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Generalized multifractality at the spin quantum Hall transition:
Percolation mapping and pure-scaling observables

Jonas F. Karcher ,1,2 Ilya A. Gruzberg ,3 and Alexander D. Mirlin 1,2

1Institute for Quantum Materials and Technologies, Karlsruhe Institute of Technology, 76021 Karlsruhe, Germany
2Institut für Theorie der Kondensierten Materie, Karlsruhe Institute of Technology, 76128 Karlsruhe, Germany

3Ohio State University, Department of Physics, 191 West Woodruff Ave, Columbus, Ohio 43210, USA

(Received 23 March 2022; revised 6 May 2022; accepted 6 May 2022; published 19 May 2022)

This work extends the analysis of the generalized multifractality of critical eigenstates at the spin quantum Hall
transition in two-dimensional disordered superconductors [J. F. Karcher et al., Ann. Phys. 435, 168584 (2021)].
A mapping to classical percolation is developed for a certain set of generalized-multifractality observables.
In this way, exact analytical results for the corresponding exponents are obtained. Furthermore, a general
construction of positive pure-scaling eigenfunction observables is presented, which permits a very efficient
numerical determination of scaling exponents. In particular, all exponents corresponding to polynomial pure-
scaling observables up to the order q = 5 are found numerically. For the observables for which the percolation
mapping is derived, analytical and numerical results are in perfect agreement with each other. The analytical
and numerical results unambiguously demonstrate that the generalized parabolicity (i.e., proportionality to
eigenvalues of the quadratic Casimir operator) does not hold for the spectrum of generalized-multifractality
exponents. This excludes Wess-Zumino-Novikov-Witten models, and, more generally, any theories with local
conformal invariance, as candidates for the fixed-point theory of the spin quantum Hall transition. The observable
construction developed in this work paves a way to the investigation of generalized multifractality at Anderson
localization critical points of various symmetry classes.
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I. INTRODUCTION

Despite a long history, Anderson localization remains a
field of active theoretical and experimental research [1]. This
concerns, in particular, investigation of Anderson transitions
between the phases of localized and delocalized states and
between localized phases characterized by distinct topological
indices [2]. Developments of the symmetry classification of
disordered systems as well as theoretical and experimental
studies of topological insulators and superconductors have
given an additional boost to the Anderson localization re-
search.

A remarkable property of eigenstates at critical points
of Anderson localization transitions is their multifractality.
While the multifractality in the conventional sense refers to
the scaling of moments of eigenfunctions (or of the local
density of states, LDOS) [2,3], it is instructive to consider
also a much broader class of observables characterizing the
eigenstates at criticality [4]. In the sigma-model formalism,
which serves as a field theory of Anderson localization, these
observables are represented by composite operators without
gradients. In the preceding paper [5], we have introduced the
term “generalized multifractality” for the scaling of the whole
set of these observables.

Two-dimensonal (2D) Anderson localization critical points
attract a particular interest. Their realizations include 2D
materials (such as, e.g., graphene) and interfaces (e.g., in
semiconductor heterostructures), as well as surfaces of three-

dimensional (3D) topological insulators and superconductors.
A canonical example of such a critical point is provided by the
integer quantum Hall (QH) plateau transition (the symmetry
class A). This transition has its counterparts for supercon-
ducting systems: the spin quantum Hall (SQH) transition in
the symmetry class C and the thermal quantum Hall (TQH)
transition in the symmetry class D. While the SQH transition
[6,7] is a close cousin of the conventional QH transition, it has
one distinct property: some of the SQH critical exponents can
be determined exactly via a mapping to classical 2D percola-
tion [8,9]. This includes, in particular, the exponent ν = 4/3
of the localization length as well as the exponent x1 = 1/4
characterizing the scaling of the disorder-averaged local den-
sity of states (LDOS) with the system size, 〈ν(r)〉 ∼ L−x1

[8,9]. Furthermore, it was shown [10–12] that the mapping to
percolation yields exact values of the multifractal exponents
x2 = 1/4 and x3 = 0 characterizing the scaling of the LDOS
moments, 〈νq(r)〉 ∼ L−xq with q = 2 and 3.

In Ref. [5], we have addressed the generalized multifractal-
ity at the SQH transition. Using the formalism of the nonlinear
sigma model (with the target space G/K corresponding to the
class C), we have determined composite operators PC

λ that
exhibit pure scaling at criticality, with the scaling dimension
xλ. Here λ is a multi-index, λ = (q1, q2, . . . , qn), that labels
representations (or, equivalently, highest weights) of the Lie
algebra of the group G. For operators that are polynomials
of order q with respect to the field Q of the sigma model,
all qi are integers satisfying q1 � q2 � · · · � qn > 0 and
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q1 + q2 + · · · + qn = q ≡ |λ|, so that λ is an integer partition
of q or, equivalently, a Young diagram. Further, we have
found in Ref. [5] wave-function observables corresponding
to these pure-scaling operators. At this stage, a difficulty
occurred: the found observables had indefinite signs before
averaging, which required averaging over a very large number
of realizations, thus seriously restricting the numerical deter-
mination of the critical exponents. We have found two ways to
partly resolve this difficulty. Specifically, we constructed sets
of observables that are strictly positive. While these observ-
ables were not of strictly pure-scaling nature, their dominant
scaling yielded some of the sought generalized-mulifractality
exponents.

One of central findings of Ref. [5] was that the numerically
obtained values of these exponents exhibited a strong viola-
tion of the generalized parabolicity. The latter property means
that the exponents xλ are proportional to the eigenvalues of
the quadratic Casimir operator, i.e., are uniquely determined
by the symmetry of the sigma-model manifold, up to a single
overall factor. Furthermore, it was shown in Ref. [5] that
a violation of the generalized parabolicity implies that the
critical theory does not satisfy the local conformal invariance.
A violation of the local conformal invariance at the SQH
transition is quite remarkable since one usually assumes that
2D critical theories do satisfy local conformal invariance—
even though (i) this can only be proven under certain rather
restrictive conditions (that are not satisfied at critical points of
Anderson localizations) and (ii) counterexamples are known.

Despite a very important progress in previous works with
respect to the SQH transition, two major challenges remained.
The first one is whether—and if yes, then how—one can
extend the percolation mapping to calculate analytically a
broader class of generalized-multifractalty exponents (beyond
the three “conventional-multifractality” exponents x(1), x(2)

and x(3)). Exact analytical results for exponents characterizing
localization transitions are very scarce, emphasizing the im-
portance of this question. Furthermore, analytical knowledge
of the exponents would greatly help in understanding phys-
ical properties of the fixed-point theory, also with respect to
candidate theories. In particular, it can be expected to provide
an analytical proof of the absence of generalized parabolicity
and thus of local conformal invariance. The second challenge
is to derive a systematic construction of strictly positive wave-
function observables corresponding to pure-scaling class-C
composite operators PC

λ with arbitrary λ. This would open the
door to an efficient, high-precision numerical evaluation of the
generalized-multifractality exponents xλ in a broad domain of
λ. This work successfully solves both these challenging prob-
lems. More specifically, our key results here are as follows.

(1) In Sec. II B, we develop a percolation mapping for
all SQH correlation functions up to the order q = 3. Using
these results, we obtain expressions for pure-scaling correla-
tion functions from the representations λ = (1, 1), (2,1), and
(1,1,1) in terms of classical percolation probabilities.

(2) Using the above mapping and performing analysis of
the obtained percolation correlation functions, in Sec. II C, we
determine analytically the corresponding SQH generalized-
multifractality exponents x(1), x(2), x(1,1), x(3), x(2,1), and
x(1,1,1) by relating them to the scaling dimensions xh

n of n-hull
operators from classical percolation. We verify the analysis

of percolation correlation functions by numerical simulations
in Sec. II D.

(3) Furthermore, in Sec. III, we use the supersymmetry
approach that allows us to develop the percolation mapping
also for the correlators of the type λ = (1, 1, 1, . . . , 1) ≡ (1q)
(q units) with arbitrary q and to determine the corresponding
scaling dimension x(1q ). By virtue of the Weyl symmetry re-
lations satisfied by the generalized-multifractality exponents
[4,13], we also get the exponents x(2,1q−1 ) = x(1q ) [and, in fact,
further exponents generated by the Weyl orbit of (1q)].

(4) We derive a general construction of positive wave-
function observables that satisfy (upon disorder averaging) the
pure scaling for a generic representation λ = (q1, q2, . . . , qn),
with arbitrary qi (that may be fractional and even complex).
This is greatly beneficial for numerical determination of the
exponents xλ, as we also demonstrate in Sec. IV. In partic-
ular, we determine numerically (by using a network model
of class C [6,7]) all exponents corresponding to polynomial
pure-scaling observables up to the order q = 5 in Sec. V. Our
preliminary results indicate that the construction derived here
applies also to critical points in symmetry classes AII, DIII,
CI, and CII, which further emphasizes its importance.

(5) We find an excellent agreement between the analytical
results (based on the percolation mapping) and the numeri-
cal results (based on the eigenstate observable construction)
obtained in this work. These results—both analytical and
numerical—unambiguously demonstrate that the generalized
parabolicity does not hold at the SQH critical point, thus
confirming the conclusion of Ref. [5]. This strictly excludes
Wess-Zumino-Novikov-Witten models, and, more generally,
any theories with local conformal invariance, as candidates
for the fixed-point theory of the SQH transition.

II. PERCOLATION MAPPING

The version of the Chalker-Coddington network model
appropriate for the symmetry class C of the SQH transition
has two channels on each link, and the group SU(2) acts
on the corresponding wave-function spinors [6,7]. Certain
observables in the SU(2) network model at criticality can be
mapped to probabilities of the classical percolation problem.
The SU(2) average turns the quantum-mechanical coherent
sum over all amplitudes into a sum over configurations of
classical percolation hulls weighted by the corresponding
probabilities [8,9]. This mapping exists for all products of
q = 1, 2, and 3 Green’s functions, and the scaling dimensions
of the moments of the local density of states (LDOS) x(1), x(2)

and x(3) can be computed this way [10]. Products of Green’s
functions with finite level broadening γ also involve products
of distinct wave functions that do not behave as pure LDOS
powers but show subleading multifractality. Since the map-
ping to percolation is exact, we should therefore have access
to the exponents x(1,1), x(2,1), and x(13 ) as well. We carry out
this program in the present section.

We begin by introducing notations for SQH correlation
functions in Sec. II A. Then in Sec. II B the mapping to per-
colation as developed in Ref. [10] is presented for all SQH
correlation functiions with q = 1, 2, and 3. Subsequently, in
Sec. II C, analytical properties of classical percolation proba-
bilities are discussed and implications for the SQH correlation
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functions are analyzed. Numerical simulations of classical
percolation are performed in Sec. II D in order to verify the
analytical predictions based on the percolation theory. The
key result of Sec. II are relations between the multifractal
scaling dimensions xλ at the SQH critical point and scaling
dimensions of hull operators xh

n in classical percolation.

A. SQH correlation functions

1. Notations

A network model is characterized by an evolution operator
U (which describes the evolution of the system over a unit
time step). The evolution operator is unitary, so that its eigen-
values lie on the unit circle in the complex plane:

Uψi = eiεiψi. (1)

The SQH network model in class C is characterized by the
particle-hole symmetry which implies that every quasienergy
εi has a partner −εi. The wave function ψiα (r) (eigenfunction
of U ) lives on links r of the network and carries a spin index
α =↑,↓.

The Green’s function associated with the operator U (a 2 ×
2 matrix in the spin space) is defined as

G(r2, r1; z) = 〈r2|(1 − zU )−1|r1〉, (2)

with a complex argument z. Since the evolution operator U is
unitary, the poles of this Green’s function lie on the unit circle
|z| = 1. Inside the unit disk, |z| < 1, the expansion of this
expression in powers of z is absolutely convergent. Outside
of the unit disk, i.e., for |z| > 1, one can use the identity

[G(r1, r2; z−1)]† = 1 − G(r2, r1; z∗), (3)

which generates a convergent expression in powers of (z∗)−1.
The class-C particle-hole symmetry implies the following
property of the Green’s function:

[G(r1, r2; z)]† = −(iσ2)[G(r1, r2; z)]T (iσ2), (4)

where σ2 is the second Pauli matrix in the spin space.
We are interested in SQH correlation functions that are

(linear combinations of) disorder-averaged products of 2q
wave function amplitudes. As pointed out above, in Sec. II,
we focus on the cases q = 1, 2, and 3. To explain notations,
we are now going to consider the case q = 2 in detail.

In the order q = 2, there are two independent correlation
functions that we denote D(2) and D(1,1), respectively:

D(2)(r1, r2; ε1, ε2)

=
〈 ∑

i jαβ

ψ∗
iα (r1)ψ jα (r1)ψiβ (r2)ψ∗

jβ (r2)δ(ε1 − εi )δ(ε2 − ε j )

〉
,

(5)

D(1,1)(r1, r2; ε1, ε2)

=
〈 ∑

i jαβ

|ψiα (r1)|2|ψ jβ (r2)|2δ(ε1 − εi )δ(ε2 − ε j )

〉
. (6)

These functions describe correlations between amplitudes
of two eigenstates ψi and ψ j with energies ε1 and ε2 at two
links r1, r2 of the network. Spin indices are denoted by Greek

letters α, β. The angular brackets in Eq. (6) denote averaging
over disorder (i.e., over random SU(2) matrices on the links
of the network). We will refer to D(1,1) and D(2) as the Hartree
and the Fock correlation functions, respectively. The origin of
this terminology is rather clear: exactly these structures arise
when one calculates the Hartree and the Fock contributions to
the energy of an interacting system.

It is straightforward to express the correlation functions
D(2) and D(1,1) in terms of the Green’s function (2). For further
analysis, it turns out to be useful to perform an analytical con-
tinuation of the arguments eiε1 = z = e−γ and eiε2 = w = e−δ

to the real axis. All correlators D of wave functions contain
the difference of retarded and advanced Green’s functions

�G(r1, r2; z) ≡ G(r1, r2; z) − G(r1, r2; z−1), (7)

and we get

(2π )2D(2)(r1, r2; γ , δ) = 〈Tr{�G(r1, r2; z)�G(r2, r1; w)}〉,
(8)

(2π )2D(1,1)(r1, r2; γ , δ)=〈Tr�G(r1, r1; z)Tr�G(r2, r2; w)〉.
(9)

Here traces go over the spin space. The subscripts in no-
tations D(2) and D(1,1) indicate that the correlation function
(8) involves a loop (r1 ← r2 ← r1) formed by two Green’s
functions, while Eq. (9) involves a product of two loops (r1 ←
r1 and r2 ← r2), each of them formed by a single Green’s
function. These notations are straightforwardly extended to
higher-order correlation functions Dλ with integer partitions
λ = (q1, . . . , qn).

In order to extract the scaling behavior of the correlation
functions (8) and (9), it is convenient to choose γ = δ (i.e.,
z = w). This choice is beneficial for performing the percola-
tion mapping following Ref. [10]. We are thus left with the
correlation functions

(2π )2D(2)(r1, r2; γ )

=
〈 ∑

i jαβ

ψ∗
iα (r1)ψ jα (r1)ψiβ (r2)ψ∗

jβ (r2)δγ (εi )δγ (ε j )

〉
,

(2π )2D(1,1)(r1, r2; γ )

=
〈 ∑

i jαβ

|ψiα (r1)|2|ψ jβ (r2)|2δγ (εi )δγ (ε j )

〉
, (10)

where

δγ (εi) = Im
1

εi − iγ
(11)

is the δ function (times π ) broadened by γ . We define
Dλ(r1, r2, . . . ; γ ) for an arbitrary integer partition λ in an
analogous fashion. In everything that follows there is only one
broadening parameter γ , and we will suppress the correspond-
ing variable z in the difference �G, Eq. (7).

2. Pure-scaling combinations

A system at the critical point of the SQH transition (or,
more generally, at any Anderson-transition critical point) is
characterized by generalized multifractality. This means that
there are composite operators labeled by the multi-index
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λ = (q1, . . . , qn) that exhibit power-law scaling with scaling
dimensions xλ. The dimensions xλ are related to the anoma-
lous dimensions �λ describing eigenstate correlations via

�λ = xλ − |λ|x(1), |λ| = q ≡ q1 + · · · + qn, (12)

where x(1) is the LDOS scaling dimension. For each λ, one
can construct appropriate wave-function observables Oλ[ψ]
that reveal the corresponding power-law scaling:

L2q〈Oλ[ψ](r1, . . . , rq )〉 ∼ (r/L)�λ. (13)

Here the points r1, . . . , rq are separated by a distance ∼r from
each other, with r 
 L. In Sec. IV, we explicitly construct
such pure scaling operators Oλ[ψ](r1, . . . , rq ) for all λ for
class C. Here we discuss how these scaling combinations
for q = 2 appear in the correlation functions D(1,1) and D(2)

introduced above.
The double sums over i and j in Eq. (10) contain two

contributions: the diagonal one (i = j) and the one with i �= j:

(2π )2D(2)(r1, r2; γ )

=
〈 ∑

i,αβ

|ψiα (r1)|2|ψiβ (r2)|2(δγ (εi ))
2

+
∑

i �= j; αβ

ψ∗
iα (r1)ψ jα (r1)ψiβ (r2)ψ∗

jβ (r2)δγ (εi)δγ (ε j )

〉
,

(2π )2D(1,1)(r2, r1; γ )

=
〈 ∑

i,αβ

|ψiα (r1)|2|ψiβ (r2)|2(δγ (εi ))
2

+
∑

i �= j; αβ

|ψiα (r1)|2|ψ jβ (r2)|2δγ (εi)δγ (ε j )

〉
. (14)

The terms with i = j, i.e., with a summation over one eigen-
state i, yield pure �(2) scaling:〈 ∑

i,αβ

|ψiα (r1)|2|ψiβ (r2)|2(δγ (εi ))
2

〉

= L2
∫

dε ν(ε)(δγ (ε))2

〈 ∑
αβ

|ψiα (r1)|2|ψiβ (r2)|2
〉∣∣∣∣∣

εi=ε

∼ L−2
∫

dε ν(ε)(δγ (ε))2(r/ξγ )�(2)

∼ L−2ν(γ ) γ −1(r/ξγ )�(2) , (15)

where

ν(ε) = ρ0ε
−1/7, ξγ ∼ γ −4/7 (16)

are the average density of states and the localization length,
respectively, and we have used

〈|ψiα (r1)|2|ψiβ (r2)|2〉|εi=ε ∼ L−4(r/ξε )�(2) . (17)

The formula (15) and analogous scaling formulas below hold
for r 
 ξγ . In the thermodynamic limit L → ∞ and for fixed
γ , these diagonal contribution are suppressed in comparison
with those coming from two different eigenstates ( the double
sum over i �= j).

For two-eigenstate correlation functions (i �= j), we know
from Ref. [5] that pure-scaling observables PC

(1,1) and PC
(2) are

given by the following linear combinations of D(1,1) and D(2)

(see Eq. (B7) in Appendix B where we briefly summarize the
relevant results of Ref. [5]):(

PC
(1,1)

PC
(2)

)
=

(
1 −2
1 1

)(
D(1,1)(r1, r2; z)
D(2)(r1, r2; z)

)
. (18)

This result (and its extension to higher q) was inferred in
Ref. [5] from the renormalization-group (RG) analysis of the
class-C nonlinear sigma model (NLσM). This implies the
following scaling properties of D(1,1) and D(2) (for r 
 ξλ):

D(2)(r2, r1; γ )

� cν2(γ )L4

〈 ∑
αβ

ψ∗
iα (r1)ψ jα (r1)ψiβ (r2)ψ∗

jβ (r2)

〉∣∣∣∣∣
εi,ε j∼γ

� c′ν2(γ )[(r/ξγ )�(2) − (r/ξγ )�(1,1) ],

D(1,1)(r2, r1; γ )

� cν2(γ )L4

〈 ∑
αβ

|ψiα (r1)|2|ψ jβ (r2)|2
〉∣∣∣∣∣

εi,ε j∼γ

� c′ν2(γ )[2(r/ξγ )�(2) + (r/ξγ )�(1,1) ], (19)

where c and c′ are constants. At small r/ξγ , one thus
has 2D(2)(r2, r1; γ ) ≈ D(1,1)(r2, r1; γ ), so that the difference
D(1,1) − 2D(2) reveals the subleading �(1,1) scaling.

In the following, it is convenient to switch to the variable
z = e−γ < 1 to characterize the broadening γ > 0.

B. Mapping to percolation

As shown in Ref. [10], the SU(2) averaging reduces
quantum-mechanical sums over amplitudes that enter SQH
correlation functions involving products of two or three
Green’s functions to classical sums over nonintersecting
paths. (For the average of a single Green’s function, this
approach was implemented in Ref. [9].) As a result, disorder-
averaged quantum-mechanical correlation functions with q �
3 are expressed in terms of probabilities of classical percola-
tion hulls (external perimeters of the percolation clusters). In
brief, this mapping obeys the following rules.

(1) Each quantum-mechanical Green’s function G(ri, r j ; z)
is given by a sum over paths (segments of percolation hulls)
from r j to ri. Upon averaging of a product of Green’s func-
tions, only those contributions remain, where each link is
traversed exactly 0 or 2 times by the paths.

(2) Paths of length 2N are weighted with a factor z2N .
(3) Each spin trace gives a factor −1. The negative sign

originates from the SU(2) average, since 〈U k〉SU(2) = ck1,
with c2 = − 1

2 < 0 and with all other ck = 0 for k > 0.
The sum over all resulting classical paths traversing these

links can then be interpreted as a sum over hulls of the
classical percolation problem. The full quantum mechanical
problem is then re-expressed in terms of the classical per-
colation probabilities. The relevant probabilities are defined
in Table I. These are probabilities to find loops (percolation
hulls) of given lengths N, N ′, . . . running through given links
r1 ← r2 ← . . . in a given order. For some of the probabilities,
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TABLE I. Probabilities involved in the mapping to classical percolation. Here, r1, r2, and r3 are links on a percolation network and
N, N ′, and N ′′ are lengths (of segments) of paths through the links.

Probability Description

p(r1; N ) loop of length N running through link r1

p(r1, r2; N ) loop of length N running through links r1 ← r2

p1(r1, r2; N ) loop running through links r1 ← r2, where the path r1 ← r2 has length Nr1r2 = N
p(r1, r2; Nr1r2 = N, Nr2r1 = N ′) loop running through links r1 ← r2, where the path r1 ← r2 has length Nr1r2 = N

and the path r2 ← r1 has length Nr2r1 = N ′

p(r1; N |r2; N ′) loops of lengths N and N ′ running through links r1 and r2, respectively
p(r1, r2, r3; N ) loop of length N running through links r1 ← r2 ← r3

p1(r1, r2, r3; N ) loop running through links r1 ← r2 ← r3, where Nr1r3 = N
p(r1, r2; N |r3; N ′) loop of length N running through links r1 ← r2

and loop of length N ′ running through link r3

p1(r1, r2; N |r3; N ′) loop of length N running through links r1 ← r2,
where Nr1r2 = N and loop of length N ′ running through link r3

p(r1; N |r2; N ′|r3; N ′) loops of lengths N, N ′, and N ′′ running through links r1, r2, and r3, respectively

the length of a segment between two links (e.g., Nr1r2 ) is spec-
ified. For example, p(r1; N ) is a probability that the link r1

belongs to a loop of the length N ; p(r1, r2; N ) is a probability
that the links r1 and r2 belong to the same loop of the length
N ; p(r1; N |r2; N ′) is a probability that the link r1 belongs to a
loop of length N , while the link r2 belongs to a different loop
of length N ′, and so on, see description in Table I.

The probabilities introduced in Table I satisfy a number
of identities that follow directly from their definitions. In
particular,∑

N

p(r1, r2; N ) =
∑

N

p1(r1, r2; N ) = p(r1, r2), (20)

p(r1, r2; N ) +
∑

N ′
p(r1; N |r2; N ′) = p(r1; N ), (21)∑

N

p(r1; N ) = 1. (22)

Analogous identities hold for probabilities with three (or
more) spatial arguments.

In the following, the mapping is applied to all correlation
functions Dλ with q = 1, 2, 3 Green’s functions (or, equiv-
alently, 2q = 2, 4, 6 wave function amplitudes). We recall
that the correlation function are labeled by integer parti-
tions λ, with |λ| = q. For λ = (1), the resulting form of
Dλ was obtained within this approach in Ref. [9], and for
λ = (2), (1, 1), (3) in Ref. [10]. For reader’s convenience, we
present the derivation here for all |λ| = 3 (i.e., including also
the previously known results) within the notations introduced
in Table I. Most of the technical details of calculations are
given in Appendix A. We omit the general proof of validity
of the mapping for |λ| � 3 (see the rules formulated above),
referring the reader to Ref. [10].

1. One Green’s function: q = 1

In this order, there is only one SU(2)-invariant expression,
TrG(r1, r1; z), corresponding to the average LDOS 〈ν(r1; γ )〉
(which is the same as the average global density of states
ρ(γ ), since disorder averaging restores translational invari-
ance). In our notations, this corresponds to Dλ with λ = (1).

We have

(2π )D(1)(r1; z) = ρ(γ )

〈 ∑
α

|ψα (r1)|2
〉

= 〈Tr�G(r1, r1)〉. (23)

The expectation values of the Green’s functions can be turned
into sums over percolation probabilities:

〈TrG(r1, r1; z)〉 = 2 −
∞∑

N=1

p(r1; N )z2N ,

〈TrG(r1, r1; z−1)〉 =
∞∑

N=1

p(r1; N )z2N . (24)

Nonvanishing contributions to 〈TrG(r1, r1; z)〉 are given by
loops containing the link r1 and traversed exactly twice, see
Fig. 1(a). The contribution 2 in the first line originates from
the spin trace of the identity matrix (the zeroth order in the

₯ (r₁;z) (c)

(b)

(a) (1)

〈Tr[G(r₁,r₁;z)]〉
〈 ₁,r₂;z)G(r₂,r₁;z)]〉

〈Tr[G(r₁,r₂;1/z)G(r₂,r₁;z)]〉
〈Tr[G(r₁,r₁;z)]Tr[G(r₂,r₂;z)]〉

₯   (r₁,r₂;z)(1,1)

r₂ r₁

r₁

r₂ r₁
r₂ r₁

r₂ r₁ r₂ r₁

₯ (r₁,r₂;z)(2)
Tr[G(r

FIG. 1. Schematic representation of path configurations yielding
individual contributions within the percolation mapping for the q = 1
and q = 2 correlation functions presented in Secs. IIB1 and IIB2.
Paths corresponding to each Green’s function are shown by the color
corresponding to the line underlining this Green’s function. When a
path traverses a segment of the loop for the second time, it is shown
by a dashed line.

184205-5



KARCHER, GRUZBERG, AND MIRLIN PHYSICAL REVIEW B 105, 184205 (2022)

expansion over powers of U ). The second line is obtained
using Eq. (3).

Substituting Eq. (24) into Eq. (23) and using the normal-
ization of the probability, one gets the percolation expression
for the average LDOS

(2π )D(1)(r1; z) = 2
∞∑

N=1

(1 − z2N )p(r1; N ). (25)

This expression does not depend on the link r1 and reveals,
upon evaluation of the percolation sum, the well-known scal-
ing 〈ν(r)〉 ∼ L−x1 with x1 = 1/4.

2. Two Green’s functions: q = 2

In the case of averaged products of two Green’s functions
(or, equivalently, four wave functions), the two SU(2)-
invariant combinations are labeled by λ = (2) and λ = (1, 1).
These correspond to the Fock and the Hartree terms, respec-
tively, and have been introduced in Eqs. (8) and (9).

a. Correlator D(2). The calculations are carried out in de-
tail in Appendix A 1 a. Combining together the individual
contributions (A1)–(A3) derived there according to the map-
ping rules, we obtain

(2π )2D(2)(r1, r2; z)

= 4
∞∑

N=1

(1 − z2N )
[
p(r1, r2; N ) − p(s)

1 (r1, r2; N )
]
. (26)

Here we used the sum rule (20). The superscript (s) denotes
symmetrization with respect to the spatial arguments r1, r2; in
particular,

2p(s)
1 (r1, r2; N ) = p1(r1, r2; N ) + p1(r2, r1; N ). (27)

Let us emphasize that, here and below, (s) means sym-
metrization with respect to all q arguments of the considered
correlation function Dλ (in the present case, q = 2).

b. CorrelatorD(1,1). We turn now to the Hartree correlator,
Eq. (9) (with z = w). Individual contributions are derived in
Appendix A 1 b, see Eq. (A10). Combining them and using
the sum rule (21), we can rewrite the Hartree correlation
function in the form

(2π )2D(1,1)(r1, r2; z)

= 4
∞∑

N=1

(1 − z2N )[p(r1, r2; N ) + p−(r1, r2; N )], (28)

where the auxiliary function

p−(r1, r2; N ) =
∑

M

[p(r1; M|r2; N ) + p(r1; N |r2; M )

− p(r1; N − M|r2; M )] (29)

is a linear combination of percolation probabilities, and it can
assume negative values. Note that the correlator D(1,1) is by
definition symmetric with respect to the interchange r1 ↔ r2.
The result (28) explicitly obeys this symmetry.

3. Three Green’s functions: q = 3

There are three SU(2) invariant correlation function in this
order that can be labeled with multi-indices λ = (3), (2,1), and
(13):

(2π )3D(3)(r1, r2, r3; z)

= 〈Tr{�G(r1, r2)�G(r2, r3)�G(r3, r1)}〉, (30)

(2π )3D(2,1)(r1, r2|r3; z)

= 〈Tr{�G(r1, r2)�G(r2, r1)}Tr�G(r3, r3)〉, (31)

(2π )3D(13 )(r1, r2, r3; z)

= 〈Tr�G(r1, r1)Tr�G(r2, r2)Tr�G(r3, r3)〉. (32)

We recall that the notation 1q stands for 1, 1, . . . , 1 (q units).
The averaged correlation function D(13 )(r1, r2, r3; z) is man-
ifestly invariant under permutations of links r1, r1, r3. For
D(3)(r1, r2, r3; z), this invariance is emergent. In the case of
D(2,1)(r1, r2|r3; z), we need to explicitly symmetrize over the
permutations of r1, r2, r3 in order to obtain the correlator that
is invariant under all permutations of the links r1, r1, r3; we
will denote it as D(s)

(2,1)(r1, r2, r3; z).
The mapping to percolation is performed for q = 3 cor-

relators in analogy with the case q = 2. Here we present the
final results for D(3), D(2,1), and D(13 ). Percolation expressions
for individual contributions to these correlators are presented
in Appendix A 2. Percolation probabilities appearing in these
expressions are listed in Table I.

a. Correlator D(3). The results for the percolation map-
ping applied to the individual terms entering Eq. (30) are
presented in Eq. (A12) of Appendix A 2 a. Adding up these
contributions, we get the following result for the correlation
function:

(2π )3D(3)(r1, r2, r3; z) =
∞∑

N=1

[−8p(s)(r1, r2, r3; N )

+ 12p(s)
1 (r1, r2, r3; N )

]
z2N . (33)

We recall that the superscript (s) denotes full symmetrization
with respect to all q = 3 spatial arguments (r1, r2, r3) of the
considered correlation function (D3). For z = 1, the expres-
sion (33) simplifies to

(2π )3D(3)(r1, r2, r3; z = 1) = 4p(s)(r1, r2, r3), (34)

since both p(r1, r2, r3; N ) and p1(r1, r2, r3; N ) give
p(r1, r2, r3) when summed over all loop lengths N .
This implies the following decomposition of D(3) into a
z-independent term and a term vanishing at z = 1:

(2π )3D(3)(r1, r2, r3; z) = 4p(s)(r1, r2, r3) +
∞∑

N=1

[
8p(s)(r1, r2, r3; N ) − 12p(s)

1 (r1, r2, r3; N )
]
(1 − z2N ). (35)

This decomposition is very useful for the purposes of numerical simulations (see below). Note that the first term on the right-hand
side of Eq. (35) does not depend on the energy γ (we recall that z = e−γ ).
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For the analytical investigation of the scaling of the correlation function (see below), it is useful to rewrite the obtained
percolation expression for D(3) in the following form

(2π )3D(3)(r1, r2, r3; z) = 4p(s)(r1, r2, r3) − 12
∑
N,N ′

(1 − z2N )(1 − z2N ′
) p(s)(r1, r2, r3; Nr1r2 = N, Nr2r3 = N ′)

+ 8
∑

N,N ′,N ′′
(1 − z2N )(1 − z2N ′

)(1 − z2N ′′
) p(s)(r1, r2, r3; Nr1r2 = N, Nr2r3 = N ′, Nr3r1 = N ′′). (36)

b. Correlator D(2,1). For the correlation function (31), the individual terms are mapped onto percolation expressions as given
in Eq. (A13) of Appendix A 2 b. Combining the individual contributions from Eq. (A13), we obtain

(2π )3D(2,1)(r1, r2|r3; z) = 8
∞∑

N=1

p(s2 )(r1, r2, r3; N )z2N − 8
∞∑

N=1

[
p(r1, r2; N ) − p(s2 )

1 (r1, r2; N )
]
z2N

+ 8
∞∑

N,N ′′=1

[
p(r1, r2; N |r3; N ′′) − p(s2 )

1 (r1, r2; N |r3; N ′′)
]
z2N z2N ′′

. (37)

Here the superscript (s2) denotes the symmetrization with respect to the permutation of two variables r1, r2 only. Note that, by
its definition, the correlation function D(2,1)(r1, r2|r3; z) is invariant with respect to this permutation; however, it does not possess
the full invariance with respect to the permutations of r1, r2, r3. It is convenient to perform the corresponding symmetrization;
we denote the fully symmetrized form of this correlator by D(s)

(2,1)(r1, r2, r3; z).

For z = 1, the percolation expression for D(s)
(2,1) simplifies to

(2π )3D(s)
(2,1)(r1, r2, r3; z = 1) = 8p(s)(r1, r2, r3), (38)

since p(. . . ; N ) and p1(. . . ; N ) both give p(. . .), when summed over the loop length N .
In analogy with Eq. (36) for D(3), it is useful to rewrite D(s)

(2,1) in the following form that is especially convenient for the
analytical investigation of scaling properties:

(2π )3D(s)
(2,1)(r1, r2, r3; z) = 8p(s)(r1, r2, r3) − 4

∑
N,N ′

(1 − z2N )(1 − z2N ′
)[4p(s)(r1, r2, r3; Nr1r2 = N, Nr2r3 = N ′)

− p(s)(r1, r2; N |r3; N ′)] − 4
∑

N,N ′,N ′′
(1 − z2N )(1 − z2N ′

)(1 − z2N ′′
)

× [p(s)(r1, r2; Nr1r2 = N, Nr2r1 = N ′|r3; N ′′) − 2p(s)(r1, r2, r3; Nr1r2 = N, Nr2r3 = N ′,

Nr3r1 = N ′′)]. (39)

c. Correlator D(13 ). For the correlation function (32), results of the percolation mapping for individual terms are presented
in Eq. (A14) of Appendix A 2 c. Adding up these individual contributions, we obtain

(2π )3D(13 )(r1, r2, r3; z) = 8 − 24
∑

N

p(s)(r1, r2; N )z2N + 24
∑
NN ′

p(s)(r1; N |r2; N ′)z2N z2N ′ + 24
∑

N

p(s)(r1; N )z2N

− 8
∑

NN ′N ′′
p(s)(r1; N |r2; N ′|r3; N ′′)z2N z2N ′

z2N ′′ − 24
∑
NN ′

p(s)(r1, r2; N |r3; N ′)z2N z2N ′
. (40)

Using the identity∑
N ′N ′′

p(r1; N |r2; N ′|r3; N ′′) +
∑
N ′

[p(r1, r2; N |r3; N ′) + p(r1, r3; N |r2; N ′) + p(r2, r3; N |r1; N ′)]

+ p(r1, r2, r3; N ) + p(r1, r3, r2; N ) = p(r1; N ), (41)

which states that a loop running through r1 of length N can either run also through two other points r2, r3, or through one of
them, or just through r1, one finds for z = 1:

(2π )3D(13 )(r1, r2, r3; z = 1) = 16p(s)(r1, r2, r3). (42)

Further, we can rewrite the percolation expression for D(13 ) in the form analogous to Eqs. (36) and (39):

(2π )3D(13 )(r1, r2, r3; z) = 16p(s)(r1, r2, r3) + 24
∑
N,N ′

(1 − z2N )(1 − z2N ′
) p(s)(r1, r2; N |r3; N ′)

+ 8
∑

N,N ′,N ′′
(1 − z2N )(1 − z2N ′

)(1 − z2N ′′
) p(s)(r1; N |r2; N ′|r3; N ′′). (43)
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C. Analytical determination of SQH generalized-multifractality
exponents

The mapping of the SQH correlation functions with q � 3
onto percolation probabilities is very useful for the analytical
study of the problem. Indeed, various critical exponents for
the 2D percolation problem are known analytically. As we
discuss below in this section, the mapping allows us to relate
the SQH generalized-multifractality exponents with q � 3 to
the scaling dimensions xh

n of hull operators [14] in classical
percolation theory. This extends the earlier obtained results for
several exponents characterizing the LDOS moments, x(1) =
x(2) = xh

1 = 1/4 and x(3) = 0, see Sec. I. In Sec. III, we will
use the supersymmetry approach to further generalize the
connection to the most subleading SQH exponents x(1q ) of
arbitrary integer order q.

1. Scaling of percolation probabilities

In Ref. [14], the scaling dimensions xh
n of the n-hull oper-

ators were introduced. They determine the probability Pn that
n segments of the hull of the infinite percolation cluster come
close (within a distance r ∼ 1) at a given point of the system:

Pn ∼ (p − pc)νxh
n , (44)

where p − pc is the detuning from the percolation threshold pc

and ν = 4/3 is the critical exponent of the correlation length.
More generally, one can consider the probability that n hull
segments come close at two points separated by a distance r:

Pn(r) ∼ r−xh
n (p − pc)νxh

n , r � ξ, (45)

where ξ ∼ (p − pc)−ν is the correlation length. As was shown
in Ref. [14], the n-hull exponents are given by

xh
n = 4n2 − 1

12
, n = 1, 2, . . . (46)

In particular, the values of the n-hull exponents for n = 1, 2,
and 3 are

xh
1 = 1

4
, xh

2 = 5

4
, xh

3 = 35

12
. (47)

To determine the SQH generalized-multifractality dimen-
sions, we need the scaling of percolation probabilities from
Table I. Importantly, scaling properties of all of them can be
expressed in terms of the n-hull exponents xh

n , as we are going
to explain.

Let us start with the simplest case q = 1, when we have a
single percolation probability p(r1; N ). Integrating p(r1; N ′)
over N ′ from N to infinity, we get a probability ∼N p(r1; N )
that the point point r1 belongs to a loop of the length � N
at criticality. (Since the dependence is of power-law type,
integration reduces to multiplication by N , up to a numer-
ical constant.) This can be identified with Eq. (44) where
we should make a replacement of the correlation length ξ ∼
(p − pc)−ν by the length scale ξN ∼ N

4
7 associated with the

loop length N . Here we used the fractal dimension

DH = 2 − xh
1 = 7

4
(48)

of the percolation hull. Thus we find

p(r1; N ) ∼ N−1− 4
7 xh

1 = N−8/7. (49)

Now we extend these arguments to percolation probabili-
ties with a larger number of spatial variables, keeping first a
single N variable (i.e., a single loop). The simplest probability
of this type is p(r1, r2; N ). Its scaling with N and with r
(distance between r1 and r2) can be obtained from Eq. (45)
following the above line of arguments. We get, for N � r7/4,

p(r1, r2; N ) ∼ N−1− 4
7 xh

1 r−xh
1 = N−8/7r−1/4. (50)

Note that summation over N (that can be replaced by integra-
tion) yields the probability that the points r1 and r2 belong to
the same loop:

p(r1, r2) ≡
∫

N
dN ′ p(r1, r2; N ′) ∼ r−2xh

1 . (51)

A more accurate analysis using operator fusion algebra
allows us to find also a subleading correction to Eq. (50).
Specifically, since we have a correlation function with two
spatial arguments, there is a correction coming from the two-
hull operator:

p(r1, r2; N ) ∼ 1

N

(
N− 4

7 xh
1 r−xh

1 + cN− 4
7 xh

2 rxh
2−2xh

1
)
, (52)

where N � r7/4 and c ∼ 1. Below we focus on the leading
behavior of the percolation probabilities and do not write
down such corrections. The correlation function p1(r1, r2; N )
has the same scaling properties as p(r1, r2; N ).

The result (50) can be straightforwardly extended to per-
colation probabilities p(r1, r2, . . . , rq; N ) corresponding to a
larger number of spatial arguments r j belonging to the same
loop of the length N . Their scaling with N is the same as in
Eq. (50). Further, we assume that all distances between the
points r j are of the same order ∼r. Integration over N should
give

p(r1, r2, . . . , rq ) ≡
∫

N
dN ′ p(r1, r2, . . . , rq; N ′) ∼ r−qxh

1 ,

(53)

in analogy with Eq. (51). Thus we find

p(r1, r2, . . . , rq; N ) ∼ N−1− 4
7 xh

1 r (1−q)xh
1

= N−8/7r (1−q)/4, N � r7/4. (54)

We further discuss the extension to probabilities with a
larger number of N arguments. Consider first the correla-
tion functions with two such arguments, p(r1, r2; Nr1r2 =
N, Nr2r1 = N ′) and p(r1; N |r2; N ′). The analysis below applies
to both of them equally. Since they share the same scaling
properties in the range of interest, N, N ′ � r7/4, we will use
here a short notation p(r; N, N ′) for either of these probabil-
ities (with r being the distance between r1 and r2 as before).
Without restricting the generality, we can assume N � N ′. Let
us fix N and consider two limiting cases with respect to N ′: (i)
N ′ ∼ r7/4 and (ii) N ′ ∼ N .

To find the behavior at N ′ ∼ r7/4, we consider an integral
of p(r1, r2; Nr1r2 = N, Nr2r1 = N ′) over N ′. This integral is
governed by the lower limit, N ′ ∼ r7/4, and, from the point of
view of the scaling, the integration is equivalent to multiplica-
tion by N ′. The result is exactly the probability p1(r1, r2; N ).
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Using its scaling (50), we find

p(r; N, N ′) ∼ 1

NN ′ N
− 4

7 xh
1 r−xh

1

= r−2xh
1

NN ′
(
N− 4

7 r
)xh

1 , N ′ ∼ r7/4. (55)

On the other hand, for N ′ ∼ N � r7/4, we have a geom-
etry of two long hull segments that come close in the region
including the points r1 and r2. The scaling with N is thus gov-
erned by the two-hull exponent: p(r, N, N ′ ∼ N ) ∝ N− 4

7 xh
2 .

To determine the scaling with r, we consider an integral of
p(r1, r2; Nr1r2 = N, Nr2r1 = N ′) over N and N ′, which scales
as NN ′ p(r, N, N ′) with N ∼ N ′ ∼ r7/4. However, this integral
is nothing but p(r1, r2) ∼ r−2xh

1 . Therefore

p(r; N, N ′) ∼ r−2xh
1

NN ′
(
N− 4

7 r
)xh

2 , N ′ ∼ N. (56)

Since we expect a power-law scaling with respect to N ′, we
can now interpolate between Eqs. (55) and (56) to restore the
behavior of the function p(r, N, N ′) in the whole range r7/4 �
N ′ � N :

p(r; N, N ′) ∼ r−2xh
1

NN ′
(
N− 4

7 r
)xh

1
(
(N ′)−

4
7 r

)xh
2−xh

1 . (57)

In the same way, we can analyze the scaling of percolation
probabilities [that we denote for brevity as p(r; N1, . . . , Nq )]
containing q spatial arguments r1, . . . , rq (separated by dis-
tances |ri − r j | ∼ r) and an equal number of hull-length
arguments N1, . . . , Nq. Assuming the hierarchy N1 � · · · �
Nq, we find

p(r; N1, . . . , Nq ) ∼
q∏

i=1

[
r−xh

1

Ni

(
N

− 4
7

i r
)xh

i −xh
i−1

]
, (58)

with the definition xh
0 ≡ 0. The scaling of percolation prob-

abilities with a number m of Nj arguments smaller than the
number q of r j arguments can be obtained from Eq. (58) by
integrating over Nq, Nq−1, . . . , Nm+1. In particular, for m = 1,

we reproduce in this way Eq. (54).
In Fig. 2, we illustrate the geometry corresponding to the

percolation probabilties of the type (58) with q = 3. They
are governed by three hull loops (or “nearly loops”) coming
close to the region around the points r1, r2, and r3. Depending
on the way these “nearly loops” are connected in the central
region, one gets a probability with one, two, or three loops.
All these probabilities are characterized by the same scaling,
Eq. (58).

We are now ready to determine the scaling of SQH observ-
ables by combining their mapping to percolation in Sec. II B
with the above results for the scaling of percolation probabil-
ities.

2. SQH generalized multifractality: q = 1

We start with the percolation expression for the averaged
LDOS, Eq. (25), and use Eq. (49) for the scaling of the
percolation probability p(r1; N ). The sum over N is estimated

FIG. 2. Schematic illustration of q = 3 percolation probabilities
of the type (58), with three spatial arguments r1, r2, r3 and three
hull-length arguments N1, N2, N3. The hierarchy of hull lengths

N1 > N2 > N3 is assumed, and the factors (N
− 4

7
i r)

xh
i −xh

i−1 in Eq. (58)
that depend on this hierarchy are indicated, with the hull exponents
xh

i abbreviated as xi. On the right-hand side of the figure, different
possible connections between the paths are shown. They yield differ-
ent percolation probabilities that exhibit the same scaling (58).

as (we recall that xh
1 = 1

4 )∑
N

(1 − z2N )N−1− 4
7 xh

1 ∼
∫ ∞

1

dN

N
(1 − z2N )N− 4

7 xh
1

∼
∫ ∞

γ −1

dN

N
N− 4

7 xh
1 ∼ γ

4
7 xh

1 = γ
1
7 . (59)

Hence

D(1)(r1; z) ∼ (a/ξγ )xh
1 ∼ γ

1
7 , (60)

where ξγ ∼ γ − 4
7 is the correlation length associated with the

energy scale γ , and a is the lattice constant. This yields the
relation

x(1) = xh
1 = 1

4
(61)

between the SQH scaling exponent x(1) (which characterizes
the average LDOS) and the scaling dimension xh

1 of the one-
hull operator in the classical percolation.

3. SQH generalized multifractality: q = 2

Percolation expression for the SQH correlation functions
D(2) and D(1,1) were obtained in Eqs. (26) and (28). They can
be cast in the following form:

Dλ(r1, r2; z) =
∞∑
N

(1 − z2N )D(N )
λ (r1, r2)

+
∞∑

N,N ′=1

(1 − z2N )(1 − z2N ′
)D(N,N ′ )

λ (r1, r2),

(62)

with

(2π )2D(N )
(2) (r1, r2) = 2p(r1, r2; N ),

(2π )2D(N,N ′ )
(2) (r1, r2) = −2p(r1, r2; Nr1r2 =N, Nr2r1 =N ′),

(2π )2D(N )
(1,1)(r1, r2) = 4p(r1, r2; N ),

(2π )2D(N,N ′ )
(1,1) (r1, r2) = 4p(r1; N |r2; N ′). (63)
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The advantage of such presentation is that each sum over the
length N of a (segment of a) hull is accompanied by the factor
(1 − z2N ) that suppresses contributions from N 
 γ −1 in the
sum. Performing the transformation (18) to pure-scaling q =
2 observables PC

(2) and PC
(1,1), we get for them representations

analogous to Eq. (62) with

(2π )2P (N )
(2) (r1, r2) = 6p(r1, r2; N ),

(2π )2P (N,N ′ )
(2) (r1, r2) = 4p(r1; N |r2; N ′)

− 2p(r1, r2; Nr1r2 =N, Nr2r1 =N ′),

(2π )2P (N )
(1,1)(r1, r2) = 0,

(2π )2P (N,N ′ )
(1,1) (r1, r2) = 4p(r1, r2; Nr1r2 =N, Nr2r1 =N ′)

+ 4p(r1; N |r2; N ′). (64)

We estimate now the single and double sums entering
Eq. (62) and the analogous formulas for PC

λ . For the single
sum, we use Eq. (50) for the scaling of the corresponding
percolation probabilities [that we abbreviate as p(r, N )] and
get, in similarity with Eq. (59),∑

N

(1 − z2N )p(r, N ) ∼
∫ ∞

1

dN

N
(1 − z2N )N− 4

7 xh
1 r−xh

1

∼
∫ ∞

γ −1

dN

N
N− 4

7 xh
1 r−xh

1 ∼ γ
4
7 xh

1 r−xh
1 = γ

1
7 r− 1

4 . (65)

As in all analogous formulas, we have assumed here r < ξγ ∼
γ −4/7, which is the condition for criticality.

We turn now to the analysis of the double sum. Using the
scaling form (57) of the corresponding percolation probabili-
ties, we obtain

∑
N,N ′

(1 − z2N )(1 − z2N ′
)p(r; N, N ′) ∼ r−2xh

1

∫ ∞

1

dN

N
(1 − z2N )

(
rN− 4

7
)xh

1

∫ N

1

dN ′

N ′ (1 − z2N ′
)
(
r(N ′)−

4
7
)xh

2−xh
1

∼ r−2xh
1

∫ ∞

γ −1

dN

N

(
rN− 4

7
)xh

1

∫ N

γ −1

dN ′

N ′
(
r(N ′)−

4
7
)xh

2−xh
1 ∼ r−2xh

1
(
rγ

4
7
)xh

2 = r
3
4 γ

5
7 . (66)

Comparing Eqs. (65) and (66), we see that the double-N
sum is much smaller than the single-N sum, which is related to
an obvious inequality xh

2 > xh
1 . The scaling of the correlation

function PC
(2) is thus determined by that of a single sum,

PC
(2)(r1, r2; z) ∼ γ

4
7 xh

1 r−xh
1 ∼ γ

1
7 r− 1

4 . (67)

On the other hand, for the correlation function PC
(1,1) there is

no contribution of a single sum, since P (N )
(1,1)(r1, r2) = 0. Let

us emphasize the importance of this result, which is a manifes-
tation of a very nontrivial character and of a full consistency of
our percolation analysis. Thus the scaling of PC

(1,1) is governed
by that of the double-N sum,

PC
(1,1)(r1, r2; z) ∼ r−2xh

1
(
rγ

4
7
)xh

2 = r
3
4 γ

5
7 . (68)

Comparing the results (67) and (68) with Eq. (19), we read
off the values of the q = 2 scaling exponents characterizing
the SQH critical point:

x(2) = xh
1 = 1

4
, �(2) = x(2) − 2x(1) = −1

4
, (69)

x(1,1) = xh
2 = 5

4
, �(1,1) = x(1,1) − 2x(1) = 3

4
. (70)

In terms of the correlation functions D(2)(r1, r2; z) and
D(1,1)(r1, r2; z), the results of the percolation mapping yield

D(2)(r1, r2; z) = ξ
− 1

2
γ

(
c0(r/ξγ )−

1
4 + c1(r/ξγ )

3
4
)
, (71)

D(1,1)(r1, r2; z) = ξ
− 1

2
γ

(
2c0(r/ξγ )−

1
4 + c2(r/ξγ )

3
4
)
. (72)

Since we know from the RG analysis of the SQH problem that
PC

(2) = D(2) + D(1,1) is a pure-scaling operator [see Eq. (18)],
the coefficients c1 and c2 in Eqs. (71) and (72) should satisfy

the relation

c2 = −c1. (73)

(We do not have a proof of this relation that would be based
solely on the percolation mapping.) Furthermore, since poly-
nomial operators of the order q = 2 of the SQH problem are
characterized by only two exponents, x(2) and x(1,1), there is
no further subleading corrections to Eqs. (71) and (72). This
observation is very nontrivial from the point of view of the
percolation mapping.

Indeed, while the dominant contributions to the sums in
Eq. (62) come from N ∼ N ′ ∼ γ −1 as discussed above, one
could also expect contributions from the lower limit in the in-
tegrals over N and N ′, i.e., N ∼ N ′ ∼ r

7
4 . In this region γ N 


1, and the factor 1 − z2N = 1 − e−2γ N can be expanded in
powers of N . A naive estimate of the corresponding contri-
butions yields terms characterized by scaling exponents 7

4 k
and xh

1 + 7
4 k, where k = 1, 2, . . . These exponents are larger

than x(2) = xh
1 and x(1,1) = xh

2 , so that the corresponding con-
tributions would be subleading. Remarkably, the RG analysis
of the SQH problem implies that these subleading corrections
are in fact identically zero, as explained above.

This may look as just a curious observation for q = 2
(and also for q = 3), since the contributions under discus-
sion would be of minor importance anyway. We will show,
however, in Sec. III that the percolation mapping works for
a particular type of correlation functions for q � 4 as well.
In that case, the contributions from the lower limit, N ∼ r

7
4 ,

might become dominant if they existed. It is natural to ex-
pect, however, that, since this contribution is absent for q =
2 and 3, it is also absent for larger q. This expectation is fully
confirmed by the numerical determination of the generalized-
multifractality exponents in Sec. V.
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4. SQH generalized multifractality: q = 3

In the case of q = 2, we have seen that the presentation
of the correlation function in the form (62) is very useful for
the analysis of the scaling behavior. Analogous formulas will
also serve as a convenient starting point for the analysis of the
q = 3 correlators. The required formulas have been already
derived above, see Eqs. (36), (39), and (43) for the correlation
functions D(3), D(2,1), and D(13 ), respectively. They all have
the form

Dλ(r1, r2, r3; z) = Dλ(r1, r2, r3; z = 1)

+
∞∑

N,N ′=1

(1 − z2N )(1 − z2N ′
)D(N,N ′ )

λ (r1, r2, r3)

+
∞∑

N,N ′,N ′′=1

(1 − z2N )(1 − z2N ′
)(1 − z2N ′′

)

× D(N,N ′,N ′′ )
λ (r1, r2, r3), (74)

with λ = (3), (2,1), and (13). Here the first term is energy-
independent and given by

(2π )3Dλ(r1, r2, r3; z = 1) = bλ p(s)(r1, r2, r3), (75)

with b(3) = 4, b(2,1) = 8, and b(13 ) = 16. The coefficients

D(N,N ′ )
λ (r1, r2, r3) and D(N,N ′,N ′′ )

λ (r1, r2, r3) of the double and
triple sums can be directly read off from Eqs. (36), (39), and
(43), so that we do not repeat them here. Remarkably, there
is no term with a single-N sum in Eq. (74). (Equivalently,
we could write such a term and state that the corresponding
coefficients vanishes: D(N )

λ = 0.)
In Ref. [5], the q = 3 pure-scaling operators were de-

termined by means of the sigma-model RG analysis [see
Appendix B and in particular Eq. (B7) of the present work]:

⎛
⎜⎜⎝
PC

(13 )

PC
(2,1)

PC
(3)

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

1 −6 8

1 −1 −2

1 3 2

⎞
⎟⎟⎠

⎛
⎜⎜⎝
D(13 )

D(2,1)

D(3)

⎞
⎟⎟⎠. (76)

Substituting Eq. (74) into Eq. (76) and keeping only the lead-
ing terms (the ones with the minimal number of summations)
for the functions PC

(3) and PC
(2,1), we find

PC
(3) � 48p(s)(r1, r2, r3),

PC
(2,1) � 20

∑
N,N ′

(1 − z2N )(1 − z2N ′
)
[
p(s)(r1, r2; N |r3; N ′) + 2p(s)(r1, r2, r3; Nr1r2 = N, Nr2r1 = N ′)

]
,

PC
(13 ) = 8

∑
N,N ′,N ′′

(1 − z2N )(1 − z2N ′
)(1 − z2N ′′

)
[
p(s)(r1; N |r2; N ′|r3; N ′′) + 3p(s)(r1, r2; Nr1r2 = N, Nr2r1 = N ′|r3; N ′′)

+ 2p(s)(r1, r2, r3; Nr1r2 = N, Nr2r3 = N ′, Nr3r1 = N ′′)
]
. (77)

Let us emphasize that the terms without summations can-
cels in both PC

(2,1) and PC
(13 ) and, furthermore, the terms with a

double sum cancel in PC
(13 ). This is one more remarkable mani-

festation of the full consistency of our treatment that combines
the SQH RG theory and the percolation analysis. The scaling
of the double and triple sums in Eq. (77) is determined in the
same way as was done in Sec. IIC3 for the single and double
sums for the case q = 2. Via the same token, the scaling of
the triple sum (governed by the region N ∼ N ′ ∼ N ′′ ∼ γ −1)
involves the three-hull exponent xh

3 . The results read

PC
(3)(r1, r2, r3; z) ∼ r−3xh

1 , (78)

PC
(2,1)(r1, r2, r3; z) ∼ r−3xh

1 (r/ξγ )xh
2 , (79)

PC
(13 )(r1, r2, r3; z) ∼ r−3xh

1 (r/ξγ )xh
3 . (80)

We thus find the values of the q = 3 scaling exponents at the
SQH critical point:

x(3) = 0, �(3) = x(3) − 3x(1) = −3

4
, (81)

x(2,1) = xh
2 = 5

4
, �(2,1) = x(2,1) − 3x(1) = 1

2
, (82)

x(13 ) = xh
3 = 35

12
, �(13 ) = x(13 ) − 3x(1) = 13

6
. (83)

Using the numerical values of the hull exponents, we get the
following scaling for the q = 3 pure-scaling operators:

PC
(3) ∼ ξ

− 3
4

γ (r/ξγ )−
3
4 ,

PC
(2,1) ∼ ξ

− 3
4

γ (r/ξγ )
1
2 ,

PC
(13 ) ∼ ξ

− 3
4

γ (r/ξγ )
13
6 . (84)

This completes the analytical study of SQH generalized-
multifractality critical exponents with q � 3. The obtained
analytical results for the critical exponents are summarized
in Table II. This table includes also further results obtained
in the rest of the paper, including numerical results of classi-
cal percolation simulations and of quantum (network-model)
simulations as well as analytical results for some specific
exponents with q � 4.

Two comments are in order at this point.
(i) The analytical results obtained above satisfy the Weyl-

symmetry relations: x(3) = x(0) ≡ 0, x(2) = x(1) as well as
x(2,1) = x(1,1). The Weyl symmetry is by no means explicit in
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TABLE II. Scaling exponents xλ of generalized multifractality
at the SQH transition for wave-function observables with q ≡ |λ| �
5. The column xperc

λ represents exact analytical values obtained in
Secs. II and III via the mapping to percolation theory. The values xcn

λ

are obtained by numerical evaluation of the corresponding percola-
tion probabilities in Sec. II. In the column xqn

λ , results of quantum
numerics using the SU(2) CCN model (Sec. V) are presented. See
text and Appendix C for statistical error bars of the exponents xqn

λ .
The values xqn

λ are given with three digits after the decimal point
in those cases when the standard deviation σλ satisfies 2σλ � 0.01.
Whenever the analytical results are available, they are in excellent
agreement with numerical values. For completeness, we also include
numerical results obtained in Ref. [5] by two complementary (less
general) approaches that also used the SU(2) CCN model. Specif-
ically, xqn,|ψ |

λ used observables involving the total density of spin
up and down, |ψ | = √|ψ↑|2 + |ψ↓|2, while xqn,|ψ |

λ used pure-scaling
combinations of class A. The symbol “—” means that the expo-
nent was not determined by the corresponding approach. Finally,
the last column xpara presents the values given by the generalized-
parabolicity ansatz (169) with b = 1

8 . The violation of generalized
parabolicity is evident.

xqn,A↑
λ xqn,|ψ |

λ

λ xperc
λ xcn

λ xqn
λ (from Ref. 5) xpara

λ

q = 1 (1) xh
1 = 1

4 0.25 – – – 1
4

q = 2 (2) xh
1 = 1

4 0.25 0.249 0.25 0.25 1
4

(1,1) xh
2 = 5

4 1.22 1.251 1.29 1.24 1

q = 3 (3) 0 – 0.004 0.00 0.00 0

(2,1) xh
2 = 5

4 1.23 1.249 1.25 1.24 1

(13) xh
3 = 35

12 – 2.915 – – 9
4

q = 4 (4) – – −0.49 −0.5 −0.5 − 1
2

(3,1) – – 0.99 0.98 0.99 3
4

(2,2) – – 1.87 1.86 1.91 3
2

(2,1,1) xh
3 = 35

12 – 2.911 – – 9
4

(14) xh
4 = 21

4 – 5.242 – – 4

q = 5 (5) – – −1.19 – – - 5
4

(4,1) – – 0.48 – – 1
4

(3,2) – – 1.59 – – 5
4

(3,1,1) – – 2.64 – – 2

(2,2,1) – – 3.50 – – 11
4

(2, 13) xh
4 = 21

4 – 5.23 – – 4

(15) xh
5 = 33

4 – 8.16 – – 25
4

the percolation mapping, and it is impressive to see how it
emerges out of the percolation analysis.

(ii) This comment largely reiterates what was said in the
end of Sec. IIC3 for the case q = 2. We know from the class-C
RG that PC

(3), PC
(2,1), and PC

(13 ) are pure-scaling correlation
functions. This means that there are no corrections to the
formulas (78), (79), and (80) of the same type with other ex-
ponents x. In particular, there are no corrections to Eq. (78) of
the type (79) and (80), and there is no corrections to Eq. (79)

of the type (80). Furthermore, there should be no corrections
to these formulas with further subleading exponents. We do
not have a direct proof of these statements based solely on the
percolation formulas.

D. Numerical study of percolation expressions
for SQH correlators

In Sec. II C, we have performed an analytical investiga-
tion of the scaling of percolation expressions for the SQH
correlation functions derived in Sec. II B. This has allowed
us to obtain analytical results for the SQH generalized-
multifractality exponents with q � 3. Here we supplement
these analytical results by numerical simulations of the cor-
responding percolation probabilities. Let us emphasize that
these are classical simulations that are relevant to the SQH
problem only for those observables for which the percolation
mapping exists.

In Sec. V, we will perform direct quantum simulations
(within the class-C version of the Chalker-Coddington net-
work model) that can be implemented for wave-function
observables of any representation λ. Further, we will see that
the accuracy of the numerical determination of the exponents
xλ is considerably higher in the case of quantum simulations.
This is related to strong statistical fluctuations in percolation
simulations; getting high-precision results for averaged cor-
relators in this way would require a much larger statistical
ensemble and thus a much longer computational time.

Since we have highly efficient quantum simulations
(Sec. V) that fully support our analytical predictions, we
find it unnecessary to invest such extreme efforts in classical
simulations. On the other hand, we find it very instructive to
present here results of classical simulations. Despite a modest
accuracy of the corresponding numerical values of the expo-
nents, these simulations nicely illustrate and corroborate the
analytical study of the percolation probabilities in Sec. II C.

For the purpose of these percolation simulations, we use
the classical counterpart of the Chalker-Coddington network
model of linear size L = 32768 with periodic boundary con-
ditions. The averaging over 10 000 random configurations is
performed. Each configuration is described by L × L binary
degrees of freedom (“black” or “white”) that are associated
with the nodes of the network. For black (white) nodes, the
paths running through this node turn right (respectively, left).
Any given realization of disorder thus generates a decomposi-
tion of all 2L2 links of the network into a set of closed loops.
[Note that the disorder in the classical percolation problem,
as described above, is very different form the link SU(2)
randomness in the quantum network model.] The probabilities
from Table I are then obtained by counting the number of
loops satisfying the desired properties and by averaging over
disorder.

Before presenting details, we briefly announce main results
of these percolation simulations. (i) We verify that the per-
colation probabilities entering the expressions for the SQH
correlation functions Dλ with |λ| � 3 exhibit a power-law
scaling with N as expected. (ii) We demonstrate numerically
leading-order cancellations between different terms whenever
this is predicted analytically (Sec. II C). (iii) The numerical
results confirm the analytically predicted values of the expo-
nents x(1) = x(2) = xh

1 = 1/4 and x(1,1) = x(2,1) = xh
2 = 5/4.
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FIG. 3. Numerical simulations of the percolation probability
p(r1; N ) entering Eq. (25) for the q = 1 SQH correlation func-
tion D(1)(r1; z). The data fully confirm the analytical prediction
p(r1; N ) ∼ N−1− 4

7 xh
1 = N−8/7, see Eq. (49). In combination with

Eq. (25), it yields the exponent x(1) = xh
1 = 1/4. For N > 1000,

strong statistical fluctuations are observed, which are related to in-
sufficient averaging.

We turn now do a detailed exposition of the results of our
percolation numerics for the SQH correlation functions.

1. The case q = 1

For q = 1, there is a single pure-scaling correlation func-
tion D(1)(r1; z) given by Eq. (25). We choose not to perform
the N-summation numerically, since strong statistical fluctua-
tions (due to insufficient averaging) at large N make difficult
to do this in reliable way. Instead, we plot in Fig. 3 the
function p(r1, N ) that enters the sum in Eq. (25). The scaling
of p(r1, N ) with N is straightforwardly translated in scaling
of D(1)(r1; z) with γ , as discussed in Sec. IIC2. The analytical
prediction for the scaling of p(r1, N ) is given by Eq. (49),
which results in Eq. (60) for the correlation function D(1)

and thus in the value x(1) = xh
1 = 1/4 of the exponent, see

Eq. (61).
Figure 3 provides a perfect confirmation of this analytical

prediction. We plot there N1+ 4
7 xh

1 p(r1, N ) = N
8
7 p(r1, N ) and

observe that it is indeed N-independent in the range between
N ≈ 10 and ≈1000, in full agreement with Eq. (49).

2. The case q = 2

In this order, there are two correlation functions,
D(2)(r1, r2; z) and D(1,1)(r1, r2; z). We use here the represen-
tations (26) and (28) for them. These formulas have the form

π2Dλ(r1, r2; z) =
∑

N

(1 − z2N )D̃(N )
λ (r1, r2), (85)

with

D̃(N )
(2) (r1, r2) = p(s)

1 (r1, r2; N ) − p(r1, r2; N ),

D̃(N )
(1,1)(r1, r2) = p(r1, r2; N ) + p−(r1, r2; N ). (86)

Note that this representation is somewhat different from that
in Eq. (62) where a double sum over path lengths was sep-
arated for the convenience of analytical investigation. In the
numerical analysis, studying the dependence on two (or three)
length variables would require much more statistics, which
is why we use the representation (85) here. The coefficient
functions D̃(N )

λ (r1, r2) in Eq. (85) are related to the functions
(63) entering the representation (62) as follows:

D̃(N )
λ = D(N )

λ +
∑
N ′

[
D(N,N ′ )

λ + D(N ′,N )
λ + D(N−N ′,N ′ )

λ

]
. (87)

The numerical simulations data shown in Fig. 4 fully
support the analytically predicted scaling D̃(N )

(1,1), D̃
(N )
(2) ∝

N−1− 4
7 xh

1 = N− 8
7 , see Eq. (50). Furthermore, we show in this

figure the combination D̃(N )
(1,1) − 2D̃(N )

(2) that corresponds to the
pure-scaling correlation function PC

(1,1), see Eq. (18). It is

clearly seen that the terms ∝ N− 8
7 cancel in this combination

as expected. Furthermore, the resulting scaling is in agree-
ment with the analytically predicted scaling D̃(N )

(1,1) − 2D̃(N )
(2) ∝

N−1− 4
7 xh

2 = N− 12
7 . Therefore our q = 2 numerical data are in

a very good agreement with analytical predictions, leading
to the results x(2) = xh

1 = 1/4 and x(1,1) = xh
2 = 5/4 for the

critical exponents, see Eqs. (69) and (70).

3. The case q = 3

As we have seen in Sec. IIB3, all q = 3 correlation func-
tions D(s)

λ (r1, r2, r3; z) can be written in the form

(2π )3D(s)
λ (r1, r2, r3; z) = (2π )3D(s)

λ (r1, r2, r3; z = 1)

+
∞∑

N=1

(1 − z2N )D̃(N )
λ (r1, r2, r3).

(88)

Expressions for the coefficient functions D̃(N )
λ (r1, r2, r3)

in this representations in terms of the functions
D(N,N ′ )

λ (r1, r2, r3) and D(N,N ′,N ′′ )
λ (r1, r2, r3) in the repre-

sentation (74) can be straightforwardly obtained in analogy
with Eq. (87). The first term in the right-hand side of Eq. (88)
is z-independent and yields the leading scaling with the
exponent x(3) = 0. The second term, involving the sum over
N includes subleading corrections scaling with the exponents
x(2,1) and x(13 ). We consider now this term, focusing on its
leading behavior that is governed by x(2,1).

The coefficient functions D̃(N )
λ (r1, r2, r3) are linear combi-

nations of percolation probabilities that are each of the type
p(r1, r2, r3; N ), p1(r1, r2, r3; N ), etc. (i.e., depends on three
spatial points and a single loop-length N). The scaling of such
probabilities is given by Eq. (54) with q = 3:

p(r1, r2, r3; N ) ∼ N−1− 4
7 xh

1 r−2xh
1 = N− 8

7 r− 1
2 . (89)

A contribution of each such probability to the sum over N
in Eq. (88) would yield a scaling with the exponent xh

1 , in
analogy with the leading behavior of a similar sum (85) in
the q = 2 case. This might suggest that the exponent x(2,1)

is given by xh
1 . Our analytical study showed, however, that

this is not correct. The fact that we have a representation (74)
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FIG. 4. Numerically determined coefficient functions D̃(N )
(1,1)(r1, r2) and D̃(N )

(2) (r1, r2) in the percolation representation (85) and (86) of the
q = 2 SQH correlation functions. The links r1, r2 are chosen to be either horizontal or vertical nearest neighbors. (Left) The Hartree coefficient
function D̃(N )

(1,1)(r1, r2) is shown by light blue symbols, while the Fock coefficient function D̃(N )
(2) (r1, r2) by dark blue symbols. (When the Fock

function is negative, its absolute value is shown by red symbols.) The results agree with the analytically predicted scaling D̃(N )
(1,1), D̃

(N )
(2) ∝

N−1− 4
7 xh

1 = N− 8
7 , see Eq. (50), as shown by light blue and dark blue straight lines. The black symbols show the combination D̃(N )

(1,1) − 2D̃(N )
(2)

(multiplied by 10−2 for clarity) corresponding to the pure-scaling correlation function PC
(1,1). It is seen that the leading terms ∝ N− 8

7 cancel and

the scaling follows the law D̃(N )
(1,1) − 2D̃(N )

(2) ∝ N−1− 4
7 xh

2 = N− 12
7 (straight black line), in agreement with analytical prediction. (Right) Same data

normalized to the analytically predicted power laws. In this representation, the predicted scaling corresponds to N-independence of the plotted
functions (horizontal straight lines). To demonstrate violation of the generalized parabolicity, we also included the dashed line corresponding
to x(1,1) = 1 which would hold for generalized parabolicity.

without a single sum over N (i.e., with only double and triple
sums) implies that the terms showing the xh

1 scaling should
cancel and the leading scaling of the sum over N in Eq. (88)
is controlled by the exponent xh

2 , so that x(2,1) = xh
2 . Thus we

should have

D̃(N )
λ (r1, r2, r3) ∼ N−1− 4

7 xh
2 rxh

2−3xh
1 = N− 12

7 r
1
2 . (90)

The results of the percolation simulations shown in Fig. 5
nicely confirm these predictions for the N scaling. In particu-
lar, in the top left panel of this figure the data for the coefficient
function D(N )

(3) (r1, r2, r3) are presented. Rewriting Eq. (36) in
the form (88), we get

D̃(N )
(3) (r1, r2, r3) = 8p(s)(r1, r2, r3; N ) − 12p(s)

1 (r1, r2, r3; N ).
(91)

The blue and red symbols in the top left panel of Fig. 5
show the individual terms of Eq. (91), and the black sym-
bols show the total expression. The numerical data for the
individual terms agree with the analytically predicted scaling
∝ N−1− 4

7 xh
1 = N− 8

7 presented by straight lines of the corre-
sponding colors. At the same time, the scaling of for the
total coefficient function (91) is in full agreement with the
analytical prediction ∝ N−1− 4

7 xh
2 = N− 12

7 that is presented by a
black line. In the top right panel, the same data are shown nor-
malized to the respective analytically predicted power laws.

In the same way, the middle and bottom panels of
Fig. 5 display numerical data for D̃(N )

(2,1)(r1, r2, r3) and

D̃(N )
(13 )(r1, r2, r3), respectively. Transforming Eq. (39) to the

form (88), we obtain

D̃(N )
(2,1)(r1, r2, r3) = 8

[
p(s)(r1, r2; N ) − p(s)

1 (r1, r2; N )
]

− 4p(s)(r1, r2, r3; N )

− 8
∑

M

[
p(s)(r1, r2; N − M|r3; M )

− p(s)
1 (r1, r2; N − M|r3; M )

]
. (92)

Similarly, Eq. (43) can be brought to the form (88) with

D̃(N )
(13 )(r1, r2, r3) = p−(r1, r2, r3; N ) + p−(r1, r2|r3; N )

+ p−(r1|r2|r3; N ), (93)

where

p−(r1, r2, r3; N ) = 24
∑

M

[
p(s)(r1; M|r2; N )

− p(s)(r1; N − M|r2; M )
]
,

p−(r1, r2|r3; N ) = 24
∑

M

p(s)(r1, r2; N − M|r3; M ),

p−(r1|r2|r3; N ) = 8
∑
MK

p(s)(r1; N − M − K|r2; M|r3; K ).

(94)

It is clearly seen in Fig. 5 that the individual terms in Eqs. (92)
and (93) show the N− 8

7 scaling, while the total functions
D̃(N )

(2,1)(r1, r2, r3) and D̃(N )
(13 )(r1, r2, r3) scale as N− 12

7 , as pre-
dicted analytically.
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FIG. 5. Numerically determined coefficient functions D̃(N )
λ (r1, r2, r3) in the percolation representation (88) of the q = 3 SQH correla-

tion functions. The links r1, r2, and r3 are chosen to be either horizontal or vertical (next) nearest neighbors. (Top) D̃(N )
(3) (r1, r2, r3) as

given by Eq. (91) (black) and individual probabilities p(s)(r1, r2, r3; N ) (blue) and p(s)
1 (r1, r2, r3; N ) (red) entering this formula. (Middle)

D̃(N )
(2,1)(r1, r2, r3) as given by Eq. (92) (black) and individual terms entering this formula (light blue, dark blue, red). (Bottom) D̃(N )

(13 )
(r1, r2, r3),

Eq. (93) (black), and the individual terms in this formula given by Eq. (94) (light blue, dark blue, and red). The results for the individual
terms agree with the analytically predicted scaling ∝ N−1− 4

7 xh
1 = N− 8

7 as shown by straight lines of the corresponding colors. At the same
time, the total expressions for the coefficient functions D̃(N )

λ (r1, r2, r3) exhibit the analytically predicted scaling ∝ N−1− 4
7 xh

2 = N− 12
7 (black

straight lines). (Right) Same data as in the respective left panels normalized to the analytically predicted power laws. In this representation, the
predicted scaling corresponds to N-independence of the plotted functions (horizontal straight lines).

The percolation numerics thus nicely confirms the analyti-
cal prediction x(2,1) = xh

2 = 5/4. In principle, by studying the
combination corresponding to the most subleading correlation
function PC

(13 ) as given by Eq. (76), one could also verify

in this way the prediction x(13 ) = xh
3 = 35

12 . However, it turns
out that statistical fluctuations prevent a reliable analysis of

this correlation function by means of classical percolation
numerics. In Sec. V, we will present an alternative numerical
analysis—starting directly from the quantum formulation of
the problem—that will allow us to get accurate numerical re-
sults for all exponents with q � 5 and, in particular, to confirm
all analytical predictions.
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III. SUPERSYMMETRY MAPPING

A. Basic ideas of the supersymmetry method

The original mapping of the network model of the SQH
transition in class C onto classical percolation was obtained
with the help of the supersymmetry (SUSY) method [15,16]
in Ref. [8] where the exponents ν and x(1) characterizing the
scaling of the localization length and of the average LDOS
were computed. The SUSY method was later used [12] to
reproduce the leading multifractal exponents x(q) for q � 3
from Ref. [10] and to extend their derivation to the multifractal
wave functions near straight boundaries and corners. Here we
will show that the SUSY mapping allows us to reproduce our
results for all generalized-multifractality correlation functions
from Sec. II of this paper, and also to obtain exact results for
the most irrelevant scaling operators PC

(1q ) of arbitrary order q.
The basic idea of the SUSY method is to rewrite Green’s

functions and their products as quantum expectation values of
bosonic or fermionic creation and annihilation operators in a
Fock space. The Fock space factorizes into local Fock spaces
associated with every link in the network. In the minimal
version of this representation, which is sufficient to write
down all products of no more than three Green’s functions,
and some other special combinations of arbitrary numbers of
Green’s functions, there is only one boson and one fermion
per lattice link per spin direction: b↑(r), b↓(r), f↑(r), f↓(r).

The average over disorder independently on each link
projects the minimal Fock space onto the fundamental three-
dimensional representation of sl(2|1) Lie superalgebra [8].
The states in this respresentation are the singlets under the
random “gauge” SU(2) on the links. The SU(2)-singlet bi-
linear combinations of bosons and fermions that survive the
disorder average are the eight generators of sl(2|1):

B̂ = 1

2
(b†

↑b↑ + b†
↓b↓ + 1), Q̂3 = 1

2
( f †

↑ f↑ + f †
↓ f↓ − 1),

Q̂+ = f †
↑ f †

↓ , Q̂− = f↓ f↑,

V̂+ = 1√
2

(b†
↑ f †

↓ − b†
↓ f †

↑ ), Ŵ− = 1√
2

(b↑ f↓ − b↓ f↑),

V̂− = − 1√
2

(b†
↑ f↑ + b†

↓ f↓), Ŵ+ = 1√
2

( f †
↑b↑ + f †

↓b↓).

(95)

In the three-dimensional representation with the basis states
chosen as |0〉, |1〉 = V̂+|0〉, and |2〉 = Q̂+|0〉, these operators
act as matrices

B =
⎛
⎝1/2 0 0

0 1 0
0 0 1/2

⎞
⎠, Q3 =

⎛
⎝−1/2 0 0

0 0 0
0 0 1/2

⎞
⎠,

Q+ =
⎛
⎝0 0 0

0 0 0
1 0 0

⎞
⎠, Q− =

⎛
⎝0 0 1

0 0 0
0 0 0

⎞
⎠,

V+ =
⎛
⎝0 0 0

1 0 0
0 0 0

⎞
⎠, W− =

⎛
⎝0 1 0

0 0 0
0 0 0

⎞
⎠,

V− =
⎛
⎝0 0 0

0 0 −1
0 0 0

⎞
⎠, W+ =

⎛
⎝0 0 0

0 0 0
0 1 0

⎞
⎠. (96)

The mapping to percolation then goes as follows. Disorder-
averaged products of Green’s functions are written as
expectation values of strings of sl(2|1) generators inserted
at various points. In the percolation picture, contributions to
these expectation values are given in terms of loops (percola-
tion hulls) that go through the insertion points. Each sl(2|1)
generator is represented by the corresponding matrix in the
fundamental representation (96), and each element of a loop
by the diagonal “attenuation” matrix

Z = diag(1, z2, z2). (97)

This matrix gives weights to the states according to how many
bosons and fermions propagate in them along the loop. Then
we take the supertrace in the fundamental representation. Fi-
nally, we need to take into account the classical probabilities
of the loops in percolation that come from the product of the
individual factors for turning left or right at each node of the
network model.

Let us illustrate how this works in the simplest example of
a single (retarded) Green’s function:

Gαβ (ra, rb; z) = 〈bα (ra)b†
β (rb)〉q, (98)

where 〈. . .〉q stands for the quantum average in the Fock space.
For ra �= rb, the Green’s function is not SU(2) invariant, and it
vanishes upon averaging over the disorder. However, for ra =
rb = r, we get (the angular brackets without subscripts stand
for disorder average, as before)

〈Gαβ (r, r; z)〉 = 1

2
δαβ〈〈2B̂(r) + 1〉q〉. (99)

Using the symmetry (3) and subscripts to denote spatial
points [G12(z) ≡ G(r1, r2; z)], we can write

�G12 = G12(z) − G12(z−1)

= G12(z) − G21(z) + TrG21(z) − δ12. (100)

For example, the average LDOS is obtained as

ν(r) = D(1)(r) = 1

2π
〈Tr�G(r, r)〉

= 1

π
〈TrG(r, r; z) − 1〉 = 2

π
〈〈B̂(r)〉q〉. (101)

In the percolation picture, this average is obtained by sum-
ming over all possible percolation hulls going through the
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point r:

ν(r) = 2

π

∑
N

str [BZN ]p(r, N )

= 1

π

∑
N

str

⎡
⎣

⎛
⎝1 0 0

0 2 0
0 0 1

⎞
⎠

⎛
⎝1 0 0

0 z2N 0
0 0 z2N

⎞
⎠

⎤
⎦p(r, N )

= 1

π

∑
N

(1 − z2N )p(r, N ), (102)

which is exactly the known result (25). In Eq. (102), we
introduced the symbol “str”, which means the supertrace, i.e.,
the trace over bosonic states (here |0〉 and |2〉) minus trace
over fermionic states (|1〉).

Notice that the Green’s function in Eq. (98) can be also
expressed in terms of fermions:

Gαβ (ra, rb; z) = 〈 fα (ra) f †
β (rb)〉q,

〈Gαβ (r, r; z)〉 = 1

2
δαβ〈〈1 − 2Q̂3(r)〉q〉. (103)

Evaluating this expression in the percolation picture gives the
same answer (25). It is this flexibility to use either bosons or
fermions to represent Green’s functions that allows us to gen-
eralize the SUSY mapping to arbitrary products of retarded
and advanced Green’s functions with q � 3.

This calculation has been extended in Ref. [12] to the
correlation functions D(1,1) and D(1,1,1). We briefly reproduce
the calculation of D(1,1) here; an extension to D(1,1,1) is quite
straightforward. We have

(2π )2D(1,1)(r1, r2) = 〈Tr�G(r1, r1)Tr�G(r2, r2)〉
= −16〈〈B̂(r1)Q̂3(r2)〉q〉. (104)

The computation of this correlator proceeds analogously to
the case of D(1), Eq. (101). There are two different kinds of
loop configurations which contribute to the correlator: (i) a
single loop passes through both points r1 and r2, (ii) a distinct
loop passes through each of these two points. These two terms
are the percolation versions of the connected and disconnected
parts of any correlation function. Writing the contribution for
each of these types separately and summing over all possible
loop configurations together with their respective weights, we
write Eq. (104) as

(2π )2D(1,1)(r1, r2; z)

= −16
∑

N12,N21

str [BZN12 Q3ZN21 ]p(r1, r2; N12, N21)

− 16
∑
N,N ′

str [BZN ] str [Q3ZN ′
]p(r1; N |r2; N ′)

= 4
∑

N

(1 − z2N )p(r1, r2; N )

+ 4
∑
N,N ′

(1 − z2N )(1 − z2N ′
)p(r1; N |r2; N ′). (105)

This is exactly the same representation of D(1,1)(r1, r2; z) as
was given in Eqs. (62) and (63) of Sec. II. The advantage of
this from in comparison with Eq. (28) for the same correlator

is that each summation over a length Ni is accompanied by
the corresponding suppression factor (1 − z2Ni ). As has been
already emphasized in Sec. IIC3, such representation are par-
ticularly favorable for the purpose of analytical investigation
of scaling properties.

In a similar way, we can obtain all other correlators Dλ with
q � 3 in terms of percolation probabilities. We have verified
that the results are identical with those obtained in Sec. II
within the alternative mapping procedure used there.

The mapping to percolation (in either form) does not per-
mit to obtain all correlators Dλ with q > 3. However, it turns
out that the SUSY method is suitable to obtain exact percola-
tion expressions for the most irrelevant scaling operators PC

(1q )
for any integer q. To describe the derivation of this remarkable
result, we need some additional notation.

B. Young tableaux and point configurations

A more general and comprehensive notation for probabili-
ties and other objects of our interest uses partitions (or Young
diagrams) and Young tableaux. For more details about these
objects and associated quantities see the books [17–21].

In a general correlation function Dλ or relevant percola-
tion probabilities, points ri, i = 1, . . . , q, are separated into n
groups of sizes qa, a = 1, 2, . . . , n. This corresponds to the
integer partition λ = (q1, q2, . . . , qn) with q1 � q2 � · · · �
qn > 0 and q1 + · · · + qn = q, see also Sec. I. For partitions of
q we write |λ| = q and, equivalently, λ � q. Another notation
that we will use is λ = (1m1 , 2m2 , . . . , kmk , . . .) to denote the
partition that has mk copies of the integer k. The number

l (λ) = n =
∑

k

mk (106)

is called the length of the partition. To each partition we
associate a Young diagram in a standard way. Thus the Young
diagram corresponding to the partition λ = (q1, q2, . . . , qn)
consists of left-aligned rows of square boxes with the top row
containing q1 boxes, the next row containing q2 boxes, etc.
The total number of rows n is the length of the partition.

We can fill in the boxes of a Young diagram λ by points ri,
forming a Young tableau T . We can re-label all points ri using
a superscript (a) to denote points that belong to the a-th row
of the Young tableau T and a subscript j = 1, 2, . . . , qa for all
points within this group. With this notation, the Young tableau
precisely specifies which points belong to which group and
also gives their order (reading the points from left to right
along each row), when it is important. The Young diagram
λ is called the shape of the tableau T .

The permutation group Sq acts on tableaux with q boxes by
permuting the points in the boxes. If σ ∈ Sq, we denote by σT
the tableau which has the point rσ (i) in the box where T has
ri. The row group Rλ of a Young tableau T of shape λ acts on
T by permuting points only within each row:

Rλ = Sq1 × Sq2 × · · · × Sqn . (107)

A tabloid {T } is an equivalence class of Young tableaux of
the same shape λ, two being equivalent if corresponding rows
contain the same entries. So {T ′} = {T } exactly when T ′ =
σT for some σ ∈ Rλ. The number of distinct tabloids of a
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given shape λ is

cλ = q!∏
k (k!)mk mk!

. (108)

The cyclic subgroup

Zλ = Zq1 × Zq2 × · · · × Zqn (109)

of the row group Rλ acts on Young tableaux by cyclic per-
mutations of points in each row. A cyclic tabloid [T ] is an
equivalence class of Young tableaux of the same shape λ,
two being equivalent if corresponding rows differ by a cyclic
permutation. So [T ′] = [T ] exactly when T ′ = σT for some
σ ∈ Zλ. The number of distinct cyclic tabloids for a given
shape λ is

dλ = q!∏
k kmk mk!

= cλ

∏
k

[(k − 1)!]mk . (110)

The coefficients dλ are the numbers of permutations in the
conjugacy classes Cλ of Sq labeled by the Young diagrams λ �
q. These coefficients appear, in particular, in the RG results
for pure-scaling operators, see Appendix B. Specifically, the
coefficients in the expansion of the most relevant pure-scaling
operators PA

(q) and PC
(q) over basis operators are given by dλ

both in classes A and C, see bottom rows in Eqs. (B6), (B7)
and comments below these equations. The least relevant oper-
ator PA

(1q ) [top row in Eq. (B6)] has coefficients (−1)q−l (λ)dλ.
In the context of our problem, we are interested in prob-

abilities of events where points are connected by percolation
hulls in various ways. Specifically, let us distinguish config-
urations and arrangements of points. Given a partition λ =
(q1, q2, . . . , qn), a configuration of q points is simply the par-
titioning of the points in n groups of sizes qa, a = 1, 2, . . . , n.
All points within a group belong to one percolation hull. It is
clear that configurations defined in this way are in one-to-one
correspondence with tabloids {T }, and can be labeled by them.
The number of distinct configurations for a given partition λ is
cλ. On the other hand, an arrangement of points is a configu-
ration with a specific order of points along each percolation
hull. These are determined modulo cyclic permutations of
points on each hull, so are labeled by the cyclic tabloids [T ].
Correspondingly, the number of distinct arrangements for a
given partition λ is dλ.

In a given configuration {T } or an arrangement [T ], we
may need to specify all or some of the lengths of segments
of the hulls connecting the points in each group. Denoting the
length of the segment r(a)

i ← r(a)
j by N (a)

i j , we can write the
necessary probabilities of arrangements as

p[T ](r1, . . . , rq ) = p[T ]
(
r(1)

1 , . . . , r(1)
q1

; N (1)
12 , . . . , N (1)

q1,1
|

. . . |r(n)
1 , . . . , r(n)

qn
; N (n)

12 , . . . , N (n)
qn,1

)
, (111)

where the subscript [T ] reminds us that the points within
each group can be cyclically permuted. The final forms of our
percolation correlators involve the symmetrized expressions

p(s)
λ (r1, . . . , rq ) = 1

q!

∑
σ∈Sq

p[σT ](r1, r2, . . . , rq ). (112)

The symmetrized probabilities clearly depend only of the par-
tition of the points into groups, and so are labeled by Young
diagrams λ.

In a similar way, we can denote generic averages of prod-
ucts of Green’s functions. Let us consider the partition of
points according to a Young tableau T as described above.
For each group of points r(a)

j in a given row a we define the
following object:

D[(qa )]
(
r(a)

1 , . . . , r(a)
qa

) ≡ 1

(2π )qa
Tr

[
qa∏

j=1

�G
(
r(a)

j , r(a)
j+1

)]
,

(113)

where we assume qa + 1 ≡ 1 for the last term in the product.
This trace is invariant under cyclic permutations of the points,
and this is why it is labeled by the cyclic tabloid [(qa)]. Then
we take products of these traces for all the rows of the Young
tableau T :

D[T ](r1, . . . , rq ) =
n∏

a=1

D[(qa )]
(
r(a)

1 , . . . , r(a)
qa

)

= 1

(2π )q

n∏
a=1

Tr

[
qa∏

j=1

�G
(
r(a)

j , r(a)
j+1

)]
.

(114)

We will also need the versions of these objects symmetrized
over the rows of T :

D{(qa )}
(
r(a)

1 , . . . , r(a)
qa

) ≡ 1

qa!

∑
σ∈Sqa

D[(qa )]
(
r(a)
σ (1), . . . , r(a)

σ (qa )

)
,

D{T }(r1, . . . , rq ) ≡
n∏

a=1

D{(qa )}
(
r(a)

1 , . . . , r(a)
qa

)

= 1∏
a qa!

∑
σ∈Rλ

D[σT ](r1, . . . , rq ),

(115)

as well as over all permutations of the q points:

D(s)
λ (r1, . . . , rq ) ≡ 1

q!

∑
σ∈Sq

D[σT ](r1, . . . , rq ). (116)

These fully symmetrized expressions are completely deter-
mined by the Young diagram λ. Finally, we define the disorder
averages

D(s)
λ (r1, . . . , rq ) = 〈

D(s)
λ (r1, . . . , rq )

〉
. (117)

C. SUSY for the most irrelevant operators PC
(1q )

The most irrelevant scaling operators PC
(1q ) at the “bot-

tom” of the generalized multifractal “tower” for a given q
are associated with the Young diagram which consists of a
single vertical column of height q. As we have shown in
Ref. [4], in the case of class A, the multifractal scaling op-
erators associated with such Young diagrams can be obtained
within the minimal version of the SUSY formalism (with the
minimal number of bosons and fermions), and also using only
fermionic variables. It turns out, the same is true in class C, as
we now demonstrate.
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Consider the operator

Â ≡ ( f↓ − f †
↑ )( f †

↓ + f↑) = −2Q̂3 − Q̂+ + Q̂−, (118)

and its correlation functions 〈〈Â(r1) . . . Â(rq)〉q〉. We will first
work out an expression for this correlator in terms of per-
colation probabilities, and then will find what combination
of the Green’s functions products Dλ it corresponds to. That
combination will turn out to be exactly PC

(1q ).
As before, to proceed with the mapping to percolation, we

use the matrix

A =
⎛
⎝ 1 0 1

0 0 0
−1 0 −1

⎞
⎠ (119)

that represents Â in the fundamental representation of sl(2|1).
This matrix has a nice property: when it is multiplied by
powers of the attenuation matrix Z , we get

AZN =
⎛
⎝ 1 0 z2N

0 0 0
−1 0 −z2N

⎞
⎠. (120)

It is easy to check that AZN1 AZN2 = (1 − z2N1 )AZN2 and, by
induction,

m∏
k=1

AZNk =
m−1∏
k=1

(1 − z2Nk )AZNm . (121)

Taking the supertrace, we obtain

str
m∏

k=1

AZNk =
m∏

k=1

(1 − z2Nk ). (122)

Thus the crucial suppression factors automatically appear for
all percolation hulls that contribute to the correlation functions
of Â.

Let us look at simple examples with q � 3:

〈〈Â(r)〉q〉 =
∑

N

str [AZN ]p(r, N ) =
∑

N

(1 − z2N )p(r, N )

= πD(1)(r) = πPC
(1)(r), (123)

〈〈Â(r1)Â(r2)〉q〉 =
∑

N12,N21

str [AZN12 AZN21 ]p(r1, r2; N12, N21)

+
∑
N,N ′

str [AZN ] str [AZN ′
]p(r1, N |r2, N ′)

=
∑
N,N ′

(1 − z2N )(1 − z2N ′
)[p(r1, r2; N12 = N,

N21 = N ′) + p(r1; N |r2; N ′)]

= π2PC
(1,1)(r1, r2), (124)

〈〈Â(r1)Â(r2)Â(r3)〉q〉

=
∑

N,N ′,N ′′
(1 − z2N )(1 − z2N ′

)(1 − z2N ′′
)
[
p(s)

(13 )(r1; N |r2; N ′|r3;

N ′′) + 3p(s)
(2,1)(r1, r2; N12 = N, N21 = N ′|r3; N ′′)

+ 2p(s)
(3)(r1, r2, r3; N12 = N, N23 = N ′, N31 = N ′′)

]
= π3PC

(13 )(r1, r2, r3). (125)

This can be easily continued. The general pattern is that
we get contributions from all possible partitions λ of q points.
Within each partition we get contributions of all possible
arrangements [T ] of points on percolation hulls, where the
shape of the tableau T is λ, as described in Sec. III B. This
ensures that all points are symmetrized in the final expression
that can be written as〈〈

q∏
k=1

A(rk )

〉
q

〉
=

∑
λ�q

dλ

∑
N1,...,Nq

q∏
k=1

(1 − z2Nk )p(s)
λ (r1, . . . , rq ).

(126)

Importantly, this expression contains the suppression factors
1 − z2Nk for all segments of percolation hulls involved, and
we claim that this is the percolation representation for the
“bottom” (the most irrelevant) pure scaling operator πqPC

(1q ).
To demonstrate this claim, we now work backward and

determine what combinations of Green’s functions are repre-
sented by the correlators of Â’s. To do this, let us denote

Â = f g, f ≡ f↓ − f †
↑ , g ≡ f †

↓ + f↑. (127)

It is easy to see that { f , f } = { f , g} = {g, g} = 0. We can
then use Wick’s theorem to compute correlators of Â = f g in
the free theory for a given disorder realization. The building
blocks are the second quantized expectation values of all
quadratic combinations of f and g. For compactness, let us
use subscripts to denote spatial points. Then we have

〈Â1〉q = 〈 f1g1〉q = 〈[ f↓(r1) − f †
↑ (r1)][ f †

↓ (r1) + f↑(r1)]〉q

= tr G11(z) − 1 = πD(1)(r1), (128)

see Eq. (101). Next we have

〈 f1 f2〉q = G↓↑(r2, r1; z) − G↓↑(r1, r2; z)

= G↓↑(r1, r2; z−1) − G↓↑(r1, r2; z)

= −�G↓↑(r1, r2) = �G↓↑(r2, r1). (129)

In a similar way, we obtain

〈g1g2〉q = �G↑↓(r1, r2) = −�G↑↓(r2, r1),

〈 f1g2〉q = �G↓↓(r1, r2) = �G↑↑(r2, r1),

〈g1 f2〉q = −�G↑↑(r1, r2) = −�G↓↓(r2, r1). (130)

Now we can compute

〈Â1Â2〉q = 〈Â1〉q〈Â2〉q + 〈Â1Â2〉q, c. (131)

Here

〈Â1〉q〈Â2〉q = π2D(1)(r1)D(1)(r2) = π2D(1,1)(r1, r2), (132)

and in the second term the subscript “c” denotes the connected
correlator, where the patterns of Wick contractions span all the
points:

〈Â1Â2〉q,c = 〈 f1g1 f2g2〉q,c

= 〈 f1g2〉q〈g1 f2〉q − 〈 f1 f2〉q〈g1g2〉q. (133)
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The two terms here can be written in various ways:

〈 f1 f2〉q〈g1g2〉q = �G↓↑(r1, r2)�G↑↓(r2, r1)

= �G↑↓(r1, r2)�G↓↑(r2, r1),

〈 f1g2〉q〈g1 f2〉q = −�G↑↑(r1, r2)�G↑↑(r2, r1)

= −�G↓↓(r1, r2)�G↓↓(r2, r1). (134)

In fact, the most symmetric way is to use the average of the
two expressions for each term, which gives

〈Â1Â2〉q,c = −1

2
tr �G12�G21 = −2π2D(2)(r1, r2). (135)

Finally, as expected, we get

〈Â1Â2〉q = π2[D(1,1)(r1, r2) − 2D(2)(r1, r2)]

≡ π2PC
(1,1)(r1, r2). (136)

After disorder average the left-hand side becomes the per-
colation correlator (124), while the right-hand side becomes
π2PC

(1,1)(r1, r2), see Eq. (18).
Let us consider q = 3:

〈Â1Â2Â3〉q = 〈Â1〉q〈Â2〉q〈Â3〉q + 3[〈Â1Â2〉q,c〈Â3〉q](s)

+ 〈Â1Â2Â3〉q,c

= π3D(1)(r1)D(1)(r2)D(1)(r3) − 6π3[D(2)(r1, r2)

× D(1)(r3)](s) + 〈Â1Â2Â3〉q,c

= π3D(1,1,1)(r1, r2, r3) − 6π3D(s)
(2,1)(r1, r2, r3)

+ 〈Â1Â2Â3〉q,c. (137)

The new connected correlator here is 〈Â1Â2Â3〉q,c =
〈 f1g1 f2g2 f3g3〉q,c. There are eight possible Wick pairings that
span the three points. Each of the eight terms has two different
representations in which the points follow the two possible
sequences on the loop. Computing the terms as before, we
notice that the sign factors work out in such a way that all rep-
resentations in terms of �G come with a plus sign. Summing
up the two possible orderings of the points on the hull, we get
the traces:

〈Â1Â2Â3〉q,c = tr �G12�G23�G31 = 8π3D(3)(r1, r2, r3)

= tr �G13�G32�G21 = 8π3D(3)(r1, r3, r2).
(138)

The symmetrized form (the half-sum of the two expressions)
is

〈Â1Â2Â3〉q,c = 8π3D(s)
(3)(r1, r2, r3). (139)

Finally, we get for q = 3

〈Â1Â2Â3〉q = π3
[
D(s)

(13 )(r1, r2, r3) − 6D(s)
(2,1)(r1, r2, r3)

+ 8D(s)
(3)(r1, r2, r3)

] ≡ π3PC
(13 )(r1, r2, r3).

(140)

Again, upon averaging over disorder, the left-hand side be-
comes the percolation correlator (125), while the right-hand
side becomes the pure scaling operator π3PC

(13 )(r1, r2, r3), see
Eq. (76).

This pattern continues for a general q � 3, and the count-
ing works out in the following way. First, the connected
correlator 〈∏q

k=1 Â(rk )〉q,c has 2q−1(q − 1)! Wick contrac-
tions. The factor (q − 1)! counts the number of possible
closed paths spanning all q points, and the factor 2q−1 counts
the number of choices of f or g at each point along a path (ex-
cept the last point). The paths naturally break into (q − 1)!/2
pairs, such that in each pair the two paths go through the points
in exactly the opposite way. For q = 3, there was one such
pair of paths that went through the points as 1 ← 2 ← 3 ← 1
and 1 ← 3 ← 2 ← 1. Each of the (q − 1)!/2 pairs gets 2q

contributions from different choices of f and g, and each
such contribution can be written in two ways according to the
sequence of points on the corresponding loop. The signs of
all contributions turn out to be (−1)q−1, and summing them
all we get (after the symmetrization over the members of the
pairs) 〈

q∏
k=1

Â(rk )

〉
q,c

= πqn(q)D{(q)}(r1, . . . , rq ), (141)

where n(q) = (−2)q−1d(q) = (−2)q−1(q − 1)!
A general correlator 〈∏q

k=1 Â(rk )〉q can be written as the
sum of contributions from all point configurations labeled by
Young tabloids {T }:〈

q∏
k=1

Â(rk )

〉
q,{T }

=
n∏

a=1

〈
Â

(
r(a)

1

)
. . . Â

(
r(a)

qa

)〉
q,c

=
n∏

a=1

πqa n(qa )D{(qa )}
(
r(a)

1 , . . . , r(a)
qa

)
= πqnλD{T }(r1, . . . , rq ), (142)

where λ is the shape of the tableaux T , and

nλ =
n∏

a=1

n(qa ) = (−2)q−l (λ)
n∏

a=1

(qa − 1)!

= (−2)q−l (λ)
∏

k

[(k − 1)!]mk . (143)

We can group all such contributions by the partitions λ of
q. For each such partition there are cλ Young tabloids, and
the summation over them leads to the symmetrization of all
points, so that we get〈

q∏
k=1

Â(rk )

〉
q

=
∑
λ�q

cλ

〈
q∏

k=1

Â(rk )

〉(s)

q,λ

= πq
∑
λ�q

cλnλD(s)
λ (r1, . . . , rq )

= πq
∑
λ�q

(−2)q−l (λ)dλD(s)
λ (r1, . . . , rq )

≡ πqPC
(1q )(r1, . . . , rq ). (144)

The disorder average of the right-hand side is exactly πq times
the pure scaling operator PC

(1q ), and the final result can be
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written as

PC
(1q )(r1, . . . , rq ) ≡

∑
λ�q

(−2)q−l (λ)dλD(s)
λ (r1, . . . , rq )

= 1

πq

∑
λ�q

dλ

∑
N1,...,Nq

q∏
k=1

(1 − z2Nk )p(s)
λ

× (r1, . . . , rq ). (145)

In full consistency with Eq. (145), the coefficients
(−2)q−l (λ)dλ appear in the RG result for the class-C pure-
scaling operators, see Eq. (B7) in Appendix B. The operator
PC

(1q ), in its NLσM form, is given by the top row of the

coefficient matrices appearing there. The functions D(s)
λ from

Eq. (145) correspond to the K − invariant operators Oλ,
Eq. (B1), in the NLσM language.

Let us now analyze the scaling of the percolation expres-
sion in the right-hand-side of Eq. (145). Each factor 1 − z2Nk is
close to unity for Nk � γ −1 and is suppressed for Nk 
 γ −1.
Using Eq. (58), we find that the contribution of the region
where all Nk are of the order of γ −1 is governed by the scaling
exponent xh

q , in full analogy with the cases q = 2 ans q = 3
analyzed in Ses. II C 3 and II C 4. One might, however, expect
also contributions coming from the lower limits of sums over
Nk (i.e. Nk ∼ r

7
4 ) for some of Nk . These contributions would

then form a hierarchy with scaling exponents xh
q− j + i j

7
4 ,

where j and i j are positive integers and i j � j, as can be
obtained by expanding 1 − z2Nk ≈ 2Nkγ + . . . for Nk 
 γ −1.
We have already discussed in Secs. II C 3 and II C 4 that these
contributions should in fact cancel, since there is no room for
such additional exponents in the generalized-multifractality
spectrum of SQH transition and since PC

(1q ) should be a pure-
scaling operator.

For q > 3, the situation is even more intriguing, since some
of these additional contributions, if present, would dominate
over the xh

q term. Indeed, for q > 3, we have xh
q−1 + 7

4 < xh
q ,

so that the contribution from the operator xh
q−1 + 7

4 would
be more relevant than xh

q . This can be thought of as the
(q − 1)-hull operator fusing with the energy operator with di-
mension 7

4 . However, we argue again that all these additional
contributions cancel out, as suggested by the analogy with
the cases q = 2 and 3 and by the pure-scaling character of
PC

(1q ) known form the sigma-model RG. The numerical studies
presented in the next section indeed confirm this expectation,
by showing numerical evidence for x(14 ) = xh

4 and x(15 ) = xh
5 .

We thus argue that

x(1q ) = xh
q . (146)

By virtue of the Weyl symmetry, this result further has
the implication that all of the 2qq! scaling dimensions in the
Weyl orbit of x(1q ) are equal to xh

q . In particular, this means
that x(2,1q−1 ) = xh

q , which can be nicely observed both in the
classical analysis of Secs. II C and II D and in the quantum
numerics in Sec. V.

IV. PURE-SCALING WAVE-FUNCTION COMBINATIONS

In order to determine the generalized-multifractality ex-
ponents numerically, one needs to construct wave-function
observables that exhibit the corresponding scaling. While the
latter goal has been achieved in Ref. [5], the solution was not
optimal. Specifically, the pure-scaling eigenfunction combi-
nations found in Ref. [5] did not have a definite sign before
averaging, which required a very large number of disorder
realizations in order to get a meaningful result for the average.

Alternative paths towards a numerical determination of the
exponents (see Sec. I for more details) have helped to partly
resolve this complication and to find numerical values of sev-
eral exponents. However, the ultimate goal in this context—a
general construction of strictly positive pure-scaling wave-
function combinations for an arbitrary Young diagram λ =
(q1, q2, . . . , qn)—has not been achieved in Ref. [5]. In this
section, we present a solution for this problem. In fact, λ does
not need to be a Young tableau in the conventional sense, as
q j in the construction below do not need to be integer (in fact,
they can even be complex).

The logic and the structure of this section are as follows.
We consider first the case of the least relevant operator λ =
(1q) in each order q. In Sec. IV A, we present strictly positive
eigenfunction combinations for such λ, which have the form
PC

(1q )[ψ] = det(Mq[ψ]), with the matrix Mq introduced below
in Eq. (151). Further, in Sec. IV B, we show that their disorder
averages map to pure-scaling operators PC

(1q )[Q] satisfying
Abelian fusion in the nonlinear σ model (NLσM) framework,

〈
PC

(1q )[ψ]
〉 ≡ PC

(1q )[ψ] ←→ PC
(1q )[Q]. (147)

These NLσM operators PC
(1q )[Q] are given by the Pfaffians

of the 2q × 2q replica sub-block of the advanced-advanced
bosonic part of the rotated Q-field Q of the NLσM

PC
(1q )[Q] = Pf

(
Q01|q×q Q00|q×q

Q11|q×q Q10|q×q

)
≡ Pf

(
Q

∣∣
2q×2q

)
; (148)

we refer the reader to Ref. [5] for details. (See, in particular,
Eq. (313) of Ref. [5] and the text around it.)

A complementary proof of the pure-scaling character of the
wave-function observables PC

(1q )[ψ] constructed in Sec. IV A
is presented in Sec. IV C where we demonstrate a direct
correspondence between PC

(1q )[ψ] and the pure-scaling com-
binations PC

(1q )[G] of Green’s functions from Sec. III [see
Eq. (144)],

PC
(1q )[G] =

∑
μ�q

(−2)q−l (μ)dμD(s)
μ (r1, . . . , rq ). (149)

In Sec. IV D, the construction is extended to a generic λ,
with λ = (1q) serving as building blocks. The sigma-model
operators (148) satisfy the Abelian fusion property,

PC
λ+μ[Q] ∼ PC

λ [Q]PC
μ [Q]. (150)
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which allows one to construct [5] the eigenoperators PC
λ [Q]

for any λ. Using the one-to-one correspondence between the
eigenfunction and sigma-model observables, Eq. (147), we
can obtain pure-scaling positive wave-function observables
PC

(1q )[ψ] for arbitrary λ. This construction bears analogy with
that for class A that was developed in Ref. [4].

A. Scaling combinations PC
(1q )[ψ] and positivity

In analogy with the class-A construction [4], the λ = (1q)
wave-function combination can be written as a Slater determi-
nant (we denote the corresponding matrix with entries given
by eigenfunction amplitudes by Mq[ψ]):

PC
(1q )[ψ] = det (Mq[ψ]) = det

(
(ψi,↑(r j ))q×q (ψ−i,↑(r j ))q×q

(ψi,↓(r j ))q×q (ψ−i,↓(r j ))q×q

)

≡ det

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

ψ1,↑(r1) ψ2,↑(r1) . . . ψ−1,↑(r1) ψ−2,↑(r1) . . .

ψ1,↑(r2) ψ2,↑(r2) . . . ψ−1,↑(r2) ψ−2,↑(r2) . . .
...

...
. . .

...
...

. . .

ψ1,↓(r1) ψ2,↓(r1) . . . ψ−1,↓(r1) ψ−2,↓(r1) . . .

ψ1,↓(r2) ψ2,↓(r2) . . . ψ−1,↓(r2) ψ−2,↓(r2) . . .
...

...
. . .

...
...

. . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

. (151)

Here ψi with i = 1, 2, . . . , q are q distinct eigenfunctions
with positive energies. The energies should be close to zero to
study the system at criticality; a good choice is to take wave
functions corresponding to q lowest positive eigenenergies.
Further, ri with i = 1, 2, . . . , q are q distinct spatial points,
while the subscripts ↑ and ↓ label the corresponding spin
components of the wave function. The eigenfunction ψ−i is
the partner of ψi related by particle-hole conjugation, which

implies

−ψ∗
i,↓(r) = ψ−i,↑(r), ψ∗

i,↑(r) = ψ−i,↓(r). (152)

The energies of the wave functions ψi and ψ−i are related via
ε−i = −εi. Using Eq. (152), we can rewrite Eq. (151) in the
form

PC
(1q )[ψ] = det

(
(ψi,↑(r j ))q×q (−ψ∗

i,↓(r j ))q×q

(ψi,↓(r j ))q×q (ψ∗
i,↑(r j ))q×q

)
= det

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

ψ1,↑(r1) ψ2,↑(r1) . . . −ψ∗
1,↓(r1) −ψ∗

2,↓(r1) . . .

ψ1,↑(r2) ψ2,↑(r2) . . . −ψ∗
1,↓(r2) −ψ∗

2,↓(r2) . . .
...

...
. . .

...
...

. . .

ψ1,↓(r1) ψ2,↓(r1) . . . ψ∗
1,↑(r1) ψ∗

2,↑(r1) . . .

ψ1,↓(r2) ψ2,↓(r2) . . . ψ∗
1,↑(r2) ψ∗

2,↑(r2) . . .
...

...
. . .

...
...

. . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

.

(153)

It follows from the representation (153) that these determi-
nants are real and positive for any disorder realization. Indeed,
the matrix Mq[ψ] of wave-function amplitudes in Eq. (153)
inherits the particle-hole symmetry (152), yielding

σ2Mq[ψ]∗σ2 = Mq[ψ]. (154)

This implies that eigenvalues of Mq come in com-
plex conjugate pairs zi, z∗

i . Therefore the determinant
is given by det(Mq) = ∏

i |zi|2 and is thus real
and positive.

Let us discuss in more detail analogies and differences
between this construction and that for class A developed in
Ref. [4]. In the case of class A, the λ = (1q) pure-scaling
wave-function observables read PA

(1q )[ψ] = | det MA
q [ψ]|2,

where det MA
q [ψ] is the Slater determinant of a q × q matrix

MA
q [ψ] built on q wave functions at q distinct points. This de-

terminant is a complex number, and its absolute value squared
yields the sought λ = (1q) observable. On the other hand, in

class C, the matrix Mq has the size 2q × 2q; the doubling
reflects the presence of the spin index and of particle-hole
partner wave functions. Now, the Slater determinant itself has
a real positive value and provides the λ = (1q) wave-function
observable. In both cases of class A and class C, the Slater
determinant structure ensures the full antisymmetrization cor-
responding to the λ = (1q) Young diagram.

B. Pure-scaling property of PC
(1q )[ψ]: Mapping

to the sigma model

Now we provide a formal proof of the pure (1q) scaling
character of the wave-function combination PC

(1q )[ψ] defined
above. For this purpose, we expand the determinant (151)
using the Leibnitz formula and group the resulting (2q)! terms
into (2q)!! = 2qq! Pfaffians of 2q × 2q matrices Aq defined
below. From Ref. [5], we know that such Pfaffians satisfy pure
(1q) scaling.
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According to the Leibnitz formula, we have the following
expansion of Eq. (151):

PC
(1q )[ψ] =

∑
π∈S2q

sign(π )
q∏

i=1

ψπ (i),↑(ri )ψπ (−i),↓(ri ), (155)

where S2q is the permutation group for the set of integers
−q, . . . ,−1, 1, . . . , q. We define the bilinears Ai, j (r1) via

Ai, j (r1) = ψi,↑(r1)ψ j,↓(r1). (156)

In view of the particle-hole conjugation symmetry (152), these
bilinears satisfy the symmetry relation

Ai, j (r1) = −A∗
− j,−i(r1). (157)

We define now a 2q × 2q matrix A+···+
q [ψ] built out of

bilinears Ai, j :

A+···+
q [ψ] =

(
Aq,+− Aq,++
Aq,−− Aq,−+

)
(Aq,++)i j = Ai,q− j+1, (Aq,+−)i< j = Ai,− j, (Aq,−+)i< j = A−i, j,

(Aq,−−)i j = A∗
q− j+1,i, (Aq,+−)i> j = A∗

j,−i, (Aq,−+)i> j = A∗
− j,i.

(158)

This matrix has thus the following form:

A+···+
q [ψ] =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 A1,−2 A1,−3 . . . . . . A1,3 A1,2 A1,1

A∗
2,−1 0 A2,−3 . . . . . . A2,3 A2,2 A2,1

A∗
3,−1 A∗

3,−2 0 . . . . . . A3,3 A3,2 A3,1
...

...
...

. . . . .
. ...

...
...

...
...

... . .
. . . .

...
...

...

A∗
−3,−1 A∗

−3,−2 A∗
−3,−3 . . . . . . 0 A−3,2 A−3,1

A∗
−2,−1 A∗

−2,−2 A∗
−2,−3 . . . . . . A∗

−2,3 0 A−2,1

A∗
−1,−1 A∗

−1,−2 A∗
−1,−3 . . . . . . A∗

−1,3 A∗
−1,2 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (159)

Here we do not specify the coordinates (this will be done
below), i.e., all Ai, j are understood at this stage as functions
Ai, j : R2 → C. In view of Eq. (157), the matrix A+···+

q [ψ]
is antisymmetric. Further, we define a more generic matrix
A

s1···sq
q [ψ], with si = +,−. It is obtained from A+···+

q [ψ] by
flipping the sign of the index i (i.e., exchanging i ↔ −i) in the
right-hand side of Eq. (159) each time that we have si = −.
The Pfaffian of A

s1···sq
q [ψ] can be written as a homogeneous

polynomial of degree q with respect to the entries Ai, j . In
view of the antisymmetry property of A

s1···sq
q [ψ], the Pfaffian

can be expressed using only the entries in the upper triangle
of A

s1···sq
q [ψ]. Since all (2q − 1)!! terms in the Pfaffian are of

degree q, we can now assign to them the spatial arguments
r1, . . . , rq. The freedom that appears in this assignment is
not essential, since we will be only interested in the Pfaffian
symmetrized with respect to permutations of the coordinates.
The determinant in Eq. (155) can be now written as a sum of
Pfaffians of matrices A

s1···sq
q [ψ]:

PC
(1q )[ψ] =

∑
σ∈Sq

∑
s1,...,sq=±

Pf
(
A

s1...sq
q [ψ]

)
(rσ (1), . . . , rσ (q) ).

(160)

The summation here goes over 2q possible choices of the q
signs si and over q! permutations of the positions ri. Since
2qq!(2q − 1)!! = (2q)!, we have exactly the correct number
of terms (2q)! in the expansion of the determinant. For q =
1, 2, the identity (160) is easily checked by an explicit calcu-
lation. For arbitrary q, it can be proved by induction using the
row/column expansion of the Pfaffian and the determinant.

We use now the correspondence between the disorder-
averaged wave-function combinations and NLσM operators
derived in Ref. [5]; see Eqs. (275)–(281) there. Specifically,
the local bilinears Ai, j are in one-to-one correspondence with
the components Qi j of the rotated NLσM field Q. Using this
“translation dictionary”, we find that each of the Pfaffians of
Aq in Eq. (160) translates to a pure-scaling Pfaffian of the
rotated NLσM field Q, Eq. (148). This completes the proof
of the pure-scaling character of PC

(1q )[ψ].

C. Pure-scaling property of PC
(1q )[ψ]: Connection

to the correlators D(s)
(1q )

The Leibnitz representation (155) can also be used to es-
tablish a connection to the pure-scaling (1q) Green’s function
observables (149) derived in Sec. III using the supersymmetry
formalism. We introduce bilinears corresponding to Green’s
functions (without the energy denominator):

Gα,β (ri, r j ; a) ≡ ψa,α (ri )ψ
∗
a,β (r j )

= (−1)α+βψ∗
−a,−α (ri )ψ−a,−β (r j )

= (−1)α+βG−β,−α (r j, ri; −a). (161)

In analogy with Sec. IV B where it was convenient to consider
the bilinears Ai, j as functions R2 → C (i.e., without specify-
ing the spatial coordinate), here it is convenient to consider
bilinears Gσ,σ ′ (ri, r j ; ·) with given coordinates but without
specifying the wave-function (i.e., the energy) index, i.e. as
functions {1, . . . q} → C. We define an antisymmetric matrix
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of such bilinears:

G+···+
q [ψ] =

(
Gq,↑↓ Gq,↑↑
Gq,↓↓ Gq,↓↑

)
,

(Gq,↑↑)i j = G↑↑(ri, rq− j+1; ·), (Gq,↓↓)i j = −G↓↓(rq− j+1, ri; −·),
(Gq,↑↓)i< j = G↑↓(ri, r j ; ·), (Gq,↑↓)i> j = G↑↓(r j, ri; −·),
(Gq,↓↑)i< j = G↓↑(ri, r j ; ·), (Gq,↓↑)i> j = G↓↑(r j, ri; −·).

(162)

The Pfaffian of Pf(G+···+
q ) is a homogeneous polynomial

of order q that can be expressed using only the entries in the
upper triangle of Gq. Considering all possible assignments
of q energy indices in each of the (2q − 1)!! terms of the
Pfaffian, we will get a function ({1, . . . , q})q → C. The rele-
vant assignments are q! permutations of (1, . . . , q); in analogy
with permutations of coordinates in Sec. IV B, we will be
interested in the Pfaffian symmetrized over all of them. Thus,
again in analogy with Sec. IV B, the freedom in assignment of
the energy indices is immaterial. The determinant in Eq. (155)
can be written as a sum of 2qq! Pfaffians of matrices G

s1···sq
q [ψ]

over the q! permutations σ ∈ Sq of the energy indices 1, . . . , q
and over q spin indices si = ±:

PC
(1q )[ψ] =

∑
σ∈Sq

∑
s1,...,sq=±

Pf
(
G

s1···sq
q [ψ]

)
(σ (1), . . . , σ (q)).

(163)

Here G
s1···sq
q [ψ] is obtained from G+···+

q [ψ] by flipping the
spins at ri whenever si = −.

We can now classify the terms in the Pfaffian and re-
group them to recover expression structurally analogous to
Ds

λ. (It is worth mentioning that Ds
λ are composite objects

of Green’s functions and contain energy denominators not
present here. This difference however plays no role for the
symmetry classification.) We begin by focusing on the term
with the spin multiindex s1 . . . sq equal to + · · · +; other terms
are treated analogously and will be included afterwards. First,
note that among the (2q − 1)!! terms in the Pfaffian, there are
q! terms forming the determinant of the upper right sub-block
Gq,↑↑. These q! terms have all spins s1, . . . , sq up at positions
r1, . . . , rq, and each of them is associated, by virtue of the
Leibnitz formula, with a certain permutation τ ∈ Sq:

det(Gq,↑↑) = (−1)q+1
∑
τ∈Sq

sign(τ )
q∏

i=1

(Gq,↑↑)q−i+1,τ (i).

(164)

Let μ = (μ1, . . . , μn) denote the cycle lengths of τ ; the num-
ber of cycles is n ≡ l (μ). We can transform the sum into that
over the partitions μ � q labeling the cycle decomposition of
τ . In the determinant part of the Pfaffian, Eq. (164), there are
dμ terms corresponding to each μ, with dμ given by Eq. (110).

Now we include other terms from the Pfaffian, which
are not included in Eq. (164). The essential point is the μ-
dependent counting factor. Specifically, for each permutation
τ with l (μ) cycles, there are in total 2q−l (μ) terms in the
Pfaffian that differ in spin structure only, as we are going to
explain. Starting with the determinant term, we can obtain
other terms by flipping some of μk − 1 spins in the cycle k. To
clarify this, we use the row/column expansion of the Pfaffian

of an antisymmetric 2q × 2q matrix A,

Pf (A) =
2q∑
j=1
j �=i

(−1)i+ j+1+�(i− j)Ai jPf(Aı̂ ĵ ), (165)

where the index i is an arbitrary integer between 1 and 2q
and �(·) is the Heaviside step function. In each term in the
sum over j, we have to remove both i-th and j-th rows and
columns; the resulting 2(q − 1) × 2(q − 1) matrix is denoted
by Aı̂ ĵ . Using Eq. (165) recursively, one obtains an expansion
of the Pfaffian analogous to the Leibnitz formula for the de-
terminant.

Let τ ∈ Sq be a permutation with at least one nontrivial
cycle (of length larger than unity). Picking q pairs of integers
ik = k, jk = 2q − τ (k) (with k = 1, . . . , q) in the expansion
of the Pfaffian of A = G+···+

q generated by Eq. (165), we arrive
at the term in determinant (164) associated to τ . The same
permutation generates in total 2q−l (μ) terms in the Pfaffian,
where μ is the cycle class of τ . To make this clear, let us
focus on a segment s → t → u of one of the cycles, which
means that τ (s) = t and τ 2(s) = u. For example, a cycle of
length two would have u = τ 2(s) = s. In the above expansion
of the determinant part of the Pfaffian, we will have the corre-
sponding factors Ais js Aiτ (s) jτ (s) , with is = s, js = 2q − τ (s), and
iτ (s) = τ (s), jτ (s) = 2q − τ 2(s). If we start the recursion (165)
with these two steps, we will thus get a factor As,2q−t At,2q−u

(a product of two entries from the upper right block of the
matrix) and would be left with Aŝt̂ ̂2q−û2q−t to continue the
recursion.

Alternatively, we can take is = s, js = τ (s), and
iτ (s) = 2q − τ (s), jτ (s) = 2q − τ 2(s), giving us the factor
As,t A2q−t,2q−u, i.e., a product of two matrix elements from
the diagonal blocks. In either case, the rows and columns
s, t, 2q − t, 2q − u are deleted, so that we continue the
recursion with the matrix Aŝt̂ ̂2q−û2q−t . The second option
corresponds to picking the terms G↑↓(rs, rt ; ·)G↓↑(rt , ru; ·)
instead of G↑↑(rs, rt ; ·)G↑↑(rt , ru; ·), which effectively flips
the spin at position t . It is a simple exercise to verify
that the total sign picked up in the recursion is equal to
sign(τ ) = (−1)q−l (λ) in any path associated to τ chosen
through the recursion.

What we have just discussed is an elementary building
block for the procedure that allows us to construct the ex-
pansion for the Pfaffian from that for the determinant of the
upper right block of the matrix. For each cycle, there are 2μk−1

choices analogous to the above in the expansion, giving in
total 2q−l (μ) terms with different spin configurations in the
cycles originating from a permutation τ with cycle class μ,
as was stated above.

Hence, after the additional symmetrization over positions
and spin configurations [i.e. taking all A = G

s1···sq
q into ac-

count, see Eq. (163)], there are mμ = 2q−l (μ)dμ terms, each
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of which contributes an analog of D(s)
μ (r1, . . . , rq ) from

(116) but without energy denominators [we denote it by
D̃(s)

μ (r1, . . . , rq )]. Thus we obtain

PC
(1q )[ψ] =

∑
μ�q

(−2)q−l (μ)dμD̃(s)
μ (r1, . . . , rq ). (166)

This is the direct analog of Eq. (144) from Sec. III. As
was already pointed out below Eq. (145), the coefficients
(−2)q−l (λ)dλ appear also in NLσM RG analysis in Ap-
pendix B. The operator PC

(1q )[Q], which is the NLσM
counterpart of PC

(1q )[ψ], is given by the top row of the coeffi-
cient matrices in Eq. (B7). The functions D̃(s)

μ from Eq. (166)
map to the K-invariant operators Oμ, Eq. (B1), in the NLσM
formalism.

In summary, the (2q)! terms in the sum over S2q in the
left-hand-side of Eq. (166) [the Leibnitz expansion of the
determinant, Eq. (155)] are regrouped in the right-hand side in
accordance with the decomposition (2q)! = q! × 2q × (2q −
1)!!. Here the factor q! comes from the position symmetriza-
tion, the factor 2q from the spin traces, and the factor (2q −
1)!! is the total number of terms,

∑
μ mμ = (2q − 1)!!, in all

partitions μ � q.

D. Pure scaling combinations for generic λ

In Sec. IV A, we have defined wave-function observ-
ables PC

(1q )[ψ], Eq. (151), for the “vertical” partitions λ =
(1q). To demonstrate that they indeed exhibit the λ = (1q)
pure-scaling, we used in Sec. IV B the NLσM mapping.
Now we extend this construction to generic representations
characterized by abritrary (complex) highest weights λ =
(q1, q2, . . . , qn). To do this, we use the one-to-one map-
ping between the wave-function and the NLσM observables,
Sec. IV B, as well as the Abelian fusion property (150) of
the NLσM observables that have the form of Pfaffians of the
rotated NLσM field Q, as obtained in the Iwasawa decompo-
sition construction of Ref. [5].

For convenience, we introduce a short-hand notation for
the determinants (151):

fq = det(Mq[ψ]). (167)

We remind that these determinants are real and positive. Then,
using the Abelian fusion property (150), we obtain the fol-
lowing pure-scaling wave-function observable for an arbitrary
weight (an n-tuple of complex numbers) λ = (q1, . . . , qn):

PC
λ [ψ] = f q1−q2

1 f q2−q3
2 · · · f qn−1−qn

n−1 f qn
n . (168)

To construct the observable (168), we need n spatial points
r1, . . . , rn and n wave functions ψ j together with their
particle-hole-conjugation partners ψ− j , with j = 1, . . . , n.
The determinant fq with q � n is built using the first q
wave functions ( j = 1, . . . , q) and the first q spatial points
r1, . . . , rq.

The formula (168) has the same form as an analogous
expression for class A (derived in Ref. [4]), with the difference
in the building block fq [corresponding to λ = (1q)] discussed
in the end of Sec. IV A. Our preliminary results indicate that,
when taken together, two constructions (that for class A from
Ref. [4]) and the one for class C derived here) permit to

describe pure-scaling eigenfunction observables in all sym-
metry classes. Specifically, for five spinless classes A, AI,
AIII, BDI and D, the class-A construction from Ref. [4]
applies. On the other hand, the other five classes AII, C,
CII, CI, DIII possess a (pseudo)spin in the sense that they
obey either the time-reversal symmetry T with T 2 = −1 or
the particle-hole symmetry P with P2 = −1 and, therefore,
exhibit Kramers degeneracy (at zero energy). In this situation,
the pure-scaling wave-function construction developed here is
applicable. We leave a detailed investigation of other symme-
try classes to a future work, see also the outlook in Sec. VI.

In Sec. V, we will verify the construction of pure-scaling
wave-function observables developed above by means of nu-
merical simulations on an SU(2) version of the CCN model.
This will allow us to efficiently determine numerical values
of the generalized-multifractality exponents at the SQH tran-
sition.

V. SU(2) CHALKER-CODDINGTON NETWORK
NUMERICS

In this section, we determine the generalized-multifracality
exponents at the SQH transition numerically, using strictly
positive pure-scaling wave-function observables constructed
in Sec. IV, see Eqs. (151) and (168). For numerical simula-
tions, we use the SU(2) version of the Chalker-Coddington
network (CCN) [22]. Network models of the CCN type have
been efficiently exploited for numerical studies of 2D lo-
calization transitions of various symmetry classes, see the
reviews [2,23]. We study ensembles of systems of linear sizes
L = 64, 96, . . . , 1024, with 104 disorder realizations for each
linear system size L. All observables are averaged both spa-
tially over all points of the system (∼L2) and over all disorder
realizations in the ensemble (104). Thus the total number of
values over which the average is taken ranges from ∼108 for
smaller systems to ∼1010 for the largest systems. In Fig. 6,
we show the wave-function pure-scaling observables given
by Eqs. (151) and (168) as functions of r/L, where r is the
distance between the points and L the system size. The cor-
responding slopes (in the double-logarithmic scale) determine
the generalized-multifractality scaling dimensions xλ of the
SQH transition. The four panels display the data for Young
diagrams λ with q = |λ| equal to 2 (top left), 3 (top right), 4
(bottom left), and 5 (bottom right).

For an observable of order q, we need up to q distinct wave
functions ψi (with positive energies) at q spatial positions
r1, . . . rq. (Since q � 5 in our simulations, we need at most
five eigenstates.) We choose these eigenstates to be the ones
with (positive) energies closest to zero. The configurations of
points ri are chosen in such a way that all pairwise distances
are approximately the same, ∼ r. In the case q = 2, we have
two points r1 and r2 with |r1 − r2| = r. In the case of higher
q, there are many possible choices; we stick to the following
geometries. For q = 3, we choose the points to form approx-
imately equilateral triangles (the approximation is necessary
because the links of the network model form a square lattice),
while for q = 4, we use corners of squares as the four points.
In the q = 5 case, the r1, . . . , r4 are chosen to form a square
with r5 located in the center of that square. We restrict the
distances to r < 10. In combination with the choice of the
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FIG. 6. Numerical determination of the generalized-multifractality exponents at the SQH transition by SU(2) Chalker-Coddington
network (CCN) simulations of pure scaling wave-function observables, Eqs. (151) and (168). Ensembles of systems of linear sizes L =
64, 96, . . . , 1024 with 104 disorder configurations for each length L are studied. All observables are averaged over ∼L2 spatial points and over
104 disorder realizations. Each of the four panels shows data for all Young diagrams λ in a given order q = |λ|, including q = 2 (top left), q = 3
(top right), q = 4 (bottom left), and q = 5 (bottom right). The spatial arguments ri in the wave-function observable are chosen to be separated
by approximately the same distance r. The data are scaled by a factor r�q1 +···+�qn , which ensures the collapse of the data with different r onto
a single line ∼(r/L)�λ . The data corresponding to the smallest distance r for each combination are highlighted as bold data points. These bold
data points are used in the fit to extract the scaling exponent. Solid lines are fits to the highlighted small-r data points, whereas dashed lines
are predictions from the percolation theory (whenever available). For q = 4, the dotted lines represent numerical results obtained earlier in
Ref. [5] by an alternative (less general) numerical approach. Scaling exponents obtained numerically in the present work are summarized in
Table II, see the column xqn

λ . They are also compared there with analytical predictions of the percolation theory, with percolation numerics,
and with previous numerical results of Ref. [5] (whenever available).

eigenstates as those with the energies closest to zero, this
ensures that we stay at criticality.

The data points shown in Fig. 6 are scaled by a factor
r�q1 +···+�qn . As expected, upon this rescaling, there is an ex-
cellent collapse of data with different r for every λ onto a
single line corresponding to a power-law scaling with r/L.
The slope of this line is �λ; from it we obtain xλ according to
Eq. (12).

The data for smallest possible distance r ∼ 1 for each λ

are highlighted as bold data points. These data points are used
for the fit (solid lines) to extract the scaling exponent. The
dashed lines represent slopes predicted by the mapping to
percolation (whenever it applies) and the analysis of scaling of

the resulting classical expressions, see Sec. II C. An excellent
agreement between the analytical and numerical results is
evident.

The results for the generalized-multifractality exponents
at the SQH transition for wave-function observables with
q ≡ |λ| � 5, as obtained by various methods, are summarized
in Table II. In the column xqn

λ the values found by the CCN
numerics are shown (here the superscript “qn” stands for
“quantum numerics”). The column xperc

λ presents the exact an-
alytical results obtained by mapping to percolation in Sec. II C
(for those λ, for which this mapping can be constructed), and
the column xcn

λ the corresponding numerics from Sec. II D
(with “cn” standing for “classical numerics”). The agreement
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between the CCN numerics and the percolation predictions
is very impressive, especially taking into account that we
proceed up to such large q as q = 5.

To characterize the precision of our CCN numerics, we
have determined statistical error bars for the exponents xqn

λ ,
see Appendix C for detail. The obtained standard deviation σλ

of xqn
λ is as small as σλ ≈ 0.001 for λ = (1, 1), (2), and (13).

For the other two q = 3 exponents, we found an excellent
precision as well: σ(2,1) ≈ 0.002 and σ(3) ≈ 0.004. For q = 4
exponents, the standard deviation ranges from σ(14 ) ≈ 0.005
to σ(4) ≈ 0.02, and for q = 5 exponents from σ(15 ) ≈ 0.01
to σ(5) ≈ 0.04. In nearly all the cases when there are exact
analytical results for the exponents xλ (column xperc

λ in Ta-
ble II), the numerical values xqn

λ agree with xperc
λ within the

2σλ interval. Such an excellent agreement is rather remark-
able, especially in view of the small values of the statistical
uncertainty σλ. The only exception when the deviation is a few
times larger then 2σλ is the exponent x(15 ). We attribute this to
somewhat enhanced systematic errors, presumably related to
very small values of the corresponding correlation function
(∼10−15 for the largest L in Fig. 6). Let us note that also for
this exponent a relative deviation from the exact result is very
small: xqn

(15 ) = 8.16 instead of xperc
(15 ) = 33/4 = 8.25, i.e., just a

1% deviation.
We have also included in Table II results of quantum

numerical simulations performed in Ref. [5]. There, two
complementary numerical approaches were used; one using
class-A combinations formed with one spin component ψ↑
and another one using observables involving the total den-
sity of spin up and down, |ψ | = √|ψ↑|2 + |ψ↓|2. Both these
approaches yield strictly positive observables; however, they
are not of pure-scaling nature and allowed us to obtain only a
subclass of the scaling exponents [see Eq. (B9) in Appendix B
and a discussion below it for explanations with respect to
the first of these approaches]. The corresponding columns
in Table II are denoted by xqn,A↑

λ and xqn,|ψ |
λ , respectively.

There is a good agreement between these numerical results
(when available) and those of the present work. The CCN
numerics of the present work (xqn

λ ), which is based on the
construction of Sec. IV, is clearly superior in comparison with
the approaches of Ref. [5] since it permits to study the scaling
of pure-scaling observables for any representation λ and with
a high numerical precision.

Summarizing, all our numerical and analytical results for
the exponents are in excellent agreement with each other.
It is also worth emphasizing that the obtained values of the
exponents fully agree with the exact Weyl symmetry relations:
x(1) = x(2), x(3) = x(0) ≡ 0, x(1,1) = x(2,1), x(13 ) = x(2,1,1), and
x(14 ) = x(2,13 ).

Finally, let us discuss a comparison between the
generalized-multifractality spectrum of the SQH transition
and the parabolic ansatz

xpara
λ = b[q1(3 − q1) + q2(7 − q2) + q3(11 − q3) + . . .].

(169)
The analytically known values of the exponents x(1) = x(2) =
1/4 and x(3) = 0 agree with xpara

λ with b = 1/8. The cor-
responding “parabolic” values xpara

λ are given in the last
column of Table II. Numerical studies of the leading mul-
tifracatlity spectrum x(q) in Ref. [10], and more recently in

Ref. [24], showed relatively small but significant deviations
from parabolicity. In Ref. [5], we have presented numerical
evidence of a strong violation of generalized parabolicity
in the subleading multifractal spectrum (in particular, in the
value of x(1,1)). Here we have shown that the strong violation
of generalized parabolicity is manifest in the analytical results
(within the percolation mapping) and nicely confirmed by an
efficient quantum SU(2) CCN numerics as well as by the
classical percolation numerics. In particular, we have derived
an exact analytical result x(1,1) = 5/4, whereas the parabolic-
ity assumption would give x(1,1) = 1. Similarly, we have an
exact analytical value x(13 ) = 35/12, while the “parabolic”
value would be xpara

(13 ) = 9/4, and so on. The violation of the
generalized parabolicity implies [5] that the local conformal
invariance does not hold at the SQH critical point.

VI. CONCLUSIONS

In this paper, we have studied the generalized multifrac-
tality at the SQH transition, which is a counterpart of the
conventional integer QH transition for superconducting sys-
tems. The key findings of the paper are as follows.

(1) By using two complementary approaches, we have
developed in Secs. II B and III a percolation mapping for a
subset of eigenfunction correlation functions. This includes
all correlation functions up to the order q = 3 as well as
the “most subleading” λ = (1q) observables for any integer
q = |λ|. Employing this mapping, we have found analytically
the SQH generalized-multifractality exponents x(1), x(2), x(1,1),
x(3), x(2,1), and x(13 ) in Sec. II C, as well as x(1q ) in Sec. III C.
They are all expressed in terms of the scaling dimensions xh

n
of n-hull operators known from classical percolation theory.
These analytical results are supported by numerical simula-
tions of percolation expressions in Sec. II D.

(3) In Sec. IV, we have derived a general form of
wave-function observables that are positive in any disorder
realization and exhibit the pure scaling upon disorder aver-
aging. This construction holds for a generic representation
λ = (q1, q2, . . . , qn), with arbitrary qi (that do not need to be
integer, and in general can be also complex) and permits an ef-
ficient numerical evaluation of exponents xλ. Using a network
model in class C, we have numerically determined in Sec. IV
all exponents corresponding to polynomial pure-scaling ob-
servables up to the order q = 5. An excellent agreement
between the numerical and the analytical results has been
found (for those λ for which the analytical results via the per-
colation mapping were derived). The obtained analytical and
numerical values of the generalized-multifractality exponents
are summarized in Table II.

Numerical simulations in Ref. [5] provided evidence
of a strong violation of generalized parabolicity of the
generalized-multifractality spectrum of the SQH transition.
Here, the analytical results based on the percolation mapping
unambiguously demonstrate this violation. This conclusion
is also fully supported by the advanced numerical simula-
tions. Therefore local conformal invariance is violated in SQH
critical systems. This excludes any theories with local confor-
mal invariance—in particular, Wess-Zumino-Novikov-Witten
models—as candidates for the fixed-point theory of the SQH
transition.
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The following question may arise at this point. The 2D
percolation-transition critical point obeys the local conformal
invariance. So, is the mapping to percolation not in conflict
with the violation of local conformal invariance at the SQH
criticality? The answer becomes clear if one recalls the status
of this mapping. Indeed, the mapping to percolation holds
only for a discrete subset of multi-indices λ characterizing the
observables. These correlation functions should thus exhibit
local conformal invariance. However, they represent only a
tiny sector of the whole SQH critical theory, for which the
local conformal invariance does not hold.

Another interesting question is whether our results have
any implications for the conjecture [25,26] that the energy-
perturbed Wess-Zumino-Novikov-Witten theory describing
finite-energy states on a surface of a class-CI topological
insulator flows into the fixed point of the SQH transition. Our
findings do not invalidate this conjecture, since the energy
perturbation explicitly breaks the conformal invariance of the
Wess-Zumino-Novikov-Witten model.

Before closing, we briefly mention a few prospects for fu-
ture research; the work in some of these directions is currently
underway.

(1) The analysis of generalized multifractality in this paper
(both analytical and numerical) can be extended to surfaces
of SQH critical systems. The surface multifractality in the
conventional setting (LDOS moments) at this critical point
has been studied in Ref. [12]. Interestingly, it was found
that the surface multifractality is affected by the presence of
topological boundary modes [27]. We expect that the surface
generalized multiftactality may serve as an additional useful
hallmark of the critical theory.

(2) The construction of pure-scaling eigenfunction observ-
ables developed in Sec. IV can be extended to other symmetry
classes; see a discussion at the end of Sec. IV. This will permit
a numerical investigation of the generalized multifractality at
other Anderson localization critical points. One of intrigu-
ing questions in this context is whether the violation of the
generalized parabolicity (and thus of the local conformal in-
variance) applies also to other 2D critical points. In particular,
we envision the investigation of generalized multifractality at
the following 2D critical points.

(i) Classes AII, DIII, and D exhibit weak antilocalization
and, as a result, host in two dimensions extended metallic
phases as well as metal-insulator transitions [28–35].

(ii) In the chiral classes AIII, BDI, and CII, there is the
Gade-Wegner critical-metal phase [36,37] characterized by
strong multifractality. Furthermore, these systems undergo a
metal-insulator transition [38–40].

(iii) It was recently discovered that stacks of critical states
generically emerge at finite energy on surfaces of topological
superconductors [25,41,42].

(3) The percolation mapping has allowed us to get exact
values of the exponents characterizing the scaling of the ob-
servables with q = |λ| � 3. While we know from the SQH
sigma-model analysis that these are pure-scaling observables,
it might be interesting to have a proof of this based solely
on the percolation mapping, see discussions in the end of
Sec. II C 3 and Sec. II C 4. The full spectrum of operators and
their fusion rules for the CFT of two-dimensional percolation
are not known at present, though very promising results have

been recently obtained in Refs. [43] and [44]. Future analyses
may give complete fusion rules for the hull operators and,
thereby, the full scaling content of the percolation probabil-
ities beyond the leading scaling. Perhaps, the RG analysis of
the pure scaling operators that can be expressed in terms of
percolation probabilities, done in this paper, can help with this
effort.
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APPENDIX A: DETAILS OF THE PERCOLATION
MAPPING

1. Mapping for q = 2

a. Correlator D(2)

One of the contributions entering Eq. (8) in Sec. II A (with
z = w) is straightforwardly evaluated within the percolation
mapping:

〈
Tr(G(r1, r2; z)G(r2, r1; z))

〉 = −2
∞∑

N=1

p(r1, r2; N )z2N .

(A1)

Since r1 and r2 are distinct, there is no contribution from
the unit operator as above. The factor 2 is because there
are two pairs of paths that contribute: either one path goes
r1 ← r2 ← r1 ← r2 picking up the factor z2N−Nr2r1 and the
second path r2 ← r1 picking up zNr2r1 , or vice versa, see the
upper configuration in Fig. 1(c). Further, using Eq. (3), we get

〈
Tr(G(r1, r2; z−1)G(r2, r1; z−1))

〉 = −2
∞∑

N=1

p(r1, r2; N )z2N .

(A2)

Finally, the remaining terms yield

〈
Tr(G(r1, r2; z)G(r2, r1; z−1))

〉 = −2
∞∑

N=1

p1(r1, r2; N )z2N ,

〈
Tr(G(r1, r2; z−1)G(r2, r1; z))

〉 = −2
∞∑

N=1

p1(r1, r2; N )z2N ,

(A3)

and an analogous term with interchanged r1 and r2, as il-
lustrated by the lower configuration in Fig. 1(c). To prove
Eq. (A3), we use, following Ref. [10], an invariance argument
based on explicit averages over the link SU(2) marices. For
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this purpose, consider first〈
Tr(G(r1, r2; z)G(r1, r2; z))

〉
=

∫
SU(2)

dμ(Ur1 )dμ(Ur2 )
〈
Tr(U †

r1

× G(r1, r2; z)Ur2U
†
r1

G(r1, r2; z)Ur2 )
〉
. (A4)

To perform the averaging over the SU(2) random variables Ur1

and Ur2 , we use the identity∫
SU(2)

dμ(U )UαβUγ δ = 1

2
δαβδγ δ − 1

2
δαδδγβ . (A5)

This yields

〈Tr[G(r1, r2; z)G(r1, r2; z)]〉=−〈TrG(r1, r2; z)TrG(r1, r2; z)〉.
(A6)

Further, we can express G(r2, r1, z−1) in terms of G(r1, r2, z)
using Eqs. (3) and (4):

G(r2, r1, z−1) = 1(r2, r1) − [G(r2, r1, z∗)]†

= 1(r2, r1) + (iσ2)[G(r1, r2, z∗)]T (iσ2).
(A7)

This implies (we can drop the identity 1, since r1, r2 are
distinct)

〈Tr
[
G(r1, r2, z)G(r2, r1, z−1)

]〉
= 〈

Tr
{
G(r1, r2, z)(iσ2)[G(r1, r2, z)]T (iσ2)

}〉
= −〈Tr[G(r1, r2; z)G(r1, r2; z)] − [TrG(r1, r2; z))]2〉
= −2〈Tr(G(r1, r2; z)G(r1, r2; z))〉. (A8)

Here we used the identity

(iσ2)i j (iσ2)kl = δi jδkl − δilδk j, (A9)

and Eq. (A6). This proves Eq. (A3).
Combining the individual contributions from Eqs. (A1)–

(A3), we obtain Eq. (26) of Sec. II B 2.

b. Correlator D(1,1)

The results for the individual terms read [the corresponding
path configurations are illustrated in Fig. 1(b)]:

〈TrG(r1, r1; z)TrG(r2, r2; z)〉 = 4 − 4
∞∑

N=1

p(s)(r1; N )z2N +
∞∑

N,N ′=1

p(r1; N |r2; N ′)z2(N+N ′ ) +
∑

N

p(r1, r2; N )z2N ,

〈TrG(r1, r1; z)TrG(r2, r2; z−1)〉 = 2
∞∑

N=1

p(r2; N )z2N −
∞∑

N,N ′=1

p(r1; N |r2; N ′)z2(N+N ′ ) −
∑

N

p(r1, r2; N )z2N ,

〈TrG(r1, r1; z−1)TrG(r2, r2; z−1)〉 =
∑

N

p(r1, r2; N )z2N +
∞∑

N,N ′=1

p(r1; N |r2; N ′)z2(N+N ′ ). (A10)

[There is also a counterpart of the second term in Eq. (A10) with interchanged coordinates r1 and r2.] Here the superscript (s)
again denotes symmetrization with respect to the links r1, r2:

2p(s)(r1; N ) = p(r1; N ) + p(r2; N ). (A11)

It is easy to see that all terms in the right-hand-side of equations (A10) are symmetric with respect to the interchange r1 ↔ r2, so
that the full percolation expression for D(1,1) explicitly possesses this symmetry (which immediately follows from the definition
of D(1,1)).

Combining the individual contributions from Eq. (A10), we obtain Eq. (28) of Sec. II B 2.

2. Mapping for q = 3

In this Appendix, we provide intermediate formulas for the percolation mapping of q = 3 correlation functions, Sec. II B 3.
Specifically, we present the results of the percolation mapping for individual terms resulting from the definition of the correlation
functions. Configurations of paths yielding these contributions are shown in Fig. 7.

a. Correlator D(3)

For the individual terms entering Eq. (30), the percolation mapping yields

〈Tr[G(r1, r2; z)G(r2, r3; z)G(r3, r1; z)]〉 = −
∑

N

[3p(r1, r2, r3; N ) + p(r3, r2, r1; N )]z2N ,

〈Tr[G(r1, r2; z−1)G(r2, r3; z−1)G(r3, r1; z−1)]〉 =
∑

N

[p(r1, r2, r3; N ) + 3p(r3, r2, r1; N )]z2N ,

〈Tr[G(r1, r2; z)G(r2, r3; z)G(r3, r1; z−1)]〉 = −2
∑

N

p1(r1, r2, r3; N )z2N ,

〈Tr(G(r1, r2; z)G(r2, r3; z−1)G(r3, r1; z))〉 = −2
∑

N

p1(r3, r1, r2; N )z2N ,
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FIG. 7. Schematic representation of path configurations yielding individual contributions within the percolation mapping for the q = 3
correlation functions presented in Appendix A 2 [Eqs. (A12)–(A14)]. Paths corresponding to each Green’s function are shown by the color
corresponding to the line underlining this Green’s function. When a path traverses a segment of the loop for the second time, it is shown by a
dashed line. Only contributions containing explicitly all three points r1, r2, and r3 are shown. In addition, there are contributions originating
from unity terms in the expansion of some of the Green’s functions G(ri, ri; z), see Eqs. (A13) and (A14).

〈Tr[G(r1, r2; z−1)G(r2, r3; z)G(r3, r1; z)]〉 = −2
∑

N

p1(r2, r3, r1; N )z2N ,

〈Tr[G(r1, r2; z−1)G(r2, r3; z−1)G(r3, r1; z)]〉 = 2
∑

N

p1(r3, r2, r1; N )z2N ,

〈Tr[G(r1, r2; z−1)G(r2, r3; z)G(r3, r1; z−1)]〉 = 2
∑

N

p1(r2, r1, r3; N )z2N ,

〈Tr[G(r1, r2; z)G(r2, r3; z−1)G(r3, r1; z−1)]〉 = 2
∑

N

p1(r1, r3, r2; N )z2N . (A12)

The first two equations correspond to the diagrams in the upper panel (i) of Fig. 7(c). The factor of three in front of
p(r1, r2, r3; N )z2N in the first term is related to three distinct ways one can traverse a loop r1 ← r2 ← r3 ← r1 exactly twice,
as shown in the figure. The rightmost diagram gives the contribution p(r1, r3, r2; N )z2N originating from a loop with a reverse
orientation, r1 ← r3 ← r2 ← r1. The remaining six equations in Eq. (A12) correspond to the diagram shown in the lower
panel (ii) of Fig. 7(c). Here, only a part of the loop between r2 ← r3 ← r1 is traversed, which is related to the probability
p1(r1, r2, r3; N )z2N specifying the length Nr1,r3 = N of that segment. Adding up the individual contributions from Eq. (A12),
we get Eq. (33) of Sec. II B 3.

b. Correlator D(2,1)

For the correlation function (31), the individual terms are mapped onto percolation expressions as follows:

〈Tr[G(r1, r2; z)G(r2, r1; z)]TrG(r3, r3; z)〉 =
∑

N

[p(r1, r2, r3; N ) + p(r1, r3, r2; N )]z2N

+ 2
∑
N,N ′′

p(r1, r2; N |r3; N ′′)z2N z2N ′′ − 4
∑

N

p(r1, r2; N )z2N ,

〈Tr[G(r1, r2; z−1)G(r2, r1; z−1)]TrG(r3, r3; z)〉 =
∑

N

[p(r1, r2, r3; N ) + p(r1, r3, r2; N )]z2N

+ 2
∑
N,N ′′

p(r1, r2; N |r3; N ′′)z2N z2N ′′ − 4
∑

N

p(r1, r2; N )z2N ,

〈Tr[G(r1, r2; z)G(r2, r1; z)]TrG(r3, r3; z−1)〉 = −
∑

N

[p(r1, r2, r3; N ) + p(r1, r3, r2; N )]z2N

− 2
∑
N,N ′′

p(r1, r2; N |r3; N ′′)z2N z2N ′′
,
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〈Tr[G(r1, r2; z−1)G(r2, r1; z−1)]TrG(r3, r3; z−1)〉 = −
∑

N

[p(r1, r2, r3; N ) + p(r1, r3, r2; N )]z2N

− 2
∑
N,N ′′

p(r1, r2; N |r3; N ′′)z2N z2N ′′
,

〈Tr[G(r1, r2; z)G(r2, r1; z−1)]TrG(r3, r3; z)〉 = 2
∑
N,N ′′

p1(r1, r2; N |r3; N ′′)z2N z2N ′′ − 4
∑

N

p1(r1, r2; N )z2N ,

〈Tr[G(r1, r2; z−1)G(r2, r1; z)]TrG(r3, r3; z)〉 = 2
∑
N,N ′′

p1(r2, r1; N |r3; N ′′)z2N z2N ′′ − 4
∑

N

p1(r2, r1; N )z2N ,

〈Tr[G(r1, r2; z)G(r2, r1; z−1)]TrG(r3, r3; z−1)〉 = −2
∑
N,N ′′

p1(r1, r2; N |r3; N ′′)z2N z2N ′′
,

〈Tr[G(r1, r2; z−1)G(r2, r1; z)]TrG(r3, r3; z−1)〉 = −2
∑
N,N ′′

p1(r2, r1; N |r3; N ′′)z2N z2N ′′
. (A13)

The contributions in the first four equations correspond to the diagrams shown in the panel (i) of Fig. 7(b). There are two
types of these diagrams. One possibility is that all points belong to the same loop, yielding the term p(r1, r2, r3; N )z2N for
the loop orientation r1 ← r2 ← r3 ← r1 and the term p(r1, r3, r2; N )z2N for the opposite orientation, r1 ← r3 ← r2 ← r1.
Alternatively, the points r1, r2 may belong to one loop, and r3 to a distinct loop. In that case, we get two contributions giving
p(r1, r2; N |r3; N ′′)z2N z2N ′′

each.
For the last four equations of Eq. (A13), the diagrams of relevant paths are shown in the panel (ii) of Fig. 7(b). Here,

configurations with a loop through r1, r2 and a distinct loop containing r3 contribute. Since only a part of the r1, r2-loop is
traversed, the probabilities p1(r2, r1; N |r3; N ′′)z2N z2N ′′

and p1(r1, r2; N |r3; N ′′)z2N z2N ′′
appear under the sum.

For those correlation functions in Eq. (A13) that contain G(r3, r3; z), there are additional contributions in the right-hand-side
that do not contain explicitly r3. These contributions originate from the unity term in the expansion of the Green’s function
G(r3, r3; z), in analogy with Eq. (A10) for D(1,1).

Combining the individual contributions from Eq. (A13), we obtain Eq. (37) of Sec. II B 3.

c. Correlator D(13 )

For the correlation function (32), the percolation mapping yields for individual terms:

〈TrG(r1, r1; z)TrG(r2, r2; z)TrG(r3, r3; z)〉
= 23 − 22

∑
N

[p(r1; N ) + p(r2; N ) + p(r3; N )]z2N

+ 2
∑
NN ′

[p(r1; N |r2; N ′) + p(r1; N |r3; N ′) + p(r2; N |r3; N ′)]z2N z2N ′

+ 2
∑

N

[p(r1, r2; N ) + p(r2, r3; N ) + p(r1, r3; N )]z2N −
∑

NN ′N ′′
p(r1; N |r2; N ′|r3; N ′′)z2N z2N ′

z2N ′′

−
∑
NN ′

[p(r1, r2; N |r3; N ′) + p(r1, r3; N |r2; N ′) + p(r2, r3; N |r1; N ′)]z2N z2N ′
,

〈TrG(r1, r1; z)TrG(r2, r2; z)TrG(r3, r3; z−1)〉
= 22

∑
N

[p(r3; N )]z2N − 2
∑
NN ′

[p(r1; N |r3; N ′) + p(r2; N |r3; N ′)]z2N z2N ′

− 2
∑

N

[p(r1, r2; N ) + p(r1, r3; N ) + p(r1, r3; N )]z2N +
∑

NN ′N ′′
p(r1; N |r2; N ′|r3; N ′′)z2N z2N ′

z2N ′′

+
∑
NN ′

[p(r1, r2; N |r3; N ′) + p(r1, r3; N |r2; N ′) + p(r2, r3; N |r1; N ′)]z2N z2N ′
,

〈TrG(r1, r1; z)TrG(r2, r2; z−1)TrG(r3, r3; z−1)〉
= 2

∑
NN ′

p(r2; N |r3; N ′)z2N z2N ′ + 2
∑

N

p(r2, r3; N )z2N −
∑

NN ′N ′′
p(r1; N |r2; N ′|r3; N ′′)z2N z2N ′

z2N ′′

−
∑
NN ′

[p(r1, r2; N |r3; N ′) + p(r1, r3; N |r2; N ′) + p(r2, r3; N |r1; N ′)]z2N z2N ′
,
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〈TrG(r1, r1; z−1)TrG(r2, r2; z−1)TrG(r3, r3; z−1)〉
=

∑
NN ′N ′′

p(r1; N |r2; N ′|r3; N ′′)z2N z2N ′
z2N ′′ +

∑
NN ′

[p(r1, r2; N |r3; N ′) + p(r1, r3; N |r2; N ′) + p(r2, r3; N |r1; N ′)]z2N z2N ′
. (A14)

Diagrams showing the corresponding paths are presented in
Fig. 7(a). There are two types of these diagrams. One possi-
bility is that all three points are in distinct loops loop, yielding
p(r1; N |r2; N ′|r3; N ′′)z2N z2N ′

z2N ′′
(rightmost diagram in this

panel). Alternatively, there are three partitions of the points in
two distinct loops (other diagrams in this panel). In that case,
we get three contributions giving p(r1, r2; N |r3; N ′′)z2N z2N ′′

and cyclic permutations thereof.
In addition, the right-hand-sides of the formulas in

Eq. (A14) contain contributions that do not contain explic-
itly one or several of the arguments r1, r2, and r3. These
contributions originate from the unity term in the expansions
of the Greeen’s functions G(r1, r1; z), G(r2, r2; z), and/or
G(r3, r3; z).

Adding up the individual contributions from Eq. (A14), we
obtain Eq. (40) of Sec. II B 3.

APPENDIX B: NLσM RG IN K-INVARIANT BASIS

In this Appendix, we collect some of key results of the RG
analysis within the NLσM framework from Ref. [5], which
are used in the present paper or have a direct connection to it.
In Ref. [5], we have studied the RG flow of composite opera-
tors defined on NLσM symmetric spaces G/K corresponding
to symmetry classes A and C. These RG equations can be
conveniently written in a K-invariant basis. For both classes
A and C, this basis can be labeled by integer partitions λ =
(q1, . . . , qn) of q with q1 � · · · � qn, where qi are positive
integers and

∑
i qi = q. Elements of this basis have the form

Oλ ≡ O(q1,...,qn ) =
n∏

i=1

tr((�Q)qi ), (B1)

where Q is NLσM field, � is the “origin” of the NLσM
manifold, and tr is the trace over all indices of Q. The integers
q j label the lengths of the n cycles of �Q strings over which
the traces are taken.

For q = 2, there are two basis operators, with λ = (1, 1)
and (2). In a one-loop RG operation δA/C (integrating out a
fast momentum shell), two fast fields originating from either
different Q-fields or the same Q-field are contracted. This
contraction gives a loop integral factor (−2I f ) and can glue
the �Q-strings together or cut them apart:

δA

(
tr(AQ)tr(BQ)

tr(AQBQ)

)
= −2I f

(
0 −1

−1 0

)
︸ ︷︷ ︸

=:MA
2

(
tr(AQ)tr(BQ)

tr(AQBQ)

)
,

δC

(
tr(AQ)tr(BQ)

tr(AQBQ)

)
= −2I f

(
2 −2

−1 3

)
︸ ︷︷ ︸

=:MC
2

(
tr(AQ)tr(BQ)

tr(AQBQ)

)
.

(B2)

Setting here A = B = � yields the RG flow for the K-
invariant operators (B1) for q = 2.

It was further shown in Ref. [5] how the one-loop RG
flow for polynomial operators of degree q can be obtained
from the q = 2 flow, with Eq. (B2) used as a building
block. A convenient formalism to extract the action RG on
a generic polynomial operator is as follows. We identify
the K-invariant operators Oλ with polynomials, by rewriting
λ = (1m1 , 2m2 , . . . , kmk , . . .) in terms of cycle lengths k and
multiplicities mk . The monomial associated to Oλ is then
Xλ = ∏

k xmk
k . The one loop RG operators have a very simple

form in this basis:

DA =
∑
j<i

jxi− jx j∂i + 1

2

∑
i, j

i jxi+ j∂i∂ j, (B3)

DC =
∑
j<i

jxi− jx j∂i +
∑
i, j

i jxi+ j∂i∂ j −
∑

i

i(i + 1)

2
xi∂i,

(B4)

where ∂i ≡ ∂/∂xi. Below, we briefly comment on the origin
of different terms in these differential operators.

a. Class A. The first term in Eq. (B3) describes cutting a
cycle of length i into two cycles of length j and i − j. Here,
the derivative removes one factor xi and yields a factor mi,
corresponding to the fact that this can happen to any of the mi

cycles of length i. The multiplication by x jxi− j corresponds
to the appearance of two cycles with the lengths j and i − j.
In total, there are i = j + (i − j) realizations of such a cut.
The second (quadratic with respect to the derivatives) term in
Eq. (B3) describes the fusion of cycles of length i and j into a
cycle of length i + j. Here, the derivatives remove one cycle
of length i and one of length j, while the multiplication by xi+ j

adds one cycle of the corresponding length. In total, there are
i j channels for this process: the first fast field can come from
each of the i Q fields in the cycle of length i, and the second
one from each of the j Q fields in the cycle of length j.

b. Class C. Again, the first term in Eq. (B4) describes
cutting a cycle of length i into two cycles of lengths j and
i − j. In total, there are i = j + (i − j) realizations of such
a cut. The second (quadratic with respect to the derivatives)
term in Eq. (B4) describes the fusion of cycles of length i and
j into one of length i + j. There is an additional factor of two
here in comparison to class A, as is clear from the inspection
of the formulas (B3) and (B4) for the q = 2 case. Finally,
the last term in Eq. (B4) is due to contractions of fast fields
originating from (i) the same Q (as in the renormalization of
the average LDOS) and (ii) from distinct Q fields in a cycle of
length i preserving the cycle.

We note that both differential operators DA and DC pre-
serve the degree q = ∑

k kmk of the composite operator. We
can therefore restrict them to a sector of the theory with a
given q = |λ|. Then we have

DA

∑
λ

aλXλ =
∑
λ,μ

aλ(MA
q )λ,μXμ,

DC

∑
λ

aλXλ =
∑
λ,μ

aλ(MC
q )λ,μXμ, (B5)
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with matrices MA
q and MC

q describing the renormalization of
operators of degree q. If we consider (B5) as equations de-
scribing the action of the RG operators DA/C on vectors of
the coefficients aλ, this action is clearly characterized by the
transposed matrix (MA/C

q )T .

Once the matrices (MA
q )T are found with this procedure,

one can determine their eigenvectors and assign to them a
Young label λ � q by identifying the eigenvalues with those
of the Laplacian on the NLσM manifold. The results for
q = 2, 3, and 4 are

(PA
(1,1)[Q]

PA
(2)[Q]

)
=

(
1 −1
1 1

)(
tr(�Q)tr(�Q)

tr(�Q�Q)

)
,

⎛
⎝PA

(13 )[Q]

PA
(2,1)[Q]
PA

(3)[Q]

⎞
⎠ =

⎛
⎜⎝

1 −3 2

1 0 −1

1 3 2

⎞
⎟⎠

⎛
⎜⎝

tr(�Q)tr(�Q)tr(�Q)

tr(�Q�Q)tr(�Q)

tr(�Q�Q�Q)

⎞
⎟⎠,

⎛
⎜⎜⎜⎜⎜⎜⎝

PA
(14 )[Q]

PA
(2,1,1)[Q]

PA
(2,2)[Q]

PA
(3,1)[Q]
PA

(4)[Q]

⎞
⎟⎟⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎜⎜⎝

1 −6 3 8 −6

1 −2 −1 0 2

1 0 3 −4 0

1 2 −1 0 −2

1 6 3 8 6

⎞
⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎝

tr(�Q)tr(�Q)tr(�Q)tr(�Q)

tr(�Q�Q)tr(�Q)tr(�Q)

tr(�Q�Q)tr(�Q�Q)

tr(�Q�Q�Q)tr(�Q)

tr(�Q�Q�Q�Q)

⎞
⎟⎟⎟⎟⎟⎟⎠. (B6)

Note that the last row in each of the matrices in Eq. (B6), which corresponds to the most relevant operator (q), is formed by the
coefficients dλ defined in Eq. (110) and used in Secs. III and IV of the present paper. Further, the first row, which contains the
coefficients of the least relevant scaling operator (1q), has entries (−1)q−l (λ)dλ in class A.

For class C, the pure-scaling operators are obtained in an analogous way, with the following results:

(
PC

(1,1)[Q]
PC

(2)[Q]

)
=

(
1 −2

1 1

)(
tr(�Q)tr(�Q)

tr(�Q�Q)

)
,

⎛
⎜⎝
PC

(13 )[Q]

PC
(2,1)[Q]

PC
(3)[Q]

⎞
⎟⎠ =

⎛
⎜⎝

1 −6 8

1 −1 −2

1 3 2

⎞
⎟⎠

⎛
⎜⎝

tr(�Q)tr(�Q)tr(�Q)

tr(�Q�Q)tr(�Q)

tr(�Q�Q�Q)

⎞
⎟⎠,

⎛
⎜⎜⎜⎜⎜⎜⎝

PC
(14 )[Q]

PC
(2,1,1)[Q]

PC
(2,2)[Q]

PC
(3,1)[Q]

PC
(4)[Q]

⎞
⎟⎟⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎜⎜⎝

1 −12 12 32 −48

1 −5 −2 4 8

1 −2 7 −8 2

1 1 −2 −2 −4

1 6 3 8 6

⎞
⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎝

tr(�Q)tr(�Q)tr(�Q)tr(�Q)

tr(�Q�Q)tr(�Q)tr(�Q)

tr(�Q�Q)tr(�Q�Q)

tr(�Q�Q�Q)tr(�Q)

tr(�Q�Q�Q�Q)

⎞
⎟⎟⎟⎟⎟⎟⎠. (B7)

For each q, the last row in the matrix corresponds to the most relevant operator (q) describing the averaged qth moment of the
LDOS. The corresponding coefficients are again given by dλ, as in class A. For the least relevant operator (1q) (the first row),
the coefficients are (−2)q−l (λ)dλ in accordance with Eq. (144) of Sec. III. Note that in Eq. (B7), we have corrected sign typos
that appeared in the last two columns of the q = 4 matrix in Eq. (251) of Ref. [5].

Quite remarkably, the relation between class-A and class-C pure-scaling operators has a nontrivial pattern. Specifically,
ordering the Young labels as in Eqs. (B6) and (B7), we obtain

(PC
(1,1)[Q]

PC
(2)[Q]

)
=

( 3
2 − 1

2

0 1

)(PA
(1,1)[Q]

PA
(2)[Q]

)
,

⎛
⎜⎝
PC

(13 )[Q]

PC
(2,1)[Q]

PC
(3)[Q]

⎞
⎟⎠ =

⎛
⎜⎝

5
2 −2 1

2

0 4
3 − 1

3

0 0 1

⎞
⎟⎠

⎛
⎜⎝
PA

(13 )[Q]

PA
(2,1)[Q]

PA
(3)[Q]

⎞
⎟⎠,

⎛
⎜⎜⎜⎜⎜⎜⎝

PC
(14 )[Q]

PC
(2,1,1)[Q]

PC
(2,2)[Q]

PC
(3,1)[Q]

PC
(4)[Q]

⎞
⎟⎟⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎜⎜⎝

35
8 − 45

8 − 1
2

27
8 − 5

8

0 9
4 − 1

2 −1 1
4

0 0 2 −1 0

0 0 0 5
4 − 1

4

0 0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎝

PA
(14 )[Q]

PA
(2,1,1)[Q]

PA
(2,2)[Q]

PA
(3,1)[Q]

PA
(4)[Q]

⎞
⎟⎟⎟⎟⎟⎟⎠. (B8)

This corresponds to Eq. (293) of Ref. [5], with the difference that there the operators PC
λ [Q] were defined in such a way that the

matrices relating pure-scaling class-A and class-C operators had unit entries on the diagonal. Inverting these relations gives

(PA
(1,1)[Q]

PA
(2)[Q]

)
=

( 2
3

1
3

0 1

)(PC
(1,1)[Q]

PC
(2)[Q]

)
;

⎛
⎜⎝
PA

(13 )[Q]

PA
(2,1)[Q]

PA
(3)[Q]

⎞
⎟⎠ =

⎛
⎜⎝

2
5

3
5 0

0 3
4

1
4

0 0 1

⎞
⎟⎠

⎛
⎜⎝
PC

(13 )[Q]

PC
(2,1)[Q]

PC
(3)[Q]

⎞
⎟⎠;
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TABLE III. Error bars for the generalized multifractality exponents xqn
λ obtained by CCN simulations. To find the statistical error, the total

number of 104 disorder configurations is partitioned in s data sets with s = 25, 16, and 5, see text for detail. The obtained error σλ is nearly
independent on s. The only case when a somewhat stronger dependence is obtained is x(5), indicating that requirements on statistical ensemble
become more stringent for λ = (q) with large q. The column xqn

λ presents the exponents obtained by averaging over the full ensemble, which
are also given in Table II of Sec. V. For convenience, we also included (the last column) exact analytical values xperc

λ (when available).

xqn
λ (s = 25) xqn

λ (s = 16) xqn
λ (s = 5) xqn

λ xperc
λ

(2) 0.249 ± 0.001 0.249 ± 0.001 0.249 ± 0.001 0.249 1
4 = 0.25

(1, 1) 1.251 ± 0.001 1.251 ± 0.001 1.251 ± 0.001 1.251 5
4 = 1.25

(3) 0.004 ± 0.004 0.004 ± 0.003 0.004 ± 0.004 0.004 0
(2, 1) 1.249 ± 0.002 1.249 ± 0.001 1.249 ± 0.002 1.249 5

4 = 1.25

(13) 2.916 ± 0.002 2.915 ± 0.002 2.915 ± 0.002 2.915 35
12 ≈ 2.917

(4) −0.480 ± 0.016 −0.483 ± 0.016 −0.488 ± 0.021 −0.492
(3, 1) 0.986 ± 0.007 0.986 ± 0.006 0.985 ± 0.007 0.985
(2, 2) 1.867 ± 0.006 1.866 ± 0.005 1.866 ± 0.006 1.865
(2, 1, 1) 2.911 ± 0.004 2.911 ± 0.004 2.911 ± 0.005 2.911 35

12 ≈ 2.917

(14) 5.242 ± 0.004 5.242 ± 0.004 5.242 ± 0.004 5.242 21
4 = 5.25

(5) −1.104 ± 0.038 −1.118 ± 0.041 −1.151 ± 0.061 −1.186
(4, 1) 0.500 ± 0.023 0.497 ± 0.025 0.485 ± 0.025 0.482
(3, 2) 1.602 ± 0.016 1.598 ± 0.017 1.594 ± 0.019 1.592
(3, 1, 1) 2.648 ± 0.013 2.645 ± 0.014 2.640 ± 0.019 2.636
(2, 2, 1) 3.506 ± 0.012 3.502 ± 0.012 3.499 ± 0.017 3.495
(2, 13) 5.233 ± 0.008 5.233 ± 0.008 5.231 ± 0.009 5.231 21

4 = 5.25

(15) 8.164 ± 0.008 8.164 ± 0.008 8.163 ± 0.007 8.163 33
4 = 8.25

⎛
⎜⎜⎜⎜⎜⎜⎝

PA
(14 )[Q]

PA
(2,1,1)[Q]

PA
(2,2)[Q]

PA
(3,1)[Q]

PA
(4)[Q]

⎞
⎟⎟⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎜⎜⎝

8
35

4
7

1
5 0 0

0 4
9

1
9

4
9 0

0 0 1
2

2
5

1
10

0 0 0 4
5

1
5

0 0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎝

PC
(14 )[Q]

PC
(2,1,1)[Q]

PC
(2,2)[Q]

PC
(3,1)[Q]

PC
(4)[Q]

⎞
⎟⎟⎟⎟⎟⎟⎠. (B9)

The matrices in Eqs. (B8) and (B9) have an upper triangular
structure. Furthermore, for q > 2 the matrices in Eq. (B9)
have zeros around the upper-right corner. This implies that
pure-scaling observables of class A can be used to extract
some of the class-C exponents. Specifically, for q = 2, 3, and
4, the following class-C exponents are accessible in this way:
(2), (3), (2, 1), (4), (3, 1), and (2,2). This method was used in
Ref. [5] to obtain the corresponding class-C exponents. For
completeness, the corresponding exponents are included in
Table II, see column xqn,A↑

λ . While the method developed in
the present work which allows us to get positive pure-scaling
observables of class C for all λ (see Sec. IV and the numerics
in Sec. V presented as xqn

λ in Table II), is clearly superior to
the numerical approach of Ref. [5] described above, the values
xqn,A↑
λ are in a very good agreement with xqn

λ .

APPENDIX C: ERROR BARS FOR THE GENERALIZED
MULTIFRACTALITY EXPONENTS xqn

λ OBTAINED BY CCN
SIMULATIONS

We obtain statistical errors for the fitted exponents xqn
λ by

partitioning the 104 disorder configurations in s data sets Si

with i ∈ {1, . . . , s}. For each data set Si, we compute the
observable 〈PC

λ [ψ]〉i by averaging over the configurations in

Si. We then perform the scaling analysis described in the main
text (Sec. V) and obtain s sets of exponents xqn

λ,i(s). Their
mean value is denoted by xqn

λ (s), and their standard deviation
divided by

√
s serves as a measure for the statistical error

(standard deviation of the mean) σλ(s).
The results for s ∈ {25, 16, 5} are shown in Table III, see

also a discussion in Sec. V. We observe that the obtained error
σλ(s) is essentially the same in the considered range of s,
which confirms the consistency of the numerical procedure.
The found σλ thus serves as the standard deviation of xqn

λ

obtained by full ensemble averaging over 104 configurations
(no partitioning, s = 1) and given in Table II in Sec. V. We
also note that the average values xqn

λ (s) with s = 25, 16, 5 are
all in agreement with each other and with xqn

λ within ≈2σλ.
The statistical error is the largest in the case of xqn

(5), and also
shows a sizable variation with s. This is an indication of the
fact that the requirement on the size of the statistical ensem-
ble becomes more stringent when one studies eigenfunction
moments 〈|ψi,α|2q〉 with high q. In principle, one can improve
the accuracy of determination of the “standard multifractality”
spectrum x(q) at high q by using a considerably larger number
of disorder realizations that 104 used here. This is, however,
outside the scope of the present work, which focusses on
generalized-multifractality exponents.
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