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Phase transitions in high-purity zirconium under dynamic compression
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We present results from ramp compression experiments on high-purity Zr that show the α → ω, ω → β, as
well as reverse β → ω phase transitions. Simulations with a multiphase equation of state and phenomenological
kinetic model match the experimental wave profiles well. While the dynamic α → ω transition occurs ∼9 GPa
above the equilibrium phase boundary, the ω → β transition occurs within 0.9 GPa of equilibrium. We estimate
that the dynamic compression path intersects the equilibrium ω-β line at P = 29.2 GPa, and T = 490 K. The
thermodynamic path in the interior of the sample lies ∼100 K above the isentrope at the point of the ω → β

transition. Approximately half of this dissipative temperature rise is due to plastic work, and half is due to the
nonequilibrium α → ω transition. The inferred rate of the α → ω transition is several orders of magnitude higher
than that measured in dynamic diamond anvil cell (DDAC) experiments in an overlapping pressure range. We
discuss a model for the influence of shear stress on the nucleation rate. We find that the shear stress s ji has the
same effect on the nucleation rate as a pressure increase δP = cεi j s ji/(�V/V ), where c is a geometric constant
∼1 and εi j are the transformation shear strains. The small fractional volume change �V/V ≈ 0.1 at the α → ω

transition amplifies the effect of shear stress, and we estimate that for this case δP is in the range of several
GPa. Correcting our transition rate to a hydrostatic rate brings it approximately into line with the DDAC results,
suggesting that shear stress plays a significant role in the transformation rate.
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I. INTRODUCTION

Metallic Zr and its alloys have practical applications in
chemical processing and nuclear power [1]. The high pressure
properties and phase diagram of pure Zr have been studied
extensively [2–16] using both static and dynamic compres-
sion techniques. The high pressure phase diagram is shown
in Fig. 2. The ambient pressure α phase has the hexagonal
close-packed (hcp) structure. The β phase, with bcc structure
appears at high temperature and high pressure. The ω phase,
with a hexagonal structure with three atoms per cell, occupies
intermediate T and P. The sequence of phases with increasing
pressure on the room T isotherm, isentrope, and Hugoniot is
α-ω-β. Dynamic compression studies [12,13,17–20] have for
the most part been focused on shock compression to measure
the Hugoniot and investigate the α-ω, α-β, and melting tran-
sitions.

In shock compression, an abrupt shock wave is driven
through the sample, typically by a high velocity impact. In
contrast, ramp compression [21,22] is achieved by a smoothly
varying pressure wave. Ramp compression is less dissipative
than shock compression, allowing investigation of the equa-
tion of state (EOS) and phase transitions at lower temperatures
than shock loading. Under shock loading, a phase transition
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will not be evident in the wave profile if the shock pressure is
too high so that the transition is overdriven. This is illustrated
in Fig. 3 of Ref. [13]. Under ramp compression, transitions do
not become overdriven. Any phase change encountered on the
compression path should leave an imprint on the wave profile.

Here we present new ramp compression data on Zr, ob-
tained via magnetic drive on the Z machine. We employ
simulations using a multiphase equation of state [3] together
with a phenomenological kinetic model [23] to interpret these
experiments together with shock loading data [13]. Our sim-
ulations agree well with experimental velocity profiles v(t )
measured at the sample window interface for both ramp and
shock compression. Consistent with earlier work [2,13] we
find strong kinetic effects on the α-ω transition. The nonequi-
librium transition contributes significantly to the dissipative
heating during ramp compression. The Z-machine data shows
the higher pressure ω-β transition in both the forward and
reverse directions. This transition occurs closer to equilibrium
than the α-ω transition. The presence of the forward and
reverse transitions allows us to refine the equilibrium phase
diagram. Comparing the α-ω transformation rates inferred
from dynamic compression with those measured in a dynamic
diamond anvil cell (DDAC) [14] shows the dynamic compres-
sion rate to be orders of magnitude higher that that in the
DDAC in an overlapping pressure range. We consider a model
for the influence of shear stress on the nucleation rate, and find
that it is of the correct magnitude to explain the difference.
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FIG. 1. Configuration for the magnetic ramp compression experiments. Each drive/sample pair is analyzed independently through a set
1D simulation where the magnetic pressure boundary condition is inferred from the drive measurement which then enables simulations of the
zirconium sample side.

II. EXPERIMENTS

The experimental configuration for the ramp compression
experiment, Z2913, is summarized in Fig. 1. The geometry
shown is referred to as a stripline [24] and consists of two
parallel aluminum electrodes which are 2 mm thick separated
by a gap of 1 mm. From top to bottom, three Zr samples with
thicknesses of 1.01, 1.25, and 1.51 mm are glued to the anode
electrode with angstrom bond; glue thicknesses are estimated
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FIG. 2. Phase diagram of Zr. Solid blue curves are phase bound-
aries of present EOS. Dashed red curves are from the EOS of Ref. [3].
Data from Refs. [6–11,33]. Solid green square is the present estimate
for the intersection of the ramp compression trajectory with the equi-
librium ω-β boundary. Green dot-dot-dashed curve is the simulated
path of the present ramp compression experiments.

to be on the order of 1 μm. The Zr samples are then backed
with optically transparent 6-mm-thick [100] LiF crystals us-
ing similar bonding characteristics. The LiF serves as a tamper
which maintains the pressure at this interface and allows for a
measurement of the unloading response and phase reversion.
On the opposite side of the gap, the LiF is bonded directly to
the electrode. In both cases, a 3-mm-diameter Al spot coating
∼1 nm thick is deposited on the bonded side of the LiF giving
a reflecting surface for the VISAR [25] diagnostic. VISAR
provides the velocity-time history at each of these interfaces
and is the primary experimental observable.

The configuration shown in Fig. 1 is ideal for performing
high-fidelity simulations, which is key for the interpretation
in this work. The cathode measurement represents the ve-
locity at the Al/LiF interface and is referred to as the drive
measurement because it allows for direct quantification of
the magnetic pressure applied to the electrodes. This quan-
tification is known as an unfold [26] and consists of solving
for the pressure-time history such that one-dimensional (1D)
hydrocode simulations of the drive configuration reproduce
the measured velocity. Thus, it is assumed the Al and LiF
are well known standards; the material models are described
in detail in Ref. [27]. Conventionally, unfolds are performed
through magnetohydrodynamics simulations to solve for the
magnetic field, but for this experiment the magnetic effects
are negligible and a pressure boundary condition is sufficient.
The pressure drive is preferred here for simplicity and com-
patibility with the research code containing phase transition
kinetics model. As suggested by the 1D computational do-
main in Fig. 1, the benefit of this symmetric experimental
configuration is the magnetic pressure must be the same across
the electrode gap for a fixed height. Thus, once the pressure
is determined for each drive measurement the only unknown
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in a simulation of the sample side is the Zr material model.
These Zr models and their parametrizations are described in
subsequent sections.

The shock experiment discussed below was carried out
on a 50 mm gas gun. A z-cut sapphire impactor struck a
target consisting of a z-cut sapphire buffer, the Zr sample,
and a LiF window. The velocity signal at the Zr/LiF interface
was obtained with a VISAR probe. A PDV probe measured
the impactor velocity. The shock breakout from the sapphire
buffer was detected using a VISAR probe and used to infer
the impact time.

The samples used here are very high-purity Zr, with im-
purity levels in ppm by weight of Hf 35, Fe < 50, Al < 20,
V < 50, O < 50, N < 20, C 22. The material used here is the
same as that designated Zr0 in Ref. [13].

III. MODELS

The wave profile data are compared to forward simula-
tions using a multiphase equation of state together with a
phase transition kinetics model, which allows for the phase
transitions to occur at finite rates. A detailed description of
the kinetics model is given in Ref. [23]. Briefly, pressure
and temperature equilibrium among the coexisting phases is
assumed, and the time evolution of the phase fractions, λi, is
given by

λ̇i =
∑
j �=i

(λ jR ji − λiRi j ). (1)

This equation preserves the normalization of the phase frac-
tions

∑
i λi = 1, and leads to an asymptotic approach to

complete transformation. The functions Ri j give the rate of
transformation between phases i and j, and depend on the
thermodynamic state. We use the form [2,23,28]

Ri j = θ (Gi − Gj )
νi j

Bi j
(Gi − Gj ) exp

[
(Gi − Gj )

2/B2
i j

]
, (2)

where Gi denotes the Gibbs free energy of phase i and νi j and
Bi j are the rate prefactor and energy scale, respectively, for the
i → j transition. They are used here as empirical parameters.
Here θ (x) denotes the Heaviside step function.

A model for phase transition dynamics based on the
physics of nucleation and growth has been successfully ap-
plied to solidification of water and Ga [29,30]. The case of
solid-solid transitions considered here is not as well under-
stood. We use a phenomenological model to infer information
about transition rates from data, which may be helpful in the
development of more physics-based models.

We have found that some strain rate dependence of the flow
stress is needed to match the observed rise of the plastic wave
in flyer impact experiments. Here we use the model due to
Swegle and Grady [31], which has a well-defined yield stress,
above which the plastic strain rate varies as a power law in the
deviatoric stress. In the present uniaxial strain case, the model
takes the form

ε̇ p
zz = θ (3|szz| − 2Y0)C

szz

|szz|
(

3|szz|
2Y0

− 1

)n

, (3)

where the wave propagation is in the z direction, ε̇ p is the
plastic strain rate, and s is the deviatoric stress. The material

parameters are taken to have the values C = 1 μs−1, n = 2,
Y0 = 0.4 GPa, and the shear modulus is taken to be 36 GPa.

IV. EQUATION OF STATE

The equations of state are specified by giving the
Helmholtz free energies F σ (V, T ) for each phase, σ . In this
work, we take the parametrized free energies for α, ω, and β

Zr described in Ref. [3] as the starting point. There, the free
energies were written as

F σ (V, T ) = φσ
0 (V ) + F σ

ion(V, T ) + F σ
el (V, T ), (4)

where φσ
0 is the static lattice energy, and F σ

ion and F σ
el are

the ion motion and electronic excitation free energies, respec-
tively. The static lattice energy was taken to have the Vinet
form [32], the ion motion term has the Debye form, and the
electronic excitation free energy is F σ

el (V, T ) = − 1
2
σ (V )T 2,

corresponding to an electronic specific heat cV el = 
σ (V )T .
Details of the volume dependence of the Debye temperature
and 
 are given in Ref. [3].

The EOS has an equilibrium α-ω transition at room tem-
perature and 2.2 GPa. This was built in as a constraint on
the parameters, based on the determination by Zilbershteyn
et al. [6]. They inferred the equilibrium transition pressure
based on the fact that under torsion, the forward and reverse
transitions occurred at the same pressure. This interpretation
was questioned by Pandey and Levitas [33], who prefer the
value 3.4 GPa, obtained by extrapolating the high temperature
phase boundary of Zhang et al. [7] to room temperature.
Changing the equilibrium phase boundary in the EOS by this
amount would give different numerical values for the optimal
kinetic parameters, but the qualitative picture would remain
largely unchanged. The α → ω transition occurs well above
the equilibrium pressure under dynamic compression, and this
nonequilibrium is an important source of energy dissipation.

Here we make small modifications to the EOS from
Ref. [3] for the α and β phases. In both cases, these consist of
changing parameters of the static lattice energy φ0. In Ref. [3],
the parameters of φα

0 (V ) for the α phase were determined
empirically using the data of Fisher et al., which gave the
pressure derivative of the bulk modulus as dBS/dP = 4.08.
More recent data from Liu et al. gives [4] dBS/dP = 3.0. We
have modified the parameters of φα

0 (V ) to bring the α phase
EOS into agreement with the Liu data. This also substantially
improved agreement with density functional theory calcu-
lations using the PBE [34] exchange-correlation functional,
which were described in Ref. [3]. Recent static compression
data from Dewaele et al. [5] gives dBT /dP = 2.92 based on
fitting their room temperature P-V data. Because this change
is supported by independent data sets and theoretical calcula-
tions, we view it as well founded.

In addition to the change made to the α phase EOS, we
have modified the β phase EOS so as to increase the ω-β tran-
sition pressure. It was found that this could be accomplished
with minimal effect on other properties by slightly increasing
the cold bulk modulus of the β phase. This change is made on
the basis of the present ramp compression data, which show
both the ω → β transition on compression and the β → ω

transition on decompression. It was not possible to get the
transition in the right place in the forward and reverse direc-
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FIG. 3. (a) Data and simulations for ramp and shock compression of high-purity Zr, shot Z2913. Solid black curves are data; dashed
red curves are simulations with optimized kinetic parameters. Dot-dashed blue curves are simulations with fast kinetics that stay close to
equilibrium. (b) Simulations with reduced number of phases to highlight the signatures of phase transitions. Solid blue curve is α phase only,
dot-dashed orange curve is α and ω phases, and red dashed curve is all three phases. Optimized kinetic parameters are used in every case.

tions with the phase boundary as it was placed in the original
EOS, regardless of the kinetic parameters. The value of the
β phase cold bulk modulus was chosen by simultaneously
optimizing it and the kinetic parameters, as described below.
The resulting phase diagram is shown in Fig. 2 along with
various data [6–11]. Our estimate for the intersection of the
ramp compression trajectory with the equilibrium ω-β line is
shown as the solid green square.

V. DATA AND ANALYSIS

Figure 3(a) shows data for ramp and shock compression
experiments on high-purity Zr, along with simulations us-
ing our kinetic model. In all cases the data consists of the
velocity history at the sample window interface. The ramp
compression experiment, Z2913, consisted of Zr samples with
thicknesses of 1.01, 1.25, and 1.51 mm on Al electrodes
with LiF windows. The peak stress generated in the Zr was
56 GPa. The shock experiment, designated number 56-11-53
[35], consisted of a sapphire impactor striking a sapphire
buffer with the Zr sample and a LiF window attached. The
Zr sample was 2.95 mm thick and the impactor velocity was
0.54 km/s, producing a peak stress of 9 GPa in the Zr. The
earliest parts of the wave in both the shock and ramp cases
are elastic. The elastic wave is most easily distinguished in
the shock case. In Fig. 3(a), the earliest part of the shock ve-
locity profile, with velocities <0.25 km/s, is an elastic wave,
which is followed by a slower plastic wave and subsequent
phase transition. The ramp compression experiment shows the
α → ω, the ω → β, and the reverse β → ω transitions. The
shock experiment shows the α → ω transition. This shock
experiment is especially sensitive to kinetics because at this
pressure, the phase transition takes 0.3 μs to complete, leading
to the gradual rise of the velocity. The dashed red curves show
simulations using kinetic parameters optimized for the ramp
compression data.

In order to highlight the features associated with phase
transitions, Fig. 3(b) shows simulated velocity profiles for the

thickest (1.51 mm) ramp compression sample. The different
simulations incorporate varying numbers of phases from the
α phase only (solid blue curve), α and ω only (dot-dashed or-
ange curve), to all three α, ω, and β phases (dashed red curve).
In all cases, the optimized kinetic parameters have been used.
On the rising side of the wave, each phase transition appears
as a plateau, associated with the low effective sound speed
in the mixed-phase region, followed by a steep rise reflecting
the rapid increase in the sound speed on completion of the
transition. Similarly, on the decreasing side of the wave, the
reverse β → ω transition leads to a plateau followed by a
rapid drop in the velocity. Reference [13] gives a more de-
tailed discussion of wave features in relation to EOS and phase
transitions.

Also shown in Fig. 3(a) as the dashed curves are simula-
tions using fast kinetics, which are essentially in equilibrium.
Under equilibrium conditions, the ramp compression exper-
iment forms a shock, as indicated in the figure by the rapid
velocity increase between 0.18 and 0.58 km/s. In the fast
kinetic simulations, the sample transforms directly to the ω

phase in this shock. The shock experiment similarly trans-
forms completely to the ω phase in the plastic wave. In
equilibrium there is no gradual rise in the velocity, as seen
in the data, and the plastic wave is too slow.

In past applications of the kinetics model [2,13] we
have determined approximately optimal kinetic parameters by
hand. In this work we have optimized parameters by minimiz-
ing the rms error of the velocity profile

E2 = 1

N

N∑
i=1

1

t2 − t1

∫ t2

t1

dt
[
vsim

i (t ) − v
exp
i (t )

]2
. (5)

The index i denotes different data sets. Here it refers to
different sample thicknesses. The α-ω and ω-β parame-
ters affect different parts of the wave profile, so they have
been independently optimized here. The present optimiza-
tion algorithm scans over a grid that is uniform in B and
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FIG. 4. Contours of the rms error in the wave profile as a function
of the kinetic parameters ν and B for the α-ω transition in high-purity
Zr. The contours are for the ramp compression experiment Z2913.
The point labeled “Opt: Ramp” is the minimum error for this experi-
ment and the one labeled “Rigg09” was approximately optimized by
hand for shock experiments [13].

logarithmically uniform in ν and finds the minimum rms error
on the grid.

In the case of the ω-β transition, the equilibrium phase
boundary needs to be adjusted to allow for a good match to
the wave profile on both the forward and reverse transitions.
As described in Sec. IV, the phase boundary was adjusted
using the cold bulk modulus of the β phase as a parameter. The
kinetic parameters for the forward ω → β and reverse β → ω

transitions affect different parts of the wave profile, and were
independently optimized by scanning (B, ν) grids as for the
α → ω transition. The kinetic parameters were optimized for
a sequence of values of the β phase static lattice bulk mod-
ulus, starting from the value 79.2 GPa of the 2015 EOS [3],
increasing in steps of 0.65 GPa. The minimum error occurred
at a value of 80.5 GPa. For the ω-β transition, optimization
favors small values of the kinetic parameter B. However, if B is
too small, the simulations experience numerical instabilities.
We have set a lower cutoff of 50 J/mol for B. The minimum
error for the forward ω → β transition was found at B = 50
J/mol and ν = 10 s−1, while for the reverse β → ω transition,
the best values are B = 50 J/mol and ν = 107 s−1. These
parameter values bring both transitions close to equilibrium,
so there is very little difference in the wave profiles from the
equilibrium case for the ω-β transition in Fig. 3.

Figure 4 shows error contours in the Bαω, ναω plane for
the ramp compression experiment Z2913 on high-purity Zr.
The symbols mark the optimum value for Z2913, Bαω = 380
J/mol, ναω = 3.98 × 104 s−1 and the parameters used in Rigg
et al. [13] for shock loading experiments Bαω = 500 J/mol,
ναω = 1.7 × 105 s−1. While the parameter values are rather
different, the rms errors associated with the parameter pairs
are very similar. There is a strong correlation between B and
ν, and the error surface has a long valley, which is very flat.
The rms error changes by only 1% while B varies from 240
to 473 J/mol and ν varies from 10 to 3.6 × 105 s−1. Because
B appears in the exponential, while ν is outside it, ν varies by
several orders of magnitude over this range of B.

0 10 20 30 40 50

P  (GPa)

0

500

1000

1500

T
  
(K

)

Phase Boundaries
Equilibrium Isentrope

Simulation Trajectory

Zr phase diagram

�

�

�

with dynamic compression path

FIG. 5. Simulated thermodynamic path of ramp compression
experiment Z2913. Solid blue curves are the equilibrium phase
boundaries of the current EOS. Green dot-dashed curve is the equi-
librium isentrope. Red dashed curve is the simulated path of an
interior point of the sample, with arrows indicating increasing time.
This differs from the isentrope due to both plastic dissipation and
nonequilibrium phase transitions.

Figure 5 shows the P, T trajectory from our simulation of
ramp compression of experiment Z2913 with the equilibrium
phase boundaries from our EOS. Also shown is the isentrope
S = const. In the idealization of no dissipation, the trajectory
would follow the isentrope. There are two sources of dissipa-
tion in the simulation: plastic work and nonequilibrium phase
transitions. On the compression path, the material remains
largely in the α phase until the pressure reaches 7 GPa, and is
nearly completely transformed to the ω phase at 12 GPa. This
interval corresponds to a temperature rise where the simula-
tion trajectory departs from the isentrope. The −PdV work on
this nonequilibrium path is larger than on the isentrope, result-
ing in dissipative heating. At 29.4 GPa, where the simulation
path crosses the equilibrium ω-β boundary, it lies 100 K above
the isentrope. By comparing simulations with no strength or
equilibrium kinetics with nominal models, we estimate that
about half of this temperature rise is due to plastic work, and
half is due to the nonequilibrium α-ω transition. The transfor-
mation completes at a higher pressure in the ramp case than
the shock case because, under ramp compression, the pressure
rises continuously as the transformation proceeds, whereas in
the shock case, the pressure is nearly constant for ∼0.4 μs,
allowing time for completion at a lower pressure. At the same
time, the transformation rate increases rapidly with pressure,
so the overall time for the transformation is shorter in the ramp
case.

The time evolution of the α-ω transition was observed via
diffraction by Jacobsen et al. [14]. These measurements use
a DDAC apparatus. After precompressing within the α phase,
a piezoelectric module applied a step increase in the pressure
over a time of <0.1 s. The ω phase fraction λω was obtained
following the pressure jump at room temperature. The data
were analyzed to extract a time constant τ , which is the time
required for λω to reach 1 − e−1. If the present kinetic model
is applied to the same situation, the corresponding time is R−1

αω.
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It is therefore meaningful to compare Rαω to 1/τ , which is
done in Fig. 6. The open circles are DDAC data from Jacobsen
et al. and the dashed black curve is Rαω, evaluated from Eq. (2)
along the room temperature isotherm with optimized param-
eters. The solid red segment of the model curve indicates the
range over which the present dynamic compression simula-
tions are sensitive to Rαω. The lower limit was determined by
carrying out a series of simulations with the rate R set to zero
if it fell below a threshold. For values below approximately
3 × 106 s−1, this threshold made no noticeable difference to
the simulated wave profile, whereas above this there was a
significant change. The upper end corresponds to the highest
rates in our simulations, which were ∼108 s−1.

Because of this limited sensitivity range, the functional
form Eq. (2) is not unique, and any function giving a linear
dependence of ln Ri j on the driving force Gi − Gj would
give similar results. For example, it was found in Ref. [23]
that the form Ri j = θ (Gi − Gj )ξi j sinh[(Gi − Gj )/Ci j] gives
nearly indistinguishable velocity profiles to Eq. (2), when the
parameters ξ and C are determined so as to match Eq. (2) in
the sensitivity range.

Figure 6 shows that the sensitivity range for dynamic com-
pression overlaps in pressure with the DDAC measurements.
In this overlapping range, the transition rate under dynamic
compression exceeds that under quasistatic compression by a
factor of ∼3 × 107. The temperature is somewhat higher in
the dynamic compression case, ranging from 350 to 400 K at
the time of peak transformation rate. Experimental estimates
of the activation energy of the transformation are in the range
0.5–1.73 eV [14,36]. Taking the smallest activation energy
and the largest T for the dynamic compression experiments
leads to a factor of 1.3 × 102 between the rates, so it is
unlikely that the temperature accounts for the observed dif-
ference. A temperature of 2.3 × 103 K would be required to
account for the rate difference.

It is well established that shear stress and shear deforma-
tion strongly influence the α-ω transition in Ti and Zr [6,15].
A possible mechanism for this influence is through a change
in the nucleation rate by shear stress. The rate of nucleation
is proportional to e−W ∗/kbT , where W ∗ is the free energy of a
critical nucleus, which is in turn a function of the bulk free
energy difference between the daughter and parent phases.
This exponential dependence of the nucleation rate on the free
energy difference provides a natural explanation for the expo-
nential dependence of our phenomenological rate, Eq. (2), if
nucleation is the limiting process.

A model for the influence of shear stress on the nucleation
rate of a martensitic transition was proposed by Fisher and
Turnbull [37]. They considered the case of a thin, lenticular
second phase domain, with the transformation strain taken to
be a simple shear, εxy = θ , under the assumption of a coherent
interface. They modeled the influence of a shear stress sxy =
τ and found that its effect on W ∗ is to replace the bulk free
energy difference �g = �G/V with

�g → �g − 4
3τθ. (6)

Noting that τθ is the work w per unit volume done by the ap-
plied shear stress on the transforming domain, we generalize
this as

�g → �g − cw = �g − cεi j s ji, (7)

where εi j is the transformation strain, s ji is the deviatoric
stress, and c is a geometric factor of order unity that is related
to the shape of the second phase domain. The factor c differs
from unity because of the strain energy in the parent phase
matrix, and because the strains within the daughter phase
domain will differ from the ideal transformation strains εi j .
Linearizing �g with respect to P, we find that the shear stress
has the same effect on the nucleation rate as an additional
pressure

δP = cεi j s ji

�V/V
. (8)

Consider, for example, the TAO-1 mechanism for the α-ω
transition [38] with transformation strains εxx = −0.09, εyy =
0.12, and εzz = −0.02, in the standard hcp crystal axes. For
the case of uniaxial compression, the macroscopic shear stress
is of the form ⎛

⎝−s‖/2 0 0
0 −s‖/2 0
0 0 s‖

⎞
⎠ (9)

in a frame with the z axis aligned with the propagation di-
rection. The shear stress enhancement is maximized when
the compression wave propagates in the crystal x direction,
giving w = εi j s ji = 0.14|s‖|, where s‖ is the deviatoric stress
in the wave propagation direction. The fractional volume
change is �V/V = 0.01 for the Zr α-ω transition, and our
simulations give |s‖| = 0.5 GPa during the transition. So the
shear stress enhances the nucleation rate by the same amount
as an additional pressure δP ∼ 7 GPa. This estimate corre-
sponds to the TAO-1 mechanism with the optimal orientation
of the crystal with respect to the propagation direction. Poly-
crystalline samples will sample a distribution of orientations,
and other mechanisms with different transformation strains
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may be active. Accounting for this, we expect a range of
δP on the order of several GPa. The small value of �V/V
in the denominator of Eq. (8) amplifies the effect of shear
stress.

Because our rate model does not explicitly account for
shear stress, but is calibrated to data in which it is present,
the hydrostatic rate function will be shifted to the right by
δP with respect to the curve in Fig. 6. A shift of several
GPa, as suggested by the above analysis, will bring the model
into better alignment with with the extrapolated DDAC com-
pression data of Jacobsen et al. [14]. This is illustrated in
Fig. 6 with the arrow, whose length is 5 GPa. Most of the
DDAC experiments were done without a pressure transmitting
medium, and were not fully hydrostatic. The shear stress was
not quantified in those experiments, but, given their much
lower rate, it is expected to be lower than that of the current
dynamic experiments.

VI. CONCLUSIONS

We have presented new data on ramp compression of high-
purity Zr that show the α-ω and ω-β phase transitions, with
the higher pressure ω-β transition occurring in the forward
direction on compression and reversion direction on release.
Simulations employing a multiphase equation of state and
a phenomenological kinetic model match the experimental
velocity profiles well. The same parameters also agree well
with shock compression data on the α-ω transition. The data
showing both the forward and reverse ω-β transitions allows
us to simultaneously optimize the kinetic parameters and
parameters of the EOS, enabling us to refine our estimate
of the equilibrium ω-β phase boundary. The resulting phase
boundary is higher in pressure than that of an earlier EOS [3].
We find that, under dynamic compression, the α-ω transition
overshoots the equilibrium phase boundary by ∼9 GPa, while
the ω-β transition occurs much closer to equilibrium in both
the forward and reverse directions.

The α-ω transition shows strong kinetic effects. We find
that the wave profiles for these experiments are sensitive to
phase transition rates in the range 3 × 106–108 s−1. The re-

quirement for the model to match data is that the logarithm
of the rate depends approximately linearly on the thermody-
namic driving force in this range. The nonequilibrium α-ω
transition is estimated to account for half of the dissipative
temperature rise of 100 K at the onset of the high pressure
ω-β transition.

Equation (8), δP = (cεi j s ji )/(�V/V ), relates the shear
stress, s ji, to an equivalent pressure increase, δP, as it in-
fluences the phase transition rate. In the present case, our
analysis was motivated by a model for the nucleation rate [37].
However, the derivation of Eq. (8) only involves the bulk free
energies, so it is likely to be more generally valid. In the case
of the TAO-1 mechanism with optimal orientation considered
above, δP ≈ 7 GPa, while the shear stress is 0.5 GPa. This
amplification results from the factor ε/(�V/V ), where in this
case, the fractional volume change is small compared to the
transformation shear strains. The present kinetic model gives
transformation rates several orders of magnitude larger than
those observed in DDAC experiments [14] in an overlapping
pressure range. Our estimate for the shear stress effect is ap-
proximately the right size to explain the difference. However,
the DDAC experiments were not fully hydrostatic, so other
mechanisms may be required to explain the difference.
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