | j, jn〉

=
∑

jn′

∑
jn

c∗
n′cne−i jnθ δ jn′ jn

=
∑

jn

|cn|2e−i jnθ . (B3)

Here, θ is a continuous variable, representing the angle of
rotation about the axis n̂. Using the above expression, we
may compare the difference in the Wigner D matrix when θ

changes by 2π . We obtain

D j
m′,m(n̂, θ + 2π ) =

∑
jn

|cn|2e−i jnθe−i2π jn

= ±D j
m′,m(n̂, θ ). (B4)

We note that when j is an integer, the jn quantum numbers
take integer values so that the factor e−i2π jn reduces to unity.
This leads to the + sign in the above equation. However,
when j is a half-integer, jn’s are also half-integer. As a result,
e−i2π jn = −1. This leads to a negative sign above.

Representing the Wigner D matrix as a wave function,
ψ (n̂, θ ), we obtain ψ (n̂, θ + 2π ) = (−1)2 jψ (n̂, θ ). Taking
θ = −π , we write ψ (n̂,−π ) = (−1)2 jψ (n̂, π ). Note that a
rotation corresponding to (n̂,−π ) can be written as one cor-
responding to (−n̂, π ). These arguments lead to Eq. (6) of the
main text.
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APPENDIX C: COEFFICIENTS IN THE EFFECTIVE
THEORY

We give explicit expressions for the quantities defined in
Eq. (20) of the main text. These quantities define the effective
theory for an odd-polygon antiferromagnet of size N . We have

βN = 4JαN

N2
− 2J cos θN

N
, (C1)

γN = 4JαN

N2
− J

N
− J cos θN

N
. (C2)

These expressions involve the quantity αN given by

αN = cos(θN )

2
[(N − 1) cos(θN ) + cos[(N − 1)θN ]].

It can be seen straightaway that γ3 = 0. For N → ∞, we have
αN → N

2 and θN → π . This leads to βN → 4J
N and γN → 2J

N .
Both βN and γN fall off as ∼ 1

N in the thermodynamic limit.
However, their ratio approaches a finite value with γN

βN
→ 1

2 .
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