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To better understand the electronic structure of a single vacancy in graphene, we study the ground-state
property of an effective Anderson model, consisting of three dangling sp2 orbitals of the surrounding carbon
atoms around the vacancy and the π orbitals of carbon atoms that form the honeycomb lattice with a single
vacancy. This model possesses C3 point group symmetry around the vacancy and thereby the local multiplets
can be characterized by their irreducible representations. Employing the block-Lanczos density-matrix renor-
malization group (DMRG) scheme proposed by the present authors [T. Shirakawa and S. Yunoki, Phys. Rev.
B 90, 195109 (2014)], we show that there are two phases in the relevant parameter space, i.e., a nonmagnetic
phase in the weak-coupling region and a free magnetic moment phase in the realistic parameter region. The
systematic analysis finds that, in the free magnetic moment phase, local multiplets of the doubly degenerate
irreducible representation with spin 1 become dominant in the ground state, and approximately half of this
local spin 1 is screened by electrons in the surrounding π orbitals, indicating the emergence of the residual
spin-1/2 free magnetic moment. The symmetry of this local multiplets is compatible with the occurrence of
the in-plane Jahn-Teller distortion to lift the degeneracy, found in the previous ab initio calculations based on
the density functional theory. Furthermore, we find that the emergence of the free magnetic moment is robust
against carrier doping, which is in sharp contrast to the case of graphene with an adatom, thus explaining the
qualitative difference observed experimentally in these two classes of systems. We also find the enhancement
of the spin correlation function between π electrons around the vacancy and those in the conduction band away
from the vacancy in the undoped case, as compared to that in the doped case, while the spin correlation function
between the σ electrons in the sp2-dangling orbitals around the vacancy and the π electrons in the conduction
band remains large in both undoped and doped cases. This implies that there is an additional contribution for
the free magnetic moment from the π electrons, which is fragile against the carrier doping, besides the free
magnetic moment due to the σ electrons in the sp2-dangling orbitals, which is robust against the carrier doping.
Our calculations thus support qualitatively the previous experiment that suggests the emergence of free magnetic
moment with two distinct origins.

DOI: 10.1103/PhysRevB.105.184110

I. INTRODUCTION

Graphene with vacancies has attracted a great deal of at-
tention because it provides a route for additional functionality
of graphene, i.e., the emergence of magnetism as predicted
by ab initio calculations based on the density-functional
theory (DFT) [1–6], similar to the case of graphite [7,8].
Indeed, the magnetization measurements have observed para-
magnetism in the presence of vacancies [9–11], while the
pristine graphene is diamagnetic [12]. Moreover, the tunnel
scanning microscope measurements have observed the spectra
showing two spin-polarized peaks located in the vicinity of
vacancy [13,14].

The introduction of a single vacancy in graphene induces
dangling orbitals that are localized around the vacancy. These
orbitals would contribute to reconstruct the electronic struc-
ture around the vacancy because the energy levels of these

dangling orbitals are located near the Fermi level. Therefore,
the correlation effect is expected to play an important role to
determine the electronic structure even in the carbon based
system.

The previous ab initio DFT calculations have shown
that there occurs the in-plane Jahn-Teller distortion around
the vacancy [1–5], in which two of three carbon atoms
around the vacancy become closer in distance. Let us briefly
consider the spatial symmetry of graphene in the presence of
a single vacancy. If one of carbon atoms forming the honey-
comb lattice structure is removed from graphene, the system
has C3 point group symmetry around the vacancy. Under the
C3 rotational symmetry, the eigenstates of the system are
characterized with the nondegenerate symmetric irreducible
representation A or the doubly degenerate irreducible rep-
resentation E . The distortion found in the ab initio DFT
calculations is considered as the consequence of the coupling
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through the vibration of E type, called e vibration mode. The
electronic state coupled to this vibration mode is expected to
be a state in E symmetry [15]. This can indeed be compatible,
for example, with a noninteracting state composed of the three
sp2-dangling orbitals around the vacancy occupied by three
electrons. However, if we consider a noninteracting system
composed of three π orbitals around the vacancy in addition
to the three sp2-dangling orbitals, there are six electrons and
the ground state can be in A symmetry. Furthermore, it is not
trivial how the correlation effect along with the surrounding
other orbitals can be incorporate in these pictures.

Another issue is the size of the free magnetic moment
induced by the presence of vacancy in graphene. It has been
reported that the magnetization curve of graphene in the pres-
ence of vacancy generated by the proton irradiation is well
described by the Brillouin function with 1.0μB [10,11] (μB

being the Bohr magneton), while the other experiment for
graphene nanoflakes irradiated with nitrogen ions suggests
2.0μB paramagnetism induced per single vacancy [9]. Since
graphene with vacancy is a complex system to analyze exper-
imentally, the theoretical investigation based on the numerical
approaches is highly anticipated to be useful. However, the
estimated values by the ab initio DFT calculations are rather
widely distributed from 1.0μB to 2.0μB [1–5], depending on
the use of different types of the exchange potential [6] as well
as the treatment of the further corrections for the electron
correlation [15,16]. Note also that the size of the free mag-
netic moment observed experimentally could not be simply
estimated theoretically by the static one-body approximation
because it fails to describe multiplet electronic structures and
Kondo-like physics. Therefore, it is valuable to address these
issues based on the many-body model calculations.

Moreover, other experiments suggest that the emergence
of the free magnetic moment around the vacancy is robust
against carrier doping [11,13]. This is in sharp contrast to
the magnetism induced by hydrogen absorption, where the
magnetic moment vanishes by carrier doping [11,17]. It is
also claimed in Ref. [11] that the vacancy magnetism in
graphene has a dual origin and approximately half of the free
magnetic moment abruptly diminishes with carrier doping.
Therefore, the mechanism for the emergence of the free mag-
netic moment in graphene would be different between these
two systems with vacancies and adatoms.

To better understand the origin of magnetism, here we
examine the ground state property of an effective Anderson
model for a single vacancy in graphene. Although there have
been several models proposed for graphene in the presence
of vacancy [18–20], the essential difference of our model is
to contain all three sp2-dangling orbitals around the vacancy,
in addition to the π orbitals of carbon atoms that form the
honeycomb lattice with a single vacancy. We also impose
the C3 rotational symmetry around the vacancy to discuss a
possible mechanism for the Jahn-Teller distortion.

First, we analyze the local multiplet structures around a
vacancy based on a three-site two-orbital Hubbard model,
composed of the three dangling sp2 orbitals and three π

orbitals closest to the vacancy, which will be incorporated
into an effective Anderson model as the impurity sites. We
show that there are two phases in a reasonable parameter
region: One is a weak-coupling phase in which the multiplet

structures are obtained by the perturbation theory to the open
shell electron configuration realized in the noninteracting
limit, and the other is a strong-coupling phase in which each
of carbon sites forms spin triplet due to the Hund’s coupling.
The effective model in the strong-coupling region is thus well
described by the spin-1 antiferromagnetic Heisenberg model
whose ground state is often referred to as a valence bond state
[21,22]. In both phases, the low-lying multiplet structures are
identified by the irreducible representations of the C3 rota-
tional point group and the total spin.

We then examine how the local multiplet ground state is
affected via the hybridization with the surrounding π elec-
trons in the conduction band. For this purpose, we construct
an effective Anderson model composed of the three-site two-
orbital Hubbard model, which describes the local electronic
states around the vacancy and thus serves as the impurity
sites, and the surrounding π orbitals of carbon atoms forming
the honeycomb lattice with the single vacancy. The Anderson
model is solved by employing the density matrix renormal-
ization group (DMRG) method [23,24] combining with the
block-Lanczos technique [25–28], which gives the numer-
ically accurate solution within controlled errors. With this
numerical analysis, we can fully take into account the local
multiplet structures as well as the coupling to the surrounding
π electrons, which thus provides the valuable information
complementary to the one-body type approximation used in
the ab initio DFT calculations.

Main results are summarized as follows. We find that (1)
in the reasonable parameter region for graphene, the local
multiplets with E irreducible representation and local spin
S = 1 are dominant in the ground state, due to the coupling
with the surrounding π electrons in the conduction band.
The symmetry of the local E multiplets is thus compatible
to the occurrence of the in-plane Jahn-Teller distortion by the
coupling through the E-type vibration mode [15]. We also find
that (2) the local magnetic moment is not completely screened
but partially screened by the surrounding π electrons in the
conduction band, suggesting the existence of the residual free
magnetic moment. The estimated local free magnetic moment
around the vacancy is as large as ∼0.55 for the undoped case
and ∼0.45 for the doped case, where the g factor g = 2 is
assumed, implying the S = 1/2 paramagnetism formed lo-
cally around the vacancy. We also confirm that (3) this free
magnetic moment is robust against carrier doping, which is
compatible to the experimental results [11,13]. Finally, an-
alyzing the spin correlation function between the electrons
in the local impurity sites and the surrounding π electrons
in the conduction band, we find that (4) the spin correlation
functions between the electrons in the dangling sp2 orbitals
and the surrounding π electrons are insensitive to the carrier
doping, while those between the electrons in the local π

orbitals around the vacancy and the surrounding π electrons
behave differently in the undoped and doped cases. The latter
is attributed to the nature of the hybridization function that
shows a pseudogap structure in the undoped case, thus leading
to the unscreening of the local magnetic moment, but does not
in the doped case.

The rest of this paper is organized as follows. We first
introduce an effective Anderson model for a single va-
cancy in graphene in Sec. II. We then summarize, as the
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building blocks of the Anderson model, the low-lying mul-
tiplet structures of the local impurity part of the Anderson
model, corresponding to an effective three-site two-orbital
Hubbard model, and the hybridization function that describes
the energy-resolved coupling between the local multiplets
and the surrounding π orbitals forming the conduction band
of the Anderson model. The numerical method used in this
study is briefly explained in Sec. III and the numerical results
are shown in Sec. IV. The paper is concluded in Sec. V by
discussing the relevance of our results to the experiments
and also making the comparison with the previous theoretical
studies. The explicit form of the local multiplet states in the
strong-coupling limit is provided in Appendix A. The spin
correlation functions for similar but much simpler models are
calculated as the reference for the comparison in Appendix B.

II. MODEL

A. Anderson model for a single vacancy in graphene

Graphene is composed of carbon atoms forming a two-
dimensional honeycomb lattice structure with a single carbon
atom locating at each site. The sp2 orbitals of a carbon atom in
graphene are three local orbitals formed by the linear combi-
nation of the 2s atomic orbital and two 2p atomic orbitals (2px

and 2py orbitals) in the plane. Each of these sp2 orbitals has a
large lobe pointing to one of three different directions and the
angle between any two of them is 120◦, hence compatible to
the honeycomb lattice structure of graphene. In graphene, two
of these sp2 orbitals in neighboring sites point to each other
(one from each site) and hybridize strongly (i.e., σ bonding) to
form bonding and antibonding orbitals between the neighbor-
ing sites. Because of the large energy level difference between
the bonding and antibonding orbitals, the bonding orbital is
fully occupied by two electrons and the antibonding orbital
is completely empty. Therefore, these orbitals formed by the
sp2 orbitals are usually inactive in the pristine graphene. The
electronic properties of graphene are thereby determined by
the remaining π orbitals, i.e., 2pz orbitals perpendicular to
the graphene plane, and the resulting energy band exhibits the
Dirac linear dispersion across the Fermi level [29]. The sp2

orbitals are referred to simply as σ orbitals hereafter.
These features can be depicted schematically in Fig. 1(a)

with orange (blue) spheres representing π (σ ) orbitals. Each
carbon atom has six electrons. Two of them occupy the 1s core
orbital and the remaining four electrons occupy the π and σ

orbitals with one electron per orbital. All of the σ orbitals have
their neighboring pairs to form the covalent σ bonding.

Now, let us consider to introduce a single vacancy of the
carbon atom in graphene. As shown in Fig. 1(b), in the pres-
ence of a single vacancy, there appear three σ orbitals around
the vacancy, which have no neighboring pairs. These unpaired
σ orbitals are called dangling orbitals and are tightly localized
around the vacancy. On the other hand, the removal of one
site generates the imbalance between sublattices in the honey-
comb lattice [30], which induces a zero-energy mode in the π

orbital system [31–33]. The spectral weight (or equivalently
the wave function) of the zero-energy mode is mostly found
around the vacancy, although it should be more extended in
space than the dangling σ orbitals.

orbital

orbital

(a) (b)

(c)

FIG. 1. (a) Schematic depiction of the pristine graphene com-
posed of π orbitals (orange spheres) and σ orbitals (blue spheres).
Each carbon site has one π orbital and three σ orbitals. Here, σ

orbitals refer to the sp2 orbitals and their directional nature of the
shape of orbitals is indicated by locating them slightly away from the
lattice point toward the neighboring sites. (b) Schematic depiction
of graphene in the presence of a single vacancy. Three dangling σ

orbitals appear around the vacancy. (c) Schematic depiction of the
effective Anderson model HAM studied here. The model consists of
the three σ orbitals around the vacancy and all π orbitals of carbon
atoms forming the honeycomb lattice structure with a single vacancy.
Three sites around the vacancy are treated as an “impurity site” in the
Anderson model (inside a blue dashed circle denoted as I) and the
remaining sites are treated as the conduction sites (outside a blue
dashed circle denoted as L). Green solid (dashed) lines in (b) and
(c) indicate the bonds inside region I with a finite transfer integral tσ
(tπ ) between the σ orbitals (π orbitals).

For the modeling of this system, i.e., a single vacancy in
graphene, we introduce the following simplifications. First, as
shown in Fig. 1(c), we neglect all paired σ orbitals because
they are inactive. Next, we assume that the conduction elec-
trons in the surrounding π orbitals away from the vacancy are
described by a noninteracting tight-binding model, implicitly
considering the renormalization effect of the correlated two-
dimensional massless Dirac electrons [34,35]. Furthermore,
we ignore possible modification of the hopping matrix ele-
ments around the vacancy. Within these assumptions, one can
model our system as the following effective Anderson model:

HAM = HI + HL, (1)

where HI and HL describe the local part around the vacancy
and the surrounding part of the system away from the vacancy,
respectively [see Fig. 1(c)].

The local part of the Hamiltonian HI is composed of the
three dangling σ orbitals and the three π orbitals on the three
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carbon sites next to the vacancy:

HI = Ht + HU + Hd , (2)

where

Ht = εσ

∑
i∈I

∑
s=↑,↓

c†
iσ sciσ s + επ

∑
i∈I

∑
s=↑,↓

c†
iπsciπs

− tσ
∑

〈〈i, j〉〉I

∑
s=↑,↓

c†
iσ sc jσ s − tπ

∑
〈〈i, j〉〉I

∑
s=↑,↓

c†
iπsc jπs, (3)

HU = U
∑
i∈I

∑
α=σ,π

niα↑niα↓ + U ′ ∑
i∈I

niσ niπ

− 2J
∑
i∈I

(
Siσ · Siπ + 1

4
niσ niπ

)

+ J ′ ∑
i∈I

(c†
iσ↑c†

iσ↓ciπ↓ciπ↑ + c†
iπ↑c†

iπ↓ciσ↓ciσ↑), (4)

and

Hd = −1

2
(U + 2U ′ − J )

∑
i∈I

∑
α=σ,π

niα. (5)

Here, I represents the set of site labels i for the three carbon
sites next to the vacancy [see Fig. 1(c)], 〈〈i, j〉〉I denotes a pair
of sites i and j in I, corresponding to the next-nearest neigh-
bors in the honeycomb lattice. ciαs (c†

iαs) is the annihilation
(creation) operator of an electron at site i with spin s (=↑,↓)
and orbital α (=σ , π ), niαs = c†

iαsciαs, and niα = niα↑ + niα↓.
Siα = (Sx

iα, Sy
iα, Sz

iα ) is the local spin operator for orbital α at
site i given by

Sν
iα = 1

2

∑
s,s′=↑,↓

c†
iαs[σ

ν]ss′ciαs′ , (ν = x, y, z) (6)

where σx, σy, and σz represent the Pauli matrices. We also
define the total spin operator at site i,

Si = Siσ + Siπ (7)

with Si = (Sx
i , Sy

i , Sz
i ), and the total spin operator over all sites

in I,

SI =
∑
i∈I

Si (8)

with SI = (Sx
I, Sy

I, Sz
I ).

The first two terms in Ht represent the local energy levels
of the σ and π orbitals. The last two terms in Ht are the
hopping terms between different sites. Note that there is no
hopping between the two different orbitals because the σ

orbital and the π orbital are orthogonal to each other. For
simplicity, we parametrize tσ = 2tπ throughout this paper.
HU represents the local interaction terms, including the in-
traorbital Coulomb interaction U , the interorbital Coulomb
interaction U ′, the Hund’s coupling J , and the pair hopping
J ′. To reduce the number of parameters, here we assume
U = U ′ + 2J , J = J ′, and J = 0.1U , although the former is
valid only for atomic orbitals [36]. Notice also that Hd is
added to correct the double counting of the interactions. While
Hd does not make any difference when the isolated HI is
considered, it becomes important to compensate the electron

density when the surrounding π orbitals described by HL is
incorporated.

In the Anderson model HAM in Eq. (1), the effects of the
surrounding π orbitals are encapsulated by the noninteracting
Hamiltonian,

HL = −t
∑
〈i, j〉′

∑
s=↑,↓

(c†
iπsc jπs + c†

jπsciπs)

− tπ
∑
〈〈i, j〉〉′

∑
s=↑,↓

(c†
iπsc jπs + c†

jπsciπs), (9)

where 〈i, j〉′ and 〈〈i, j〉〉′ indicate pairs of nearest-neighbor and
next-nearest-neighbor sites i and j, respectively, on the hon-
eycomb lattice except for pairs of sites inside I, implying that
pairs of sites across the boundary between I and L are also
included. As indicated in Fig. 1(c), in the follows, we simply
use L to denote the set of all sites in the honeycomb lattice but
excluding sites i ∈ I, i.e., all sites in the surrounding π -orbital
system.

In our effective Anderson model HAM, we only consider
the Coulomb interactions for σ and π orbitals around the
vacancy in I but not for π orbitals in L. This can be ratio-
nalized as follows. According to a constraint random phase
approximation study, the intraorbital Coulomb interaction U
for the bulk graphene is estimated to be as large as 3.5t
[37]. On the other hand, the exact numerical analysis for the
Hubbard model on the honeycomb lattice at half filling reveals
that the ground state is Fermi liquid for U ∼ 3.5t [34,35].
Therefore, the single-particle treatment without the Coulomb
interactions would be accepted when the electronic properties
for the bulk system are discussed. However, in the presence
of a vacancy, there appear the dangling orbitals as well as
the zero-energy mode that are energetically located near the
Fermi level, suggesting that the electrons on these orbitals are
sensitive to any interactions. Among them, the most relevant
interactions responsible for magnetism in the system are the
Coulomb interactions for these sensitive dangling orbitals and
the π -orbitals around the vacancy in I. Therefore, the effective
Anderson model HAM considered here is one of the simplest
models that can capture low-energy physics of graphene with
a single vacancy.

B. Local multiplets

Setting aside the surrounding π -orbital system, we shall
first examine the low-lying multiplet structure of the local part
of the Hamiltonian HI given in Eq. (2), which is essentially
the three-site two-orbital Hubbard model. The local part of
the Hamiltonian HI can be considered as the building block,
i.e., “impurity site”, of the Anderson model HAM and the un-
derstanding of the low-lying multiplet structure is essential to
understand the electronic structure of the total system. Since
each orbital has nominally one electron in the effective model
of graphene considered here, we impose that the total number
of electrons in HI is six.

The model described by HI in Eq. (2) possesses the C3

point group symmetry as well as the spin rotational symme-
try. Therefore, any eigenstate of HI can be simultaneously
characterized with the irreducible representation of the point
group and the total spin. As already described in Sec. I,
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FIG. 2. [(a),(b)] Single-particle energy level diagrams and the
ground-state electron configurations of HI in the noninteracting
limit for (a) −tσ < επ − εσ < tσ /2 and (b) tσ /2 < επ − εσ < 2tσ
with tσ = 2tπ > 0. (a, α) [(e, α)] for orbital α (= σ, π ) characterizes
each single-particle energy level with the irreducible representa-
tion A (E) of the C3 point group. Green arrows represent up and
down electrons. [(c),(d)] Low-lying multiplet energy diagrams in
(c) the weak-coupling limit (U 
 tσ ) and (d) the strong-coupling
limit (U � tσ ). (C, SI ) (C = A,E, SI = 0, 1, 2, 3) characterizes
the associated many-body energy eigenstates, i.e., multiplets, with
the irreducible representation X (X = A, E) and the total spin SI .
Here the total number of electrons is assumed to be 6.

the irreducible representations of the C3 point group are the
symmetric one-dimensional representation A and the doubly
degenerate representation E . In this paper, we denote sets of
states belonging to these irreducible representations A and
E as A and E, respectively. We also represent the quantum
numbers of SI and Sz

I as SI and MI , respectively. Namely, the
eigenvalue of SI · SI is SI (SI + 1). Using these notations, we
can refer to the energy eigenstates with (C, SI) (C = A, E) as
the multiplets characterized by the irreducible representation
C (C = A, E) and the total spin SI .

In the noninteracting case, the single-particle energy level
εα for each orbital α (= σ, π ) is split by the electron hopping
tα into a nondegenerate energy level with A and doubly de-
generate energy levels with E. We denote these single-particle
energy levels as a ∈ A and e ∈ E with their energy levels
ε(a)
α and ε(e)

α , respectively. These energy levels ε(a)
α and ε(e)

α

are easily evaluated as ε(a)
σ = −2tσ + εσ and ε(e)

σ = tσ + εσ

for the σ orbitals, and ε(a)
π = −2tπ + επ and ε(e)

π = tπ + επ

for the π orbitals. For tσ = 2tπ > 0 and −tσ < επ − εσ <

tσ /2, the ground-state electron configuration with six elec-
trons is open shell with two electrons occupying the e level
of π orbitals, as shown in Fig. 2(a). Notice that in this case
the number of electrons in the σ (π ) orbitals, Nσ (Nπ ), is
Nσ = 2 (Nπ = 4). The first-order perturbation theory with re-
spect to the Coulomb interactions lifts the sixfold degenerate
electron configurations of the open shell e level of π orbitals.
Consequently, the ground state becomes (A, 1), as shown in
Fig. 2(c). When tσ /2 < επ − εσ < 2tσ is realized together
with tσ = 2tπ > 0, the e level of σ orbitals is now lower
than the e level of π orbitals, thus indicating that Nσ = 4 and
Nπ = 2, as shown in Fig. 2(b). However, the resulting ground
state in this case is again (A, 1) in the weak-coupling limit, as
shown in Fig. 2(c).

In the strong-coupling limit, the Coulomb interactions
force the electron distribution to be uniform, yielding Nσ =
Nπ = 3. Moreover, the Hund’s coupling J makes the local

FIG. 3. Low-lying energy �En = En − E0 of HI as a function
of U . Here, En is the nth energy eigenvalues of HI with n = 0
corresponding to the ground state and E0 � E1 � E2 � · · · . (C, SI )
(C = A,E, SI = 0, 1, 2, 3) is indicated for some of the energy
eigenvalues En to characterize the corresponding energy eigenstates.
The parameters used here are tσ = 2tπ > 0, εσ = επ , and J/U = 0.1.
The ground state (n = 0) is (A, 1) for U/tσ < 3 and (A, 0) for
U/tσ > 3. The total number of electrons is assumed to be 6.

state a spin triplet (Si = 1) at each site. Since the kinetic ex-
change mechanism induces the antiferromagnetic interactions
between neighboring sites, the low-energy effective model for
HI in the strong-coupling limit is represented by the three-site
spin-1 antiferromagnetic Heisenberg model. The low-lying
energy levels for this effective model are summarized in
Fig. 2(d). The ground state is (A, 0), which refers to a kind
of the valence-bond-type state [22] in the spin-1 antiferromag-
netic chain [21]. More detailed analysis of the strong-coupling
limit is provided in Appendix A.

In order to confirm the multiplet energy diagrams shown in
Figs. 2(c) and 2(d), we show in Fig. 3 the low-lying energy
�En defined as

�En = En − E0, (10)

where En (n = 0, 1, 2, · · · ) is the nth energy eigenvalues
of HI with six electrons and n = 0 corresponds to the
ground-state energy, i.e., E0 � E1 � E2 � · · · , calculated
numerically by fully diagonalizing the Hamiltonian HI . Char-
acterizing the energy eigenstates, we find that the low-lying
multiplet structure is precisely reproduced by those shown in
Fig. 2(c) in the weak-coupling limit (U ≈ 0) and in Fig. 2(d)
in the strong-coupling limit (U � tσ ), except for the small
energy splitting between the multiplets with (A, 1) and (E, 1),
which is expected to be degenerate in the limit of U/tσ →
∞. Notice also in Fig. 3 that the transition from the weak-
coupling limit to the strong-coupling limit, occurring at U =
3tσ for the specific parameter used here, is essentially a level
crossing. Indeed, these two states with (A, 1) and (A, 0) are
distinguishable with different eigenvalues of the total spin SI .

Figure 4(a) shows the intensity plot of 〈SI · SI〉 ≡ S̄I (S̄I +
1) obtained by numerically diagonalizing HI with six elec-
trons. Here, 〈O〉 indicates the expectation value of an operator
O for the ground state. As expected, the total spin of the
ground state for the small U/tσ region is S̄I = 1 and that for
the large U/tσ region is S̄I = 0. We also find in Fig. 4(b)
that, for the large U/tσ region, the total spin at each site
S̄i evaluated from 〈Si · Si〉 ≡ S̄i(S̄i + 1), approaches to S̄i = 1
with increasing U/tσ , suggesting the formation of a local spin
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0 2 4 6 8
U/tσ

0

0.2

0.4
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0.8

ε π
/
t σ

0 0.5 1 1.5 2
S̄I(S̄I + 1)

(a)

S̄I = 0

S̄I = 1

0 2 4 6 8
U/tσ

0 0.5 1 1.5 2
S̄i(S̄i + 1)

(b)

S̄i ∼ 1

S̄i ∼ 0.62

FIG. 4. Intensity plots of (a) 〈SI · SI〉 ≡ S̄I (S̄I + 1) and (b) 〈Si ·
Si〉 ≡ S̄i(S̄i + 1) calculated for the ground state of HI with tσ =
2tπ > 0, εσ = επ , and J/U = 0.1. The values of S̄I and S̄i are also
indicated in (a) and (b), respectively. The total number of electrons
is assumed to be 6.

1 at each site, where the low-lying states can be described
by the spin-1 antiferromagnetic Heisenberg model. It is also
clear in Fig. 4(a) that the phase boundary between the weak-
and strong-coupling phases corresponds to a level crossing
because the total spin of the ground state is different.

There are two remarks in order. First, any multiplet state in
both weak- and strong-coupling phases cannot be described
by a single Slater determinant, indicating the importance of
the correlation effect. Especially, the Hund’s coupling play
an essential role on realizing the valence-bond-type state in
the strong-coupling phase. Second, tπ is the next-nearest-
neighbor hopping for the π orbitals and is estimated as large
as tπ ∼ t/12, where t is the nearest-neighbor hopping for the
π orbitals in graphene [38]. On the other hand, the intraorbital
Coulomb interaction for the π orbitals is estimated as large as
∼3.5t by the constrained random phase approximation [37].
Therefore, it is reasonable to expect that the ground state
of HI with the parameter set for graphene is in the strong-
coupling phase. However, as we will discuss below, the effect
of the surrounding π orbitals is dominant to determine the
low-lying electronic structure of the Anderson model HAM.

C. Hybridization function

It is known that an Anderson model in general is charac-
terized by a local Hamiltonian for the impurity sites, which
corresponds to HI in our case, and a so-called hybridization
function �i j (ω) [39], mathematically defined as the Schur
complement of the inverse of the hopping matrix (i.e., Green’s
function) for the complementary space of the impurity sites in
I, which corresponds to L in our case [25]. Physically, �i j (ω)
is a quantity characterizing the energy resolved coupling of
the impurity sites to the surrounding bath sites, i.e., the sur-
rounding π -orbital system in L. For the Anderson model
described by the Hamiltonian HAM given in Eq. (1), �i j (ω)
is a three-by-three matrix labeled by the site indices of the π

orbitals in I, since the σ orbitals in I do not hybridize with the
surrounding π -orbital system in L. Because of the C3 point

0

0.4

0.8

1.2

-6 -4 -2 0 2 4 6

Γ̃
c
(ω

)/
t

ω/t

Γ̃a(ω)

Γ̃e(ω)

FIG. 5. Hybridization functions �̃c(ω) (c = a, e) for HAM with
tπ = t/12. Green-dashed line indicates the Fermi level at ω = 0
for bulk graphene, i.e., undoped graphene. Note that hybridization
functions �̃e(ω) for e = e1 and e2 are exactly the same and here only
one of them is plotted.

group symmetry of the system, �i j (ω) can be diagonalized
with the diagonal elements �̃a(ω) and �̃e(ω) corresponding
to the couplings with the (a, π ) orbital and the (e, π ) orbitals
(e = e1, e2) in I, respectively. We call the (a, π )-orbital sys-
tem a mode and the (e, π )-orbital systems e modes.

Figure 5 shows �̃a(ω) and �̃e(ω) for the Anderson model
HAM given in Eq. (1) with tπ = t/12 [38]. Around the Fermi
level for bulk graphene, i.e., undoped graphene, a diverging
behavior appears in �̃e(ω), which is associated with the zero-
energy modes of the π -orbital system [31,32], as described
below. This diverging behavior strongly affects the distribu-
tion of the local multiplets coupled to the e modes, as shown
later. We should note here that because of the particle-hole
asymmetry due to the presence of the next-nearest hopping
tπ , �̃e(ω) does not exactly diverge and the maximum location
in energy is slightly shifted below the Fermi level [31]. In
this case, there are two phases expected for the ground state,
according to the previous studies [20]. One is the symmetric
strong-coupling phase where the Kondo screening state arises.
The other is the asymmetric strong-coupling phase where
the spin degree of freedom is vanished because of the large
potential difference between the impurity and conduction sites
that induces the closed-shell configuration at the impurity site.
The divergent hybridization function is preferable to the sym-
metric strong coupling even when the model is particle-hole
asymmetric.

On the other hand, we find in Fig. 5 that �̃a(ω) shows a
pseudogap structure at the Fermi level. An Anderson model
with a single magnetic impurity coupled to the bath sites
through a hybridization function with a pseudogap structure
at the Fermi level is called a pseudogap Anderson model [40].
The pseudogap Anderson model is indeed considered as an
effective model for a hydrogen adatom on graphene [25,41].
Previous studies have revealed that the Kondo screening is ab-
sent in the pseudogap Anderson model [42,43]. Consequently,
there appears the free magnetic moment even at zero tem-
perature. In other words, the hybridization function with the
pseudogap structure is irrelevant to the low-lying electronic
properties of the impurity site. The carrier doping into the
pseudogap Anderson model yields either the Kondo screening
of the magnetic moment at the impurity site or the vanishment
of the magnetic moment by adding or removing electrons
at the impurity site [43], suggesting that the free magnetic
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moment in the adatom graphene would be sensitive against
the carrier doping.

Finally, we note that the diverging part in �̃e(ω) is some-
times referred to as the zero-energy modes [31–33]. The
number of the zero-energy modes [31–33] is related to the
imbalance of the number of sites in the two sublattices of
a bipartite system [30]. If we consider the system L, the
imbalance of the number of sites in the two sublattices is 2
(= 3 − 1), which coincides with the degeneracy of E . From
this rule, we can readily understand that �̃e(ω) should show
the diverging behavior because of the presence of the two
zero-energy modes, while �̃a(ω) should not exhibit any di-
verging behavior that originates from the zero-energy modes
caused by the sublattice imbalance.

III. METHOD

We use the density-matrix renormalization group (DMRG)
method [23,24] to study the ground-state properties of the An-
derson model described by the Hamiltonian HAM in Eq. (1).
For this purpose, we employ the block Lanczos tridiagonal-
ization technique to map the Anderson model HAM onto an
effective quasi-one-dimensional (Q1D) model [25–28], which
consists of the three σ orbitals and the three π orbitals in I, de-
scribing the local part of the Hamiltonian HI , and 3(L − 1) π

orbitals in L, generated by the block Lanczos procedure start-
ing from the three π orbitals in I, to represent the surrounding
π -orbital system that couples to the π orbitals in I [see
Figs. 6(a) and 6(b)]. Here, L is the maximum number of the
block Lanczos iterations. The main advantage of this approach
is the exact treatment of the Anderson model up to the distance
∼L from the vacancy by extracting all relevant orbitals for
the electronic states around the vacancy. With the local part
of the Hamiltonian HI in Eqs. (2)–(5), the Hamiltonian HQ1D

of the resulting effective Q1D model is thus given by

HQ1D = HI +
∑

s=↑,↓
Hs

c, (11)

where

Hs
c =

L∑
l=1

3∑
m=1

3∑
m′=1

[εl ]m,m′ c̃†
lmsc̃lm′s

+
L−1∑
l=1

3∑
m=1

3∑
m′=1

[τ l ]m,m′ c̃†
lmsc̃l+1m′s + H.c. (12)

and c̃lms (m = 1, 2, 3, l = 1, 2, · · · , L) is an electron annihila-
tion operator defined by the linear combination of ciπs in HAM

through

c̃lms =
∑

i

U l
i,mciπs. (13)

Note that c̃lms (m = 1, 2, 3) for l = 1 is identical to ciπs for
i ∈ I and therefore the form of HI , including the interaction
part HU , remains unchanged under this transformation.

Let us now introduce the matrix [U ]i,3l+m ≡ [U l ]i,m ≡ U l
i,m

with m = 1, 2, 3, l = 1, 2, · · · , L, and i ∈ I + L in Eq. (13).
To obtain the form of the Hamiltonian Hs

c in Eq. (12), we
should notice that the block Lanczos transformation is applied
to the surrounding part of the Hamiltonian HL defined in

(c)

c = e2

c = a

spin down sitesspin up sites

l = 1, 2, 3, 4, 5, · · ·

(a)

(b)

m = 1

m = 2

m = 3

HI

HI

spin down sitesspin up sites

l = 1, 2, 3, 4, 5, · · ·

c = e1

H
I

FIG. 6. Schematic depictions of (a) the Anderson model HAM

given in Eq. (1) for a single vacancy in graphene, (b) the effective
Q1D three-leg Anderson model HQ1D obtained by the block Lanczos
transformation with the π orbitals in I as the initial block Lanczos
bases, and (c) the symmetrized Q1D three-leg Anderson model H′

Q1D

obtained by the unitary transformation in Eqs. (21)–(23). m (=
1, 2, 3) and c (= a, e1, e2) stand for labels of legs in the Q1D ladder
representations, and l stands for a label of rungs corresponding to the
block Lanczos basis generated by the block Lanczos iteration. Blue
spheres in (a)–(c) denote the σ orbitals in I represented by (ciσ s, c†

iσ s ).
Orange and red spheres in (a), (b), and (c) denote the π orbitals in
both I and L represented by (ciπs, c†

iπs ), (c̃lms, c̃†
lms ), and ( f̃lπs, f̃ †

lπs ),
respectively. Note that l = 1 corresponds to the initial bases for the
block Lanczos iteration and thus (c̃lms, c̃†

lms ) for l = 1 in (b) are
exactly the same as (ciπs, c†

iπs ) for i ∈ I. The region indicated by
the blue-dashed rectangle corresponds to the local Hamiltonian HI ,
which remains unchanged under the transformation in (b). However,
the form of HI is changed in (c). The left (right) part of the sites in
(b) and (c) is assigned to represent orbitals with up spin (down spin).

Eq. (9). The matrix U represents the block Lanczos basis that
transforms the Hamiltonian matrix of HL for the π orbitals
with spin s, i.e.,

[
Hs

L

]
i j =

⎧⎨
⎩

−t i, j ∈ 〈i, j〉′
−tπ i, j ∈ 〈〈i, j〉〉′
0 otherwise

(14)

184110-7



TOMONORI SHIRAKAWA AND SEIJI YUNOKI PHYSICAL REVIEW B 105, 184110 (2022)

into a triblock-diagonal matrix form, i.e.,

U†Hs
LU =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

ε1 τ1 0 0 · · · 0
τ†

1 ε2 τ2 0 · · · 0

0 τ†
2 ε3 τ3

...

0 0 τ†
3

. . .
. . .

...
...

. . . εL−1 τL−1

0 0 · · · τ†
L−1 εL

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (15)

where εl and τ l are the 3 × 3 matrices appearing in Eq. (12).
We can obtain these matrices recursively through the block
Lanczos iteration

U l+1τ
†
l+1 = Hs

LU l − U lεl − U l−1τ l , (16)

where ε1 = 0, U0 = 0, U1 = (ei1 , ei2 , ei3 ) with ei being a
column unit vector, i.e., (ei )k = δi,k and {i1, i2, i3} ≡ I, and
the left-hand side is obtained by the QR decomposition
of the right-hand side. Note that the particular form of U1 is
due to the initial block Lanczos bases chosen intentionally to
be the three π orbitals in I. In addition, as shown in Fig. 6(b),
we can divide the system into two blocks using the spin
degrees of freedom to reduce the local Hilbert space [25].
More details of the derivation and the technical information
for Eqs. (11)–(16) can be found in Ref. [25].

Because of the C3 rotational symmetry, we can find that the
matrix elements of εl and τ l satisfy

[εl ]11 = [εl ]22 = [εl ]33, (17)

[εl ]12 = [εl ]23 = [εl ]31 = [εl ]21 = [εl ]32 = [εl ]13, (18)

[τ l ]11 = [τ l ]22 = [τ l ]33, (19)

and

[τ l ]12 = [τ l ]23 = [τ l ]31 = [τ l ]21 = [τ l ]32 = [τ l ]13. (20)

Therefore, the unitary transformation of the electron operators

f̃las = (c̃l1s + c̃l2s + c̃l3s)/
√

3, (21)

f̃le1s = (2c̃l1s − c̃l2s − c̃l3s)/
√

6, (22)

and

f̃le2s = (c̃l2s − c̃l3s)/
√

2 (23)

for l = 1, 2, · · · , L transforms HQ1D into a decoupled form
(apart from the local part in I) of the Q1D model

H′
Q1D = H′

I +
∑

s=↑,↓
Hs

f , (24)

where

Hs
f =

L∑
l=1

∑
c=a,e1,e2

ε̃lc f̃ †
lcs f̃lcs

+
L−1∑
l=1

∑
c=a,e1,e2

τ̃lc f̃ †
lcs f̃l+1cs + H.c., (25)

as shown schematically in Fig. 6(c). Note that because of
the unitary transformation, the form of the local part of the
Hamiltonian HI , including the interaction part, is changed to

H′
I . We should also note that c = a (c = e1, e2) indeed corre-

sponds to the orbitals with the A (E) irreducible representation
of the C3 point group.

The systems sizes studied here are up to L = 47, i.e.,
6(L + 1) = 288 sites in the Q1D model including the spin de-
grees of freedom, which corresponds to approximately 7000
sites in the honeycomb lattice around the vacancy [25]. We
keep the number χ of the density matrix eigenstates up to
χ = 120(L + 1) to obtain the reasonable convergence. For
example, we have checked that the results do not change
much even if we increase the number of the density matrix
eigenstates kept up to χ = 144(L + 1), and a typical error of
the ground-state energy is estimated as large as 10−5t .

Finally, we must pay special attention to the treatment of
the total number of electrons in this Q1D representation. In
this study, the number of electrons Ne is determined so as to
reproduce the chemical potential μ for the bulk system. For a
given chemical potential μ, the ground potential 
(N, μ) =
E0(N ) − μN becomes minimum at Ne if Ne satisfies

E0(Ne) − E0(Ne − 2)

2
< μ <

E0(Ne + 2) − E0(Ne)

2
, (26)

where E0(N ) is the ground-state energy of the Q1D model
with N electrons. The condition (26) may also be written as

Ne = min
N


(N, μ) (27)

for a given μ. To obtain a target chemical potential μ for a
given set of parameters (εσ , επ , tσ , tπ , U , J , L), we search Ne

that satisfies the condition in Eq. (27) by calculating E0(N )
for several values of N .

IV. RESULTS

In this section, we provide the numerical results obtained
by the block Lanczos DMRG method for the ground state of
the Anderson model HAM in Eq. (1). The results for undoped
and doped cases are shown in Sec. IV A and Sec. IV B, respec-
tively. The spin correlation functions between the impurity
and conduction sites are also examined in Sec. IV C. Here,
we set the hopping parameters t = 6tσ = 12tπ [38], although
the realistic value for tσ would be larger because the dangling
σ orbitals should be expanded around the vacancy. We also
set εσ = επ = 0.

A. Undoped case

As described at the end of the previous section, we first
have to determine the number of electrons Ne in the Q1D
model HQ1D so as to reproduce the chemical potential μ =
2tπ of the undoped bulk system. To this end, we calculate
the ground-state energy E0(Ne) for a given L with varying
the number Ne of electrons, and find that the condition Ne :
3(L + 1) = 7 : 6 satisfies Eq. (27) with μ = 2tπ for the pa-
rameter region studied here. Note that 3(L + 1) is the total
number of sites in the Q1D model HQ1D, excluding the spin
degrees of freedom.

Figure 7 shows the U dependence of the expectation values
of local operators, including the local density niα of orbital α

(α = σ, π ) at site i ∈ I, the local spin squared Si · Si at site
i ∈ I, and the total spin squared SI · SI over sites i ∈ I, for
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2

3

4

0 1 2 3 4
U/t

niσniπ

Si · Si

SI · SI

FIG. 7. Expectation values 〈O〉 of operators O = niσ , niπ , Si ·
Si, and SI · SI , where i ∈ I, calculated for the ground state of the
Anderson model HAM. The parameters used here are L = 35, J =
0.1U , t = 6tσ = 12tπ , and μ = 2tπ , corresponding to the undoped
case.

the ground state of the Anderson model HAM. We find that
there are two distinguishable phases: 〈niσ 〉 = 4/3 in a weak-
coupling region (U � t) and 〈niσ 〉 = 1 in a strong-coupling
region (U > t). We refer to these two phases as the weak-
coupling phase and the strong-coupling phase, respectively.

The abrupt change of the expectation values at U ≈ t found
in Fig. 7 suggests that the transition from the weak- to the
strong-coupling phase is of the first order due to a level cross-
ing. This is because of the symmetry sector of the number of σ

electrons Nσ = ∑
i∈I niσ . In our model, the symmetry sectors

with even Nσ and odd Nσ are orthogonal to each other. Notice
that the pair hopping term in HI changes Nσ by ±2 and thus
does not mix the even and odd sectors. This also implies that
the strong-coupling phase cannot be accessible perturbatively
from the noninteracting limit.

In the weak-coupling phase, we find that 〈SI · SI〉 ∼ 3,
corresponding to S̄I ∼ 1.3, which is different from SI = 1 for
the ground-state local multiplet (A, 1) in the weak-coupling
phase found in Fig. 2(c) and Fig. 4(a). The deviation is at-
tributed to the fact that the total number of electrons, NI =∑

i∈I
∑

α=σ,π niα , is larger than six. Indeed, we find here that
〈NI〉 = 3(〈niσ 〉 + 〈niπ 〉) ∼ 7.4 for U = 0.5t .

On the other hand, in the strong-coupling phase, we find
that 〈SI · SI〉 ∼ 2, corresponding to S̄I ∼ 1, which is again
different from S̄I = 0 for the ground-state local multiplet
(A, 0) in the strong-coupling limit found in Fig. 2(d) and
Fig. 4(a). One should notice here that the total number 〈NI〉
of electrons is now as large as 6, suggesting that it is unlikely
in the asymmetric strong-coupling phase. However, the expec-
tation value of the local spin squared 〈Si · Si〉 increases with
U and becomes as larger as 1.5 (i.e., S̄i ∼ 0.82) at U = 4t ,
suggesting the tendency to form the local site spin 1 with
further increasing U , as expected in the strong-coupling limit
shown in Fig. 4(b). Therefore, these results reveal that the
dominant local multiplet structure found here in the ground
state of HAM is different from the ground-state local multiplet
(A, 0) shown in Fig. 2(d) and Fig. 4(a) due to the effect of
the surrounding π electrons in the conduction band, which
deserves more analysis.

Figure 8 shows the projected weight P(C, SI ) of the
ground state of the Anderson model HAM in the strong-
coupling phase onto the local multiplet states (C, SI ) with

10−2

10−1

0 0.05 0.1

P
(C

,S
I
)

1/(L + 1)

(A, 0)

(A, 1)

(E, 1)

(E, 2)

FIG. 8. L dependence of the projected weight P(C, SI ) of the
ground state of the Anderson model HAM onto the local multiplet
states (C, SI ) of HI in the strong-coupling limit. Here, the ground
state of the Anderson model HAM is obtained by mapping it to the
Q1D model HQ1D with L at U = 3t in the strong-coupling phase. The
other parameters used are J = 0.1U , t = 6tσ = 12tπ , and μ = 2tπ ,
corresponding to the undoped case.

C = A,E and SI = 0, 1, 2 of HI in the strong-coupling limit
[see Fig. 2(d)]. Note that the projected weight for the local
multiplet state (A, 3) is not shown in Fig. 8 (and also in
Fig. 11) because we find that it is quite small (less than
10−4). The explicit form of the local multiplet states and
the definition of the projected weight P(C, SI ) are given in
Eqs. (A5)–(A11) and Eq. (A18), respectively, in Appendix A.
It is clearly found in Fig. 8 that the projected weight for (E, 1)
is dominant over that for (A, 0) at large L, suggesting that
the coupling to the surrounding π electrons in the conduction
band through the hybridization function �̃e(ω) enhances the
local multiplet component with (E, 1).

To examine whether or not the local spin S̄I around the
vacancy found in Fig. 7 is screened by the surrounding π

electrons, we now calculate the expectation value of Sz
I for

the ground state when an external magnetic field hL is applied
on I in the Anderson model HAM:

HAM → HAM − hLSz
I. (28)

Here, the existence or absence of the local free magnetic
moment in the thermodynamic limit can be analyzed by scal-
ing the magnetic field hL = t/L with increasing L when the
ground state is calculated by mapping HAM into the Q1D
model HQ1D with L. Figure 9 shows the L dependence of
〈Sz

I〉. In the weak-coupling phase (U = 0.5t), we find that
〈Sz

I〉 approaches to zero with decreasing hL (i.e., increasing
the system size L), indicating that the local spin S̄I ∼ 1.3
around the vacancy is completely screened by the surrounding
π electrons. In contrast, in the strong-coupling phase (U =
3t), Fig. 9 clearly shows that 〈Sz

I〉 in the limit of L → ∞
approaches to a finite value, as large as 0.55, indicating that
the local spin S̄I ∼ 1 around the vacancy is partially screened
by the surrounding π electrons.

B. Doped case

Let us now examine the ground-state properties for the
doped case. For this purpose, we set that the number Ne of
electrons is Ne = 3(L + 1) in the Q1D model HQ1D with L.
This corresponds to a case of hole doping. The results of the
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U = 3t

FIG. 9. Finite size scaling of 〈Sz
I〉 by applying an external mag-

netic field hL = t/L for the weak-coupling phase at U = 0.5t and the
strong-coupling phase at U = 3t . The other parameters are the same
as in Fig. 8.

local quantities are summarized in Fig. 10. As in the undoped
case, we find that there are two distinguishable phases, the
weak-coupling phase and the strong-coupling phase, sepa-
rated at U ≈ 1.8t .

Figures 11 and 12 show the L dependence of the pro-
jected weight P(C, SI ) and 〈Sz

I〉 induced by the external
magnetic field hL = t/L, respectively, calculated at U = 3t in
the strong-coupling phase. These results correspond to Figs. 8
and 9 for the undoped case. Comparing these results, we
find that the overall features in the strong-coupling phase are
qualitatively the same as those for the undoped case. Namely,
the emergence of the local free magnetic moment is robust
under the carrier doping and the local spin S̄I ∼ 1 around
the vacancy is only partially screened by the surrounding π

electrons. Indeed, the difference between the undoped and
doped cases is rather qualitative. For example, the unscreened
spin 〈Sz

I〉 by the surrounding π electrons for the doped case is
as large as 〈Sz

I〉 ∼ 0.4 (see Fig. 12), which is slightly smaller
than that for the undoped case shown in Fig. 9. Interestingly,
this tendency has also been observed in the experiments [11].

On the other hand, the noticeable difference is found in the
weak-coupling phase. As shown in Fig. 10, 〈niσ 〉 ∼ 2/3 and
〈niπ 〉 ∼ 1 for i ∈ I in the weak-coupling phase, and thus the
total number NI of electrons in I is 〈NI〉 ∼ 5, which is less
than that for the undoped case (see Fig. 7) and is also less than
6 assumed in Sec. II B. This is probably the reason why the
expectation value of total spin squared SI · SI is smaller than
2, but 〈SI · SI〉 ∼ 1.2, corresponding to S̄I ∼ 0.7, in the weak-
coupling phase. However, as in the undoped case, the local

0
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2

3

0 1 2 3 4
U/t

niσ
niπ

Si · Si

SI · SI

FIG. 10. Same as Fig. 7 except for L = 39 and Ne = 3(L + 1),
corresponding to the doped case.
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FIG. 11. Same as Fig. 8 except for Ne = 3(L + 1), corresponding
to the doped case.

magnetic moment in the weak-coupling phase vanishes due
to the coupling with the surrounding π -electron system, as
shown in Fig. 12. Therefore, we can conclude that the weak-
coupling phase is always nonmagnetic for the undoped and
doped cases.

C. Asymptotic behavior of spin correlation function

Let us now examine the spin correlation function 〈Sα · S̃lc〉
between the impurity sites and the conduction sites in the Q1D
model HQ1D. Here, Sα (α = σ, π ) is the total spin operator of
the α orbitals around the vacancy, i.e.,

Sσ =
∑
i∈I

Siσ (29)

and

Sπ =
∑
i∈I

Siπ , (30)

and S̃lc = (S̃x
lc, S̃y

lc, S̃z
lc) for c = a, e1, e2 is the local spin op-

erator of the conduction sites in the Q1D model HQ1D, i.e.,

S̃μ

lc = 1

2

∑
s,s′=↑,↓

f̃ †
lcs[σ

μ]ss′ f̃lcs′ (31)

for l � 2 [see Fig. 6(c)]. Note that
∑

c=a,e1,e2
S̃1c = Sπ if we

use Eq. (31) for l = 1 because the orbitals at l = 1 correspond
to the π orbitals in I around the vacancy, as shown in Fig. 6.
Since the results for the c = e1 and e2 modes are identical,
here we show only one of these results and refer to them

0
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0.4

0 0.05 0.1 0.15

S
z I

hL/t

U = t

U = 3t

FIG. 12. Same as Fig. 9 except for U = t in the weak-coupling
phase and Ne = 3(L + 1), corresponding to the doped case.
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FIG. 13. Log-log plots of the absolute values of the spin corre-
lation function 〈Sσ · S̃lc〉 with the c = a and e modes for the doped
case (left panels) and the undoped case (right panels) with various
values of L in the Q1D model HQ1D. The other parameters used are
U = 3t , J = 0.1U , and t = 6tσ = 12tπ . Green dashed line (blue dot-
ted line) represents a function proportional to (l − 1)−1 [(l − 1)−2],
for comparison.

simply as the results for the c = e mode. We also note that
the spin correlation function 〈Sα · S̃lc〉 is plotted as a function
of the distance d between the impurity site and the lth con-
duction site given by l − 1 in the Q1D model.

Figure 13 shows the spin correlation function 〈Sσ · S̃lc〉
calculated for the ground states of the doped and undoped
cases in the strong-coupling phase. We can find in Fig. 13
that 〈Sσ · S̃lc〉 decays as or even slower than d−1 for both
c = a and e modes. Note also that such behavior does not
depend qualitatively on the carrier doping, and thus the spin
structure of the σ orbitals is robust against the carrier doping.
However, the overall values of the spin correlation function
for the e mode is approximately 10 times larger than those for
the a mode, suggesting that the local spin Sσ of the σ orbitals
around the vacancy is mostly coupled to the surrounding π

orbitals with the c = e mode.
As an effective model of the Anderson model HAM,

we consider in Appendix B a two-orbital Anderson model
H(II) described in Eq. (B2), referred to as “model II” in
Appendix B. As schematically shown in Fig. 15(b), the im-
purity sites in this model are composed of one of the lattice
sites in the honeycomb lattice that is replaced with a Hubbard
site (denoted as impurity site B) and an additional Hubbard
site (denoted as impurity site A) attached on top of the im-
purity site B. These impurity sites contains the interorbital
Coulomb interactions with no hopping and are coupled to the
conduction sites through the impurity site B with a diverging
hybridization function. Therefore, corresponding the impurity
sites A and B in H(II) to the σ and π orbitals in I for HAM,
respectively, we can consider this model H(II) as a simple
version of the Anderson model HAM.

As shown in Figs. 17(a) and 17(b) for the doped and
undoped cases, respectively, we find that the spin correlation
function between the impurity site A and the conduction sites
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FIG. 14. Same as Fig. 13 except for the spin correlation function
〈Sπ · S̃lc〉 with the c = a and e modes.

in the Q1D representation of H(II) [see Fig. 15(d)] decays
approximately as d−1, which resemble the results shown in
Figs. 13(a) and 13(b). In the strong-coupling phase of this
two-orbital Anderson model H(II), the Hund’s coupling favors
the formation of the local spin-1 state at the impurity sites,
while the effect of the surrounding electrons in the conduction
sites partially screen this spin-1 state, thus leading to the
emergence of the spin-1/2 free magnetic moment. The partial
screening in this model is robust even for the doped case
because of the large hybridization. These features are indeed
similar to the underlying picture obtained for the Anderson
model HAM in the previous sections. Namely, the local spin
S̄I ∼ 1 around the vacancy is partially screened by the sur-
rounding π electrons in the conduction sites and the residual
free magnetic moment is robust against the doping.

Figure 14 shows the spin correlation function 〈Sπ · S̃lc〉
for the ground states of the doped and undoped cases of the
Q1D model HQ1D in the strong-coupling phase. We find in
Figs. 14(c) and 14(d) that 〈Sπ · S̃le〉 decays approximately as
d−2 for both undoped and doped cases. The spin correlation
function 〈Sπ · S̃la〉 for the doped case in Fig. 14(a) also ex-
hibits the d−2 decay. However, 〈Sπ · S̃la〉 for the undoped case
in Fig. 14(b) is different and is instead somewhat enhanced as
compared with the other cases: It deviates from the d−2 decay
but rather approaches to the d−1 decay.

As described in Appendix B, the d−2 decay of the spin
correlation function implies the absence of the free magnetic
moment. We find in Figs. 17(c) and 17(d) that the spin correla-
tion function between the impurity site B and the conduction
sites decays as d−2 for both doped and undoped cases of the
two-orbital Anderson model H(II). In this model, the screening
mainly occurs at the impurity site B among the two impurity
sites via the diverging hybridization function. This is indeed
similar to the features found here for the Anderson model
HAM because the local spin S̄I ∼ 1 around the vacancy is
partially screened by the surrounding π electrons in the con-
duction band via the diverging hybridization function �̃e(ω),
leading to the d−2 decay of the spin correlation function
〈Sπ · S̃le〉.
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In contrast, the spin correlation function 〈Sπ · S̃la〉 in the
largest system for the undoped case shown in Fig. 14(b)
decays as d−1.43, certainly slower than d−2, which is a hall-
mark of the presence of the free magnetic moment (see the
discussion in Appendix B). This can be attributed to the fact
that the hybridization function �̃a(ω) exhibits the pseudogap
structure at the Fermi level for the undoped case, as shown in
Fig. 5. It is known that the Kondo screening does not occur in
the undoped pseudogap Anderson model because the density
of states vanishes at the Fermi energy [39–43]. In this case,
there are two possible phases that arises when the carriers
are introduced by varying the chemical potential away from
the pseudogap position. One is the Kondo screening phase
simply because the density of state becomes finite when the
chemical potential is shifted from the pseudogap position [43].
The other is the asymmetric strong-coupling phase, in which
the electronic state at the impurity site becomes either empty
or doubly occupied [43]. Both in the Kondo screening and
asymmetric strong-coupling phases, the magnetic moment
vanishes. In either case, therefore, the free magnetic moment
is sensitive against the carrier doping (see Appendix B for
the numerical study of a simple model for the pseudogap
Anderson system). This might explain why the residual free
magnetic moment around the vacancy is slightly reduced
when the carriers are introduced in the strong-coupling phase
of the Anderson model HAM (see Figs. 9 and 12).

Summarizing, based on the analysis of the more simplified
models (models I and II) in Appendix B, for which the ef-
fective low-energy theories are well established, here we have
set the criterion that the decay exponent of the spin correlation
function between the impurity sites and the conduction sites
slower than d−2 is a hallmark of the emergence of the free
magnetic moment. In this point of view, all the spin correlation
functions for the σ orbitals shown in Fig. 13 decay slower than
d−2, indicating the robust free magnetic moment even against
the carrier doping. In contrast, the spin correlation function
between the π orbitals and the conduction sites with the a
mode also decays slower than d−2 in the undoped case but
not in the doped case (see Fig. 14). This is attributed to the
pseudogap structure of the hybridization function �̃a(ω) for
the a mode that appears at the Fermi level in the undoped case.

Finally, we comment on the somewhat scattered results
for the spin correlation functions in Figs. 13 and 14. To
understand this, it is important to recall that here the two-
dimensional Anderson model HAM is treated exactly by
transforming it into the semi-infinite Q1D model HQ1D, which
is however truncated with a finite length L for the practical
calculations due to the large computational cost. This trans-
formation results in the Q1D model with the single-particle
parameters ε̃(l )

c and τ̃ (l )
c rather scattered specially near the im-

purity sites, which thus makes it difficult to estimate precisely
the decay exponent from the numerical results for relatively
small L. However, the analysis of the more simplified models
(models I and II) in Appendix B, which are also composed
of the same conduction band with the Anderson model HAM

even after the transformation to the Q1D models, indicates
that the decay exponent of the spin correlation functions for
smaller systems such as L = 40 is approximately similar to
that for larger systems as large as L = 200 so as to exam-
ine whether the free magnetic moment is present based on

the results for smaller systems and the criterion described
above.

V. SUMMARY AND DISCUSSION

We have studied the ground-state properties of the effec-
tive Anderson model for a single vacancy in graphene. The
Anderson model considered here is composed of the three
dangling σ orbitals as well as the three π orbitals of carbon
atoms around the vacancy, treated as the impurity sites, which
are coupled to the noninteracting conduction electrons in the
surrounding π orbitals of carbon atoms forming the honey-
comb lattice with the single vacancy. Employing the block
Lanczos DMRG method, we have found that the ground state
in the reasonable parameter region for graphene, belonging
to the strong-coupling phase, shows the emergence of the
free magnetic moment with its spin as large as ∼1/2 around
the vacancy. Our systematic analysis of the projected weight
onto the local multiplet states has shown that the local spin
SI = 1 multiplet with the doubly degenerate E representation
of the C3 point group is dominant in the ground state, and
thus the residual free magnetic moment is attributed to the
partial screening of this SI = 1 multiplet by the surrounding
π electrons in the conduction band. We have also found that
the emergent local free magnetic moment is robust against
the hole doping. The calculations of the spin correlation
function have shown that the screening involves mostly the
local π orbitals around the vacancy and thus the residual
free magnetic moment is composed mainly of the local σ

orbitals. Because these σ orbitals are decoupled with no hap-
ping terms to the surrounding π -orbital system, the emergent
local free magnetic moment is not sensitive to any change of
the surrounding π -orbital system such as the carrier doping.
However, our calculations of the spin correlation function
have also shown the precursor indicating another contribution
to the emergent local free magnetic moment in the undoped
case. This contribution arises due to the pseudogap structure
of the hybridization function �̃a(ω) in the π orbital system
and thus sensitive to the carrier doping. The presence of these
two contributions to the emergent local free magnetic moment
fits nicely the experimental observations [11,13] and their
scenario proposed in Ref. [11].

It should be noted that the dominant contribution to the
local multiplet structure around the vacancy, having the local
spin 1 and the E irreducible representation, is compatible with
the occurrence of the in-plane Jahn-Teller distortion found
in the previous ab initio DFT calculations [4,5], in a sense that
the Jahn-Teller distortion occurs through the coupling with the
in-plane e-vibration mode [15], similar to the so-called E ⊗ e
problem [44]. However, our results imply that the Jahn-Teller
distortion is not necessarily required to form the local spin
triplets and the residual free magnetic moment as large as spin
S = 1/2.

In contrast, the out-of-plane distortion generates a finite
hybridization between the neighboring σ and π orbitals. As
a consequence, a nonmagnetic ground state can be realized
because the residual free magnetic moment composed mainly
of the σ orbitals around the vacancy would be screened by the
surrounding π electrons via this finite hybridization [18,25].
This conjecture is also in accordance with the previous ab ini-
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tio DFT results [4,5], showing that the out-of-plane distortion
gives rise to a nonmagnetic ground state. This may bring an
interesting functionality by controlling the out-of-plane strain
field suggested by the ab initio DFT calculation [2].

The scanning tunneling spectroscopy measurements of a
single vacancy in graphene have revealed two peaks in the
tunneling spectrum as a function of bias voltage that are orig-
inated from the spin-polarized states around the vacancy [13].
They also found that these two peaks are quite robust against
the carrier doping into graphene [11,13]. This is in sharp
contrast to the magnetism in graphene induced by hydrogen
absorption [17], where the magnetic moment is sensitive to
the carrier doping. This is also supported by the theoretical
analysis on the carrier doping in the pseudogap Kondo model
[43]. Our results in this paper as well as the previous calcu-
lations of effective models for a single adatom in graphene
[25,41] suggest that the magnetism observed in these two
systems is caused by different mechanisms. Here, we have
focused on static physical quantities because the calculation
of dynamical quantities is rather demanding. However, it is
highly valuable to examine the dynamical quantities such as
the local density of states and the response to an external field
including a gauge field, which can shed light on the relation
between the local multiplet structures and their experimental
observation. These studies are left for the future.

ACKNOWLEDGMENTS

The authors are grateful to Beom Hyn Kim for fruitful
discussions. A part of the numerical simulations has been
performed using the HOKUSAI supercomputer at RIKEN
(Project ID Q21532) and also supercomputer Fugaku installed
in RIKEN R-CCS. This work is supported by Grant-in-Aid for
Scientific Research (B) (No. JP18H01183) and Grant-in-Aid
for Scientific Research (A) (No. JP21H04446) from MEXT,
Japan. This work is also supported in part by the COE research
grant in computational science from Hyogo Prefecture and
Kobe City through Foundation for Computational Science.

APPENDIX A: LOCAL MULTIPLET STATES IN THE
STRONG-COUPLING LIMIT AND PROJECTED WEIGHT

In this Appendix, we shall construct explicitly the eigen-
states of the local part HI of the Anderson model HAM in the
strong-coupling limit, assuming that the number of electrons
is six. We also provide the definition of the projected weight
P(C, SI ) with C = A,E.

1. Local multiplet states

As described in Sec. II B, the low-lying states in the strong-
coupling limit form the local spin one at each carbon site
that is occupied by two electrons. Therefore, the local Hilbert
space at site i (i = 1, 2, 3) ∈ I [see Fig. 1(c)] can be spanned
by the following bases:

|1〉i = c†
iσ↑c†

iπ↑|0〉,

|0〉i = 1√
2

(c†
iσ↑c†

iπ↓ + c†
iσ↓c†

iπ↑)|0〉,

| − 1〉i = c†
iσ↓c†

iπ↓|0〉, (A1)

where |Sz
i 〉i with Sz

i = −1, 0, 1 is the simultaneous eigenstate
of the total spin operator Si defined in Eq. (7) and the z compo-
nent of Si at site i with its eigenvalues 1 and Sz

i , respectively,
and c†

iαs is the creation operator of an electron at site i with
spin s (=↑,↓) and orbital α (=σ , π ).

The effective low-energy Hamiltonian is then given by the
three-site spin-one antiferromagnetic Heisenberg model,

HS = Jex

∑
〈〈i, j〉〉I

Si · S j, (A2)

where Jex is an effective exchange interaction, 〈〈i, j〉〉I denotes
a pair of neighboring sites i and j around the vacancy, and Si

is the spin-1 operator at site i ∈ I with its eigenstates being
given by Eq. (A1). For the three-site case, this Hamiltonian is
particularly simplified by introducing the total spin operator
SI = ∑

i∈I Si = (Sx
I, Sy

I, Sz
I ) as

HS = Jex

2
(SI · SI − 6). (A3)

Therefore, we can readily find that the eigenvalues of HS are
determined solely by the quantum number of SI , denoted as
SI . The eigenvalues E (SI ) of HS are thus given as

E (SI = 0) = −3Jex,

E (SI = 1) = −2Jex,

E (SI = 2) = 0,

E (SI = 3) = 3Jex. (A4)

Because of the 120◦ rotational symmetry around the center
of the cluster, the eigenstates of HS are also characterized by
the irreducible representations of the C3 point group. There-
fore, we can denote the energy eigenstate as |C, SI, MI〉,
where C = A (C = Ek with k = 1, 2) indicates the symmetric
(doubly degenerate) irreducible representation A (E) of the
C3 point group, and MI denotes the quantum number of the
z component Sz

I of the total spin operator Si. The lowest
eigenstate is (A, 0) [for notation, see Sec. II B and Fig. 2(d)]
and is given by

|A, 0, 0〉 = 1√
6

[|0〉1|1〉2| − 1〉3 − |0〉1| − 1〉2|1〉3]

+ 1√
6

[| − 1〉1|0〉2|1〉3 − |1〉1|0〉2| − 1〉3]

+ 1√
6

[|1〉1| − 1〉2|0〉3 − | − 1〉1|1〉2|0〉3], (A5)

where |Sz
i 〉i with Sz

i = −1, 0, 1 and i = 1, 2, 3 is given in
Eq. (A1).

The second-lowest eigenstates are those with SI = 1,
which are further classified by the irreducible representation
C, i.e., (A, 1) and (E, 1). The eigenstate for (A, 1) with Mz

I =
0 is given by

|A, 1, 0〉 = 1√
15

[|0〉1|1〉2| − 1〉3 + |0〉1| − 1〉2|1〉3]

+ 1√
15

[| − 1〉1|0〉2|1〉3 + |1〉1|0〉2| − 1〉3]
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+ 1√
15

[|1〉1| − 1〉2|0〉3 + | − 1〉1|1〉2|0〉3]

−
√

3√
5
|0〉1|0〉2|0〉3. (A6)

The eigenstates with different MI (= ±1) are obtained by
multiplying S±

I = Sx
I ± iSy

I operators. Similarly, the other two
eigenstates for (E, 1) with MI = 0 are given by

|E1, 1, 0〉 = 2

2
√

3
[|0〉1|1〉2| − 1〉3 + |0〉1| − 1〉2|1〉3]

− 1

2
√

3
[| − 1〉1|0〉2|1〉3 + |1〉1|0〉2| − 1〉3]

− 1

2
√

3
[|1〉1| − 1〉2|0〉3 + | − 1〉1|1〉2|0〉3] (A7)

and

|E2, 1, 0〉 = 1
2 [| − 1〉1|0〉2|1〉3 + |1〉1|0〉2| − 1〉3]

− 1
2 [|1〉1| − 1〉2|0〉3 + | − 1〉1|1〉2|0〉3]. (A8)

The third eigenstates are those for (E, 2). The eigenstates
with MI = 0 are given by

|E1, 2, 0〉 = 2

2
√

3
[|0〉1|1〉2| − 1〉3 − |0〉1| − 1〉2|1〉3]

− 1

2
√

3
[| − 1〉1|0〉2|1〉3 − |1〉1|0〉2| − 1〉3]

− 1

2
√

3
[|1〉1| − 1〉2|0〉3 − | − 1〉1|1〉2|0〉3] (A9)

and

|E2, 2, 0〉 = 1
2 [| − 1〉1|0〉2|1〉3 − |1〉1|0〉2| − 1〉3]

− 1
2 [|1〉1| − 1〉2|0〉3 − | − 1〉1|1〉2|0〉3]. (A10)

Finally, the fourth eigenstates are those for (A, 3). The eigen-
states with MI = 0 is given by

|A, 3, 0〉 = 1√
10

[|0〉1|1〉2| − 1〉3 + |0〉1| − 1〉2|1〉3]

+ 1√
10

[| − 1〉1|0〉2|1〉3 + |1〉1|0〉2| − 1〉3]

+ 1√
10

[|1〉1| − 1〉2|0〉3 + | − 1〉1|1〉2|0〉3]

+
√

2√
10

|0〉1|0〉2|0〉3. (A11)

2. Projected weight

Let Q†
CSIMI

be an operator that generates the eigenstate
|C, SI, MI〉I from the vacuum state |0〉I in the Hilbert space
of the region I, i.e.,

|C, SI, MI〉I = Q†
CSIMI

|0〉I, (A12)

where |C, SI, MI〉I (C = A, E1, E2) is given in Eqs. (A5)–
(A11). Replacing all |Sz

1〉1|Sz
2〉2|Sz

3〉3 in |C, SI, MI〉I with the
electron creation operators as in Eqs. (A1), Q†

CSIMI
are now

represented as the linear combination of products of six elec-
tron creation operators. We then introduce operators N0 and
P†

CSIMI
defined respectively by

N0 =
∏
i∈I

∏
α=σ,π

∏
s=↑,↓

ciαsc
†
iαs (A13)

and

P†
CSIMI

= Q†
CSIMI

N0. (A14)

We can readily find that N0 is a projection operator onto the
vacuum state in the region I. Note also that P†

CSIMI
can be

represented as the linear combination of products of eighteen
electron creation and annihilation operators.

Let |�0〉 be the ground state of the whole system of the
Anderson model HAM. In general, the ground state |�0〉 can
be written as

|�0〉 =
∑
n,l

φnl |ψn〉I|ψ̃l〉L, (A15)

where |ψn〉I and |ψ̃l〉L are orthonormalized basis states in the
regions I and L, respectively, and we assume that the ground
state |�0〉 is normalized. The reduced density matrix operator
ρI in the region I is then given by

ρI = TrL|�0〉〈�0|, (A16)

where TrL · · · denotes the trace over all the basis states in
the region L. It is now easy to show that I〈ψn|ρI|ψn〉I =∑

l |φnl |2. The projected weight P(C, SI ) discussed in
Secs. IV A and IV B are defined by

P(A, SI ) =
SI∑

MI=−SI

〈A, SI, MI|ρI|A, SI, MI〉,

P(E, SI ) =
2∑

k=1

SI∑
MI=−SI

〈Ek, SI, MI|ρI|Ek, SI, MI〉. (A17)

To reduce the numerical complexity of the DMRG calcu-
lations, we evaluate the following equivalent quantities

P(A, SI ) =
SI∑

MI=−SI

〈�0|P†
ASIMI

PASIMI
|�0〉,

P(E, SI ) =
2∑

k=1

SI∑
MI=−SI

〈�0|P†
EkSIMI

PEkSIMI
|�0〉 (A18)

by using the multitarget technique [45], for which the ground
state |�0〉 and PCSIMI

|�0〉 are included as the target states.

APPENDIX B: ASYMPTOTIC BEHAVIOR OF SPIN
CORRELATION FUNCTION FOR REFERENCE MODELS

In order to better understand the results for the Anderson
model HAM in Sec. IV C, here in this Appendix we consider
two simpler Anderson models (model I and model II) as ref-
erence systems and provide the results of the spin correlation
function between the impurity and conduction sites for these
models.

As shown schematically in Fig. 15(a), model I is a single-
impurity Anderson model with a single impurity site attached
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diverged DOS
interaction

l = 1, 2, 3, 4, · · ·l = 1, 2, 3, 4, · · ·

pseudogap system

(a) model I (b) model II

(c) (d)

H

H

A
B

A B

FIG. 15. Schematic depictions of (a) model I (a single-impurity
Anderson model) and (b) model II (a two-impurity Anderson model).
The impurity sites are indicated with “H” in (a) and “A” and “B” in
(b). Schematic depictions of the Q1D representation of (c) model I
and (d) model II. Blue and orange spheres denote the impurity and
conduction sites, respectively. Black and bold magenta lines indicate
lattice bonds connecting two neighboring sites via the hopping and
two-body interactions, respectively. Local density of states at l = 2
without the impurity site in (c) shows a pseudogap structure, while
local density of states at l = 3 without the impurity sites in (d) ex-
hibits a diverging structure, at Fermi level for the undoped case. The
impurity site at l = 1 in (c) is exactly the same as the impurity site
H in (a), and the impurity sites at l = 1 and 2 in (d) are exactly the
same as the impurity sites A and B, respectively, in (b).

to one of the conduction sites in the honeycomb lattice. The
Hamiltonian H(I) of model I is given by

H(I) = UnH↑nH↓ − U

2
(nH↑ + nH↓),

−V
∑

s=↑,↓
(c†

Hsci0πs + c†
i0πscHs)

− t
∑
〈i, j〉

∑
s=↑,↓

(c†
iπsc jπs + c†

jπsciπs)

− tπ
∑
〈〈i, j〉〉

∑
s=↑,↓

(c†
iπsc jπs + c†

jπsciπs), (B1)

where cHs (c†
Hs) is the annihilation (creation) operator of an

electron at the impurity site H with spin s (=↑,↓) and nHs =
c†

HscHs. ciπs (c†
iπs) is the annihilation (creation) operator of

an electron at conduction site i with spin s (=↑,↓). i0 labels
the conduction site that is connected to the impurity site H
through the hopping V . As in the Anderson model HAM,
the nearest and next-nearest neighboring hoppings t and tπ ,
respectively, are considered in the last two terms in Eq. (B1).

As shown schematically in Fig. 15(b), model II is a two-
impurity (or two-orbital) Anderson model, where the impurity
sites are composed of one of the lattice sites in the honeycomb
lattice (referred to as the impurity site B) and an additional

impurity site (referred to as the impurity site A) attached on
top of the impurity site B through the inter-orbital interactions
without any hopping. Therefore, only the impurity site B is
connected to the conduction sites. Comparing the Anderson
model HAM in Eq. (1), the impurity site A (B) mimics the σ

(π ) orbitals in the impurity sites (i.e., in the region I) for HAM.
The Hamiltonian H(II) of model II is given by

H(II) = U
∑

α=A,B

ni0α↑ni0α↓ + U ′ni0Ani0B

− 2J

(
Si0A · Si0B + 1

4
ni0Ani0B

)

+ J ′(c†
i0A↑c†

i0A↓ci0B↓ci0B↑ + c†
i0B↑c†

i0B↓ci0A↓ci0A↑)

− 1

2
(U + 2U ′ − J )

∑
α=A,B

ni0α

− t
∑
〈i, j〉

∑
s=↑,↓

(c†
iπsc jπs + c†

jπsciπs)

− tπ
∑
〈〈i, j〉〉

∑
s=↑,↓

(c†
iπsc jπs + c†

jπsciπs), (B2)

where ci0αs (c†
i0αs) is the annihilation (creation) operator of an

electron at the impurity site α (= A, B) with spin s (=↑,↓),
ni0αs = c†

i0αsci0αs, and ni0α = ni0α↑ + ni0α↓ with i0 labeling the
location of the impurity site B in the honeycomb lattice as well
as the impurity site A. ciπs (c†

iπs) is the annihilation (creation)
operator of an electron at conduction site i with spin s (=↑,↓)
and ci0πs ≡ ci0Bs. Si0α = (Sx

i0α, Sy
i0α

, Sz
i0α

) is the spin operator at
the impurity site α given by

Sν
i0α = 1

2

∑
s,s′=↑,↓

c†
i0αs[σ

ν]ss′ci0αs′ . (ν = x, y, z). (B3)

The sums indicated by 〈i, j〉 and 〈〈i, j〉〉 run over all pairs of
nearest and next nearest pairs of sites i and j, respectively, in
the honeycomb lattice, including the impurity site B. Notice
that the fourth term in Eq. (B2) is introduced to correct the
double counting of the interactions, as in the case of HAM.

Using the Lanczos transformation for the single-particle
hopping terms in the honeycomb lattice, model I described
by the Hamiltonian H(I) is mapped onto the following Q1D
model:

H̃(I)
Q1D = Uñ1↑ñ1↓ − U

2
(ñ1↑ + ñ1↓)

+V
∑

s=↑,↓
(c̃†

1sc̃2s + c̃†
2sc̃1s)

+
L∑

l=2

∑
s=↑,↓

εl c̃
†
lsc̃ls

+
L−1∑
l=2

∑
s=↑,↓

tl (c̃
†
lsc̃l+1s + c̃†

l+1sc̃ls), (B4)

where c̃ls (c̃†
ls) is the electron creation (annihilation) operator

generated by the (l − 1)th Lanczos iteration (l � 2) with
c̃1s ≡ cHs and c̃2s ≡ ci0πs, ñls = c̃†

lsc̃ls, and the generalized
Lanczos coefficients εl and tl are determined through the
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FIG. 16. Log-log plots of the absolute values of the spin corre-
lation function 〈S̃1 · S̃l〉 between the impurity and conduction sites
for (a) the doped case and (b) the undoped case with various values
of L in the Q1D model H̃(I)

Q1D. The number Ne of electrons is set
to be Ne = L in (a), corresponding to the doped case, while Ne is
adjusted so as to minimize E0(Ne) − μ0Ne with the chemical poten-
tial μ0 = 0.25tπ in (b), corresponding to the undoped case, where
E0(Ne) is the ground-state energy of H̃(I)

Q1D with Ne electrons in the
one-dimensional cluster of size L. The other parameters used are
U = 3t , V = t , and tπ = t/12. Red, orange, green, cyan, and blue
symbols correspond to the results for L = 12, 24, 48, 96, and 192,
respectively. Solid and dashed lines represent functions proportional
to (l − 1)−1 and (l − 1)−2, respectively, for comparison.

Lanczos procedure [25]. The schematic depiction of model I
in the Q1D representation described by the Hamiltonian H̃(I)

Q1D
is shown in Fig. 15(c).

Similarly, model II described by the Hamiltonian H(II) is
mapped onto the following Q1D model:

H̃(II)
Q1D = U

∑
l=1,2

ñl↑ñl↓ + U ′ñ1ñ2

− 2J

(
S̃1 · S̃2 + 1

4
ñ1ñ2

)

+ J ′(c̃†
1↑c̃†

1↓c̃2↓c̃2↑ + c̃†
2↑c̃†

2↓c̃1↓c̃1↑)

− 1

2
(U + 2U ′ − J )

∑
l=1,2

ñl

+
L∑

l=2

∑
s=↑,↓

εl c̃
†
lsc̃ls

+
L−1∑
l=2

∑
s=↑,↓

tl (c̃
†
lsc̃l+1s + c̃†

l+1sc̃ls), (B5)

where ñl = ñl↑ + ñl↓, S̃l is the spin operator given in Eq. (B3)
but for c̃ls instead of ci0αs, c̃1s ≡ ci0As, and c̃2s ≡ ci0Bs. The
schematic depiction of model II in the Q1D representation
described by the Hamiltonian H̃(II)

Q1D is shown in Fig. 15(d).
Notice that the generated Lanczos coefficients εl and tl in
Eq. (B5) are exactly the same as those in Eq. (B4). Therefore,
the difference between models I and II given in Eqs. (B4)
and (B5) is a type of couplings between sites l = 1 and 2
represented by operators c̃1s and c̃2s, respectively: these two
sites are connected through the hopping in model I while they
are connected through the interactions in model II, as also
indicated in Figs. 15(c) and 15(d), besides the site at l = 2
being one of the impurity sites in model II.
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FIG. 17. Log-log plots of the absolute values of the spin corre-
lation functions [(a),(b)] 〈S̃1 · S̃l〉 and [(c),(d)] 〈S̃2 · S̃l〉 between the
impurity and conduction sites for the doped case (left panels) and
the undoped case (right panels) with various values of L in the Q1D
model H̃(II)

Q1D. The number Ne of electrons is set to be Ne = L in (a)
and (c), corresponding to the doped case, while Ne is adjusted so as
to minimize E0(Ne) − μ0Ne with the chemical potential μ0 = 0.25tπ
in (b) and (d), corresponding to the undoped case, where E0(Ne)
is the ground-state energy of H̃(II)

Q1D with Ne electrons in the one-
dimensional cluster of size L. The other parameters used are U =
3t , J = 0.1U , and tπ = t/12. Red, orange, green, cyan, and blue
symbols correspond to the results for L = 12, 24, 48, 96, and 192,
respectively. Solid and dashed lines represent functions proportional
to (l − 2)−1 and (l − 2)−2, respectively, for comparison.

Model I is called a pseudogap Anderson model, in which
the impurity site is connected to the conduction band through
a hybridization function with a pseudogap structure at Fermi
level, corresponding to the undoped case in model I when
the chemical potential μ is at 2tπ (≡ μ0). The ground state
of model I in the undoped case is in the local moment phase
where a free magnetic moment exists [25]. In the doped case
with μ �= μ0, the ground state is in either the Kondo screen-
ing phase (i.e., the symmetric strong-coupling phase) or the
asymmetric strong-coupling phase, where no free magnetic
moment appears [43].

Figure 16 shows the spin correlation function 〈S̃1 · S̃l〉 be-
tween the impurity site (l = 1) and the conduction sites (l �
2) in the Q1D representation of the single-impurity Anderson
model H̃(I)

Q1D. We find in Fig. 16(a) that the spin correlation
function 〈S̃1 · S̃l〉 for the doped case decays faster than d−1,
where d = l − 1 is the distance between the impurity site and
the conduction site labeled by l (l � 2) in the Q1D model
H̃(I)

Q1D. In contrast, 〈S̃1 · S̃l〉 for the undoped case in Fig. 16(b)
shows somewhat nonmonotonic behavior as a function of the
distance d . If we focus on the distances near the impurity site
in the largest system (denoted by blue squares), 〈S̃1 · S̃l〉 de-
cays approximately as d−1. If we focus on the spin correlation
function at the maximum distance of a given system size L,
i.e., 〈S̃1 · S̃L〉, the envelope seems to decay slower that d−1.
Although, it is not easy to determine the exponent precisely
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in Fig. 16(b), we can safely claim the much slower decay of
〈S̃1 · S̃l〉 for the undoped case than for the doped case.

In model II, the local spin triplet is favored at the impu-
rity sites at l = 1 and 2 because of the Hund’s coupling in
the strong-coupling phase (e.g., with U = 3t , J = 0.1U , and
tπ = t/12) for the undoped case, and this spin-1 impurity is
coupled to the conduction band via the hybridization function
that diverges at Fermi level [25]. The Fermi level is shifted
away from this diverging point of the hybridization function
in the doped system. However, in both undoped and doped
cases, the impurity spin is similarly screened partially by the
conduction electrons and there appears residual unscreened
free magnetic moment with its spin as large as 1/2 [46,47].

Figures 17(a) and 17(b) show the spin correlation function
〈S̃1 · S̃l〉 between the impurity site (l = 1) and the conduction
sites (l � 3). We find that in both undoped and doped cases
〈S̃1 · S̃l〉 decays rather close to d−1 with the distance d = l −
2 and shows a similar behavior to that for the undoped case
in model I [see Fig. 16(b)], where the free magnetic moment
appears. In contrast, as shown in Figs. 17(c) and 17(d), the
spin correlation function 〈S̃2 · S̃l〉 from the second impurity
site (l = 2), which is directly connected to the conduction
sites, decays approximately as d−2, specially focusing on the
region close to the impurity site for the larger systems. This
d−2 decay is expected for the Fermi liquid and thus it is
consistent with the partial screening of the impurity spin at
l = 2.

When we compare these results with those for the An-
derson model HAM in Sec. IV C, we have to remind that
the accessible system size is very limited for the Anderson
model HAM. For example, the nearly d−2 decay of the spin
correlation functions 〈S̃1 · S̃l〉 in Fig. 16(a) and 〈S̃2 · S̃l〉 in
Figs. 17(c) and 17(d) can still be observed even in the moder-
ate systems as large as L = 48, which is the largest accessible
system size for the Anderson model HAM in Sec. IV C. In-
deed, we can observe the spin correlation function consistent
with the d−2 behavior in Figs. 14(a), 14(c), and 14(d). On
the other hand, the spin correlation function 〈S̃1 · S̃l〉 for
H(II)

Q1D with L = 48, denoted by green symbols in Figs. 17(a)
and 17(b), appears to be constant rather than decaying
algebraically with some power, which is similar to the be-
havior of the spin correlation function 〈Sσ · S̃lc〉 (c = a, e) in
Fig. 13.

The difference between the doped and undoped cases in
these systems is most difficult to distinguish, since the ex-
ponent for the undoped case deviates from not only d−1 but
also d−2 even in the largest system of model I, as shown in
Fig. 16(b). Rather, the exponent seems to vary between d−1

and d−2 for different system sizes. Therefore, the clear deter-
mination of the decay exponent is difficult even in the simplest
model such as model I, based on the results available at this
moment. However, we can assert that the nontrivial decay
exponent slower than d−2 is the hallmark of the presence of
the free magnetic moment [48].
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