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Imaging defects in two-dimensional crystals by convergent-beam electron diffraction
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Convergent-beam electron diffraction (CBED), recently demonstrated on two-dimensional (2D) materials, of-
fers a number of interesting applications such as imaging atomic in- and out-of plane shifts, interlayer distances,
and individual adsorbates. In this study, we show how CBED allows for atomic-precision imaging of individual
defects in 2D materials using one single-shot intensity measurement. In combination with structural calculations
using density-functional theory, we present simulated CBED patterns for various defects in graphene, each of
which exhibits a unique fingerprint distribution. We also show how atomic positions, including the individual
atomic defects in graphene, can be reconstructed by iterative phase retrieval from a single CBED pattern.
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I. MAIN

An understanding of the internal structure of defects lies
at the core of many technologies, from single-atom catalysis
[1–3] to the formation of colored centers in crystals [4]. The
local atomic-sized defects in graphene define the transport
properties of this material [5]. At the same time, transmission
electron microscopy (TEM) remains the only technique which
can reliably deliver information about the imperfections in
both metallic and insulating solids at the atomic scale. The
quality and resolution of the images of defects obtained using
conventional TEM relies strongly on the performance of the
lenses [6], which are effectively used as a Fourier transform
(FT) apparatus to convert an electron beam diffracted on a
crystal into a real-space image. Despite the availability of
electron microscopes since the 1930s, it is only since the
2000s that progress in aberration-corrected electron optics
[7–9] has allowed for atomic-resolution images of crystalline
samples to be obtained [6,10]. Scanning transmission elec-
tron microscopy (STEM) is another alternative that allows for
atomic-resolution images of a sample [11]. Recent progress
in the imaging of 2D materials has been made by applying
scanning techniques such as 4D-STEM [12,13], in which
a 2D diffraction pattern is acquired at each beam position
while scanning the sample, and the obtained 4D dataset is
analyzed by applying an algorithm developed for ptychogra-
phy. Through the use of this electron ptychography technique,
images of bilayer MoS2 have been obtained with a resolution
of 0.4 Å [14].
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There is, however, an alternative methodology for recover-
ing real-space information about an object from a single-shot
intensity measurement of the diffracted electron beams, which
does not require high-quality lenses or scanning: we can uti-
lize reconstruction algorithms that can recover an image of
the sample directly from the diffracted waves. Since the phase
information in the diffraction pattern is lost during projection
on the screen, iterative phase retrieval algorithms can be used,
and particular constraints must be introduced to reconstruct
the sample distribution [15].

In this paper, we demonstrate that the use of a con-
ventional electron microscope in convergent-beam electron
diffraction (CBED) mode allows us to obtain “fingerprint”
CBED patterns of the individual defects in graphene. CBED
has previously been applied to study two-dimensional (2D)
materials [16–19], resulting in a number of interesting ap-
plications such as the imaging of atomic in- and out-of
plane shifts [16], interlayer distances [16,18], and individ-
ual adsorbates [19]. In the present study, we demonstrate
that CBED patterns and particular constraints allow for the
extraction of atomic information from CBED images, and
can be applied to image individual defects in 2D materials.
This high-quality recovery of real-space information about
the object eliminates the need to use expensive aberration-
corrected optics or scanning procedures. The use of a single-
shot intensity acquisition regime offers the possibility of
studying fast dynamic processes such as adsorbate dynamics
[20–22].

II. RESULTS

A. CBED patterns of graphene with individual defects

A schematic diagram of a CBED experiment is shown in
Fig. 1(a), and a single defect in graphene is illustrated in

2469-9950/2022/105(18)/184113(7) 184113-1 Published by the American Physical Society

https://orcid.org/0000-0001-6693-8681
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevB.105.184113&domain=pdf&date_stamp=2022-05-31
https://doi.org/10.1103/PhysRevB.105.184113
https://creativecommons.org/licenses/by/4.0/


LATYCHEVSKAIA, HUANG, AND NOVOSELOV PHYSICAL REVIEW B 105, 184113 (2022)

FIG. 1. CBED imaging of atomic defects in graphene. (a)
Scheme used for CBED imaging in a transmission electron mi-
croscope. (b) Sketch showing a single defect in graphene. (c), (d)
Amplitude distributions of the probing wavefront when imaging for
defocus values of � f = −0.1 and −1 μm, respectively. (e), (d)
CBED patterns of single defect in graphene simulated at � f = −0.1
and −1 μm, respectively, where the intensity of the zero-order CBED
disk is reduced by a factor of 1 × 104. (e) Magnified individual
CBED disks in the CBED pattern at � f = −1 μm. The scale bars
in (b) and (c) represent 2 Å, (d) and (g) 2 nm, and (e) and (f) 2 1/nm.

Fig. 1(b). The semiconvergence angle α is selected in such
a way that the individual CBED disks do not overlap, and
the interference patterns in the individual CBED disks can
be analyzed separately. All of the CBED patterns presented
in this study were simulated for electrons of 80 keV and
α = 7 mrad. By changing the defocus value � f , the diameter
of the probed region can be varied as D = 2� f tan α. The
distributions of the incident wavefront at � f = −0.1 μm and
� f = −1 μm are shown in Figs. 1(c) and 1(d), respectively,
and the corresponding CBED patterns are shown in Figs. 1(e)
and 1(f). The diameter of the probed area is about 0.7 nm
(counted as the distance between the first minima) and 14
nm for defocus values of � f = −0.1 μm and � f = −1 μm,

respectively. A defocus value of � f = −1 μm is optimal for
the identification of interference patterns due to an atomic
defect appearing in individual CBED disks, as shown by the
example of a single defect visualized in a CBED pattern in
Figs. 1(f) and 1(g). At this defocus value, the extent of the
interference pattern due to an atomic defect is completely
within the CBED disk, as shown in Fig. 1(g). The atomic
lattice defects cause a localized interference pattern that can
be described as concentric rings, unlike other lattice defects
such as stacking faults or ripples, which create extended in-
terference patterns in CBED disks, as previously illustrated in
Ref. [16].

Various atomic defects were considered in our simulations,
and the resulting CBED patterns are shown in Fig. 2. It is
widely accepted that DFT calculations allow for very accu-
rate geometry predictions [23]. In particular, they can closely
reproduce the experimentally determined defect structures
in 2D materials [24]. In this study, the equilibrium atomic
geometries of the defects, used as inputs for the CBED sim-
ulations, were obtained from DFT calculations, as explained
in Sec. IV A. The corresponding CBED patterns simulated at
a defocus value of � f = −1 μm are shown in Fig. 2, and the
simulation procedure is described in Sec. IV B. The interfer-
ence patterns in the individual CBED disks exhibit concentric
fringes. When the defect is positioned off center in the probed
region, the interference pattern in each CBED disk appears at
the same offset from the center, as illustrated in Figs. 2(h) and
2(p). The contrast of the interference patterns in the individual
CBED spots, calculated as C = (Imax − Imin)/(Imax + Imin), is
almost zero for the zero-order CBED spot, and increases
linearly with the order for the higher-order CBED spots. For
example, for a double defect [Fig. 2(a)], the contrast is 0.03,
0.24 ± 0.09, and 0.42 ± 0.10, for the zero-, first-, and second-
order CBED spots, respectively. The contrast is sufficient for
recognition of a characteristic interference pattern due to a
defect already in a first-order CBED disk. From Fig. 2, it is
evident that each defect exhibits a distinct fingerprint CBED
pattern, which in principle can be used to directly assign the
defect. Examples of experimental CBED patterns of mono-
layer hexagonal boron nitride with adsorbates were previously
reported in Ref. [19]. It should be noted that a direct manifes-
tation of an atomic defect through a fingerprint interference
pattern cannot be obtained using a conventional diffraction
pattern, in which sharp diffraction peaks are formed by the
superposition of all of the diffracted waves from the entire
probed area.

B. Reconstruction of individual defects

The atomic structure of a sample can be reconstructed
from its CBED pattern by applying iterative phase retrieval
methods [25–29], provided that CBED patterns are acquired
under geometric conditions that allow for correct sampling.
The digitally sampled distributions in the detector and sample
planes are related via an FT, and hence the pixel sizes in
the sample plane (�0) and in the detector (CBED pattern)
plane (�k ) are related as �0�k = 2 π/N , where N × N is the
number of pixels. The conditions that allow for reconstruction
are as follows. (i) The number of pixels N and the pixel size
in the sample plane �0 should be selected such that there are
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FIG. 2. Various atomic defects in graphene: (a) double vacancy (5-8-5), (b) miniature grain boundary formed by the rotation of a core of
seven hexagons, (c) Stone-Wales defect, (d) 5-7-7-5 defect reconstructed from the double vacancy, (e) inverse Stone-Wales defect formed by
the incorporation of two carbon adatoms into the lattice, (f) tetravacancy (5-8-4-8-5) and (g) 555-6-777 defect reconstructed from the double
vacancy, (h) the same defect as in (b) but shifted downwards towards the left, and (i)–(p) their corresponding CBED patterns simulated at
� f = −1 μm, shown as individual CBED spots (01̄10) (top row), (11̄00) (middle row), and (101̄0) (bottom row). The scalebars in (a)–(h)
represent 2 Å, (i)–(p) 2 nm. The range of intensity values (i.e., the minimal and maximal intensity values) are the same for all images in (i)–(p).

several pixels between the closest positioned atoms, to allow
the atoms to be resolved from one another. (ii) The defocus
distance � f must be selected such that the probed region is
less than or equal to twice the reconstructed area (entire field
of view) in order to fulfill the oversampling condition. This
will ensure that the nonprobed region will contain pixels with
zero values in the sample plane. The number of these pixels
should be larger than the number of pixels with unknown
values, so that the system of equations has a unique solution.
The diameter of the probed region is approximately given by
the diameter of the probing beam, which linearly depends on
the defocus value as D = 2� f tan α. (iii) After the number of
pixels N and the pixel size in the sample plane �0 have been
selected under condition (i), the k range in the detector plane
and the pixel size in the detector plane should be selected such
that the condition �0�k = 2 π/N is fulfilled.

A CBED pattern of graphene layer with a single defect
[Fig. 1(b)] was simulated under the following parameters. The
entire field of view was 20 nm × 20 nm, and was sampled with
2048 × 2048 pixels; hence, the pixel size in the sample plane
was �0 = 9.8 pm, with 14 pixels between the closest carbon
atoms. From the condition �0�k = 2 π/N , we can obtain the
pixel size in the CBED pattern plane as �k = 5 × 107 1/m.
The defocus value was set to � f = −0.1 μm, giving an area
of approximately 1.4 nm in diameter at the semiconvergence
angle α = 7 mrad. However, due to diffraction effects, the
probing beam is not a sharp-edged disk with diameter of
1.4 nm, but is a distribution arising from diffraction on an
aperture, as shown in Fig. 1(c). The extent of the probing beam
is much smaller than the field of view of 20 × 20 nm. Thus,
the oversampling condition is fulfilled. The simulated CBED
pattern is shown in Fig. 1(e).

A CBED pattern is an intensity distribution, meaning that
the phase of the wavefront in the detector plane is lost. In
order to recover the atomic positions, the phase information
needs to be restored, which can be done by applying iterative
phase retrieval algorithms [29]. The CBED pattern shown in
Fig. 1(e) was reconstructed by applying an iterative phase
retrieval procedure, as explained in Sec. IV B 3. The atomic
positions reconstructed after 100 iterations perfectly match
the atomic distribution in the sample (Fig. 3). The intensity
of the central spot was assumed to be blocked by a beam
stop and unavailable, which is typical in an experiment. It
should be noted that blocking of the central disk in a CBED
pattern is not only a typical experimental arrangement but
was also found to be necessary to achieve artifact-free sample
reconstruction. When the central disk in the CBED pattern is
available, its inverse FT gives intense concentric rings in the
first iteration, which are superimposed onto the reconstructed
sample distribution. These rings do not exactly match the
distribution of the incident wavefront, and hence a division by
the incident wavefront does not remove them. The obtained
transmission function of the sample therefore still contains
these artifact rings, and the amplitude and phase distributions
cannot be extracted accurately. As the iterations progress, the
concentric ring artifacts in the sample plane do not fade away;
even after hundreds of iterations, these artifact rings are still
present in the sample plane and the phase distribution of the
sample is not correctly retrieved. In contrast, when the central
disk in the CBED pattern is set to zero in the first iteration, the
reconstructed sample amplitude and phase distributions are
not contaminated by the artifact rings and the constraint can
be applied to the phase distribution, resulting in improvements
in the phase distribution with each iteration. As the iterations
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FIG. 3. Atomic displacements in graphene with a single defect reconstructed by iterative phase retrieval. (a) Two-dimensional distribution
of atoms in a lattice without relaxation. (b) Relaxed positions of atoms around a defect [red circles; blue circles represent the same positions
as shown in (a)]. (c) Difference between the atomic positions in the relaxed lattice [red circles in (b)] and lattice without relaxation [blue
circles in (b)]. (d) Difference between the atomic positions in the relaxed lattice [red circles in (b)] and the reconstructed lattice [red circles
in (e)]. (e) Reconstructed positions of the atoms around a defect [red circles; blue circles represent the same positions as shown in (a)]. (f)
Difference between the atomic positions in the reconstructed lattice and the lattice without relaxation [difference between the atomic positions
in (e)].

progress, the signal in the central CBED disk is gradually
restored to its original values. Since the iterative procedure
implies the use of an FT, and the distribution in the sample
plane is described by a transmission function exp(i∗phase)
(where the phase is unknown), the constant component of the
transmission function guarantees that the zero-order spot will
eventually be restored.

The precision of the reconstructed atomic positions is vi-
sualized in Fig. 3. The atomic shifts due to lattice relaxation
reach 0.25 Å [Figs. 3(a) and 3(b)]. It is evident that the
atomic distribution without a single atom is correctly retrieved
[Figs. 3(c)–3(e)]. The reconstructed atomic coordinates cor-
rectly reproduce the positions of the atoms in the relaxed
lattice, with shifts due to relaxation of up to 0.25 Å [Fig. 3(f)].
The maximal deviation of the reconstructed coordinates from
the correct coordinates is 0.1 Å, and this originates not from
the iterative phase retrieval but from the finite sampling of the
transmission function of the atomic distribution and the finite
pixel size of 9.8 pm. Finer sampling could reduce the error,
although at the cost of increased computational time.

III. DISCUSSION

In the above, we demonstrated how CBED simulations,
in combination with DFT structural predictions, enable the

generation of unique fingerprints of most common defects
in graphene. Our DFT simulations did not show out-of-plane
distortions for the investigated defects, but we can assume that
these can occur in general. The sensitivity of the contrast in
CBED interference pattern is much lower for an out-of-plane
atomic shift than for an in-plane shift. The phase shifts for
out-of plane shift �z and in-plane shift �x are given by
�ϕz ≈ �z π

λ
sin2ϑ and �ϕx = �x 2π

λ
sin ϑ , respectively [16].

A phase shift of 0.1 rad can be easily picked up by the
interference pattern in a CBED disk, and can be created by
�z = 0.35 nm or �x = 3.39 pm. Multiple defects can occur
at a short distance from one another, and in this case, the
resulting interference patterns in the CBED discs will ap-
pear as an in-line hologram of the defects, meaning that the
complex-valued wavefronts rather than the intensities will be
added coherently. The extent of this “overlap” between the
complex-valued waves can be selected by choosing the size
of the imaged area, that is, by regulating the defocus distance.
Our DFT simulations suggest that the strain decays at the
distance of few interatomic spacings.

We have also provided an outline of an iterative phase
retrieval algorithm that allows for the recovery of the ex-
act atomic positions in the monolayer graphene sample. Our
iterative phase retrieval algorithm was modified from con-
ventional phase retrieval algorithms in order to optimize the
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convergence by two distinct features: by removing the central
part of the CBED pattern, and by using a perfect lattice as
an initial guess. The modified algorithm has high stability
and quick convergence even for noisy signal-to-noise, SNR
(SNR = 10) data, which reflect the most typical experimental
conditions. For very low SNR imaging techniques, such as
time-resolved methods, the algorithms described here may
require additional modifications to tolerate low SNR. The
iterative phase retrieval reconstruction approach does not re-
quire any a priori information about the amounts or shapes
of individual defects, and although it is demonstrated here for
the reconstruction of individual defects, the algorithm should
work equally well for multiple defects in the field of view.
These techniques may pave the way for the identification of
atomic defects in 2D materials in a machinery manner. CBED
provides a spatial precision of single atoms on the range of a
few to one hundred nanometers.

IV. METHODS

A. DFT atomic coordinates

The equilibrium geometries of our defect structures were
obtained via DFT calculations using the Perdew-Burke-
Ernzerhof (PBE) functional, as implemented in the Vienna
Ab initio Simulation Package (VASP 5.4) [30–32]. The va-
lence electron configuration for the C elements is (2s22p2).
The interaction between the valence electrons and ionic cores
is described within the projector augmented-wave approach
with a plane-wave energy cutoff of 500 eV [33]. Defect cal-
culations were performed using an ∼448-atom rectangular
supercell of size (2.95 × 2.98) nm, enabling the position re-
laxation of atoms far from the defect center to be less than
a few pm. The DFT relaxed defect structures, as the central
region, were embedded into a pristine graphene framework
of size ∼(60 × 60) nm and used as sample coordinates for
CBED simulations. The Brillouin zone was sampled using
a (1 × 1 × 1) Monkhorst-Pack grid. A 15-Å vacuum space
was used to avoid interactions between neighboring layers. In
the structural energy minimization process, the atomic coor-
dinates were allowed to relax until the forces on all the atoms
were less than 0.01 eV/Å. All of the computational work for
this paper was performed using the resources of the National
Supercomputing Centre, Singapore [34].

B. Simulation of CBED patterns

1. Probing wave distribution

The probing wave distribution ψ0(�r) was modeled by sim-
ulating the diffraction of a spherical wavefront on a limiting
virtual aperture (second condenser aperture) positioned at a
plane �r0:

ψ0(�r) =
∫ ∫

a(�r0)
exp(−ikr0)

r0

exp(ik|�r0 − �r|)
|�r0 − �r| d�r0, (1)

where a(�r0) is the aperture binary function. In the simula-
tions, the integral transform in Eq. (1) was calculated directly,

without applying a fast Fourier transform (FFT), as

ψ0(p, q) =
N/2−1∑

m,n=−N/2

a(m, n)
exp(−ik

√
(m�a)2 + (n�a)2)√

(m�a)2 + (n�a)2

× exp(ik
√

(m�a − p�)2 + (n�a − q�)2)√
(m�a − p�)2 + (n�a − q�)2

,

where m, n, p, q are the pixel indices in the aperture (m, n)
and the sample (p, q) planes, and �a and � are the pixel sizes
in the aperture and the sample planes, respectively.

The semiconvergence angle of α = 7 mrad was achieved
by selecting a virtual exit aperture of diameter 640 nm at a
distance of 45 μm from the virtual source plane.

2. CBED patterns of monolayer samples

The input data consisted of an array of the coordinates of
all the atoms (xn, yn). The transmission function of a mono-
layer was calculated as

t (x, y) = exp[iσvz(x, y) ⊗ l (x, y)], (2)

where vz(x, y) is the projected potential of an individual atom,
l (x, y) is the function describing positions of the atoms in the
lattice, and ⊗ denotes convolution. The projected potential of
a single carbon atom was simulated in the form

vz(r) = 4π2a0e
3∑

i=1

aiK0(2πr
√

bi ) + 2πa0e

×
3∑

n=1

ci

di
exp(−π2r2/di ),

where r =
√

x2 + y2, a0 is the Bohr radius, e is the ele-
mentary charge, K0(...) is the modified Bessel function, and
ai, bi, ci, di are parameters that depend on the chemical ori-
gin of the atoms and are tabulated elsewhere [35]. In vz(r),
the singularity at r = 0 is replaced by the value of vz(r)
at r = 0.1 Å. The convolution vz(x, y) ⊗ l (x, y) in Eq. (2)
is calculated as FT−1{FT[vz(x, y)]FT[l (x, y)]}. FT[l (x, y)] is
simulated without applying an FFT in order to avoid arti-
facts associated with FFT, and is calculated as FT[l (x, y)] =∑

n exp[−i(kxxn + kyyn)], where (xn, yn) are the exact atomic
coordinates, not pixels. FT−1{FT[vz(x, y)]FT[l (x, y)]} is cal-
culated by applying an inverse FFT to the product of
FT[vz(x, y)] and FT[l (x, y)].

The exit wave, after passing through the sample, is given by
the product of the incident wave ψ0(x, y) and the transmission
function of the sample u(x, y) = ψ0(x, y)t (x, y). The CBED
pattern is then simulated as the square of the amplitude of the
FT of the exit wave.

3. Iterative phase retrieval

The iterative phase retrieval was done by performing wave-
front propagation back and forth between the sample and
detector planes, using an FT and inverse FT, respectively.

(i) In the first iteration, the initial sample distribution was
modeled as an incident wavefront ψ0(x, y) multiplied by the
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transmission function of a defect-free graphene lattice t0(x, y):
u(x, y) = ψ0(x, y)t0(x, y).

(ii) The FT of u(x, y) was calculated to give the distribu-
tion of the wavefront in the far field: FT[u(x, y)] = U (X,Y ).
The amplitude of U (X,Y ) was replaced with the measured
amplitude, giving U ′(X,Y ).

(iii) The inverse FT of U ′(X,Y ) was calculated to
give the distribution of the wavefront in the sample
plane u(x, y). Constraints were applied to u(x, y), giving
u′(x, y).

(iv) The iterative loop was restarted at (i).
During the iterative phase retrieval, the following con-

straints were applied. In the sample plane, the extracted phase
distribution was set to be positive by setting the negative
values to zero. In addition, a support constraint was applied
in form of a mask 10 nm in diameter, where the values of the
transmission function outside the mask were set to zero. In
the detector plane in the central region, where no measured
amplitudes were available, the amplitudes were updated in
each iteration.

The progress of the reconstruction process can be moni-
tored by the evaluating the error at the kth iteration as [27]

Ek = {
∑

X,Y [|Uk (X,Y )|−|U ′(X,Y )|]2

∑
X,Y |U ′(X,Y )|2 }1/2. The iterative reconstruction

can be stopped when the error stagnates, typically after tens
of iterations.
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