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From prethermalization to chaos in periodically driven coupled rotors

Yonathan Sadia,1,2 Emanuele G. Dalla Torre,1,2 and Atanu Rajak3

1Department of Physics, Bar-Ilan University, Ramat Gan 5290002, Israel
2Center for Quantum Entanglement Science and Technology, Bar-Ilan University, Ramat Gan 5290002, Israel

3Presidency University, Kolkata, West Bengal 700073, India

(Received 11 September 2021; revised 10 February 2022; accepted 25 March 2022; published 3 May 2022)

Periodically driven (Floquet) systems are said to prethermalize when their energy absorption is very slow for a
long time. This effect was first discovered in quantum spin models, where the heating rate is exponentially small
in the ratio between the driving frequency and the spin bandwidth. Recently, it was shown that prethermalization
occurs also in classical systems with an infinite bandwidth. Here, we address the open question of which small
parameter controls the lifetime of the prethermal state in these systems. We show that the lifetime is controlled by
the temperature of the prethermal state, which is quasiconserved when the heating is slow. We substantiate this
finding in systems of periodically driven coupled rotors, by studying the dependence of the prethermal lifetime
on both the initial conditions and the connectivity. This result allows us to develop a simple analytical model that
describes the crossover from prethermalization to chaos in many-body classical systems.
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I. INTRODUCTION

Periodic driving of isolated many-body systems can gen-
erate novel dynamical phases that do not have any static
analogs. This approach, known as Floquet engineering [1–3],
led to a plethora of new phases, such as Floquet topolog-
ical insulators [4–14] and time crystals [15–21]. However,
periodic driving also induces heating, which hinders such
novel applications. The heating can be suppressed by intro-
ducing strong disorder in interacting many-body systems, thus
creating many-body localized phases [22,23]. The drawback
of this method is that the disorder can destroy the generic
characteristics of the nonequilibrium phases. An alternative
method that can be used to reduce heating is driving the sys-
tems at high frequencies, leading to a long-lived prethermal
state, where the heating rate is exponentially slowed down.
This phenomenon was first discovered theoretically in quan-
tum many-body systems [24–34]. Recently, using quantum
simulator [35,36] and NMR techniques [37], the existence
of long-lived prethermal states at high-frequency driving has
been observed in experiments. The existence of a prethermal
plateau has also been observed in interacting quantum kicked
rotors, realized experimentally in optical lattices [38].

A fundamental question is whether the phenomenon of
Floquet prethermalization can be found in classical systems
as well. The answer to this question has been given affir-
matively in the recent literature [39–44]. Using canonical
models of classical chaos theory [40,43] and classical driven
spin chains [41,42], a quasistationary prethermal regime has
been found, before heating begins. In contrast to quantum
systems, where Floquet prethermalization rigorously applies
to models with bounded operators, classical prethermalization
occurs in systems with unbounded spectra and has a statistical
nature [40,43].

The prethermal state of periodically driven classical
chaotic systems can be characterized by a generalized Gibbs

ensemble (GGE) [43–45]. For example, in the case of cou-
pled rotors, the total angular momentum is a true conserved
quantity, whereas the energy is quasiconserved inside the
prethermal regime. The temperature of the prethermal state
can be calculated by equating the energy of the initial en-
semble, with the average energy of the GGE. When the ratio
between the driving frequency and the temperature is large,
the heating rate is suppressed by the low probability for the
GGE to satisfy the conditions of a many-body resonance [43],
leading to a statistical Floquet prethermalization. In a recent
work, the different dynamical regimes of the system were
further characterized by considering spatiotemporal correla-
tions [46]. In analogy to the static case [45], these correlations
show a diffusive behavior inside the prethermal regime, thus
supporting the quasistatic nature of the prethermal state.

In this paper, we consider the effect of initial conditions
and the connectivity of the rotors on the lifetime of the
prethermal states. Our main result is that the two effects act
in a similar way, namely by affecting the initial energy and
hence changing the temperature of the prethermal state. First,
the effect of initial conditions is investigated by tuning the
standard deviation of the angles of the rotors in the initial state.
By studying the dependence of the lifetime of the prethermal
state on the standard deviation, we establish that the life-
time depends exponentially on the inverse temperature of the
prethermal state. Next, we investigate the connectivity of the
rotors by considering a many-body kicked rotor model where
all the rotors interact with each other. Unlike the nearest-
neighbor case, we find that the kinetic energy per rotor, for
fixed initial conditions, depends on the number of rotors N ,
and the prethermal temperature increases linearly with

√
N .

Also in this case, the lifetime varies exponentially as the
inverse temperature. Starting from these results, we propose
an analytical ansatz that describes the universal properties of
the crossover from the prethermal regime to the chaotic one.
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II. THE MODEL: COUPLED KICKED ROTORS IN ONE
AND HIGHER DIMENSIONS

In this work we consider a canonical example of chaotic,
classical, many-body systems, namely the coupled kicked ro-
tors Hamiltonian [47–53]

H (t ) =
N∑

i=1

p2
i

2
− �(t )

N∑
i, j=1|i< j

κi, j cos(φi − φ j ). (1)

Here, pi and φi are, respectively, the angular momentum and
the angle of an ith rotor and N is the total number of rotors.
The system is periodically driven with delta-function kicks,
�(t ) = ∑

n δ(t − nτ ), where τ is the time period. The cou-
plings κi, j correspond to the interactions between the rotors
and define the kick strength. We consider two types of in-
teractions between the rotors: (i) a one-dimensional model
with nearest-neighbor coupling, where κi, j = κδi, j−1, and (ii)
a mean-field model with all-to-all coupling, where κi, j =
κ/

√
N .1

Using Hamilton’s equations of motion, one obtains a dis-
crete map of pi and φi between consecutive kicks,

pi(t + τ ) = pi(t ) −
∑
j �=i

κi, j sin(φi − φ j ),

(2)
φi(t + τ ) = φi(t ) + pi(t + τ )τ.

Here, the stroboscopic time t is defined as t = nτ − 0+, i.e.,
just before an arbitrary nth kick. These equations are a many-
body generalization of the Chirikov standard map [54], a
system of paramount importance for the study of the transition
between regular and chaotic dynamics. By rescaling pi →
piτ , one finds that the equations of motion (2) are character-
ized by a single dimensionless parameter, K = κτ . Hence, in
what follows, we will set τ = 1 without loss of generality.
As we will see, the initial conditions and the connectivity
introduce additional unitless parameters that can be used to
tune the prethermal regime.

Because the model (1) is nonintegrable, at long times it
shows a chaotic behavior, where the kinetic energy Ekin,i (t ) =
〈p2

i 〉/2 grows linearly with time, Ekin,i (t ) ≈ �t .2 The heating
rate � can be estimated using the following approach: Accord-
ing to Eqs. (2), the momentum at time t is equal to

pi(t ) = pi(0) −
t−1∑
n=0

∑
j �=i

κi, j sin[φi(n) − φ j (n)]. (3)

Now, squaring Eq. (3) and averaging over symmetric initial
values of momenta with 〈pi(0)〉 = 0, we obtain

〈
p2

i (t )
〉 = 〈

p2
i (0)

〉 +
t−1∑

m,n=0

∑
j,k �=i

κi, jκi,k〈sin[φi(m)

− φ j (m)] sin[φi(n) − φk (n)]〉. (4)

1The normalization of the latter model is discussed below.
2The heating rate � is related to the diffusion coefficient D, defined

as 〈p2
i 〉 = Dt , by � = D/2.

FIG. 1. Heating rate for the one-dimensional model, as a function
of the coupling parameter K . For large K , it follows the relation
K2/2.

In the chaotic regime, the angles of the rotors become
statistically uncorrelated both in space and time, and we
can approximate 〈sin[φi(m) − φ j (m)] sin[φi(n) − φk (n)]〉 =
δ j,kδm,n/2. In addition, the cross-correlation term between
momenta and angles of rotors at different times can be approx-
imated to zero, since those are uncorrelated when the time t
becomes large.

For the one-dimensional model, only the terms j = k =
i ± 1 contribute to the sum of Eq. (4), leading to 〈p2

i 〉 = K2t ,
or equivalently � = K2/2. From the comparison with numer-
ical simulations of the model, it was found that this analytical
result is valid for large K only (see Fig. 1). For small K , the
rotors move in a correlated way, and, for K � 0.1, the heat-
ing is approximately given by � ≈ 10K6.5 [49,50,52]. This
effect, known as “fast Arnold diffusion,” was explained in
Refs. [50,55] using the concept of many-body resonance [47].
Importantly, for all values of K , the heating rate does not
depend on N .3

In the case of all-to-all coupling, all terms with j = k �=
i equally contribute to Eq. (4) and one obtains 〈p2

i (t )〉 =
(N − 1)K2/(2N ). For large N , the heating rate, � ≈ K2/4,
becomes independent of N . To verify the validity of the un-
correlated behavior of the rotors in the heating regime, we
numerically compute the dynamics of the system for long
times and compute the heating rate in the chaotic regime
(see Fig. 2). For small values of the coupling parameter, say,
K = 0.15, 0.3, we find that � increases with N and saturates
to a value that is approximately given by K2/8 for large N [see
Fig. 2(a)], whereas the theoretically expected value is K2/4.
This anomaly is resolved by plotting � as a function of K .
From Fig. 2(b), we see that, for large K and N , the heating
rate saturates to a value closer to K2/4.

These results indicate that in both models, our assumption
of an uncorrelated behavior of the angles is valid for large
values of K only. For small values of K the rotors undergo
a correlated dynamics, even in the diffusive long-time limit.
Importantly, our simulations demonstrate that for all values of
K , in both models, the heating rate does not depend on N for
large enough N .

3See Appendix B of Ref. [40].

184302-2



FROM PRETHERMALIZATION TO CHAOS IN … PHYSICAL REVIEW B 105, 184302 (2022)

(a) all-to-all coupling: fixed K

(b) all-to-all coupling: fixed N

FIG. 2. (a) Heating rate as a function of N of the all-to-all cou-
pling model for two values of K . The dashed lines correspond to
K2/8. (b) Heating rate as a function of K , for different system sizes.
For large K , the heating rate tends to the mean-field value K2/4.

III. ENERGY AND TEMPERATURE IN THE
PRETHERMAL STATE

We open our discussion by considering the prethermal
regime, shortly after the initial conditions. In systems display-
ing statistical Floquet prethermalization, the time-averaged
Hamiltonian Hav is quasiconserved. Here,

Hav = 1

τ

∫ τ

0
dt H (t ) =

N∑
i=1

p2
i

2
−

N∑
i, j|i< j

κi j cos(φi − φ j ).

(5)

At short times, we can assume that the average energy in the
prethermal state is equal to the average energy in the initial
state

〈Hav〉T = 〈Hav〉0, (6)

where 〈· · · 〉T is the Boltzmann distribution with Hamiltonian
Hav and temperature T , and 〈· · · 〉0 is the average over the
initial conditions. This equation can be used to derive the
temperature of the prethermal state from a given set of initial
conditions.

Let us first consider the one-dimensional model, where the
thermal average can be performed exactly [43] and leads to

〈Hav〉T

N
= T

2
− K

I1(K/T )

I0(K/T )
. (7)

(a) one dimension

(b) all-to-all coupling

FIG. 3. Temperature as a function of the average energy 〈Hav〉T

for (a) the one-dimensional model and (b) the all-to-all coupling
model, obtained by the numerical solution of Eqs. (7) and (10),
respectively. The dashed lines are asymptotic results valid at small
and large temperatures (see text).

Here, the right-hand side corresponds to the sum of the ki-
netic energy per rotor T/2 and the potential energy per rotor,
expressed in terms of the modified Bessel functions I0 and I1.
The numerical solution of this equation is shown in Fig. 3(a).
At large temperatures, T � K , we can neglect the potential
energy and obtain 〈Hav〉T ≈ NT/2. In the opposite limit, T 	
K , we find 〈Hav〉T ≈ N (T − K ). This result can be understood
by observing that at small temperatures we can approximate
cos(φ) ≈ 1 − φ2/2, leading to a set of harmonic oscillators,
with kinetic energy T/2 and potential energy −K + T/2.
The situation studied in Ref. [43] corresponds to the case
〈Hav〉0 = 0, where T = 0.9384K .

In our numerical simulations we consider pi(t = 0) = 0
and extract φi(t = 0) from a Gaussian distribution with stan-
dard deviation σ . In this case, the initial energy is

〈Hav〉0

N
= −Ke−σ 2

. (8)

The free parameter σ controls the temperature of the initial
state and, consequently, the energy of the prethermal state. By
equating Eqs. (8) and (7), we find an implicit relation between
the parameter σ and the temperature of the prethermal state. In
Fig. 4(a) we show that the predicted kinetic energy Ekin/N =
T/2 exactly matches the numerical solution of the model. For
σ → ∞, we recover the result of Ref. [43], T = 0.9384K .

184302-3



SADIA, DALLA TORRE, AND RAJAK PHYSICAL REVIEW B 105, 184302 (2022)

(a) one dimension

(b) all-to-all coupling

FIG. 4. Kinetic energy per rotor in the prethermal state: (a) in
the one-dimensional model for K = 0.4, as a function of the initial
fluctuations σ ; (b) in the all-to-all coupling model for K = 0.15,
as a function of the number of rotors N . The dashed lines are our
analytical predictions, Ekin/N = T/2 (see text for details).

In the case of all-to-all coupling, the dependence between
the energy and the temperature can be computed within a
mean-field approximation [51]∑

j

cos(φi − φ j ) ≈ N (〈cos φ〉 cos φi + 〈sin φ〉 sin φi ), (9)

such that

〈Hav〉T

N
≈ T

2
− K

2
N1/2m2, (10)

with

m =
√

〈cos φ〉2 + 〈sin φ〉2 = I1(c)

I0(c)
and c = K

√
N

T
m.

The last line corresponds to a Boltzmann average over
the Hamiltonian Hav, with the approximation (9). Note
that Eq. (10) is a function of the rescaled parameters
〈Hav〉T /(KN3/2) and T/(K

√
N ) only. The numerical solution

of this equation is shown in Fig. 3(b). At high temperatures
〈cos(φ)〉 = 0, and one simply has 〈Hav〉T ≈ NT/2 (the po-
tential energy becomes negligible). At low temperatures, we
find that the energy is given by 〈Hav〉T = −KN3/2/2 + T N .
In our numerical simulations the rotors are initialized at ran-
dom angles between 0 and 2π , with pi(t = 0) = 0, such that
the initial energy is 〈Hav〉0 = 0 and the temperature of the
prethermal state is T = 0.3866K

√
N [see Fig. 4(b)]. Hence,

FIG. 5. Time evolution of the kinetic energy for the one-
dimensional model (K = 0.4), for different values of the standard
deviation of initial angles, σ . As shown in Fig. 6, all the curves cor-
respond to the same function, shifted in the time axis. The apparent
change of the slope is an artifact of the logarithmic scale.

in the all-to-all coupling model the initial energy and the
temperature of the prethermal state are controlled by N .

IV. FROM PRETHERMALIZATION TO CHAOS

A. Numerics in one dimension

We now focus on the transition between the prether-
mal state and the chaotic regime, starting from the one-
dimensional model. Figure 5 shows the time evolution of
the kinetic energy per rotor for different values of the initial
fluctuations’ parameter σ . Note that, in this plot, the tran-
sition between the prethermal and chaotic regimes appears
to become sharper with decreasing σ . This is inconsistent
with the normalization procedure proposed by Ref. [40],
t → t/t∗, which corresponds to a rigid shift in the log-
arithmic scale. Interestingly, we observe that the curves
collapse over many orders of magnitude, when a rigid
shift is applied on a linear scale, t → t − t∗. To demon-
strate this effect, in Fig. 6 we define t∗ by Ekin(t∗)/N =
1 and plot Ekin(t − t∗), obtaining a perfect data collapse
for both t < t∗ and t > t∗. In Fig. 7 we show the depen-
dence of t∗ on the inverse temperature of the prethermal
state and find an exponential behavior. These numerical find-
ings will be explained by the analytical model developed in
Sec. IV C.

B. Numerics of all-to-all coupling

We now move to the case of all-to-all coupling. In Sec. II,
we used a mean-field theory to compute the heating rate in
the chaotic regime and demonstrated that it does not de-
pend on the number of rotors N . In Sec. III we showed
that the temperature of the prethermal state increases as
T = 0.3866K

√
N . Hence, we expect that as we increase N ,

the lifetime of the prethermal state should decrease for a
fixed value of K . This behavior is indeed observed in the
numerical solution of the model (see Fig. 8). In this numer-
ical analysis, we consider a small value of K , otherwise,
the lifetime of the prethermal state will be too small to
be determined by our numerics. To explore this effect in a
quantitative manner, we plot the lifetime of the prethermal
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FIG. 6. Same curves as Fig. 5, for t < t∗ (upper panel), and
t > t∗ (lower panel). The excellent data collapse demonstrates that
the transition from the prethermal regime to the chaotic regime is
universal and does not depend on the initial conditions.

states [defined by Ekin(t∗)/N = 1], as a function of the inverse
temperature, and observe two distinct regimes (see Fig. 9):
(i) small inverse temperatures 1/T < 2.5, corresponding to
large number of rotors N > (0.4/0.3866K )2 ≈ 47; and (ii)
large inverse temperatures 1/T > 2.5, corresponding to small
number of rotors (N < 47). In the former regime, the heating
rate is approximately constant and we observe an exponential
suppression of heating. In the latter, finite-size effects are
significant (see Fig. 2) and cause a further suppression of
heating.

FIG. 7. Lifetime of the prethermal state of the one-dimensional
model with K = 0.4, as a function of the inverse temperature of
the prethermal state 1/T , obtained by varying σ . The lifetime is
exponentially large in the inverse temperature.

FIG. 8. Time evolution of the kinetic energy per rotor for all-
to-all coupling with K = 0.15, for different values of the number
of rotors N . The number of rotors affects the temperature of the
prethermal state and its lifetime, while the heating rate in the chaotic
regime remains constant.

C. Effective analytic description

We now present a simple model that describes the escape
from the prethermal regime to the chaotic one. The key as-
sumption of the model is that, due to the exponentially slow
absorption of energy, the prethermal state is a quasiequi-
librium state, characterized by an instantaneous temperature
T (t ). We consider the generic situation where the energy
absorption depends exponentially on the temperature as

dE (t )

dt
= N�e−A/T (t ). (11)

Here, � = �(K ) is the heating rate in the high-temperature,
chaotic regime, where dE/dt = N�. In models of kicked
rotors, this exponential suppression of heating is due to the
low probability of finding a rotor with angular momentum
pi ∼ 
 = 2π/τ in a Boltzmann-Gibbs distribution with tem-
perature T (t ) 	 K [43]. See also Ref. [44] for the case of
the Bose-Hubbard model, where the exponential suppression
is associated to the low probability of finding sites with large
occupation numbers.

FIG. 9. Lifetime of the prethermal state for the all-to-all cou-
pling with K = 0.15, as a function of the inverse temperature of
the prethermal state. The temperature T is calculated numerically
by T = 2Ekin/N , where Ekin is the kinetic energy in the prethermal
state and is varied by changing N between 10 and 400. The dashed
line is an exponential fit of the large temperature regime (see text).
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FIG. 10. Time evolution of the temperature, obtained by the
numerical solution of the rescaled analytical model, Eq. (13), for
different initial conditions. The dashed lines are the lifetimes of the
prethermal state predicted by Eq. (15).

In order to solve Eq. (11), we need to combine it with an
energy-temperature relation T = T (E ). As shown in Sec. III,
this relation is often linear. For simplicity, we use here the
high-temperature result T = 2E/N , such that

dT

dt
= 2�e−A/T (t ). (12)

At short times, T (t ) ≈ (T0 + 2�e−A/T0t ) and the energy ab-
sorption is exponentially suppressed, leading to a long-lived
prethermal regime. In contrast, at long times T (t ) ≈ 2�t ,
corresponding to the chaotic regime. Equation (12) offers
the minimal model of statistical prethermalization, where an
exponentially long prethermal regime is followed by a chaotic
regime with linearly increasing temperature.

To compute the solution at intermediate times, it is useful
to introduce the rescaled temperatures T̄ = T/A and time t̄ =
2�t/A, satisfying

dT̄

dt̄
= e−1/T̄ . (13)

This equation has an implicit solution in terms of incomplete
gamma functions, shown in Fig. 10 for different values of
T̄ (0). Note that all the curves are identical, up to a shift in
the t̄ axis and the increasing sharpness for decreasing T̄0 is an
artifact of the logarithmic scale (see Sec. IV A).

We can evaluate the lifetime of the prethermal by comput-
ing the time at which the curve reaches some target value. This
is equivalent to solving the inverse of Eq. (13), namely

t∗ =
∫ 1

T̄0

dT̄ e1/T̄ . (14)

Here, we have set the upper limit to T̄ = 1, such that t∗ is
defined as the time required to reach T̄ (t∗) = 1. The integral
in Eq. (14) is readily solved to deliver

t∗ = Ei

(
1

T̄0

)
− T̄0 exp

(
1

T̄0

)
− Ei(1) + e, (15)

where Ei is an exponential integral function. For large x, one
has Ei(x) ≈ (1/x + 1/x2)ex, leading to

t∗ = T̄ 2
0 exp

(
1

T̄0

)
. (16)

This result shows that the lifetime of the prethermal time
depends exponentially upon the inverse temperature of the
state itself, as seen in our numerical solution of the one-
dimensional and all-to-all coupling models.

V. CONCLUSION

In conclusion, we performed a detailed study of the transi-
tion from prethermalization to chaos in classical periodically
driven systems. We considered two tuning parameters that
affect the temperature of the prethermal state, without chang-
ing the heating rate. The role of initial conditions is studied
by a one-dimensional model where the temperature is set by
the standard deviation of the initial Gaussian distribution of
the angles. The effect of connectivity is studied in a system
where all the rotors interact with each other and the temper-
ature is a function of the number of rotors. In both cases,
we computed the lifetime of the prethermal state and found
that it depends exponentially on the inverse of the prethermal
temperature. We repeated the same calculations in two- and
three-dimensional lattices (not reported here), delivering sim-
ilar results.

Starting from these numerical results, we proposed a
simple model that describes the transition between prether-
malization and chaos. Our model relies on two intertwined
assumptions, namely that the prethermal state is fully de-
scribed by its instantaneous temperature and that the heating
rate is exponentially suppressed at low temperatures. The an-
alytical solution of the resulting differential equation shows
the same qualitative behavior as the numerical calculations.
In particular, the lifetime of the prethermal state depends
exponentially on the initial temperature of the prethermal state
[see Eq. (16)]. In addition, our analytical model predicts that
the curves for different initial conditions can be collapsed by a
rigid shift in the time domain, as indeed observed numerically.

In this work, we considered a specific type of prether-
malization, known as “statistical Floquet prethermalization.”
This effect differs from a similar phenomenon that generally
occurs for systems with bounded quantum operators, such as
spin systems. The phenomenon of prethermalization for such
systems is described by a rigorous approach, whereas our
approach relies on the statistical description of the prethermal
state and can be applied for a generic many-body inter-
acting system. Another important difference between these
two approaches is the dependence on the initial conditions.
The rigorous approach does not depend on the initial state,
whereas the statistical one depends on the initial state, through
its conserved quantities.

Our work raises several questions related to the rela-
tion between statistical Floquet prethermalization and other
fundamental properties of chaotic systems. The exponential
scaling of the heating rate has some similarity with the phe-
nomenon of Arnold diffusion, a characteristic of systems close
to integrability. According to the Kolmogorov-Arnold-Moser
(KAM) theorem, the phase space of a system close to the
integrable point is almost filled with stable invariant tori. As
a result, the average kinetic energy of the system is almost
constant for an exponentially long time. According to the
Nekhoroshev theorem, the diffusion rate is bounded by an
exponential function of 1/εb, where ε is the perturbation from
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integrability [56]. The exponent b is inversely proportional to
a polynomial function of N ; thus the diffusion rate always
tends to zero as N → ∞. Therefore, infinite systems are
chaotic for any arbitrary perturbation from integrability. This
is in contrast to the phenomenon of Floquet prethermalization,
which survives in the limit of N → ∞. A second key differ-
ence is that Arnold diffusion is valid in the entire phase space,
while statistical prethermalization occurs only for initial con-
ditions that correspond to low prethermal temperatures.

As mentioned in the Introduction, discrete time crystals
are novel nonequilibrium phases that do not have any static
analogs. These phases can be observed when the discrete
time-translation symmetry of a periodically driven system
is broken spontaneously. Time crystals were first predicted
theoretically in driven quantum systems and later observed
in experiments [17,57]. Recently, a prethermal time crystal

has been observed in a quantum simulator experiment with
high-frequency drive [36]. In parallel, signatures of discrete
time crystals have been found in classical systems [58,59]. An
interesting question for future study is whether classical time
crystals can be protected by statistical Floquet prethermaliza-
tion [60,61].
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