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Spread of correlations in strongly disordered lattice systems with long-range coupling

Karol Kawa * and Paweł Machnikowski †

Department of Theoretical Physics, Wrocław University of Science and Technology, 50-370 Wrocław, Poland

(Received 5 July 2021; revised 28 April 2022; accepted 2 May 2022; published 18 May 2022)

We investigate the spread of correlations in a one-dimensional lattice system with high on-site energy disorder
and long-range couplings with a power-law dependence on the distance (∝ r−μ). The increase in correlation
between the initially quenched node and a given node exhibits three phases: quadratic in time, linear in time,
and saturation. No further evolution is observed in the long time regime. We find an approximate solution of the
model valid in the limit of strong disorder and reproduce the results of numerical simulations with analytical
formulas. We also find the time needed to reach a given correlation value as a measure of the propagation speed.
Because of the triple-phase evolution of the correlation function, the propagation changes its time dependence.
In the particular case of μ = 1, the propagation starts as a ballistic motion and then, at a certain crossover time,
turns into standard diffusion.
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I. INTRODUCTION

In relativistic physics, information cannot propagate faster
than the speed of light c. The upper limit for the propaga-
tion of information is determined by the so-called light cone,
which means that the minimum time for sending information
between points distant by r is t = r/c.

Nonrelativistic quantum theory does not impose any limi-
tation on the speed of information propagation in the quantum
system explicitly. However, an upper limit of the speed at
which quantum information can be transmitted can be induced
by finite-range interactions. Indeed, Lieb and Robinson [1,2]
proved the existence of such a limit for a lattice model with
finite-range interactions (decreasing at least exponentially).
They showed that for times t < r/v, the correlation between
nodes distant by r decreases exponentially.

The presence of this Lieb-Robinson boundary has been
observed in many theoretical and experimental studies [3–12],
e.g., the first experimental evidence was achieved in the sys-
tem of a one-dimensional quantum gas trapped in an optical
lattice [5]. Those authors focused on the evolution of the
two-point correlation function after the local quench, tracking
the time of the maximum correlation for successive atoms. In
this way the maximum velocity of the correlation propagation
was demonstrated.

While the Lieb-Robinson bound applies to locally interact-
ing systems, much recent effort has been devoted to proving
the existence of a similar limit in lattice systems with long-
range interactions, decreasing with distance according to the
power law ∝ 1/rμ [8,9,13–17]. The first mathematical evi-
dence for the existence of a linear light cone in systems with
long-range interactions was given in Ref. [14]. In one spatial
dimension and for μ > 3, they show that the time required
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to correlate distant atoms increases at least linearly with dis-
tance. In Ref. [13], the authors provide mathematical evidence
that a linear light cone occurs in d-dimensional long-range
interacting systems for μ > 2d + 1 (which determines the
exponent greater than 3 in one dimension). However, other
studies [15,18] show that beyond that regime either a sub-
polynomial, polynomial, or superpolynomial light cone can
occur, e.g., while the boundary is calculated using different
definitions of operator norms.

Apart from the nature of the coupling, an important fac-
tor determining the properties of lattice systems is disorder.
After the seminal paper of Anderson [19] the focus shifted
to tight-binding-like models with nearest-neighbor couplings,
where important formal results concerning localization and
transport were obtained [20,21]. More recently, much interest
was devoted to models of uncorrelated diagonal disorder with
long-range power-law hopping [22–24], where transport prop-
erties were characterized via an analysis of the localization
of states depending on the coupling exponent and disorder
strength [22,24].

In this paper we aim at merging these two aspects
and describe the correlation dynamics in long-range-coupled
strongly disordered systems, that is, in the parameter range op-
posite to the disorder-free systems studied so far. We present a
complete theory of correlation dynamics in a one-dimensional
chain of spins with power-law couplings and strongly dis-
ordered on-site energies, based on approximate analytical
solutions validated by numerical simulations. Long-range
couplings allow the initially quenched spin to communicate
with distant spins immediately; hence we observe an imme-
diate spreading of correlations. In contrast to disorder-free
systems [13,14], the correlation transfer in the strong disorder
limit is driven by such direct interactions with remote but
energetically resonant sites. We establish a universal triple-
phase dynamics of the correlation growth at a given site. First,
the correlations increase like a square of time, and then at a
certain instant of time there is a change to a growth directly
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FIG. 1. Schematically illustrated physical system: a chain of uni-
formly distributed spins with periodic boundary conditions. (a) When
one of the spins is rotated (single local quench), interactions occur
in the system. (b) The rotated central spin pulls on the other spins,
causing excitation to move through the system. In a system with
long-range interactions, information about the quench is expected to
reach distant spins immediately.

proportional to the time. Finally, a fixed value (saturation)
is achieved. We provide a full analytical description of the
correlation dynamics. Consequently, we find the time needed
to achieve some given correlation value at a given distance r
and thus establish analytical formulas for the propagation of
correlations. We show that the correlation dynamics changes
from r(t ) ∝ t1/μ to r(t ) ∝ t1/(2μ) at a certain crossover time.
A special case is μ = 1, where a strictly linear light cone
occurs in the first (ballistic) phase of the motion. However,
the continuation of the linear trend is not possible and, at a
certain moment of time, the propagation changes to standard
diffusion.

The article is organized as follows. In Sec. II we introduce
the investigated system and the theoretical model. Next, in
Sec. III we present and comment on the results of the nu-
merical simulations of the introduced model. In Sec. IV we
present the results of the analytical approach in the central
spin approximation. Finally, in Sec. V we summarize and
conclude the work.

II. MODEL

In this section we introduce the system under study and the
physical model. We also present the numerical and analytical
methods used to obtain the results.

The system is a chain of N spins (chosen to be odd for
convenience) distributed on a regular lattice with unit lattice
constant and periodic boundary conditions. In this system
we consider a local quench leading to a single quasiparticle
moving along the chain in both directions (see Fig. 1). The
Hamiltonian has the form

H = J

(
1

2

∑
α

εα

(
1 − σ̂ α

z

) +
∑
α,β

Vαβσ̂ α
+σ̂

β
−

)
, (1)

where σα
± = (σα

x ± iσα
y )/2, and σα

i , i = x, y, z are Pauli ma-
trices acting on spin α. Here, J sets the overall energy scale,
Jεα is the on-site energy, and JVαβ is the coupling between
spins α and β. To simplify the notation, we will scale the time
into units of h̄/J , which technically corresponds to setting
J = h̄ = 1.

Dimensionless energies εα (in units of J) are uncorre-
lated random variables uniformly distributed on the interval
[−W/2,W/2], where the parameter W determines the strength
of the disorder. The interspin coupling Vαβ has a power-law
character,

Vαβ =
{ 1

|α−β|μ for α �= β,

0 for α = β,
(2)

where |α − β| is the distance between the spins α and β.
Initially, the system is in the fully polarized state,

|ini〉 = |↑↑ ... ↑︸ ︷︷ ︸
N

〉, (3)

i.e., there are no correlations between the spins.
The central spin (α = 0) is then flipped (local quench).

This leads to the spreading of the single-spin excitation
through the system carrying the information about the quench
to distant atoms. Quantitatively, the correlation between spin
α and the initially quenched one is given by the two-point
correlation function, which can be measured in experiments,

Cα (t ) = 〈〈σ̂ α
z (t )σ̂ 0

z (t )〉 − 〈σ̂ α
z (t )〉〈σ̂ 0

z (t )〉〉dis., (4)

where 〈...〉dis stands for the average over disorder realizations,
and 〈...〉 denotes the quantum mechanical average. The state
vector is given by

|�〉 =
∑

α

aα (t )|α〉, |α〉 = σ̂ α
−|ini〉, (5)

where aα (t ) are time-dependent coefficients of expansion of
the system into a basis of states localized at a site. The opera-
tor σ̂ α

z acts on the localized basis state according to

σ̂ α
z |β〉 =

{+|β〉 for α �= β,

−|β〉 for α = β.
(6)

Using Eqs. (4), (5), and (6), it is straightforward to see that

Cα (t ) =
{ 〈4|a0(t )|2|aα (t )|2〉dis. for α �= 0,

−〈4|a0(t )|2(1 − |a0(t )|2)〉dis. for α = 0.
(7)

As seen here, the correlation function can be expressed by the
occupations of the involved sites. We find the time evolution
of the occupations by the exact numerical diagonalization of
the Hamiltonian (1), which allows us to compute the correla-
tion function Cα (t ) using Eq. (7). Simulations were performed
for 25 million disorder realizations. We took advantage of
periodic boundary conditions by obtaining N realizations of
disorder from a single diagonalization by arbitrarily choosing
the initially rotated spin.

As an alternative to the correlation function, we could con-
sider the entanglement entropy dynamics of one spin with the
rest of the system. We present this approach in Appendix A.

III. NUMERICAL RESULTS

In this section we present the results obtained by a numer-
ical solution of the model described in Sec. II.

A. Time evolution of correlations

Figure 2 shows the correlation map for the system of
N = 1001 spins and disorder strength W = 200 as a function
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FIG. 2. (a)–(c) Map of time evolution of the absolute value of the correlation function |Cα (t )| [Eq. (4)] for every single node in the system
of N = 1001 spins with disorder strength W = 200. Color maps indicate the values of the correlation function as a function of the spin
number and time for three different values of the interaction exponent (μ = 1.0, 2.0, 3.0). The dashed lines indicate the propagation fronts
defined by Cα (t ) = C̃ (with C̃ given in the upper-right corner of each subfigure). The same correlation fronts are shown again in log-log
scale in subfigures [(d)–(f)], where dashed lines represent analytical results obtained by employing central spin model (see Sec. III B), and
the axes have been swapped to better represent the propagation of the correlation. Additionally, in panels [(a)–(c)] we represent by dotted
line the light cone region given by the time t1 [see Fig. 3(e) and Eq. (29)], outside which correlations diminish much faster (but still power
law) than inside the cone [see Figs. 3(a)–3(c), and Eqs. (24), (26), and (28)]. (g)–(i) Correlation function |Cα (t )| as a function of time for
spins α = 0, 1, 4, 16, 64, 256, 500. Dashed lines here indicate the numerical solution of the central spin model, where simulations were
performed for 500 000 disorder realizations.

of time for selected exponent values μ = 1.0, 2.0, 3.0. One
can see that the correlations increase with time and saturate
at a certain level after a certain time, which increases with the
node number. We do not observe any decay of the correlations
at longer times. From the correlation dynamics for individual

spins, we find the propagation front for a predefined corre-
lation value C̃, i.e., a curve in the α − t plane representing
the times t at which the correlation at the node α reaches the
value C̃. These fronts are indicated in Figs. 2(a)–2(c) by the
dashed lines for the indicated correlation value. They are also
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depicted in Figs. 2(d)–2(f), where one can see their power-law
nature, changing, however, towards a decreasing exponent at a
certain node number. The choice of C̃ is subject to significant
constraints. It has to be less than the minimum saturation value
of Cα (t ) (for spins far from the center, α � 1). For meaningful
results, it has to exceed the maximal correlation value at the
first time step of the simulation (for spins close to the center,
α � 1). Thus there is a very narrow range of C̃ for which
this is satisfied. In addition, as the exponent μ increases,
which is equivalent to a decreasing coupling range, the system
becomes less and less correlated and the range of useful values
of C̃ shifts toward very small magnitudes [see Figs. 2(c) and
2(f)]. As long as saturation has not been reached, the selected
value of C̃ merely scales the time dependence.

Tracing the correlation front yields significant information
about the evolution of the system. However, on both sides of
the border defined by the arbitrary value of C̃, the decay of
correlations follows the same power law; hence this approach
does not establish the light cone as it was defined in the
Introduction. An alternative method can be proposed using
analytical formulas, as discussed in Sec. IV C.

To better understand the correlation dynamics, in
Figs. 2(g)–2(i) we show the time dependence of the correla-
tion for a few nodes (α = 0, 1, 4, 16, 64, 256, 500). For a
strong disorder, the increase in correlation occurs qualitatively
in the same way for each spin, namely, one observes three
phases of dynamics.

At first the correlations increase as a quadratic function
of time,

Cα (t ) = Aαt2, for t < t (α)
0 , (8)

where Aα is the appropriate proportionality factor. This ∝ t2

evolution is a fundamental property of quantum systems with
a coupling diminishing according to a power law with respect
to distance, derived from the short-time perturbation theory
(see, e.g., Ref. [25]). Then, at a certain crossover time t (α)

0 , the
time dependence changes to linear,

Cα (t ) = Bαt, for t (α)
0 < t < t (α)

1 , (9)

with Bα as proportionality factor. Finally, at t = t (α)
1 the cor-

relator reaches a constant value (saturates),

Cα (t ) = C∞
α , for t (α)

1 < t . (10)

From the condition of continuity of Cα (t ) the crossover times
can be expressed by

t (α)
0 = Bα/Aα (11)

and

t (α)
1 = C∞

α /Bα. (12)

The same dynamics was observed for the mean-squared dis-
placement of a single excitation in the same model (for μ = 1)
presented in Ref. [26].

We found the dependence of the dynamical parameters on
the site index by fitting power-law functions to the subsequent
regimes of correlation dynamics described by Eqs. (8)–(10).
The dynamical parameters Aα , Bα , and C∞

α appear to be
power-law functions of the distance |α| with integer or rational

exponents. Both Aα and Bα are inversely proportional to |α|2μ,
as depicted in Figs. 3(a) and 3(b). The first crossover time
t (α)
0 ≡ t0 is roughly distance independent, except for small

values of |α| [Fig. 3(d)]. As a function of spin number, the
saturation level decreases as 1/|α|μ [see Fig. 3(c)]. The noise
in Figs. 3(c)–3(e), apparent especially for the high magnitude
of exponent μ and distant sites, comes from the unavoidably
insufficient number of disorder realizations. Using a simple
resonance-counting argument, one can notice that the number
of spins lying at a distance |α| and resonant to the cen-
tral spin (in the first-order approximation) is proportional to
Vα0/W ; hence for the considered system of N = 1001 spins,
W = 200, and μ = 3.5, one would need a number of disorder
realizations at least on the order of 1011 to allow for one
resonant case on average for distant nodes.

For completeness, in Appendix B we present the results for
weakly disordered systems.

B. Central spin approximation

In this section we introduce the central spin approxima-
tion in which an analytic solution, approximating well the
full model, becomes available [26] (see Sec. IV). When the
disorder is strong, the coupling can be treated as a perturbation
in the Hamiltonian. In the first-order approximation to the
evolution, one includes only the couplings between all spins
and the central one. Thus the information about the quench
is carried directly to the distant spins without the involve-
ment of intermediate jumps. The correlation dynamics in the
central spin approximation reproduces the dynamics of the
full model in the strong disorder regime. The dashed black
lines in Figs. 2(g)–2(i) represent the simulation results of the
central spin approximation, which perfectly match the data of
the full model for short-range and moderate sites, although it
reveals a discrepancy for distant sites. However, this can be
considered as a numerical error coming from too few disorder
realizations, as explained above. We discuss the limits of
applicability of the central spin approximation in Appendix C.

IV. APPROXIMATE ANALYTICAL SOLUTION

The central atom model allows us to find analytical expres-
sions for the correlation function and dynamical parameters
by using the theory presented in Ref. [26]. Here we present
a more straightforward approach that leads to the same
analytical formulas. We find analytical expressions for the
correlation function, the dynamic parameters as a function of
the distance from the central spin, the disorder strength, and
the exponent μ. This allows us to find the time of reaching a
given value of correlation for a given spin and determine the
existence of the light cone in the model.

In the high-disorder regime, the survival occupation of the
central site |a0(t )|2 ≈ 1. We can then write the approximate
formula for the correlator (7)

Cα (t ) = 4〈|aα (t )|2〉dis. for W � 1, α �= 0. (13)

A. Solution of two-spin model

Since only direct jumps from the central site to distant
ones are important (central spin model) in the leading order,
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FIG. 3. Parameters of the evolution of correlations as a function of the distance from the central spin for several values of the exponent
μ = 1.0, 1.5, 2.0, 2.5, 3.0. In each subfigure, black dashed lines indicate the results obtained from the approximate analytical solution (see
Sec. IV), described by formulas given in the panels. (a) Proportionality factor Aα for the quadratic regime, see Eq. (8); (b) proportionality
factor Bα for the linear regime, see Eq. (9); (c) saturation level C∞

α , see Eq. (10); (d) crossover time t (α)
0 between quadratic and linear regime;

and (e) crossover time t (α)
1 between linear and saturating regime.

one can neglect also the presence of other spins to accurately
calculate the occupation of the distant site. Let us now find
these occupations of the individual sites assuming a two-
spin model. One considers a system consisting of only two
spins, that is, the central one and the one with index α. The
Hamiltonian corresponding to the system having two spins of
uniformly distributed on-site energies ε0 and εα = ε0 + ε has
the matrix form of

H =
(

ε0 + 1

2
ε

)
I + 1

2

(−ε 2Vα

2Vα ε

)
, (14)

where I is 2 × 2 unit matrix and Vα = 1/|α|μ is the cou-
pling to the αth spin. One can easily diagonalize the above
Hamiltonian. The eigenenergies E± and the corresponding
eigenvectors u± are

E± = ε0 + 1

2
ε ± 1

2
�, (15)

u+ =
(

sin(θ/2)
cos(θ/2)

)
, u− =

(
cos(θ/2)

− sin(θ/2)

)
, (16)

where we denote � = √
ε2 + 4V 2

α , ε = � cos θ , and 2Vα =
� sin θ . Then the time evolution of the amplitude of

probability for spin α is given by

aα (t ) = 〈α|�(t )〉 = 〈α|e−iHt |0〉
=

∑
n=±

〈α|n〉〈n|0〉e−iEnt . (17)

Combining Eqs. (13), (15), (16), and (17), we get

Cα (t ) = 4V 2
α

〈
sin2(�t/2)

(�/2)2

〉
dis.

. (18)

The average over disorder realizations can be obtained by
integration with the probability density function of ε. Since
ε is a difference between two uniformly distributed random
variables on an interval [−W/2,W/2], its probability density
function is the triangle function

f0(ε) =
{

(W − |ε|)/W 2, ε ∈ [−W,W ];
0, otherwise.

(19)

Then the correlation is

Cα (t ) = 4V 2
α

∫ W

−W
dε f0(ε)

sin2[�(ε)t/2]

[�(ε)/2]2
. (20)
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FIG. 4. Schematic plot of the probability distribution of eigenen-
ergies separation: (a) for the first phase of motion [Cα (t ) ∝ t2]; (b) for
the second phase of motion [Cα (t ) ∝ t]; and (c) for the saturation
phase [Cα (t ) = C∞

α ].

By changing the integration variable to �, we obtain

Cα (t ) = 4V 2
α

∫
d� fα (�)

sin2(�t/2)

(�/2)2
, (21)

where

fα (�) = f0(
√

�2 − 4V 2
α )

|�|√
�2 − 4V 2

α

(22)

is the probability density function of � for a given spin α, i.e.,
it depends on the distance from the origin of the system. When
W and |α| increase, fα (�) tends to f0(ε).

B. Triple phase dynamics

This allows us to explain the triple-phase dynamics of
the correlation growth. First, for very short timescales the
function h(�) = sin2(�t/2)/(�/2)2 in Eqs. (18), (20), (21)
can be approximated as h(�) ≈ t2, and the integral of the
probability density function is equal to unity [see Fig. 4(a)].
The correlator then follows the form

Cα (t ) = 4t2

|α|2μ
. (23)

Then, according to Eq. (8), the first dynamical parameter is

Aα = 4

|α|2μ
, (24)

which is sketched by the dashed lines in Fig. 3(a) and perfectly
matches the numerical data.

Next, for moderate times t0 < t < t1 [Fig. 4(b)], the func-
tion h(�) probes the central part of the distribution but is still
relatively broad and therefore insensitive to the narrow central
gap (especially for remote nodes). For increasing time, h(�)
tends to be proportional to un-normalized Dirac delta of area
of 2πt . More specifically, the width of h(�) decreases as 1/t .
The time it takes for the peak of h(�) to be inside the gap
is proportional to 1/Vα (the width of the gap). This time gets
larger as |α| increases, and hence the third phase of motion
[Eq. (10)] starts later for high |α|. In contrast, the width of the
distribution of fα (�) is large. Thus, h(�) explores the narrow
region around the even narrower gap of fα (�) at 1/W (top
of the distribution function). Therefore, the integral over �

is approximately equal to the area under h(�) multiplied by
1/W , and Eq. (21) takes the form

Cα (t ) ≈ 4|Vα0|2
∫ ∞

−∞
d� f0(�)2πtδ(�) = 8π

W |α|2μ
t, (25)

where, according to Eq. (9), the second parameter is

Bα = 8π

W |α|2μ
, (26)

which perfectly fits the data in Fig. 3(b).
From the requirement of continuity, Eq. (11), the crossover

time between the first and second phases is

t0 = 2π

W
(27)

and is the same for all sites.
Finally, we obtain the saturation level. When the function

h(�) becomes narrow, its peak coincides with the gap inside
the distribution fα (�) [Fig. 4(c)]. Then the peak does not
contribute and only the oscillating tail has a contribution to the
integral. We approximate h(�) ≈ 1/2

(�/2)2 , taking the average
of the rapidly varying sine-squared function in the numerator.
Then the saturation of the correlation is

C∞
α = 8

∫ √
W 2+4V 2

α

2Vr

d� fα (�)
1/2

(�/2)2

= 4π

W |α|μ arctan(W |α|μ) − 8

W |α|2μ
ln

[
1 +

(
W |α|μ

2

)2]
≈ 4π

W |α|μ , (28)

where the approximate result was obtained by taking
arctan(x) ≈ π/2 for x � 1 and by neglecting the second-
order terms in Vα/W . The analytical formula from Eq. (28),
with dashed lines marked in Fig. 3(c), overestimates the nu-
merical results. However, the deviation from the numerical
data decreases as the exponent μ increases. This discrepancy
may be caused by the inaccuracy of the approximation done in
Eq. (13), where we assumed the occupation of the central spin,
|a0(t )|2, close to unity. The asymptotic survival probability,
|a0(∞)|2, can actually subtly but not marginally deviate from
unity, the less the higher μ is. Then the approximation in
Eq. (18) is more accurate if the exponent μ is large. However,
for each value of μ we consider, the survival probability is
departed enough from unity to cause the deviation seen in
Fig. 3(c).

From the second continuity relation in Eq. (12) we get the
second crossover time,

t1 = |α|μ
2

. (29)

The above derivations explain the origin of the triple dynamics
and find the correct values for the dynamical parameters.

C. Speed of propagation—Derivation of the light cone

Now we want to extract the speed of propagation of the
correlation from the above derivations. For this purpose we
will find the time at which the given spin reaches a certain
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FIG. 5. (a)–(c) Map of time evolution of the entanglement entropy Sα (t ) [Eq. (A4)] for every single node in the system of N = 1001
spins with disorder strength W = 200. Color maps indicate the values of the entropy as a function of the site number and time for three
different values of the interaction exponent (μ = 1.0, 2.0, 3.0). The dashed lines indicate the propagation fronts defined by Sα (t ) = S̃ (with
S̃ given in the upper-right corner). The same correlation fronts are shown again in log-log scale in subfigures (d)–(f), and the axes have
been swapped to better represent the propagation of the correlation. (g)–(i) Entanglement entropy Sα (t ) as a function of time for spins α =
1, 4, 16, 64, 256, 500.

value of the correlation C̃. The way the wave front evolves
over time determines the shape of the light “cone.”

The result depends on which phase of the dynamics C̃ is in
for a particular spin. Thus if C̃ is in the first (quadratic) phase
[Eq. (8)], the time required to reach such a correlation is

tC̃ =
√

C̃

2
|α|μ, (30)

which has to be less than t0. On the other hand, if C̃ is in
the second (linear) phase [Eq. (9)], the time to reach this
correlation value is

tC̃ = WC̃

8π
|α|2μ. (31)

These dependencies are sketched by the dashed lines in
Figs. 2(d)–2(f) and perfectly match the numerical data. On
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FIG. 6. (a)–(c) Map of time evolution of the absolute value of the correlation function |Cα (t )| [Eq. (4), cf. Fig. 2] for every single node in
the system of N = 1001 spins, coupling exponent μ = 1, and for three different values of the disorder strength, W = 2, 0.2, 0. The dashed
lines indicate the propagation fronts defined by Cα (t ) = C̃ (with C̃ given in the upper-right corner of each subfigure). The same correlation
fronts are shown again in log-log scale in subfigures (d)–(f), where dashed lines represent analytical result obtained in Sec. IV [see. Eq. (30)],
and the axes have been swapped to better represent the propagation of the correlation. (g)–(i) Correlation function |Cα (t )| as a function of time
for spins α = 0, 1, 4, 16, 64, 256, 500. The dashed lines here indicate the numerical solution of the central spin model where simulations
were performed for 500 000 disorder realizations. The dotted lines in (h) and (i) indicate limit values of correlation functions C0(∞) and
|Cα (∞)| (the same for all α) in the disorder-free system [cf. Eq. (B1)].

a doubly logarithmic scale, these are straight lines indicating
the power-law dependencies.

The character of the propagation changes with time. In
the first phase |α(t )| ∝ t1/μ, while in the second phase the
dynamics slows down, and |α(t )| ∝ t1/2μ.

The limiting time between the two regimes is t0, which is
independent of the choice of node number or the power-law
exponent, so regardless of the choice of C̃, the crossover will
be observed at the same point (dependent only on the strength
of the disorder). In the special case of μ = 1, the wave-front
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propagation in the first phase is ballistic, with the velocity
2/

√
C̃ [or 2J/(h̄

√
C̃) in physical time units], which depends

on the choice of the threshold value but is independent of
the disorder strength. This is also a velocity at which a small
perturbation of the system’s ground state would propagate.

The definition of a cone presented here can be problem-
atic, because the delineated cone does not demarcate the area
beyond which the decay of correlations becomes faster. An
alternative definition of the light cone may be based on the fact
that in the saturation region the spatial decay of correlations is
faster than outside this region [see Figs. 3(a)–3(c)]. Therefore
it seems sensible to determine the cone as a line in time and
distance separating the saturation area from the other phases.
The analytic form of the cone comes straightforwardly from
Eq. (29),

α(t ) = (2t )1/μ. (32)

The above formula allows one to determine the speed of prop-
agation of the correlation. In the particular case μ = 1, when
above relation is strictly linear, the corresponding velocity of
propagation is equal to 2 (or 2J/h̄ in physical time units). For
μ > 1 the dynamics remains always sub-ballistic.

V. DISCUSSION

The propagation of correlations calculated in Sec. IV C
varies depending on whether the given correlation value is
within the first or second phase of the dynamics. This means
that the character of propagation changes depending on the
phase of the dynamics. This can be clearly seen in Figs. 2(d)–
2(f), where the time to reach a given correlation level C̃ is
shown as a function of the distance from the center of the
chain. One can see the change in the slope of the trend from a
certain distance. Initial ballistic motion [α(t ) ∝ t] for μ = 1
changes to standard diffusion [α(t ) ∝ √

t]. Ballistic motion
implies the existence of a linear light cone, that is, a constant
propagation velocity. For μ > 1, one can think of a sublinear
“cone.”

One can also ask whether the finite size of the system
plays any role. It is particularly concerning for the case of
μ = 1, where the saturation level of the correlation (and thus
the occupation of the site) decreases as 1/|α|. Therefore the
sum of occupations is divergent, and thus one may expect the
model to break down at some point. However, in the thermo-
dynamic limit the saturation phase for very far spins begins
at infinite times since t1 ∝ r → ∞. The infinite t1 implies
that the occupation cannot saturate and remains in the second
phase of evolution [Eq. (9)], which diminishes as 1/|α|2 and
the corresponding sum of occupations is convergent.

VI. CONCLUSIONS

We investigated the propagation of correlations in a spin
chain after a single local quench in the presence of large dis-
order and long-range couplings. The main feature observed in
the system is the triple-phase evolution of correlation at each
site, which results in a change in the propagation trend of the
correlation front. The “light cone” in the strongly disordered
system can be strictly linear only in the particular case of

μ = 1 and only as long as the correlation is in the first phase
of motion. For μ > 1 the propagation is sub-ballistic in the
first phase and becomes subdiffusive in the second phase of
motion. All effects observed in the numerical simulations are
explained by an analytical model that describes the transfer of
correlations directly from the initially quenched spin to distant
spins bypassing the intermediate sites.
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APPENDIX A: ENTANGLEMENT ENTROPY

In this Appendix we show that the propagation of correla-
tions can also be considered in terms of von Neumann entropy,
which is a measure of quantum information in a system. In
doing so we search for the degree of entanglement between
some node α and the rest of the chain. For this we use the von
Neumann entanglement entropy, defined as

S = −Trρ ln ρ, (A1)

where ρ = |�〉〈�| is the density matrix of the system, and
the state of the system can be expressed in the localized state
basis [cf. Eq. (5)],

|�〉 =
∑

β

aβ (t )|β〉. (A2)

As a next step we perform the Schmidt decomposition of the
state:

|�〉 = aα (t )|↑ ... ↑〉β �=α ⊗ |↓〉α
+

∑
β �=α

aβ (t )|↑ ... ↓ ... ↑〉β �=α ⊗ |↑〉α

= aα (t )|↑ ... ↑〉β �=α ⊗ |↓〉α
+

√
1 − |aα (t )|2

∑
β �=α

aβ (t )√
1 − |aα (t )|2

× |↑ ... ↓ ... ↑〉β �=α ⊗ |↑〉α, (A3)

where we denote

|↑ ... ↑〉β �=α =
⊗
β �=α

|↑〉β

and

|↑ ... ↓ ... ↑〉β �=α =
⊗

γ �=α,β

|↑〉γ ⊗ |↓〉β.

We multiplied and divided the second term in (A3) by√
1 − |aα (t )|2 to provide a normalization condition for

Schmidt coefficients, which are aα for the state of the sub-
system of a single spin α and

√
1 − |aα (t )|2 for the state of

the rest of the system. One can easily see that the decomposed
states are orthonormal, so this is indeed a Schmidt decompo-
sition. Finally, the von Neumann entanglement entropy takes
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the form

Sα (t ) = −(1 − |aα (t )|2) ln(1 − |aα (t )|2)

− |aα (t )|2 ln(|aα (t )|2)

≈ |aα (t )|2, (A4)

where the approximate result is valid in the strong disorder
regime and for α �= 0. It measures the entanglement of the
αth node with the rest of the system. It is clear that it only
depends on the occupation of the node in question. Figure 5
shows that the calculated entanglement entropy captures qual-
itatively the same effects as found for the correlation function
(cf. Fig. 2). The increase of entanglement with time on a node
also follows three phases: quadratic in time, linear in time, and
saturation. The logarithmic dependence of the entropy on time
does not seem to significantly affect the power-law entropy
growth [Figs. 5(g)–5(f)]. Using the central spin approximation
(see Sec. III B), one can perform a reasoning similar to that
presented in Sec. IV and find an approximate analytical result
for the entanglement entropy.

APPENDIX B: DISORDER-FREE AND LOW-DISORDER
CASES

For the sake of completeness, in this Appendix we consider
the limiting case of the nondisordered system and the system
with moderately strong disorder. In Fig. 6 we show the results
of numerical simulations of the system with small and zero
disorder. It can be seen [panels (g)–(f)] that the evolution now
proceeds in two phases, quadratic in time and, immediately,
saturation, i.e., excluding the middle phase where for a large
disorder there is a linear growth in time. As mentioned earlier
in Sec. III A, the quadratic growth in time is a fundamental
result in the quantum evolution of long-range coupled sys-
tems coming from the short-time perturbation theory (see
Ref. [25]). The absence of the second phase can be explained
by the fact that its onset time is inversely proportional to the
disorder and thus large enough in the low-disorder regime that
the correlation manages to saturate early.

First, in the absence of the on-site disorder, the dynamics
of the system tends to uniformly distribute the occupations at
the nodes, |aα|2 = 1/N , for all α. The correlation function (7)
then takes the form

Cα (t → ∞) =
{

4
N2 , for α �= 0,

− 4
N

(
1 − 1

N

)
, for α = 0.

(B1)

However, even in the case of W = 0.2 and μ = 1, correlation
still noticeably deviates from the above formulas, which are

indicated in Figs. 6(h) and 6(i) by black dashed lines. As the
disorder decreases, the saturation level begins to converge to
the level defined by Eq. (B1), while the central spin model
begins to deviate from the simulation results of the full model
[see panels (g)–(i) of Fig. 6]. In a weakly disordered system,
one can see that the increase in correlation at a node starts
also with a quadratic dependence in time. However, the second
phase has little or no visibility, particularly for nodes close to
the center. Finally, we can also find the initial time t (α)

2 of the
saturation phase in the disorder-free system,

t (α)
2 = |α|2μ

N2
, (B2)

which grows faster with distance than the second crossover
time t (α)

1 in the highly disordered chain but does not necessar-
ily exceed it (especially for μ < 2).

APPENDIX C: REGIME OF VALIDITY OF THE CENTRAL
SPIN APPROXIMATION

As long as the disorder is strong, it is right to use the
first-order approximation of the locator expansion presented
originally in the seminal paper of Anderson published in 1958
[19], which we refer to as the central spin model. Let us
now consider the limits of its applicability. The central spin
model is no longer valid when second- and higher-order jumps
start to play a role in the evolution of the excitation. Using a
simple resonance counting argument, the probability of the
first-order jump is proportional to Vα0/W , while the number
of second-order jumps for the transition from spin 0 to α is
proportional to

∑
0<β<α

V0βVβα

W 2
. (C1)

When the above expression becomes comparable to Vα0/W , it
becomes necessary to consider higher-order transitions, and
the central spin model is no longer valid. The appropriate
limiting value of W can be found numerically for given μ

and N . For example, in the system N = 1001 spins, and for
μ = 1 the probability of second-order transitions is equal
to the probability of the first-order transitions if W ≈ 15.0,
whereas for μ = 2 the critical disorder is equal to W ≈ 3.32.
The central spin model remains valid in a system with weaker
disorder for a higher μ value, i.e., for a weaker coupled
system.
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