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The delta phase of Pu is stabilized by Ga doping, but the mechanism of this stabilization remains an open
question. Density functional theory calculations focused on how Ga doping affects the phonons sheds some light
on the phonons’ contribution to the stabilization. The calculated phonon modes of Ga-doped delta phase Pu fall
into two distinct types: localized, high frequency Ga-dominated phonon modes, and Pu-dominated modes at
lower frequencies. Increasing the Ga concentration has an effect on the Pu-dominated phonon modes opposite
to that of compression: higher-frequency modes soften, and lower-frequency modes stiffen. The latter provides
an indication that the stabilization mechanism is not due to a thermodynamic contribution from the phonons.
Furthermore, the stiffened phonon modes include candidate modes that describe possible pathways into low-
temperature phases, suggesting that doping with Ga could impede such pathways.
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I. INTRODUCTION

Phonons contribute critically to controlling the thermal
properties of crystalline materials. As phonons are the normal
modes of vibration of the crystal lattice, the structure of the
lattice determines how the forces between the atoms translate
into phonon frequencies and eigenmodes. Accordingly, lattice
imperfections change the phonons and hence the material’s
thermal properties. Imperfections such as stacking faults and
point defects represent flaws in the periodicity of the mate-
rial’s crystal structure, but their presence can be desirable or
undesirable depending on a material’s application [1]. Many
desirable thermal properties are achieved by introducing point
defects by way of targeted doping. Among the desired prop-
erties, and of particular interest here, is the stabilization of
crystal structure phases into wider temperature ranges.

Doping Pu with small amounts of Ga stabilizes the delta
phase to lower temperatures [2]. In its pure form, δ-Pu is stable
in the 315–450 ◦C range, doping with a few atomic % Ga
extends the range to well below room temperature.

The mechanism of this stabilization remains unclear. This
lack of clarity is reflected in contradictory phase diagrams
[3,4] constructed to reflect thermodynamic equilibrium. In
one diagram, Ga-doped δ-Pu remains stable to temperatures
below 0 ◦C, in the other diagram Ga-doped δ-Pu decomposes
to a mixture of α-Pu and Pu3Ga. Self-irradiation in δ-Pu con-
tinuously introduces additional lattice imperfections, making
a purely experimental resolution of the stabilization mecha-
nism a challenge. Because the changing population of lattice
imperfections changes thermal properties, understanding the
stabilization mechanism is crucial to controlling the thermal
properties of aging Ga-doped δ Pu.
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The challenge motivates calculations that examine possible
stabilization mechanisms. Among the mechanisms proposed
based on density functional theory (DFT) calculations are a
stabilizing effect of Ga on a disordered magnetic state, thereby
allowing the δ-Pu phase to be preserved at lower temperatures
[5] and a reduction in the enthalpy for transformation from
δ to α with increased Ga concentration [6]. Calculated bond
strengths between a Ga atom and its Pu neighbors in δ-Pu
show that the Ga-Pu bonds are more uniform and symmetric
than the Pu-Pu bonds, suggesting that changes to the bonding
stabilize the delta phase [7,8], driven by hybridization of the
Pu 6d and Ga 4p states [9,10]. Further calculations show a
softening of the elastic moduli with increased Ga concen-
tration [11], indicating a softening of the lower-frequency
phonons, whose increased contribution to the entropy thereby
supports a phonon-driven thermodynamic mechanism for sta-
bilization.

Examining the phonons is appropriate because structural
phase transformations rarely occur without involving the
phonons. They influence the thermodynamics by affecting
the free energy and, in some systems, describe (part of) the
pathway the atoms take between phases. Indeed, Wong et al.
[12] observed a candidate phonon mode that shows anomalous
behavior in the measured phonon dispersion curves of Ga-
stabilized δ Pu: a soft transverse mode at the Brillouin zone
boundary, T [111], that suggests neighboring (111) planes
could be easily sheared against each other, thereby pushing
δ-Pu toward α-Pu. The expected phonon softening, a low-
ering of the mode’s frequency, is, however, not observed in
Ga-stabilized δ Pu: the mode shows little to no temperature
dependence between 200 K and 307 K [13], in agreement with
its calculated behavior in undoped δ-Pu [14]. Nonetheless,
the anomalous behavior also appears for shorter wave vectors
of the T [ξξξ ] branch, which includes a candidate phonon
mode that, based on symmetry arguments, initiates a possible
pathway into the low-temperature phase [15,16].
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This contribution addresses the Ga stabilization of δ-Pu by
calculating how Ga substitution affects the phonons of δ-Pu.
The Ga atoms are assumed to be substitutional, as indicated by
experiment and supported by calculations [17,18]. Section II
provides the details of the calculations, including a method
to trace how phonon modes of the undoped structure map
into the phonon modes of the Ga-doped structure. Results pre-
sented in Sec. III report two effects of a single substitutional
Ga in δ-Pu: it creates a local, Ga-dominated high-frequency
mode and it stiffens the low-frequency modes (Sec. III B).
These two effects are subsequently shown to persist with
increasing Ga concentration (Sec. III C). The calculations
for these results are performed at the experimental lattice
constant, a0 = 4.64 Å. Further results show that, while com-
pression of δ-Pu softens some of the low-frequency phonon
modes, the Ga-induced stiffening of the low-frequency modes
exceeds the softening. Taken together, these results suggest Ga
doping could impede the proposed pathways from the delta
phase into the alpha phase, as discussed in Sec. IV.

II. METHODS

The present paper considers only the harmonic phonons,
calculated with density functional theory as implemented in
the VASP package [19,20]. The electronic states are treated
with the projector augmented wave method [21] in the gen-
eralized gradient approximation of Perdew et al. [22] with
first-order Methfessel-Paxton smearing (width 27 meV) [23]
and a cutoff energy for the plane-wave basis set of 500 eV. The
k-point meshes are chosen for each simulation cell such that
their density is at least 40 per Å−1. Increasing this density to at
least 60 per Å−1 for the 72-atom system with one Ga (a change
of k-point mesh from 3 × 3 × 4 to 4 × 4 × 6) shows good
convergence: phonon frequencies change by less than 3%, and
phonon mode tracing (defined below) shows no significant
changes to the corresponding modes’ eigenvector (Fig. 1 in
the SM [24]). The phonon moments, which serve as measures
of the phonon density of states relevant for thermodynamics,
change by 0.3%. They are defined on pp. 149–152 of Ref.
[25],

ln(ω0) = 〈ln(ω)〉, ω1 = 4
3 〈ω〉, and ω2 =

√
5
3 〈ω2〉, (1)

where the average 〈...〉 is over all phonon frequencies (omit-
ting the three translational modes).

The convergence criteria are 10−8 eV for the electronic
self-consistency loop and 10−7 eV for the ionic relaxation.
Following Ref. [6], spin-orbit coupling and orbital polariza-
tion are neglected in the interest of making the large number
of calculations on large system sizes, required for evaluation
of the phonons, computationally feasible. The importance of
spin-orbit coupling and orbital polarization, however, should
not be neglected.

The calculations employ the experimental equilibrium vol-
ume of δ-Pu, with a few exceptions. The use of a single
volume serves to focus on how the Ga substitutions affect
the phonon modes directly, without adding effects due to
changing volume—these are considered separately at the end.
The use of the experimental rather than the theoretical volume
is motivated by the experience that, while DFT cold curves

(zero-temperature energy versus volume curves) are known to
be in error for many materials, phonon frequencies calculated
at the experimental geometric parameters tend to be in good
agreement with measured frequencies. This experience is re-
flected, e.g., in the construction of equations of state, where
DFT cold curves are shifted to agree with experimental data
while DFT phonon data are used at the volume for which they
are calculated [26,27].

The effects of strongly correlated 5 f electrons are approx-
imated by allowing spin polarization [28]. Applied to Pu,
spin-polarized DFT calculations successfully describe many
of the material’s remarkable and unusual facets accurately
[29–32]. This approach has its critics since magnetic moments
are not observed [33]. Alternatively, Pu exhibits a fluctuating
magnetic structure [34] in which case the choice of ordered,
or disordered [35], magnetic structures can be viewed as static
snapshots of the fluctuations [36]. From a practical point of
view of calculating structural parameters and forces in large
systems, however, spin-polarized DFT calculations appear as
a reasonable approximation. Furthermore, doping δ-Pu with
Ga stabilizes the antiferromagnetic (AFM) structure in DFT
calculations [37] and experimental measurements indicate a
stable AFM structure for Pu0.92Ga0.08 at low temperatures
[38]. In addition to being the lowest-energy magnetic structure
in DFT calculations, the AFM structure represents multiple
degenerate magnetic structures when all the commensurate
phonons are considered together. More advanced methods
such as DMFT are not feasible for these systems and their
phonons, as their application is currently too computationally
expensive. Another alternative method, DFT + U results in
unstable modes [39].

The zero-temperature phonons are calculated with the
small-displacement method [40–42]. Inequivalent atoms in
the computational cells are displaced by 0.015 Å in all
symmetry-inequivalent Cartesian directions and the forces
calculated with DFT serve to construct the Hessian matrix.
For a system with N atoms at equilibrium positions Ri, diag-
onalizing the Hessian delivers the 3N phonon modes n, each
described by an eigenvector εn(Ri ) and a frequency ωn. The
eigenvectors are normalized so

∑
i εn(Ri ) = 1. This allows

the identification of (εn(Ri ))2 as the weight of phonon mode
n on atom i.

To investigate how changes to a system affect the phonon
modes, the eigenvectors of the phonon modes with and with-
out the Ga doping are projected onto each other. In the case
of substitutional doping of δ-Pu with Ga, this amounts to a
bilinear projection from the Ga-doped system to the undoped
system and individual Ga atom(s). The projection relies on
a one-to-one mapping of atoms, in which (i) the Pu atoms
in the doped system β map to the corresponding Pu atoms
in the undoped system (system α1) and (ii) the Ga atoms in
the doped system β map to independent Ga atoms (system
α2). The phonons of independent Ga atoms are the three
translational modes with zero frequency.

The projection provides information about changes to the
phonon modes that goes beyond changes to the phonon
density of states (DOS). Changes to the DOS account for
changes to the thermodynamics but understanding changes
to individual modes, in particular, the T [111] mode, requires
more detail. While phonon dispersions show detail, once
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substitutional atoms are introduced these need to be either cal-
culated for supercells of the already large doped systems’ unit
cells, or the phonon dispersion needs to be approximated onto
those of the undoped system by assuming the eigenmodes do
not change. While the latter can, in principle, be compared to
experimental phonon dispersions, it fails to deliver the details
sought here. The bilinear projection from the doped system β

into the undoped system α1 and the dopant system α2 allows
the definition of the weight w(n(β ), m(αk)) of a phonon mode
n(β ) of the doped system β on a phonon mode m(αk) of the
undoped or dopant system αk:

w(n(β ), m(αk)) =
(∑

i∈αk

εn(β )(Ri )εm(αk)(Ri )

)2

. (2)

These weights trace (hence the phonon tracing terminology)
how individual phonon modes in the undoped or dopant sys-
tems relate to individual phonon modes in the doped system.

III. RESULTS

A. Comparisons with experiment and previous calculations

Before calculating the effects of Ga doping, the quality of
the methods used here is put into perspective. Figure 1 com-
pares the calculated phonon dispersion of undoped δ-Pu with
results from experiments [12] and other calculations [36,43].
The symmetry breaking due to the AFM structure is evident
in differences between the [00x] and the [x00] directions and
in the lifting of some degeneracies. Aside from the symmetry
breaking, the agreement with experiment overall is on par with
that of other calculations.

The experimental data compared to above is from δ-Pu that
was stabilized at room temperature by doping with 2 at. %
Ga [12]. Figure 2(a) compares the phonon DOS derived from
those data with the results from a calculation with 1.4 at. %
Ga. Similarly, Fig. 2(b) compares the phonon DOS directly

FIG. 1. Comparison of the δ-Pu phonon dispersion with experi-
ment and other calculations. The dispersion in this paper is calculated
with the AFM structure in a computational cell with 96 atoms at
a0 = 4.64 Å. Unlike experiments (Wong et al. [12]) and other cal-
culations (Söderlind et al. [36], Dai et al. [43]), the AFM structure
breaks the cubic symmetry by singling out the [00x] direction for the
wave vector of the magnetic structure: consequently, the results are
shown along more high symmetry directions than required for the
fcc structure. The experimental data is from measurements on a δ-Pu
sample with 2 at. % Ga.

FIG. 2. Comparison of phonon densities of states (DOS) with
experiment. The DOS calculated here employs the AFM structure in
computational cells with 72 atoms; only phonons with commensurate
wave vectors are shown, with the calculated frequencies convoluted
with a Gaussian of width 0.05 THz. (a) The experimental data of
Wong et al. [12] is calculated based on measurements on a δ-Pu
sample with 2 at. % Ga at room temperature. (b) The experimental
data of McQueeney et al. [44] is measured on a δ-Pu sample with
5 at. % Al at two temperatures; the sample at room temperature has
a reported lattice constant of 4.58 Å.

measured on δ-Pu stabilized with 5 at. % Al [44] with the
results from a calculation with 4.2 at. % Ga. The comparisons
are not one-to-one: In addition to the approximate doping, the
calculated DOS are based only on the phonons with wave vec-
tors that are commensurate with the 72-atom computational
cell. Given these approximations, the agreement with exper-
iment is reasonable at low frequencies. The high-frequency
peak in the calculated DOS is somewhat low, as expected
from the behavior near the boundary of the first Brillouin
zone (longitudinal [00ξ ] and [ξξξ ] branches) in Fig. 1. Absent
from the experimental phonon DOS are the dopant-induced
localized phonon modes seen in other experiments (see next
section).

B. Single Ga substitution

Figure 3 compares the phonon density of states (DOS) of
δ-Pu to that of Pu-1.4 at. % Ga δ-Pu (and higher concen-
trations). Most notably, the Ga substitution causes phonon
modes to appear at frequencies well above those of δ-Pu.
The frequencies of these Ga substitution-induced modes agree
well with the first moment for Ga, 3.94 THz, measured by
Lynn et al. in Pu-3.6 at. % Ga δ-Pu [45] and with the Ga-Pu
bond Debye temperature of 3.92 THz, measured by Nelson
et al. in Pu-1.9 at. % Ga δ-Pu [17]. The calculated frequencies
are a bit low compared to the Ga-Pu specific correlated-
Debye temperature, 4.22 THz, measured by Allen et al. in
Pu-3.3 at. % Ga δ-Pu [46].

The appearance of phonon modes with frequencies that
are well above those of δ-Pu originates in the significantly
lower mass of Ga. An instructive approximation for the effects
of the substitution can be found by changing the mass of a
single atom while retaining the force constants of the phonon
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FIG. 3. Phonon densities of states calculated for δ-Pu with and
without Ga substitutions in a computational cell with 72 atoms at
a0 = 4.64 Å. The 213 (3 × 72 − 3) phonon frequencies are convo-
luted with a Gaussian of width 0.05 THz.

calculation for δ-Pu. The results, shown in Fig. 4, reveal
three phonon modes that, with decreasing mass, increase in
both frequency and localization. Performing the DFT calcu-
lation with one Ga substitution shows that the changes to
the ion positions and the force constants further increases the
frequencies and especially the localization. Finally, the non-
degeneracy of the localized modes in the approximation (due
to the imposed asymmetric magnetic structure) is significantly
reduced, especially the spatial asymmetry.

The frequencies and degree of localization for the complete
set of phonon modes calculated for Pu-1.4 at. % Ga δ-Pu ap-
pear in Fig. 5. The separation between Ga- and Pu-dominated
modes is pronounced. The frequencies of the localized modes
and their weight on the Ga atom change little for cell sizes
larger than 36 atoms. The strong localization indicates they
may well be described as a local Einstein mode considered as
a possibility by Lynn et al. [45].

FIG. 4. Frequencies of localized phonon modes calculated for δ-
Pu with a single substitution in a computational cell with 64 atoms
at a0 = 4.64 Å, plotted versus the weight of the phonon modes on
the substitutional atom. The data denoted as mass-only substitution
are calculated by changing the mass of one atom (to values 110 a.u.
and below, in steps of 5 a.u.) and using the force constants from the
DFT calculation of the 64-atom δ-Pu supercell. The data denoted as
Ga actual substitution are calculated from the force constants of the
64-atom δ-Pu supercell with one Ga substitution and relaxed atomic
positions.

FIG. 5. Phonon mode frequencies calculated for δ-Pu with a
single Ga substitution in a computational cell with 72 atoms at
a0 = 4.64 Å, plotted versus the weight of the phonon mode on the
Ga atom. Inset: Ga-dominated modes in computational cells with 16,
36, 64, and 72 atoms. Phonon modes with zero weight are completely
described by a linear combination of the amplitudes of Pu atoms.

In the dilute limit, e.g., substituting one in 72 atoms, corre-
sponding to 1.4 at. % Ga, changes to the Pu-dominated modes
are subtle. Figure 6 reveals the subtle changes by plotting the
weights of the bilinear projection [Eq. (2)]: the weights of the
δ-Pu phonon modes fall primarily on or near the diagonal.
Small weights off the diagonal reflect a small degree of linear
combining of the Pu-dominated modes as they adjust to form
modes that no longer include the substituted Pu atom. The

FIG. 6. Phonon mode tracing for δ-Pu with one GaPu substitu-
tion in computational cell with 72 atoms at a0 = 4.64 Å. Orange
circles represent δ-Pu modes with black circles highlighting the
T [111] modes; green diamonds represent Ga modes. The areas of
the symbols are proportional to the weights as defined in Eq. (2);
only weights larger than 0.01 are shown.
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TABLE I. Energies and magnetic moments for two Ga substitu-
tions in 72-atom fcc δ-Pu cell at a0 = 4.64 Å. The 72-atom cell is
a 3 × 3 × 2-conventional cell supercell, so the maximum distance
from the first Ga substitution to the second Ga substitution in x and
y is 1.5 a0 and in z is 1.0 a0. The resulting magnetic moment is
indicative of whether the two Ga atoms substitute Pu atoms with
the same or opposite spins. The energy difference �E is relative to
that of two independent Ga substitutions, i.e., �E = [E (Pu70Ga2) −
E (Pu72)] − 2[E (Pu71Ga1) − E (Pu72)], and is evaluated with the finer
(4 × 4 × 6) k-point mesh. Some rows are left incomplete because the
cost of phonon calculation outweighs the value of the results.

�x �y �z dGa-Ga �E mag ω0 ω1 ω2

(a0) (Å) (meV) (μB) (THz)

0 0.5 0.5 3.36 253 0 1.65 2.36 2.44
0.5 0.5 0 3.48 196 10.7 1.65 2.36 2.45
0 1 0 4.57 176 10.8
0 0 1 4.64 257 11.2
0.5 1 0.5 5.62 −9 0 1.66 2.37 2.45
0.5 0.5 1 5.64 −28 10.8 1.66 2.37 2.45
1 1 0 6.49 −18 10.9 1.67 2.38 2.45
0 1 1 6.53 −35 10.8 1.66 2.37 2.45
1.5 0.5 0 7.33 26 10.9
0 1.5 0.5 7.34 32 0
1 1 1 8.03 −37 10.8 1.66 2.38 2.46
1 1.5 0.5 8.67 −10 0 1.66 2.37 2.45
0.5 1.5 1 8.67 −11 10.7 1.66 2.37 2.45
1.5 1.5 0 9.84 11 10.5
1.5 1.5 1 10.88 −25 10.8 1.66 2.38 2.46

frequencies remain very similar but show a slight stiffening
at low frequencies and a slight softening at high frequencies.
The change to the low-frequency modes provides a first hint
that the stabilization might not be due to a thermodynamic
mechanism: a thermodynamically more stable phase would
be driven by a softening of the low-frequency modes that
dominate the entropic term of the free energy.

Among the slightly stiffened phonon modes are phonon
modes with wave vectors [ξξξ ]T , in particular, the T [111]
modes (highlighted). If these phonon modes initiate the path-
way into the low-temperature phase, then an increase in their
frequencies affects the initiation. The phonon frequencies de-
scribe only the local curvature in the delta phase and not the
rest of the pathway. Hence increasing the curvature does not
guarantee a higher energy barrier between the delta and the
low-temperature phase. The increased curvature does, how-
ever, suggest that the pathway is likely less favorable.

C. Multiple Ga substitutions

To address the effects of increased Ga concentration, first
all unique arrangements of two Ga atoms (2.8 at. % Ga) in
a 72-atom cell are considered. The energy cost of two Ga
substitutions relative to twice that of a single substitutions,
reported in Table I, shows a dramatic drop off beyond the
second nearest-neighbor (NN) shell. Beyond this drop-off, the
energy cost continues to vary, the most favored location being
in rough agreement with all-electron DFT calculations [9].

Table I shows negligible dependence of the phonon mo-
ments on the Ga atoms’ relative positions. (Consequently, the

FIG. 7. Average frequency of Ga-dominated phonon modes (a),
phonon moments for Pu-dominated phonon modes (b), and phonon
moments for all phonon modes (c), calculated for Ga-doped δ-Pu in
computational cells with 72 atoms at a0 = 4.64 Å. Data include one
calculation at 1.4 at. % Ga, ten at 2.8 at. % Ga, two at 4.2 at. % Ga,
and one at 5.6 at. % Ga.

phonon calculations were not performed for all configura-
tions.) Small differences could be expected from allowing the
volumes to relax. At the fixed volume, the preferred relative
positions of the Ga substitutions appears not to involve ther-
mal effects.

For larger concentrations, i.e., three and four substi-
tutions, the calculations sample computational cells with
well-separated Ga substitutions. These consist of two cells
with three Ga atoms and one with four Ga atoms, with atoms
arranged no closer than the fourth NN shell. The energy cost
of these substitutions approximate the range of the double
substitutions beyond the second shell, with correspondingly
defined �E of 33 meV, 46 meV, and −47 meV.

Figure 7(c) shows the phonon moments calculated for
Ga-doped δ-Pu increasing linearly with Ga concentration.
The phonon moments calculated for only the Pu-dominated
modes, shown in Fig. 7(b), exhibit no discernible change as
the Ga concentration increases, indicating that the increase
for Ga-doped δ-Pu stems from the linear increase of the
number of high-frequency, Ga-dominated modes. The average
frequency of the Ga-dominated modes in Fig. 7(a) decreases
slightly with increasing Ga concentration, signifying subtle
interactions between the multiple Ga atoms.

The lack of discernible change in phonon moments of the
Pu-dominated modes in Fig. 7(b) results from an averaging
over phonon modes, some that stiffen and some that soften.
The stiffening occurs mainly at lower frequencies, as seen in
Fig. 8 (see Fig. 2 in the SM [24] for the complete frequency
range). In particular, the eight transverse [111] modes at f =
0.98 THz, which lose their degeneracy, become increasingly
stiffer with increasing Ga concentration. Small weights of the

184107-5



SVEN P. RUDIN PHYSICAL REVIEW B 105, 184107 (2022)

FIG. 8. Low-frequency excerpt of phonon frequency tracing for
δ-Pu with (a) one, (b) two, (c) three, and (d) four substitution Ga
atoms in computational cell with 72 atoms at a0 = 4.64 Å. Orange
circles represent the δ-Pu modes with black circles highlighting
the eight transverse [111] modes at f = 0.98 THz (degenerate in
undoped δ-Pu). The areas of the symbols are proportional to the
weights as defined in Eq. (2); only data with weight larger than 0.01
are shown.

T [111] modes fall below the diagonal (i.e., below 0.98 THz)
to couple with the mode originally at 0.90 THz, but these
modes of Ga-doped δ-Pu have minimal character related to
the T [111] modes.

The results above by themselves suggest that a mechanism
for Ga stabilization due to the phonons could involve imped-
ing the proposed pathways. The low-frequency modes become
stiffer with increased Ga concentration, thereby lessening
the entropy that would favor thermodynamic stabilization.
Furthermore, the zeroth phonon moment of both Ga-doped
δ-Pu and the Pu-dominated modes do not decrease with Ga
concentration, and the zeroth phonon moment is the dom-
inant quantity describing high-temperature entropy effects
[25]. Among these stiffened modes are the [ξξξ ]T modes
suggested as pathways to the α-Pu structure, indicating that
Ga tends to block these pathways. The results supporting
these arguments are all for a fixed volume, but allowing
the volume to change should only add support: Ga doping
contracts the volume, experimentally and theoretically [2,9],
and smaller volume increases the forces, which leads to even
stiffer phonons.

However, this last point, while generally true, does not
completely hold for δ-Pu. Figure 9(a) demonstrates an un-
usual softening of most lower-frequency modes in undoped
δ-Pu as the volume is compressed. The volume change is
larger than that from Ga doping but serves to distinguish
the differing behavior among phonon modes. This unusual
behavior of phonon softening with compression likely re-
lates to the unusual negative thermal expansion measured in

FIG. 9. Phonon frequency tracing from δ-Pu at 4.64 Å (a) to δ-
Pu at a0 = 4.52 Å and (b) to Pu-4.2 at. % Ga δ-Pu at a0 = 4.60 Å
(the corresponding experimental lattice constant) in computational
cells with 72 atoms. Orange circles represent the δ-Pu modes with
black circles highlighting the eight transverse [111] modes at f =
0.98 THz (degenerate in undoped δ-Pu). The areas of the symbols
are proportional to the weights as defined in Eq. (2); only data with
weights larger than 0.01 are shown.

δ-Pu [47]. To check how this softening due to the smaller
volume compares with the stiffening due to Ga doping, the
phonons are calculated for the 4.2 at. % Ga-doped system at
the corresponding experimental lattice constant, a0 = 4.60 Å
[2]. Figure 9(b) shows that the softening due to compression is
more than offset by the Ga-doped stiffening (see Fig. 3 in the
SM [24] for complete frequency range). This result is consis-
tent with the suggestion that a mechanism for Ga stabilization
due to the phonons could involve impeding the proposed
pathways.

IV. DISCUSSION

DFT calculations on substitutional doping of δ-Pu with Ga
reveal two distinct types of phonon modes. The Ga atoms in-
troduce high-frequency modes that are localized and separated
in frequency from lower-frequency, Pu-dominated modes.

The Pu-dominated modes change their frequencies, and
to some degree their character, with small concentrations of
Ga doping. In particular, the low-frequency Pu-dominated
modes stiffen, while the high-frequency Pu-dominated modes
soften. Among the stiffened low-frequency Pu-dominated
modes are those proposed to initiate a structural transforma-
tion into the α-Pu structure. Increasing the Ga concentration
enhances the stiffening. These results suggest that, as far as
the phonons are concerned, the mechanism with which Ga
doping stabilizes δ-Pu is likely not by way of the free en-
ergy but rather by stiffening the initial slope of the structural
transformation.

This suggestion comes with caveats. It does not consider
how Ga changes the low-frequency modes of the other phases:
if those were stiffened to an even larger degree, thermody-
namic stabilization would play a role. It does not consider
the effects of self-irradiation, which leaves Pu with significant
damage; chemical analysis of Ga-doped Pu shows many im-
purities [48]. These defects can partially be annealed out [49]
but any sample history leaves lattice imperfections that can
affect the structural phase transformation. DFT calculations
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predict interactions between Ga and such lattice imperfections
[18].

Additional support for a pathway-impeding mechanism
comes from considering volume effects. Compressing Ga-
doped δ-Pu can transform the crystal into the Ga-doped alpha
phase, but only for small amounts of Ga: larger Ga con-
centration inhibits the transformation with compression [48].
The present calculations show that Ga doping and compres-
sion have opposing effects on the phonon frequencies. If the
transformation is initiated by a softening with compression
of, e.g., the T [111] phonon mode, aided by lattice imper-
fections, does Ga doping still stiffen the mode more than

compression softens it? Research aimed at just this issue is
underway.
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