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Simultaneous conservation of charge (spin projection to the z axis) and dipole moment can partially suppress
ergodicity (thermalization) by means of shattering the phase space. This shattering results in many-body
localization of some states even in the absence of disordering, while other states remain delocalized. Here we
show for the minimalist one-dimensional spin- 1

2 model how to distinguish localized and delocalized states, based
on any representative product state with given projections of spins to the z axis, separating states into four groups
characterized by distinguishable behaviors. These include two groups of delocalized states with translationally
invariant Krylov subspaces with integrable (group I) or ergodic (group II) dynamics, and the other two groups
with confined spin transport having either all mobile spins (group III) or some immobile (frozen) spins (group
IV). The states of the first two groups are delocalized, while the states of the last two groups are mostly localized.
The theory is used to interpret recent experiments [Q. Guo et al., Phys. Rev. Lett. 127, 240502 (2021); W. Morong
et al., Nature (London) 599, 393 (2021)], and suggests their extension necessary to observe both localized and
delocalized behaviors in a dipole moment conserving regime.
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I. INTRODUCTION

Ergodicity breakdown represents the failure of quantum
statistical mechanics [1–3] and gives advantages for quantum
information processing in many-body systems [4–6]. It takes
place in the form of many-body localization (MBL) due to
strong disordering [7–10] similarly to the single-particle An-
derson localization [11,12] or can be possibly realized without
disordering [3,13–31]. Localization without disorder is an
exciting fundamental task since it conflicts with the common
sense expectations. It is also an attractive experimental chal-
lenge for researchers in a quantum information area [32,33]
because of the localization robustness. Indeed, the localiza-
tion in a regular system is insensitive to a specific disorder
realization.

Disorder-free localization was considered at high tem-
perature due to thermal disorder in positions of interacting
particles [13]. It emerges in a thermodynamic limit of in-
finite system if some particles are static [27,28]; yet it is
unstable with respect to arbitrary small deviation from a
static behavior [3,34]. However, the localization can be ro-
bust in systems conserving not only number of particles,
but the dipole moment or higher moments [35–47]. Dipole
moment is approximately conserved in fractional quantum
Hall effect [36,48–50] and systems subjected to a large po-
tential energy gradient compared to the bandwidth (Stark
MBL, Refs. [29–31,51]). On the one hand some eigenstates
in those systems are completely frozen, i.e., they are char-
acterized by fixed spin projections to the z axis [35], while
on the other hand there exist other fully delocalized ergodic
eigenstates [36,37,41,52]. Eigenstate behavior (localized or
delocalized) in systems with local, dipole moment conserving
hopping [35–38,41] depends on any representative product

state determining the unique Krylov subspace of all product
states coupled to that state by the system Hamiltonian. It was
demonstrated that different families of Krylov subspaces exist
with different dynamical properties, including localizing and
nonlocalizing dynamics. These findings [35–38,41] motivate
us to seek for the determination of eigenstate properties using
their representative product states, which is the primary target
of this work.

The product states are usually chosen in the experiments
as the initial states [32,33,51] giving us the opportunity to
realize any regime of interest by choosing the proper initial
state. However, the full localization was reported in the dipole
moment conserving regime of a large field gradient [32,33] in-
dependent of the initial state. Our second target is to interpret
these observations and suggest ways to attain the full diversity
of behaviors.

In this work we establish the unique connection between
the basis product states and the localization of eigenstates in
the minimalist, dipole moment conserving periodic model (the
MM model) on a chain defined as (cf. Refs. [36,37,51,53])

ĤMM = �

N∑
k=1

(S+
k S−

k+1,pS−
k+2,pS+

k+3,p + H.c.)

+ 2�

N∑
k=1

Sz
k

(
Sz

k+1,p − Sz
k+2,p

)
, (1)

where Sa
k,p = Sa

k for k � N and Sa
k,p = Sa

k−N for k > N (a =
+, − or z). The dipole moment P̂ = ∑N

k=1 Sz
k (k − (N + 1)/2)

is conserved in this model with the accuracy to an integer
number of N’s (modulo N) [41].
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The present model is defined as the outcome of the parent
XY model with the nearest- and next-neighbor interactions
subjected to the large field gradient that is approximately
relevant to the systems investigated in Refs. [32,33]. In Sec. II
we show that the periodicity in space in Eq. (1) can be attained
applying transverse (XY model) and longitudinal (Stark field)
interactions consecutively and periodically in time. Equa-
tion (1) is derived using the generalized Schrieffer-Wolff
transformation [54–58], in the lowest nonvanishing order in
inverse field gradient F . The violation of spatial periodicity
of the parent model results in additional longitudinal fields
emerging in the lower order in F . These fields function as
quenched disorder causing the localization of all states at suf-
ficiently large field gradient observed experimentally [32,33]
as discussed in Sec. IV.

In Sec. III we investigate the Krylov subspaces of product
spin states of the model (1) and introduce the four groups of
states distinguished by their dynamic behavior as confirmed
by the analysis of group-averaged imbalances. In Sec. IV the
experimental data of Refs. [32,33] are discussed in light of
our findings, The work ends by the extended conclusion and
discussion Sec. V, where the results of this work are briefly
resumed, the comparison of them with the earlier work is
outlined, and the generalization to other models is discussed.
The long derivations are placed in the Supplemental Material
[59].

II. PARENT MODEL AND DERIVATION OF
MINIMALIST MODEL

The analytical results of this work are mostly related to
the minimalist periodic dipole moment conserving model,
given by Eq. (1). This model represents the first nonvan-
ishing expansion term of the generalized Schrieffer-Wolff
transformation [54–58] of the parent XY model subjected
to the uniformly growing field in the large field gradient
limit. Below we derive the Hamiltonian (1) for both open and
periodic boundary conditions (OBC and PBC). The former
case describes the experiments [32,33], while the latter case
represents their desirable generalization that realizes a spatial
periodicity insensitive to boundaries, which are dramatically
important for the delocalization in a large field gradient limit
(see Sec. IV). The derivation below is not related to dynamic
properties of the model (1) considered in Sec. III so those
readers, who are interested only in the analysis of this model,
can skip it.

The minimalist model (MM) in Eq. (1) differs from the
model of Refs. [37,41] referred here as the minimalist hop-
ping only (MH) model by the presence of the longitudinal
term containing Sz operators. As it is shown in the present
section this term necessarily emerges as the outcome of the
Schrieffer-Wolff transformation of the parent XY model sub-
jected to the strong field gradient. Longitudinal and transverse
interactions are of the same order of magnitude.

The other parent models including that of the fractional
quantum Hall effect in the thin-torus limit [36,48–50] or
the anisotropic Heisenberg model with nearest-neighbor in-
teractions subjected to a large field gradient [41,60,61] also
lead to a significant longitudinal interactions within the effec-
tive Hamiltonian in addition to the MH model Hamiltonian

of Refs. [37,41]. In those models, longitudinal interactions
exceed the transverse ones in contrast with Eq. (1), where
longitudinal and transverse interactions are comparable. Lon-
gitudinal interaction does not modify Krylov subspaces of
relevant product states. However, it affects spin dynamics
in those states, as discussed in Sec. V B, enhancing the
localization.

A. Effective Hamiltonian of dipole moment conserving system
with open boundary conditions

We begin with the derivation of the effective Hamiltonian
for the general XY model with open boundary conditions
subjected to a field uniformly increasing by a certain gradient
F between adjacent sites. This model can be characterized by
the Hamiltonian Ĥ expressed as the sum of the field (ĤF ) and
XY model (ĤXY ) Hamiltonians:

Ĥ = ĤF + ĤXY , ĤF = −F
N∑

k=1

(
k − N + 1

2

)
Sz

k,

ĤXY = 1

2

N∑
i< j

Ji j (S
+
i S−

j + S−
j S+

i ). (2)

This model, referred as the parent OBC model, characterizes
both transmon qubits within the superconducting quantum
processor, investigated in Ref. [32], where the interaction is
limited to nearest and next neighbors, and pseudospin states
of interacting 171Yb

+
ions, investigated in Ref. [33], where the

interaction depends on the distance as Ji j = J/|i − j|1.3. The
minimalist model (1) is the outcome of the Schrieffer-Wolff
transformation of the parent model (2) in the large field gra-
dient limit F > Ji j with the only nearest- and next-neighbor
interactions (J1 and J2, respectively) different from zero. The
minimalist XY model relevant for the many-body localiza-
tion problem cannot be restricted to only nearest-neighbor
interactions because this model is equivalent to noninteracting
fermions [62].

In a large field gradient limit F � J the effective Hamil-
tonian projected to the subspace of states with identical
dipole moments can be derived using the Schrieffer-Wolff
transformation similarly to Refs. [37,57]. The zeroth-order
Hamiltonian is the longitudinal field Hamiltonian ĤF and the
perturbation is given by the XY model Hamiltonian ĤXY in
Eq. (2). Since any term in the perturbation does not conserve
the dipole moment and thus modifies the zeroth-order energy
by a large field gradient F the Schrieffer-Wolff transformation
is well justified at large field gradients F � Ji j .

Applying the Schrieffer-Wolff transformation we modify
the original Hamiltonian as

Ĥ → eŜĤe−Ŝ, (3)

where Ŝ is an anti-Hermitian matrix chosen to eliminate
the perturbation Hamiltonian ĤXY in the first order in Ŝ
that requires [̂S, ĤF ] = −ĤXY . This is sufficient to derive
the effective Hamiltonian in a desirable third order, where the
minimalist model (1) emerges.
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The matrix Ŝ is defined in terms of raising and lowering
spin operators S±

k = Sx
k ± iSy

k as

Ŝ = 1

2

N∑
i< j

Ji j

F ( j − i)
(S+

i S−
j − S−

j S+
i ). (4)

The expansion of the effective Hamiltonian (3) in Ŝ up to the
third-order term yields [63]

Ĥ ≈ ĤF + {
1
2 [̂S, V̂ ] + 1

3 [̂S, [̂S, V̂ ]]
}

P
, (5)

where the subscript P in the definition of the effective
Hamiltonian Ĥeff means that the only terms conserving dipole
moment P (modulo N) are left. The third-order term is left
together with the second-order one since the spin-spin inter-
action in the XY model appears only in the third order in V̂
[57,58].

The second-order term can be expressed as [57]

Ĥ2 = 1

2
[̂S, V̂ ] = 1

4F

∑
i

Sz
i

∑
j �=i

J2
i j

(i − j)
. (6)

Equation (6) introduces a site-dependent longitudinal field
acting on each spin. For the interaction determined by the in-
terspin distance only, i.e., Ji j = J (|i − j|) this term disappears
in the macroscopic limit of an infinite number of spins because
the sum over j is antisymmetric. This is the case for the cold
ions considered in Ref. [33] in the limit N → ∞, while the
interaction of transmon qubits in Ref. [32] does not satisfy
the rule Ji j = J (|i − j|) since it vanishes for certain pairs of
next-neighbor spins.

The interaction (6) is significant for both experiments
[32,33] under consideration and it is responsible for the local-
ization observed experimentally at different initial states for
large field gradients as shown in Sec. V below. However, this
second-order term disappears in periodic settings as shown in
Sec. II B. Therefore, it is ignored in Eq. (1) where the periodic
model is considered.

The transverse hopping interaction violating the dipole mo-
ment conservation also emerges in the second order in JF−1

in the form

Ĥ2,offd = 1

16F

∑
j �=l,k

( j + l − 2k)JjkJkl S
z
kS+

j S−
l

( j − k)(l − k)
. (7)

An additional Schrieffer-Wolff transformation is needed to
eliminate it. This transformation will generate dipole moment
conserving interactions of order of J4F−3, which is smaller
in the large field gradient limit compared to the interactions
described by the second term in the expansion (5). This term
contains both diagonal binary spin interaction [57] and transi-
tions in spin quartets [58]. The diagonal interaction takes the
form

Ĥ3d = 1

2F 2

∑
j<k

Sz
jS

z
k

∑
l

J jkJkl Jl j

(k − l )( j − l )
. (8)

If the hopping interaction is limited to nearest neighbors, i.e.,
the only interaction Ji,i+1 = J1 differs from zero, then all inter-
actions in Eq. (8) are equal to zero [57] due to a single-particle
nature of the XY model with nearest-neighbor interactions

[62]. In the minimalist XY model with nearest- and next-
neighbor hopping interactions (Ji,i+1 = J1, Ji,i+2 = J2) Eq. (8)
generates nearest- and next-neighbor interactions in the form∑

i< j Ui jS
z
i Sz

j with interaction constants Ui j defined as

Ui j = J2
1 J2

4F 2
[δi, j−1(2 − δi1 − δ jN ) − δi, j−2]. (9)

Thus, the nearest- and next-neighbor longitudinal interactions
±�, respectively, with � = J2

1 J2/(2F 2) are generated for all
sites except for those at the edges [cf. Eq. (1)] where the
nearest-neighbor interaction is smaller by the factor of 2.

The off-diagonal four-spin hopping interaction conserving
dipole moment can be evaluated similarly to Ref. [58] as

Ĥ3,offd =
∑

i< j<k<l

Vi jklδi+l, j+kS+
i S−

j S−
k S+

l , (10)

where δab is the Kronecker symbol and the four-spin interac-
tion Vi jkl can be expressed as

Ji jkl = − 1

4F 2

(
Ji jJikJil

(i − j)(i − k)
+ Jil Jjl Jkl

(l − j)(l − k)

+ Ji jJjkJjl

( j − i)( j − k)
+ JikJjkJkl

(k − i)(k − l )

)
. (11)

If the only nearest-neighbor interaction Ji,i+1 = J1 differs
from zero the four-spin hopping amplitude disappears [58]
that is the consequence of a single-particle nature of XY
model with nearest-neighbor interactions [62]. For the sim-
plest many-body XY model with nonzero nearest- and
next-neighbor interactions (Ji,i+1 = J1, Ji,i+2 = J2), Eq. (11)
leads to a nonzero hopping for only consecutive spin quartets
i, i + 1, i + 2, i + 3. For those quarters the only two last terms
in Eq. (11) contribute to the four-spin hopping amplitude
� = Ji,i+1,i+2,i+3 = J2

1 J2/(4F 2) [cf. Eq. (1)].

B. Case of periodic boundary conditions.

Here we derive the effective Hamiltonian (1) for the pe-
riodic model with a finite number of spins that is the main
subject of study for this work. We suggest the realization of
the fully periodic Stark MBL problem for a finite number
of spins insensitive to the boundary conditions that can be
realized experimentally.

To make hopping periodic within the experimental settings
of Refs. [32,33] one should connect transmon qubits used
in Ref. [32] periodically or place cold ions investigated in
Ref. [33] equidistantly in a circle. This should make spin-
hopping amplitudes in Eq. (2) periodic, i.e., Ji j = Ji+N, j =
Ji, j+N . A uniformly increasing field can be made periodic on a
circle using time-periodic Hamiltonian defined as [cf. Eq. (2)]

Ĥ (t ) =
{

ĤF for 2kτF < t < (2k + 1)τF ,

ĤXY for (2k + 1)τF < t < 2(k + 2)τF ,

τF = 2π

NF
, k = 0,±1,±2, . . . . (12)

The time period 2τF is chosen to make the interaction as-
sociated with the field gradient F periodic on a circle. This
periodicity can be understood considering the system evolu-
tion matrix describing the Hamiltonian (12) action during a
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period as

Û = ÛphÛXY , Ûph = e−i
∑N

k=1
2πk
N Sz

k = e−iŜ0 ,

ÛXY = e− ∑
k �= j

2π iJk j
NF S+

k S−
j = e−iŜ1 . (13)

In a large field gradient limit this evolution matrix allows
conservation of the dipole moment P = ∑N

k=1(k − N+1
2 )Sz

k
with the accuracy to the integer number of spin numbers N
since the change of the dipole moment by N modifies the
evolution matrix Ûph by e2π i = 1. This is exactly the change
of the dipole moment by N in the four-spin hopping involving
edges (e.g., S−

N−2S+
N−1S+

N S−
1 ) that makes this hopping periodic

on a circle [41]. The periodicity on a circle of the effective
Hamiltonian conserving dipole moment emerges naturally
during its construction as derived below.

To be more specific, we define periodicity on a circle for
a certain operator as following. For any multispin interac-
tions within this operator that can be generally expressed as
Jα1,α2,...αn

i1,i2,···n Sα1
i1

Sα2
i2

. . . Sαn
in

(αi = ±, z) the conditions of transla-
tional invariance and periodicity on a circle must be satisfied.
These conditions can be written as (respectively)

Jα1,α2,...αn
i1+a,i2+a,...in+a = Jα1,α2,...αn

i1,i2,...in
, a = 1, 2, 3 . . .

Jα1,α2,...αn
i1,i2,...ik+N...in

= Jα1,α2,...αn
i1,i2,...ik ,...in

, 1 � k � N. (14)

The effective Hamiltonian derived by means of the gen-
eralized Schrieffer-Wolff transformation (15) possesses the
property (14) as shown below in Sec. II B 1.

The period 2τF of the Hamiltonian Ĥ (t ) [Eq. (12)] is the
minimum time needed to make a finite system periodic. For
this specific choice in the limit of a large field gradient F
the approximate conservation of the dipole moment (modulo
N) takes place as needed to support a periodic spin hopping
(see Ref. [41]). The period chosen as any integer multiple of
2τF (2kτF with an integer, nonzero k) also ensures the spatial
periodicity. Yet, in that case the dipole moment is conserved
with the accuracy to an addition of integer numbers of N/k.
This can lead to appearance of more terms in the effective
Hamiltonian conserving the dipole moment. For instance, if
k = 2 and N is even the hopping terms like S+

k S−
k+N/2 modi-

fying the system dipole moment by N/2 will be also allowed.
Additional hopping can reduce the localization contrary to the
original goal to attain it in the maximum extent. Therefore, we
use the minimum possible period 2τF .

1. Transformation of the evolution matrix

To eliminate off-resonant processes and create the effective
Hamiltonian conserving quasidipole moment P (modulo N)
or e2π i

∑N
k=1[k−(N+1)/2]Sz

k/N [41], one can apply a generalized
Schrieffer-Wolff transformation [63] to the evolution matrix
(13) for a period in the form

Ũ∗ = eŜÛ e−Ŝ (15)

with the anti-Hermitian matrix Ŝ (wave functions should be
modified simultaneously as ψ → eŜψ).

The goal of the transformation is to bring the evolution
matrix to the form

Û∗ = Ûphe−iĤeff τF , (16)

with the effective Hamiltonian Ĥeff conserving the dipole
moment (modulo N). This goal can be approximately
attained eliminating the leading (in JF−1) interactions mod-
ifying dipole moment in the system Hamiltonian using
the generalized Schrieffer-Wolf transformation. Then, the
Baker-Campbell-Hausdorff-Dynkin formula [55,56] should
be applied to express the action of modified evolution matrices
in terms of a single effective Hamiltonian Ĥeff . This new
iteration for the effective Hamiltonian will have interactions
violating the dipole moment conservation smaller by a factor
of J/F compared to the original Hamiltonian similarly to the
standard Schrieffer-Wolff transformation [63] as illustrated
below in Sec. II B 2. This procedure should be repeated an
infinite number of times to get rid of the off-resonant inter-
action in all orders in JF−1. It should converge at large field
gradients F [64] as confirmed by our numerical calculations
reported below in Sec. IV.

We expect that the effective Hamiltonian in Eq. (16) is
periodic on a circle as defined by Eq. (14). To show that one
can represent the transformed evolution matrix introducing
the operator Ŝmod as

Ũ∗ = eŜÛphÛXY e−Ŝ = ÛpheŜmodÛXY e−Ŝ,

Ŝmod = Û −1
ph ŜÛph. (17)

The Hamiltonian ĤXY and the associated evolution matrix ÛXY

are periodic on a circle. Assume that this is true for the opera-
tor Ŝ and this operator also conserves the projection of spin to
the z axis as the original Hamiltonian. The latter is obviously
true for the standard Schrieffer-Wolff transformation.

Then the same is true for the operator Ŝmod. Indeed, if
the operator Ŝ depends on operators {Sα

n } (α = ±, z, n =
1, 2, . . . , N) then the operator Ŝmod is the identical function of
those operators, modified as S±

n → S±
n e±2π in/N , Sz

n → Sz
n. For

the modified operator the property of translational invariance
[the first line in Eq. (14)] is valid because of the identical
number of S+ and S− operators in each term as required
by the spin projection conservation. Therefore, the additional
factors e±2π ia/N [where a is the shift of indices in Eq. (14)]
compensate each other. The periodicity with the period N is
satisfied since the addition of the number of spins N to the spin
position n in the exponents e±2π in/N accompanying operators
S±

n modifies them as e±2π i(n+N )/N thus multiplying them by
e±2π i = 1. The construction of the operator Ŝ is demonstrated
below in Sec. II B 2.

2. Effective Hamiltonian in the leading (third)
order of 1/F expansion

To find the effective Hamiltonian Ĥeff in the first non-
vanishing order in Ji j/F one can use the transformation
eliminating the interaction Ŝ1 violating the dipole moment
conservation and generating dipole moment conserving terms.
To find such transformation we introduce an operator Ŝmod as
[cf. Eq. (17)]

eŜe−iŜ0 = e−iŜ0 eŜmod . (18)
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Then, the modified evolution matrix can be expressed in the
form

Ũ = e−iŜ0 eŜmod e−iŜ1 e−Ŝ. (19)

The exponent e−iŜ1 gets canceled in the first nonvanishing
order in Ŝ1 if

Ŝmod − iŜ1 − Ŝ = 0. (20)

Seeking the operator Ŝ in the general form of the
sum of binary products of spin-raising and -lowering
operators

Ŝ =
∑
k,l

Akl S
+
k S−

l (21)

one can express the modified exponent as

Ŝmod =
∑
k,l

AklS
+
k S−

l e2π i k−l
N . (22)

The amplitudes Akl satisfying Eq. (20) are defined as

Akl = − 1

2NF

2π iJkl

1 − e2π i k−l
N

. (23)

This definition of the amplitudes Akl satisfies the requirement
Alk = −A∗

kl so the transformation of the evolution matrix in
Eq. (15) is unitary as it is supposed to be. In the limit of large
N the operator Ŝ becomes fully identical to the operator corre-
sponding to the Schrieffer-Wolff transformation in Eq. (4) for
open boundary conditions.

Using this definition of the transformation one can repre-
sent the evolution matrix (15) in the form of Eq. (16) as

Ũ ≈ e−iŜ0 e−iHeff τF , (24)

with the effective Hamiltonian containing only resonant
terms conserving dipole moment (modulo N). The effective
Hamiltonian can be obtained using the Baker-Campbell-
Hausdorff-Dynkin formula [56] up to the third order in JF−1

in the form

Ĥeff = [Ĥ∗]P, Ĥ∗ = 1

iτF
(−Ŝmod + iŜ1 + Ŝ) + i

2iτF
(i[̂Smod, Ŝ1] + [̂Smod, Ŝ] − i[̂S1, Ŝ])

+ i

12τF
(−i[̂Smod, [̂Smod, Ŝ1]] + [̂S1, [̂Smod, Ŝ1]] − 3i[̂S, [̂Smod, Ŝ1]])

+ i

12τF
(−i[̂Smod − iŜ1, [̂Smod − iŜ1, Ŝ]] − [̂S, [̂Smod − iŜ1, Ŝ]]), (25)

where the subscript P in the definition of the effective Hamil-
tonian Ĥeff means that the only terms conserving dipole
moment P (modulo N) are left. Using Eq. (20) one can sim-
plify the Hamiltonian expressing it in terms of Ŝmod and Ŝ
operators as (particularly, the first term and the last line vanish
because Ŝmod − iŜ1 = −Ŝ)

Ĥ∗ = i

2τF
[̂Smod, Ŝ] + i

6τF
([̂Smod, [̂Smod, Ŝ]]

+ [̂S, [̂Smod, Ŝ]]). (26)

Consider the second-order term [the first term in Eq. (26),
which is of the second order in J/F compared to the lead-
ing Stark term, that is proportional to F ]. This term being
projected to the subspaces of the Hilbert space with identical
dipole moments is represented by spin-dependent longitudinal
fields that can be expressed as [cf. Eq. (6)]

Ĥ2 = − π

4NF

∑
j,k

J2
k j cot[π (k − j)/N]Sz

k . (27)

If the interaction Ji j is periodic on a circle Eq. (14), this term
vanishes because the sum over j is antisymmetric. This is the
significant advantage of the periodic (PBC) model compared
to its OBC counterpart, where this second-order term dramat-
ically suppresses the delocalization creating effective disorder
(see Sec. V).

The transverse term emerging in the same order in
Ji j/F does not conserve the dipole moment and can be
neglected similarly to the analogous term for the OBC prob-
lem (7), when considering the contributions to the effective

Hamiltonian up to the third order in JF−1. However, it con-
tributes to the fourth-order interactions discussed in Sec. II C.

The third-order (in JF−1) dipole-moment conserving
contributions to the effective Hamiltonian comes from longi-
tudinal and transverse terms

Ĥeff = Ĥ3,l + Ĥ3,tr . (28)

The longitudinal term representing the induced longitudinal
spin-spin interactions can be evaluated similarly to Ref. [57]
and Eq. (8) as

Ĥ3,l =
∑
j<k

UjkSz
jS

z
k, Ujk

= π2

6N2F 2

JjkJl jJkl
[
2 cos

(
π ( j−k)

N

) + cos
(

π (2l− j−k)
N

)]
sin

(
π (l− j)

N

)
sin

(
π (l−k)

N

) .

(29)

The transverse part of the effective Hamiltonian (28) can
be evaluated similarly to the OBC case of Eqs. (10) and (11)
as

Ĥ3,offd =
∑

j,k,l,m

VjklmS+
j S−

k S+
l S−

m �N ( j + l − k − m),

�N (a) =
∞∑

p=−∞
δa,pN , (30)
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where δab is the Kronecker symbol. The interaction Vi jkl is defined as

Vi jkl = − π2

12N2F 2

(
Ji jJikJil

[
2 cos

(
π (i− j)

N

)
cos

(
π (i−k)

N

) + (−1)
i+l− j−k

N cos
(

π (i−l )
N

)]
sin

(
π (i− j)

N

)
sin

(
π (i−k)

N

)
+ Ji jJjkJjl

[
2 cos

(
π (i− j)

N

)
cos

(
π ( j−l )

N

) + (−1)
i+l− j−k

N cos
(

π ( j−k)
N

)]
sin

(
π ( j−i)

N

)
sin

(
π ( j−l )

N

)
+ JikJjkJkl

[
2 cos

(
π (i−k)

N

)
cos

(
π (k−l )

N

) + (−1)
i+l− j−k

N cos
(

π ( j−k)
N

)]
sin

(
π (k−i)

N

)
sin

(
π (k−l )

N

)
+ Jil Jkl Jil

[
2 cos

(
π (l− j)

N

)
cos

(
π (l−k)

N

) + (−1)
i+l− j−k

N cos
(

π (i−l )
N

)]
sin

(
π (l− j)

N

)
sin

(
π (l−k)

N

) )
. (31)

For the parent XY model with nonzero nearest- and next-
neighbor interactions the generated diagonal interaction has
the slightly modified form compared to Eq. (9)

Ui j = 2�(δi, j−1 − δi, j−2), i < j

� = η(N )
J2

1 J2

4F 2
, η(N ) = π2 2 cos

(
2π
N

) + 1

3N2 sin
(

π
N

)2 . (32)

The same constant � determines the four-spin hopping am-
plitude in Eq. (30) for four consecutive neighboring spins,
while it is zero for all other spin quartets. Since the factor
η(N ) very quickly approaches unity with increasing N [for
instance, η(15) = 0.9563 for the minimum number of spins
studied experimentally in Ref. [33]] we ignore its difference
from unity and consider the minimalist model in the form of
Eq. (1).

The spatial periodicity can be realized similarly in any other
system with large field gradient including, e.g., Ref. [51].

C. Relevance of the minimalist model

Since the minimalist model in Eq. (1) is derived as the
expansion of the effective Hamiltonian in inverse field gradi-
ent F this model should be relevant at sufficient large field
gradient F > Fc. Here we summarize the estimates of the
crossover field gradient Fc. while the details are given in the
Supplemental Material [59], Sec. I.

The relevance of the minimalist model can be examined
conservatively requiring the weak modification of eigenstate
energies or liberally requiring the weak change in observables.
In this paper we consider an imbalance in the infinite-time
limit as the observable characterizing the system dynamics
(see Sec. III F). In the Supplemental Material [59] (Sec. I C)
energy levels and imbalances were compared for the min-
imalist model and more accurate models. All comparisons
are performed for the XY model in Eq. (12) with nearest-
and next-neighbor interactions different from zero and iden-
tical similarly to the experimentally investigated system in
Ref. [32]. We set both interactions equal to J .

The conservative estimate can be obtained considering the
minimalist model as the zeroth-order Hamiltonian and the
fourth-order correction to it as a perturbation. Then a typical
perturbation matrix element scales as V4 ∼ 2−N/2J4/F 3 [65],
while the typical interlevel spacing of the minimalist model

scales as δE ∼ 2−N J3/F 2. Setting V4 ≈ δE we end up with
the desirable estimate that is consistent with that of the Sup-
plemental Material [59] (Sec. I C)

Fc1 ≈ 0.25 × 2N/2J, (33)

obtained comparing the exact diagonalization results for the
minimalist model and its corrected version.

The liberal estimate can be derived requiring the
Schrieffer-Wolff expansion to be generally converging. Since
the expansion parameter of the effective Hamiltonian is J/F
the liberal criterion reads as

Fc2 ≈ J. (34)

Even the conservative estimate can be insufficient since
an arbitrary small nonlocal interaction emerging in higher
orders in F−1 can destroy shuttering and, consequently, lo-
calization. Our numerical analysis of imbalance shows that
it does not happen. Moreover, the analysis of imbalances
reported in the Supplemental Material [59] (Sec. I C) shows
that the condition (34) is nearly sufficient for the qualitative
relevance of the imbalance behavior obtained in the minimal-
ist model, while the quantitative relevance of this model for
localized states requires Eq. (33) to be satisfied. The liberal
estimate is relevant quantitatively for delocalized groups of
states.

The present conclusions for the liberal criterion are based
on the numerical analysis limited to relatively small numbers
of spins N � 16. We hope that its predictions can be extended
to larger sizes; yet this is the subject for more accurate theo-
retical or experimental verifications.

III. GROUPS OF STATES: LOCALIZATION AND
DELOCALIZATION WITHIN THE MINIMALIST MODEL

A. Inverted representation and pair hopping

The spin hopping in the minimalist model is represented
by simultaneous hopping of two neighboring spins in opposite
directions as ↑↓↓↑↔↓↑↑↓ in consecutive spin quartets with
oppositely oriented middle and border spins. In this picture
the spin hopping is hard to trace visually. However, it is made
easier by inverting each second spin as ↑↑↓↓↔↓↓↑↑. Then,
the spin hopping is represented by the hopping of pairs of
spins oriented identically.
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The transition from the original model (1) to the in-
verted spin-chain representation can be performed rotating all
even-numbered spins about the x axis by the angle π . The
transformation unitary matrix for this rotation is given by
Û = ∏N/2

k=1 eiπSx
2k . It does not change spin operators in odd-

numbered sites modifying operators at even-numbered sites
as Sx

2k → ÛSx
2kÛ

−1 = Sx
2k , Sy

2k → ÛSy
2kÛ

−1 = −Sy
2k , Sz

2k →
ÛSz

2kÛ
−1 = −Sz

2k . Consequently, S+ and S− operators are in-
terchanged at even-numbered sites, i.e., S+

2k → S−
2k and S−

2k →
S+

2k . This modifies the minimalist model Hamiltonian (1) as

Ĥmin = �

N∑
k=1

(S+
k S+

k+1,pS−
k+2,pS−

k+3,p + H.c.)

− 2�

N∑
k=1

Sz
k

(
Sz

k+1,p + Sz
k+2,p

)
, (35)

where Sa
k,p = Sa

k for k � N and Sa
k,p = Sa

k−N for k > N (a =
+, − or z). This transformation is applicable only to states
containing an even number of spins considered below, while
the generalization of the results to an odd number of spins is
given later in Sec. III E.

Inverted chain representation makes spin hopping truly
visible. Indeed, consider the inverted state A composed by
two sequences of oppositely oriented adjacent spins con-
taining odd numbers of spins ↑↑↑↑↑↓↓↓↓↓↓↓. We will
refer to such sequences as odd sequences, while sequences
containing even numbers of spins are referred as even se-
quences. It is clear from this picture how spin pairs can
propagate through the chain. For example, the rightmost up-
wards oriented pair of fourth and fifth spins can hop three
times to the right reaching 10th and 11th positions (state
B: ↑↑↑↓↓↓↓↓↓↑↑↓), while the leftmost pair of down-
wards oriented spins (sixth and seventh spins) can hop to
the left maximum two times reaching second and third po-
sitions (state C: ↑↓↓↑↑↑↑↓↓↓↓↓). These states A, B, and
C for the original spin chain look like ↑↓↑↓↑↑↓↑↓↑↓↑,
↑↓↑↑↓↑↓↑↓↓↑↑, and ↑↑↓↓↑↓↑↑↓↑↓↑, respectively. It is
much more difficult to establish the visual connection between
the latter three states compared to these states for the inverted
chain.

The inverted-chain representation permits us to character-
ize spin hopping using the parity of sequences of adjacent
spins having identical orientations. Odd or even sequences
are sequences containing odd or even number of identically
oriented consecutive spins, respectively. For instance, the state
↑↑↑↓↓↓↓↓↓↑↑↓ is composed by sequences of 3, 6, 2, and 1
spins. One can define it by the set of numbers {3, 6, 2, 1} spec-
ifying that the first spin of the first sequence is located in the
first position of the periodic chain and it is oriented upwards.
Due to the periodicity of the chain the state ↑↑↓↓↓↓↓↓↑↑↓↑
is defined by the same set of numbers with the second spin of
the first sequence located in the first position of the periodic
chain and oriented upwards.

B. Classification of Krylov subspaces: Localized and delocalized
groups of states

Product states coupled by spin pair hops form the basis for
system eigenstates and this basis defines the Krylov subspace

5 10 15 20 25
N

100

102

104

106

W
N

Group I

 2  1.414N

 Group II

 2  1.618N

 Group III

 1.0  1.844N

 Group IV

  2N  I  - 
II  - 
III - 
IV - 

FIG. 1. Numbers of states vs the numbers of spins for all groups
with representative states for all groups.

for a specific group of states [37,41]. The basis product states
of an inverted chain can be represented as the set of consec-
utive numbers of identically oriented spins {n1, n2, . . . , np}
[e.g., {2, 3, 4, 3} for the state A in Eq. (36)]. If sequences 1
and p are oriented identically, then they should be considered
jointly as {n1 + np, n2, . . . , np−1} with the specified position
of the first spin. Pair hopping conserves the number of odd
sequences since it can modify the sequence size only by 2.
Therefore, the numbers of odd sequences are identical in all
product states belonging to the given Krylov subspace, serv-
ing conserved quantities (cf. Ref. [38]).

The main results of this work can be formulated in terms of
the relative parities of sequences shared between all product
states belonging to the given Krylov subspace as following.
If all odd- or even-numbered sequences are even (except for
frozen states possessing all identical spins or having a single
spin in all even- or odd-numbered sequences), then corre-
sponding Krylov subspaces and system eigenstates possess
the translational invariance with the period 2 [see, e.g., states
in Eq. (36)]. Consequently„ these states are delocalized. The
remaining product states having odd sequences at both odd
and even positions form Krylov subspaces (with marginal
exceptions) with no translational invariance and confined spin
transport.

Product states corresponding to translationally invariant
Krylov subspaces can be separated into two groups of states
enumerated by the roman numbers I and II. The group I
consists of 2 × 2N/2 states composed by all even sequences.
The group I states can be mapped to N/2 spins 1

2 representing
pairs [48] (spin subspaces of Refs. [37,41]).

The states of the group II are formed by the product states
possessing at least one odd sequence and all even sequences
of spins oriented either upwards or downwards as in Eq. (36).
Correspondingly, the odd sequences must have the opposite
orientation. The number of states belonging to this group II
behaves as WN ≈ 2 × [(1 + √

5)/2]N ∝ 1.618N at large N .
The numbers of states are calculated for all groups in the
Supplemental Material [59] (Sec. II) using the generating
function method, and presented in Fig. 1 together with the
representative group states. All sectors of the Hilbert space
spanned by states lying in group I correspond to integrable
models [41], while the group II states are mostly ergodic as
pointed out below in Sec. III C.
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FIG. 2. Dependence of average imbalances evaluated within the
infinite-time limit on the number of spins for different groups (solid
lines with the group numbers in the right).

The states of both groups must have even numbers of
spins. The original (noninverted) states are characterized by
a zero-spin projection to the z axis. The zero-spin projection
corresponds to the filling factor 1

2 leading to at least twofold
degeneracy of all states [49], which is realized for eigenstates
of the problem (1) shifted by the one lattice period with
respect to each other since they cannot be coupled by pair
hopping.

The remaining nontranslationally invariant states can be
represented by states containing at least two odd sequences
with oppositely oriented spins. We separate them into two
groups including the group III of states having no frozen spins,
with conserved projections to the z axis, and group IV of states
containing frozen spins as defined in Eq. (37) (for example,
third, fourth, and fifth spins are frozen in the representative
state of the group IV in Fig. 1). The group IV contains
the majority of states (∝2N ). Localization obviously takes
place for the group IV states split into independent blocks by
frozen spins. The group III states are mostly localized for the
present model (1) in accord with the imbalance behavior (see
Fig. 2).

The states with odd number of spins belong either to the
group III or IV depending on the presence of frozen spins
[Eq. (37)] (see Sec. III E).

C. Translational invariance

Here we prove the translational invariance for the groups
I and II and its absence for almost all Krylov’s subspaces in
groups III and IV. To prove the translational invariance for the
groups I or II consider the product state belonging to these
groups with even number of spins in all odd-numbered se-
quences. Such state is illustrated by the state A = {2, 3, 4, 3}
defined below as

(A)
1�⏐ 2�⏐ 3⏐� 4⏐� 5⏐� 6�⏐ 7�⏐ 8�⏐ 9�⏐10⏐�11⏐�12⏐� → (B)

1�⏐ 2�⏐ 3⏐� 4⏐� 5⏐� 6�⏐ 7�⏐10⏐�11⏐� 8�⏐ 9�⏐12⏐� →

(C)
1�⏐ 2�⏐ 3⏐� 4⏐� 5⏐�10⏐�11⏐� 6�⏐ 7�⏐ 8�⏐ 9�⏐12⏐� → (D)

3⏐� 4⏐� 1�⏐ 2�⏐ 5⏐�10⏐�11⏐� 6�⏐ 7�⏐ 8�⏐ 9�⏐12⏐�. (36)

The translational invariance with the period 2 for these states
can be demonstrated considering spin-pair hopping starting
with the rightmost sequence k in even numbered position
having more than one spin (nk > 1) [spins 10, 11, 12 in the
state A in Eq. (36)]. If there is only one spin there then another
even-numbered sequence k should be considered with nk > 1.
One can take the leftmost pair of spins in this sequence and
move it to the left until joining the left next-neighboring se-
quence k − 2 that is possible because k − 1st sequence is even
[transition A → B → C in Eq. (36)]. Then the leftmost spin
pair of k − 2nd sequence (spins 3, 4) moves left to join k − 4th
sequence (C → D). This procedure should be continued until
the pair of spins will join the kth sequence from the right
[the state D in Eq. (36)]. The final state (D) is formed by the
translation of the initial state (A) to the right by two steps. This
proves the translational invariance of the associated Krylov
subspace and, consequently, eigenstates of the problem.

Using the similar arguments one can give a full description
of Krylov subspaces of groups I and II. The states of the group
I for N spins and total spin projection S to the z axis for
the inverted states (remember that for the group I N must be
even and S must be integer) belong to two Krylov subspaces
of states made of even sequences with the sequence borders
located all either in even or odd positions.

The states and Krylov’s subspaces of the group II can
be further characterized using the analysis similar to that in
Ref. [38] for nonlocal integrals of motion. Such analysis is
beyond the scope of this paper targeted to distinguish delo-
calized, translationally invariant states of groups I and II and
almost all localized states of groups III and IV.

Krylov subspaces containing states with both odd- and
even-numbered oppositely oriented odd sequences have no
translational invariance except for marginal situations includ-
ing, for instance, Krylov subspaces containing periodic states
(e.g., {3, 3, 3, 3}).

To prove that, consider the closest oppositely oriented odd
sequences in odd and even positions. They are separated by
the even number of even sequences. These sequences can be
removed by means of pair hops from each sequence towards
the closest odd sequences with the same direction of spins.
Since the spin pair located between two odd sequences cannot
hop through them the position of this border is conserved
within the Krylov subspace.

The position of the boundary between two odd sequences
in that configuration is unique and it cannot be modified by the
pair hopping because of the spin-projection conservation to
the z axis. Odd sequences are not transparent for pair hopping
because pairs move by two steps only. Therefore, adjacent odd
sequences confine the spin transport breaking down the trans-
lational invariance of corresponding Krylov subspaces. This is
not true for the group II states where all odd sequences possess
the same spin orientation. Indeed, they can exchange by pairs
that can pass through even sequences separating them.

The fixed position of the boundary between neighbor-
ing odd sequences in the product state with the minimized
number of sequences violates the translational invariance of
the Krylov subspace with the only exception of subspaces
containing the translationally invariant states composed by
self-repeating sets of spins. The simplest translationally in-
variant states belonging to the group III are given by
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self-repeating sequences {2p + 1, 2p + 1, . . . , 2p + 1} with
any integer p [36].

D. Frozen spins

The majority of states of the system (∼2N ) belong to the
shattered group IV because of the existence of a finite-length
frozen-spin groups [35,41] in the large number of spins limit.
Indeed, if there exists the frozen-spin group of a finite length
it can be characterized by the formation probability Pf per the
unit chain length. Consequently, in the large number of spins
limit the probability to avoid that group scales approximately
as e−Pf N suggesting exponentially small weight of states lack-
ing frozen spins,

How are these frozen groups formed? If a sequence is even
and at least one of its neighboring sequences possesses more
than one spin, then all spins within that even sequence are
mobile since the pair of spins from the neighboring sequence
can hop through the sequence under consideration shifting
all its spins by two [see, e.g., A → C transition in Eq. (36)].
Therefore, an even sequence can belong to the frozen set only
if its neighboring sequences contain only one spin.

If an odd sequence has both neighbors containing more
than one spin, it is mobile. However, if one of its neighbors
has the only one spin, then its edge spin on that side cannot
hop until that neighboring sequence changes. Consequently, a
single-spin sequence surrounded by two odd sequences (see
case A below)

(A)
1�⏐ 2�⏐ 3⏐� 4⏐� 5⏐� 6�⏐ 7⏐� 8⏐� 9⏐�10⏐�11⏐�12�⏐,

(B)
�⏐�⏐⏐�⏐� ⏐��⏐[⏐� • • •

even

⏐��⏐]
n

⏐� ⏐�⏐�⏐�⏐��⏐ (37)

forms a simplest frozen set {odd, 1, odd} with three frozen
spins at positions (5, 6, 7) shown within the box in the state
A in Eq. (37). If the set {odd, 1} is followed by the sequence
with an even number of spins, it should have the next sequence
containing only a single spin to keep spins being frozen. The
fragment {even, 1} can be added an arbitrary number of times
[n in Eq. (37), state B] until being terminated by the odd
sequence. This is the only way of creating a finite-size frozen
set of spins just by construction.

Completely frozen states must have each sequence with
more than one spin being surrounded by single-spin sequences
(except for the state of all identical spins). Using this def-
inition we determine the number of such states as 1.134 ×
1.7549N (see Supplemental Material [59], Sec. II B).

E. States possessing odd number of spins

We cannot invert spins in a periodic chain with an odd num-
ber of spins since odd positions become even after passing the
period as shown below:

(A) ↓↑↓↓↑ → (A1) ↓↓↑↑↓,

(B)
1
↓

2
↓

3
↓

4
↑

5
↑ → (B1)

1
↓

4
↑

5
↑

2
↓

3
↓ → (B2)

5
↑

3
↓

1
↓

2
↓

4
↑,

(C)
1
↓

2
↓

3
↓

4
↑

5
↑

6
↑

7
↑

8
↑

9
↓

10
↓ → (C1)

1
↓

4
↑

5
↑

2
↓

3
↓

6
↑

9
↓

10
↓

7
↑

8
↑ . (38)

In the inverted chain with overturned spins in even positions
the state A transforms to the state B. According to the rules for
the pair hopping in addition to the pair hopping leading to the
state B1 (the straight chain state A1) there is the pair hopping
through the border to the state B2, which is not permitted for
the straight state. This problem can be resolved adding the
second chain that is the fully inverted copy of the first chain
[see the state C in Eq. (38)]. Then the pair hopping should
be performed simultaneously for the pair and its copy like it
is shown for the transition C → C1 where the hopping of the
pair of spins 2 and 3 by two steps to the right is accompanied
by the hopping of its inverted copy [spins (7, 8)] by two steps
to the right. There is only one allowed pair hopping from the
state C1 backwards to the state C. Thus, this double chain
with partially inverted spins have hopping of pairs equivalent
to dipole moment conserving transitions in the straight spin
chain.

Consequently, one can construct the Krylov subspace in
double-inverted chain using simultaneous hopping of pairs
and their copies shifted by N . Similarly to the previous con-
sideration, a simultaneous existence of odd sequences in even
and odd positions breaks down the translational invariance of
the Krylov subspace. It turns out that such sequences exist
inevitably in any state of 2N spins for an odd number of
spins N .

Indeed, for an odd total number of spins N at least one
sequence containing an odd number of spins must exist. Then,
its copy with the opposite spin orientation must exist as well in
the copy state. Consequently, we have two sequences with odd
numbers of spins occupying odd and even positions (because
they are of opposite orientations) that contradict to the require-
ment for all either odd- or even-numbered sequences to have
even numbers of spins, which is the necessary requirement for
the translational invariance.

Thus, we show that spin states having an odd number of
spins always have confined spin transport and belong either
to the group III if all spins are mobile or the group IV if it
contains frozen spins [Eq. (37)].

F. Group-averaged imbalances

Here we consider the connection between the groups, de-
fined in Sec. III B, and dynamic properties of states belonging
to these groups expressed in terms of experimentally acces-
sible imbalance determined by the evolution of the initial
product state [33,66]. The average imbalance for the initial
product state a is defined as [33]

Ia(t ) =
1
N

∑N
k=1

〈
Sz

k (t )
〉〈

Sz
k (0)

〉 − 〈
Sz

k

〉2
∗

1/4 − 〈
Sz

k

〉2
∗

, (39)

where 〈Sz
k (0)〉 is the projection of the spin k to the z axis in

the state a, 〈Sz
k (t )〉 is the average projection of this spin to the

z axis at time t , and 〈Sz
k〉∗ is the expectation value for the pro-

jection of the spin to the z axis in the ergodic system. With this
definition the imbalance should approach zero in the ergodic
regime at an infinite time and in the thermodynamic limit of
an infinite number N of spins [2]. In the localized regime it
should remain constant. The convergence of imbalance to its
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FIG. 3. Comparison of average imbalances for groups III and IV
with expectation values evaluated for different subspaces. Letter K
means Krylov subspace averaging, letters S2 means averaging over
subspaces with fixed odd and even sublattice spin projections to the
z axis for even number of spins, while S means averaging with the
fixed total spin projection to the z axis.

expectation value in the ergodic, delocalized regime has to be
exponential as N approaches infinity.

This criterion is used below to distinguish localized and
delocalized states. The delocalized regime is not necessarily
ergodic [37] and, therefore, we discuss the level statistics in
the end of the present section.

How to define correctly expectation value 〈Sz
k〉∗ in the er-

godic regime? In the infinite-temperature limit we assume that
all states contributing to the eigenstates should be represented
equally in this average. Consequently, spin projections should
be averaged over the Krylov subspace defined for each given
initial state.

It is straightforward to define average spin projections
for Krylov subspaces corresponding to the translationally
invariant groups I and II for even numbers of spins. The
Hamiltonian (1) conserves the total projections of odd- and
even-numbered spins to the z axis (Sodd = ∑N/2

k=1 Sz
2k−1 or

Seven = ∑N/2
k=1 Sz

2k , respectively). Then, the Krylov-subspace-
averaged projection of spin k to the z axis is given by 2Sodd/N
or 2Seven/N for odd or even k, respectively, due to the transla-
tional invariance of the Krylov subspace with the period 2. We
used this definition of expectation values in Eq. (39) for even
number of spins and arbitrarily the group of the initial state.
For odd number of spins we set the expectation value for the
average spin projection equal to its average value

∑N
k=1 Sz

k/N .
With this definition of the spin-projection expectations we
evaluated group-averaged imbalances in the infinite-time limit
as shown in Fig. 2. The Krylov-subspace-averaged imbalances
for groups III and IV are quite close to those evaluated with
spin-projection expectation values used in Fig. 2 as illustrated
in Fig. 3. Therefore, our definition of expectation values is
relevant for all states that are important for the analysis of
experimental data. Indeed, it is straightforward to evaluate
spin projections using the initial states, while the evaluation
of Krylov-subspace-averaged projections can be problematic
because of the exponentially large number of states.

The group-averaged imbalances represented in Fig. 2
are obtained averaging imbalances for specific state a over

all states belonging to a certain group. They are given
in an infinite-time limit (I∞) [67]. The infinite-time limit
of imbalance is evaluated numerically expanding the time-
dependent system wave function over the basis of eigenstates
|α〉 with eigenenergies Eα , obtained using exact diagonal-
ization of the system Hamiltonian, as (remember that we
set h̄ = 1)

|ψ (t )〉 =
∑

α

〈α|a〉|α〉e−iEαt . (40)

Consequently, the average spin projection at the
time t [〈Sz

k (t )〉] can be expressed as
∑

α,β e−i(Eα−Eβ )t

〈α|a〉〈a|β〉〈β|Sz
k|α〉. In the infinite-time limit we leave only

terms with Eα = Eβ , while oscillating terms are averaged out.
This yields〈

Sz
k (∞)

〉 =
∑
α,β

〈α|a〉〈a|β〉〈β|Sz
k|α〉δEα,Eβ

, (41)

where the generalized Kronecker symbol δEα,Eβ
is equal to

unity for Eα = Eβ and 0 otherwise.
The infinite-time limit is accessible experimentally using

time-averaged imbalance as demonstrated in the Supplemen-
tal Material [59], Sec. III.

The dependence of group-average imbalances on the num-
ber of spins is consistent with our expectations. The average
imbalances approach zero exponentially with increasing N for
delocalized states of groups I and II and remains finite for
other two groups with increasing N .

The convergence of imbalance to its expectation value in
Fig. 2 is exponential in the number of spins N for groups I
and II as it is expected for the ergodic behavior. However, the
additional analysis of the level statistics (to be reported else-
where) suggests ergodic behavior only for the states belonging
to the group II, that is consistent with earlier expectations for
the Bethe anzatz integrable nature of the group I states for the
present problem (1). However, the addition of a small amount
of quenched disorder should make the system ergodic [68].

The actual imbalance is affected by the Schrieffer-Wolff
rotation modifying the definitions of the spin-projection op-
erators compared to the minimalist model, Fig. 3. However,
we expect this effect of order of (J/F )2 to be of a minor
significance already at F > 3J .

IV. DISCUSSION OF THE RECENT EXPERIMENTS [32,33]:
HOW TO OBSERVE DELOCALIZATION

AT LARGE FIELD GRADIENTS?

Here we discuss the spin systems investigated experimen-
tally in Refs. [32,33] that are similar to those considered in this
work. For a large field gradient F ≈ 2.5J a substantial local-
ization was observed in these experiments for all probed initial
states in contrast with the expected coexistence of localized
and delocalized states. In our opinion, this is the consequence
of system inhomogeneity due to the open boundaries [32,33]
and the lack of some spin-spin next-neighbor interactions in
the system, investigated in Ref. [32]. Below we show for
both systems that removing inhomogeneity and making them
periodic following the receipt of Sec. II B one can observe
delocalization of states belonging to the groups I and II at
arbitrary large field gradient.
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FIG. 4. Longitudinal fields vs the number of spin k generated
by means of the Schrieffer-Wolff transformation in the model of
Ref. [32] (blue line) and in the OBC model with all identical
interactions between nearest- and next-neighbor spins (red line) com-
pared to the four-spin hopping interaction conserving dipole moment
(dashed black line).

A. Interacting qubits within the superconducting quantum
processor [32]

Two systems of 16 and 29 qubits within the superconduct-
ing quantum processor were investigated in Ref. [32]. Both
systems can be represented by XY models of interacting spins
1
2 (qubits) placed into uniformly growing field. For 16 spins
only nearest-neighbor interactions were used so the system
can be reduced to free fermions [62]. For this system the full
Wannier-Stark localization of all states always takes place, so
we do not consider it.

Thus, the system of our interest is formed by 29
qubits (spins 1

2 ) arranged in a chain with the nearest- and
next-neighbor hopping interactions Ji jS

+
i S−

j all defined in
Fig. S2.A in the Supplemental Material of Ref. [32] with
almost identical interactions Ji j for a majority of nearest- and
next-neighbor interactions except for several lacking next-
neighbor interactions. There is no direct interaction between
the ends of the chain, so the OBC regime is realized. Con-
sequently, at large field gradients the effective Hamiltonian
of the system contains static longitudinal fields hk acting
on spins, which are generated in the second order of the
Schrieffer-Wolff expansion (6) in the form

hk = − 1

4F

∑
l �=k

J2
kl

(k − l )
. (42)

These fields are shown in Fig. 4 where they are rescaled by the
factor J2/F and compared with four-spin hopping amplitude
� [Eq. (1)] rescaled by the factor J3/F 2. Their relationship
in Fig. 4 corresponds to the case of J = F . Even in that case
a typical field is comparable with the hopping strength, while
for larger field gradient F the ratio of generated fields and
the hopping amplitude increases proportionally to F . Conse-
quently, in this limit the full many-body localization should
be naturally expected in agreement with the experimental
results [32].

However, if we set all neighbor and next-neighbor interac-
tions equal to each other (leaving other interactions equal to

0 20 40 60 80 100
F/J

0
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0.4

0.6
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1
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  III , Expt
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 min, PBC
  III , PBC
  IV, PBC

FIG. 5. Average infinite-time imbalances for groups III and IV
and minimum imbalances vs a field gradient F . The results are
given for the models of Ref. [32] (Expt.), OBC, and PBC minimalist
models.

zero as in Ref. [32]), then the field is induced only in the four
edge sites of the spin chain, while it is zero in all other sites
(see Fig. 4). In this case (referred in Figs. 4 and 5 as the OBC
model) delocalization can take place for all spins, except for
those at edges, at arbitrarily large field gradient. If in addition
the system is made periodic implementing the time-periodic
Hamiltonian of Eq. (12), then no longitudinal field exists. In
the latter case the states should be separable into localized and
delocalized groups in accord with Sec. III.

Here we report the investigation of imbalances in all three
models referred as that of Ref. [32], OBC, and PBC within
the minimalist models represented by the Schrieffer-Wolff
expansion up to the third order in J/F for F � J . Since the
number of spins in Ref. [32] is odd (N = 29) the product states
can belong only to groups III or IV. We evaluated average
imbalances within the infinite-time limit for these groups for
all three models choosing initial state randomly and collecting
data until the standard deviation of the average imbalance for
each group exceeds 0.5%. We also collected minimum imbal-
ances for all considered states to approach most delocalized
states. It is natural to expect that the initial state possessing
the minimum imbalance belongs to the Krylov subspace with
most delocalized states. Average spin projections in the ini-
tial product states were used for spin-projection expectation
values in the definition of imbalance [Eq. (39)] similarly to
Sec. III F for an odd number of spins.

The Monte Carlo estimate of imbalances has been com-
pared with the exact calculations for the system of N = 20
spins where it gives quite reasonable estimate both for aver-
age and minimum imbalances. This justifies its application to
N = 29 spins.

Average imbalances for the groups III and IV and mini-
mum imbalances are shown in Fig. 5. The imbalance behavior
indicates substantial localization in the model of Ref. [32]
with increasing the field gradient F where average and mini-
mum imbalances increase with increasing F approaching the
maximum value 1. This is due to longitudinal fields (see
Fig. 4) suppressing delocalization stronger at larger F . In
OBC and PBC models, imbalances are almost or completely
field gradient independent because there are no generated
longitudinal fields for the majority of spins (OBC) or all
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spins (PBC) in these models. Yet, finite average imbalances
suggest substantial localization of states in both models that is
consistent with the nature of the groups III and IV.

The minimum imbalance for the model generated us-
ing experimental parameters [32] and at the field gradient
F = 2.5J is Imin = 0.1423. It is realized for the initial
state ↓↑↑↓↓↑↓↓↑↑↓↓↑↑↓↓↑↓↑↓↓↑↑↓↑↓↑↑↓. The corre-
sponding eigenstates are partially delocalized, yet represent-
ing the minority of states since the average imbalance exceeds
0.6 (see Fig. 5). Further increase of the field gradient leads
to the increase of the minimum imbalance (e.g., Imin = 0.5
for F = 8J) indicating the localization of all states due to
generated static fields.

The minimum imbalance for the PBC model
Imin = 0.27 × 10−3 indicates a substantial delocalization
of corresponding states (initial state is ↑↓↓↑↑↓↓↑↓↑
↓↑↓↑↑↓↑↓↓↓↑↑↑↓↓↓↑↑↓). Thus, delocalization of a
minority of states is possible for the group III states where
all spins are mobile. The minimum imbalance for the OBC
model at large field gradient realized for the initial state
↓↓↓↑↓↓↑↑↓↓↑↑↑↓↓↑↑↓↓↑↓↑↑↓↑↓↓↑↑ is around 0.15.
This estimate is approximately consistent with the minimum
imbalance estimate 4/29 ∼ 0.14 for the fully delocalized
state where all spins except for the four spins at the chain
boundaries suppose to have time averages close to zero.
Therefore, there can be a substantial delocalization for some
states of the OBC model. For the minimum considered field
gradient F = 2.5J the minimum imbalance for that model
approaches zero.

Thus, delocalization of some states in the system studied
in Ref. [32] can be attained in the large field gradient limit by
making the spin-spin interactions between nearest- and next-
neighbor spins identical. The delocalization can be further
strengthened by means of making the system periodic and
using an even number of spins as shown in Fig. 2 for the
groups I and II.

Our consideration is limited to the minimalist model. The
numerical study of more accurate models for the system of
29 spins is problematic because of the huge number of states
involved. Yet, we believe that our results remain valid at least
qualitatively according to the analysis of Sec. II C.

B. Trapped ion quantum simulator [33]

Here we examine the chain of N = 15 spins with the
hopping interaction Ji j = 1/|i − j|1.3 placed in a uniformly
growing field with the gradient F [Eq. (2)]. This model ap-
proximately represents interacting cold atoms investigated in
Ref. [33]. Another system of 25 atoms was also considered
there. However, the latter system is too complicated for our
consideration because of the very large Hilbert space (over
105 states with the total spin 1

2 and fixed dipole moment
P = 0 modulo 25). The consideration was still possible for
the system of 29 spins examined earlier (Sec. IV A) because
its effective Hamiltonian possesses a smaller Krylov subspace
due to a short-range interaction there.

Experimentally investigated systems are characterized by
open boundary conditions (OBC). Consequently, similarly to
Sec. IV A, there exist static longitudinal fields generated in
the second order of perturbation theory [Eq. (6)], as shown in
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FIG. 6. Longitudinal fields vs the number of spins k generated
by means of the Schrieffer-Wolff transformation in the model of
Ref. [33] (blue line) compared to the four-spin hopping interaction
conserving dipole moment (dashed black line).

Fig. 6 where the fields are rescaled by the factor J2/F and
compared with four-spin hopping amplitude rescaled by the
factor J3/F 2 similarly to that in Fig. 4 in Sec. IV A. In the case
of J = F depicted in Fig. 6, only fields acting on the spins
at the edges exceed the four-spin hopping amplitude, while
for larger field gradient F other fields will be also significant.
Eventually in the large field gradient limit F → ∞ many-
body localization of all states should take place in accord
with the experimental observations [33] similarly to that for
Ref. [32] as it was shown in Sec. IV A. A different behavior is
expected for the periodic model lacking longitudinal fields.

To examine the effect of boundary conditions and the rel-
evance of spin-state groups we evaluated imbalances exactly
for the OBC [Eq. (2)] and PBC [Eq. (12)] models. We use hop-
ping amplitudes Ji j = J/r1.3

i j as in Ref. [33] with ri j = |i − j|
in the OBC model and ri j = 2N | sin[π (i − j)/N]|/π in the
PBC model to make it periodic on a circle. The dependence
of group-averaged imbalances on the field gradient is investi-
gated for N = 12 to examine the relevance and applicability
of the groups. We also evaluated imbalances for the maximum
field gradient F = 2.5J used experimentally for the system of
15 spins and compare the results with the periodic system of
14 spins at the same field gradient F = 2.5J .

The division of states into groups is not formally appli-
cable to the power-law hopping Ji j since in the limit of a
large field gradient four-spin hopping [Eq. (11)] can involve
arbitrary quartets of spins with transitions conserving dipole
moments. However, it can be valid approximately because the
dominating hopping is still local due to the fast decrease of
its amplitude with the interspin distance. For example, the
hopping amplitude for the quartet transition S+

i S−
i+1S−

i+3S+
i+4

of two spin pairs separated by one interatomic distance is
less then that for the local quartet S+

i S−
i+1S−

i+2S+
i+3 by almost

a factor of 10 (8.0).
It is not clear whether the power-law hopping within the

parent model would lead to the inevitable localization break-
down in the infinite number of spins limit. According to
the preliminary analysis, the hopping 1/r1.3 in the case of
the strong field gradient does not inevitably lead to all state
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FIG. 7. Group-averaged imbalance for the periodic and open
boundary condition realizations of the system of Ref. [33] vs the field
gradient for N = 12.

delocalization as in the models of Refs. [57,69–73]. Localiza-
tion can be unstable for interaction decreasing slower with the
distance. Particularly, the recent work [74] reports the number
of interesting behaviors in the Stark MBL problem in the case
of infinite-range distant-independent transverse interactions
that await the proper interpretation and experimental verifi-
cation. It is not clear whether the ergodic spot arguments [75]
are applicable to the present problem as well because of the
lack of quenched disorder.

To examine the applicability of the group concept to the
system of interest we evaluated imbalances for different initial
states and averaged them over initial state groups for N = 12.
The infinite-time limit of group-averaged imbalances is shown
in Fig. 7 for the system with open boundary conditions (OBC)
corresponding to the experiment and the periodic system for
12 spins. In both cases, imbalances are distinguishable for
different groups already for F > 2J . This domain includes
the experimentally probed field gradients F � 2.5J . As no-
ticed in Sec. II B the dependence of imbalance on the field
gradient saturates at F � 4J . For the OBC problem imbalance
slowly increases with the field gradient due to the localization
effect of the longitudinal field induced by the boundaries (see
Fig. 6).

The behavior of average imbalances is qualitatively similar
to that for the previously considered 29 spins with short-range
interactions (see Fig. 5). Initial states of the group IV corre-
spond to larger imbalances compared to the states of the group
III in accord with our expectations. For OBC systems the
average imbalance increases with increasing the field gradient
F towards its maximum value of 1. The minimum imbalance
also increases with F , indicating localization of all system
states.

For the experimentally relevant OBC model of 15 spins
and F = 2.5J the minimum imbalance Imin = 0.1364 is found
for the initial state ↓↓↑↑↓↑↓↓↓↑↑↓↑↓↑. The average im-
balances for the groups III and IV are given by 0.5221 and
0.6787, respectively. This observation suggests the localiza-
tion of the majority of states in a sharp contrast with the
PBC problem for N = 14 and F = 2.5J . Group-average im-
balances for this problem are given by 0.055, 0.04, 0.088,
0.1877 for the groups I–IV, respectively. Thus, the minimum

imbalance for the OBC problem is comparable to the aver-
aged imbalance for the most localized group IV for the PBC
problem.

This observation suggests delocalization of states for the
first three groups and localization of most of states belonging
to the fourth one. It is consistent with that for the minimalist
model (1) except for the group III. However, since there exists
nonlocal hopping this observation is approximately consistent
with that in the Supplemental Material [59] [Sec. I, Fig. 3(b)].
It was shown there that the addition of the fourth-order nonlo-
cal interaction suppresses localization of states of the group III
for a field gradient F < 25J and even numbers of spins. Con-
sequently, the system containing even numbers of interacting
spins with periodic boundary conditions is most suitable to
investigate coexistence of localization and delocalization.

V. DISCUSSIONS AND CONCLUSIONS

Here we summarize the results of this work and compare
them with other work [36–38,41] where the composite blocks
(pseudospins, dipoles, defects) were introduced to character-
ize dipole moment conserving spin dynamics. The results can
be divided into three parts discussed separately including the
classification of Krylov subspaces for the minimalist model
(Sec. V A), understanding spin dynamics in different groups
of Krylov subspaces (Sec. V B), and the application of these
findings to existing experiments (Sec. V C).

A. Understanding Krylov subspaces

The visually transparent consideration of spin dynamics in
the minimalist periodic dipole moment conserving (modulo
N) model for the chain of N spins 1

2 [Eq. (1)] has been
proposed using inverted spin chain with all even-numbered
spins overturned about the x axis by the angle π . Then the
spin transport for even numbers of spins can be represented
as hops of pairs of identically oriented spins by two chain
periods to the right or to the left. This representation is used
to separate all product states and associated Krylov subspaces
into four groups based on the parity of identically oriented
spin sequences.

1. Groups of states

The inverted chain states belonging to the group I are com-
posed by the only even sequences (see Fig. 1). Corresponding
Krylov subspaces are translationally invariant. Consequently,
eigenstates are delocalized. Their dynamics is characterized
by the Bethe anzatz integrable anisotropic Heisenberg model
for the pseudospins 1

2 created from adjacent spin pairs simi-
larly to Refs. [36,48].

The inverted states belonging to the group II have even
number of spins in all sequences of adjacent spins oriented
either upwards or downwards, while the oppositely oriented
sequences must have at least one sequence with more than
one spin. Corresponding Krylov subspaces are translationally
invariant. Eigenstates belonging to this group are delocalized
and we expect them to be ergodic based on the preliminary
analysis of the level statistics.

Several Krylov subspaces composed by specific combi-
nations of pseudospins and dipoles belonging to the group
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II and possessing delocalized eigenstates were identified in
Ref. [37]. The transport visualization using inverted lattice
permitted us to move further and identify all translationally
invariant subspaces, thus generalizing the previous work.

The inverted states possessing both upwards and down-
wards oriented sequences with odd numbers of spins and
systems with odd numbers of spins are characterized by
nontranslationally invariant Krylov subspaces with marginal
exceptions of subspaces containing translationally invariant
product states, considered in Ref. [36]. These states can
be separated into two groups including the group III of
states with all mobile spins and group IV, of states possess-
ing frozen spins. All spin sets containing frozen spins are
identified.

2. Numbers of states

The numbers of states belonging to all groups increase
exponentially with the numbers of spins N . We evaluated
this dependence analytically using the generating function
method. The number of states increases with the number of
the group. The majority of states belong to the group IV.

3. Integrals of motion

It is possible to identify a number of conserving quantities
similarly to Ref. [38] where such quantities were considered
for the dipole moment conserving transport in the spin S = 1
chain. This includes, for instance, the number of spin se-
quences within the representative product state containing an
odd number of spins or the parity of the numbers of spins
at odd sequence boundaries (the leftmost spin is always odd,
while the rightmost spin is always even or vice versa). In this
work we do not attempt to identify all such integrals of motion
concentrating more on the localization problem. Yet, below
in Sec. V B we recognize their significance for understanding
spin dynamics.

4. Possible extension of the arguments to the spin S = 1 case

Visualization of spin dynamics within the inverted lat-
tice permits us to represent it as moving vehicles, composed
by pairs of adjacent, identically oriented spins, within the
environment of the oppositely oriented spins. Similarly, for
the minimalist dipole moment conserving spin-1 problem
[35] one can introduce such vehicles made of adjacent spins
with opposite projections ±1. Then, these vehicles can move
freely within the environment of the spins with the zero
projection.

It can be shown (we leave the proof to the readers) that
with marginal exceptions the product states forming transla-
tionally invariant Krylov subspaces must have spins with the
projections Sz = ±1 arranged in the way that each spin with
a projection Sz = ±1 has at least one of the two neighboring
spins with |Sz| = 1 having the opposite projection Sz = ∓1
(that spin can be separated from the given spin by an arbitrary
number of spins with the zero projection). Further extensions
of theory to more complicated models can be possibly devel-
oped, which is beyond the scope of this work.

B. Localization and delocalization of states in different groups:
Connection to the parent model

It is quite natural to expect delocalization of eigenstates
belonging to the translationally invariant groups I and II and
localization for the states of the group IV possessing the
immobile spins. These expectations are fully confirmed by
the investigation of the infinite-time imbalances. The study
of imbalances also shows the localization of almost all states
belonging to the group III lacking translational invariance but
with all mobile spins.

The model considered in Refs. [36,37,41] is different
from Eq. (1) because it does not include the longitudinal
part containing Sz operators. Remember that this part of the
Hamiltonian is the outcome of generalized Schrieffer-Wolff
expansion of the parent XY model, which makes our model
more relevant experimentally. To the best of our knowledge
in other systems the strong longitudinal interaction is always
unavoidable.

To compare system dynamics in two different models we
evaluated average imbalances for all groups of states for the
model of Refs. [36,37,41]. It turns out that the imbalances
behave nearly identically for all groups except for the group
III, where the ergodic behavior is found in contrast to the
localization in the model (1), considered in this work.

What is the origin of this difference? In our opinion the
longitudinal interaction acts as a quasistatic disorder, local-
izing spin dynamics. The static nature of disorder can be
the consequence of the conserving quantities (cf. Ref. [38])
including the number of odd sequences and positions of their
borders that can occupy limited number of places due to the
translational invariance breakdown. It is not clear whether this
localization survives for group III states in a thermodynamic
limit of an infinite system. At least no signature of localization
breakdown is seen in Fig. 2 up to N = 30.

The localizing effect of the longitudinal interactions should
be even stronger in other systems including the fractional
quantum Hall problem in the thin-torus limit [36,48–50] and
the anisotropic Heisenberg model with nearest-neighbor in-
teractions subjected to a uniformly growing field in a large
field gradient limit [41,60,61]. In both limits justifying the
transverse interaction in the form of Eq. (1) there exist lon-
gitudinal interactions exceeding the transverse interaction by
the expansion parameter. This should increase the strength of
static disorder and the localization trend. Consequently, the
present model is expected to be most delocalized, that justifies
its experimental and theoretical considerations.

The concept of the groups of states is extendable at least
qualitatively to the parent models with time-periodic Hamil-
tonians that can be used to realize the minimalist model
experimentally for the large field gradient F . It is possible
that localization survives there for F > J because of the
quasistatic disorder induced by some integrals of motion in-
cluding, for example, the approximately conserving dipole
moment. This expectation is consistent with the recent obser-
vation of Stark gauge protection [76], where the disorder-free
localization in several quantum gauge theory realizations has
been stabilized by the uniformly growing potential in spite of
the presence of gauge-breaking interactions.
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C. Interpretation of experiments and suggestion
of their advancement

The localization observed experimentally in Refs. [32,33]
for the large field gradient F ∼ 2.5J turns out to be the
consequence of the boundaries and lack of certain inter-
actions in Ref. [32]. This issue can be resolved using the
periodic spin chain under action of a time-varying Hamilto-
nian suggested within this work. Then the system becomes
translationally invariant and it should show a full diver-
sity of behaviors depending on the group of the initial
state.

The initial product states possessing the minimum imbal-
ances are determined for various experimental settings. It
can be worth to probe these substantially delocalized regimes
experimentally.
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