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Hexagonal boron nitride (h-BN) is a promising platform for quantum information processing due to its
potential to host optically active defects with attractive optical and spin properties. Recent studies suggest that
carbon trimers might be the defect responsible for single-photon emission in the visible spectral range in h-BN.
In this theoretical study, we combine group theory together with density-functional theory (DFT) calculations to
predict the properties of the neutral C2CN carbon trimer defect. We find the multi-electron states of this defect
along with possible radiative and nonradiative transitions assisted by the spin-orbit and the spin-spin interactions.
We also investigate the Hamiltonian for external magnetic-field and ground-state hyperfine interactions. Lastly,
we use the results of our investigation in a Lindblad master-equation model to predict an optically detected
magnetic resonance signal and the g2(τ ) correlation function. Our findings can have important outcomes in
quantum information applications such as quantum repeaters used in quantum networks and quantum sensing.
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I. INTRODUCTION

Color centers as solid-state artificial atoms in systems such
as diamond, silicon carbide, and van der Waals materials, have
potential applications in quantum technology [1,2]. Many of
these color centers are single-photon sources and have good
spin properties [3]. Single-photon emitters (SPEs) are a vital
part of photonic quantum technologies [4,5], also spins with
good spin-photon interfaces are promising candidates for stor-
ing information [6]. These make color centers important for
various quantum applications, including quantum communi-
cation, quantum sensing, and distributed quantum computing.

Ultrabright and polarized single-photon emission from
color centers in two-dimensional (2D) hexagonal boron
nitride (h-BN) has been recently observed at room temper-
ature [7]. h-BN has attracted attention for several reasons.
First, it has a relatively large band gap of around 6 eV [8–10]
which allows it to host many defects [11–15]. However,
the true atomic structure of most of these emitters remains
unknown [16,17]. Second, because of its 2D nature, it is
promising for heterogeneous assembly and on-chip integra-
tion into devices [18,19]. Third, some defects in h-BN might
have high sensitivity to the environment because of their loca-
tion at the surface, which is advantageous for quantum sensing
applications [20]. Finally, defects in h-BN are the only known
solid-state sources that can display Fourier transform limited
lines at room temperature [21]. If the Fourier transform of an
emitter’s temporal profile matches its spectral lineshape, then
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the emitter resonance does not fluctuate during the timescale
of emission. This implies that quantum coherence is main-
tained so that the emitter can be used for many quantum
protocols.

It has been shown that visible range SPEs in h-BN originate
from carbon-related defects [16]. Jara et al. [22] suggest that
the neutral C2CN and C2CB carbon trimer defects might have
zero-phonon line (ZPL) energies of 1.62 and 1.65 eV, respec-
tively, and a phonon sideband of around 160 meV, which is
typically found in many experiments [16,23]. However, a new
study suggests that the C2CB defect might have a ZPL energy
of 1.36 eV [24]. This energy is too far from the visible range,
and so we focus only on the C2CN defect where both studies
agree on a ZPL energy of around 1.6 eV.

In this study, we explore the electronic structure of the
C2CN defect in 2D h-BN and find the possible radiative
and nonradiative transitions to model the observed lines.
To do so, we combine group theory analysis with density-
functional theory (DFT) calculations [25,26]. We determine
the symmetry-adapted molecular orbitals (MOs) using group
theory analysis. Then, we use DFT results to determine the
relative energy ordering of these orbitals [27]. Next, we obtain
the total orbital and spin multi-electron states by filling the
lowest energy MOs, which gives us the ground state. Excit-
ing electrons to the higher energy MOs gives us the excited
states [28]. We calculate the total energy of the electronic
structures with DFT, and the difference between these ener-
gies gives us the transition energies between defect states.

We then consider the spin-orbit, the spin-spin, and external
magnetic-field interactions and find matrix elements of the
Hamiltonian, where group theory decreases the complexity by
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FIG. 1. (a) Symmetry operators of C2v point group, apart from
the identity operator (E), shown for a carbon trimer defect. The first
one is C2(z) which is a rotation by π around the z axis. The other
two are reflections through xz and yz planes, respectively, σv (xz) and
σv (yz). Note that the three carbon atoms are in the xz plane. (b) The
atomic configuration of the C2CN defect in 2D h-BN sheet.

reducing the number of nonzero elements. Furthermore, we
look at the interaction between the defect and the electromag-
netic field and find nonvanishing matrix elements to derive
the optical transitions. Combining this with the spin-orbit
and the spin-spin Hamiltonians gives us possible nonradia-
tive transitions assisted by the spin-orbit and the spin-spin
interactions [17]. We also examine the hyperfine interaction
of the ground state with a possible nearby nuclear spin [29].
Finally, we look at the dynamics of this system and simulate
the optically detected magnetic resonance (ODMR) signal
predicted by the Lindblad master equation [30].

This paper is organized as follows: In Sec. II we dis-
cuss the symmetry of the C2CN defect and determine the
symmetry-adapted MOs. Then we investigate multi-electron
states (Sec. III), the spin-orbit interaction (Sec. IV), the
spin-spin interaction (Sec. V), spin-orbit and spin-spin me-
diated transitions (Sec. VI), selection rules for the transitions
(Sec. VII), external magnetic-field effect (Sec. VIII), and hy-
perfine interaction (Sec. IX). In Sec. X we found radiative

and some nonradiative transition rates, then in Sec. XI we
simulate the ODMR spectra and the g2(τ ) second-order cor-
relation function. Next, we provide a summary in Sec. XIII.
Finally, we discuss computational methods in Sec. XII. Matrix
elements of all of the interactions and more configurations for
the ODMR simulations are given in the Appendix.

II. MOLECULAR ORBITALS

The atomic configuration of the C2CN defect is shown in
Fig. 1(b), where C2 denotes the CBCN carbon dimer, and CN

denotes a substitution of a nitrogen atom with a carbon atom.
To find the symmetry group of the defect, it is important to
know if the defect is in- or out-of-plane, as some defects might
be distorted out of the plane [31]. A recent study suggests that
distortion from the plane for the C2CN defect is negligible and
that it has a planar structure [24]. Thus, this defect has C2v

symmetry, which is supported by defect wave functions as in
Fig. 2(a).

The ground-state configuration of carbon is 1s22s22p2. The
planarity of the defect implies that carbon atoms will have
sp2 hybridization. In sp2 hybridization, the 2s orbital is mixed
with only two of the three available 2p orbitals. The third 2p
orbital remains unhybridized and out of the plane and in the
ŷ direction, which is also confirmed by our DFT calculations
shown in Fig. 2(a).

Each carbon atom of the C2CN defect shares three of its
valence electrons with nearby atoms in the lattice; therefore,
they each have one unpaired electron. Thus, the dangling
bonds of the defect are π bonds, and they are denoted
{π1, π2, π3}.

Now, we need to find the symmetry-adapted MOs of this
defect. The MOs are eigenfunctions of the Coulombic Hamil-
tonian. We apply the projection operator,

φr = P(r)σi = lr
h

∑
e

χ (r)
e Reπi, (1)

FIG. 2. (a) Ground-state wave functions of the C2CN defect. The positive (negative) components of each wave function are visualized
by the yellow (blue) lobes. The corresponding symmetries are best represented when the b and a orbitals are plotted here at an isosurface
level of ±0.007 Å−3, and the b′ orbital at ±0.0002 Å−3. The orbital energies increase from the bottom to the top, i.e., Eb < Ea < Eb′ . Only
the atoms and contributions to the wave function which are close to the C2CN defect are shown for simplicity. The carbon atoms are brown,
boron atoms are green, and nitrogen atoms are grey. The diagrams were produced using VESTA [33]. (b) Defect levels of the ground state
and single-configuration excited states in the fundamental bandgap of h-BN. The occupied (unoccupied) levels are denoted by solid (empty)
triangles.
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TABLE I. Character table for C2v point group. E , C2(z), σv (xz),
σv (yz) are symmetry operators. A1, B2, B1, and A2 are irreducible
representations of the point group.

C2v E C2(z) σv (xz) σv (yz) Linear Quadratic Cubic

A1 1 1 1 1 z x2, y2, z2 z3, x2z, y2z

B2 1 −1 −1 1 y, Rx yz yz2, y3, x2y

B1 1 −1 1 −1 x, Ry xz xz2, x3, xy2

A2 1 1 −1 −1 Rz xy xyz

with a specific irreducible representation (IR) on our dan-
gling bonds to find symmetrized MOs [32]. Here, P(r) is
the projection to the representation r, lr is the dimension
of the representation r, h is the number of symmetry group
members, χ (r)

e is the character of the operator e in the repre-
sentation r, Re is the symmetry operator, and πi is the dangling
bond i. According to the character table of the C2v point group
(Table I), b and b′ MOs transform according to IR B2. They are
defined as

b = απ2 + β√
2

(π1 + π3), (2)

b′ = βπ2 + α√
2

(π1 + π3), (3)

where α and β are overlap integrals and |α|2 + |β|2 = 1.
There is another MO that transforms as IR A2, defined as

a = 1√
2
{π1 − π3}. (4)

III. MULTI-ELECTRON STATES

We use DFT to find the energy of each of the MOs dis-
cussed above and their energy ordering. The defect wave
functions in Fig. 2(a) obtained from the DFT calculations
show that the MO with the lowest energy transforms as IR
B2, so it represents the b MO. This is because, according to the
symmetry operators in Fig. 1(a), this MO is antisymmetric un-
der C2(z) and σv (xz), and symmetric under E and σv (yz). The
next MO with higher-energy transforms as IR A2, because it is
antisymmetric under σv (xz) and σv (yz), and symmetric under
E and C2(z). Therefore, it represents the a MO. Finally, the
one with the highest energy transforms as IR B2 similar to the
first one, and thus it represents the b′ MO. Based on a previous
study, the MOs in the ground state and the first-excited state
lie inside the band gap [22]. Our ab initio calculations show
that the MOs in the next two excited states are also in the band
gap.

Multi-electron states are composed by filling the MOs with
three unpaired electrons of the defect, starting from the lowest
energy b MO. The b MO will be fully occupied with two elec-
trons in the ground state, and the a MO will be half occupied.
This configuration will form a spin doublet because the half
occupied a MO can be either spin up or down. So its spin
multiplicity will be equal to two. This lowest multi-electron
state has the configuration [b]2[a]1[b′]0 which transforms as
IR A2. Other excited multi-electron states are produced by ex-
citing each of these electrons to higher MOs. The [b]1[a]2[b′]0

TABLE II. Configuration of total wave functions. Some of these
states are entangled states which need careful consideration when
calculating their energy using DFT. Spin-down electrons in an orbital
are shown with a line over them. In the label column, calligraphic
letters A and B represent IRs A2 and B2, respectively. Also, d and
q in the superscript stand for doublet and quartet states, respectively.
Prime and double prime in IRs of each state is used just to distinguish
them with other states with the same IR.

Configuration 2S+1	 Clebsch-Gordan states Label

[b]2[a]1[b′]0 2A2 |bb̄a〉, |bb̄ā〉 A0,d
±1/2

[b]1[a]2[b′]0 2B2 |baā〉, |b̄aā〉 B1,d
±1/2

[b]2[a]0[b′]1 2B′
2 |bb̄b′〉, |bb̄b̄′〉 B2,d

±1/2

[b]1[a]1[b′]1 4A2 |bab′〉, |b̄āb̄′〉 A3,q
±3/2

1√
3
(|b̄ab′〉 + |bāb′〉 + |bab̄′〉) A3,q

+1/2

1√
3
(|bāb̄′〉 + |b̄ab̄′〉 + |b̄āb′〉) A3,q

−1/2

2A′
2

1√
6
(|b̄ab′〉 + |bāb′〉 − 2|bab̄′〉) A3,d ′

+1/2

1√
6
(|b̄ab̄′〉 + |b̄āb′〉 − 2|bāb̄′〉) A3,d ′

−1/2

2A′′
2

1√
2
(|bāb′〉 − |b̄ab′〉) A3,d ′′

+1/2

1√
2
(|bāb̄′〉 − |b̄ab̄′〉) A3,d ′′

−1/2

and [b]2[a]0[b′]1 configurations are also spin doublets, similar
to the ground state, and transform according to IR B2. But the
other excited state [b]1[a]1[b′]1 needs careful consideration.
Since it is the addition of three spin-1/2 orbitals, it will have
three irreducible spin representations, including one quartet
state and two doublet states with multiplicities four, two,
and two, respectively. These states all transform as IR A2.
The corresponding electronic configurations of these states
are given in Table II and the energy levels of the first four
single-configuration states are given in Fig. 2(b).

IV. SPIN-ORBIT INTERACTION

The spin-orbit interaction is the sum of the Larmor and
Thomas interaction energy which is given by

HSO =
∑

k

h̄

2m2
ec2

(∇kV × pk ) ·
( sk

h̄

)
=

∑
k

lk ·
( sk

h̄

)
, (5)

where V is the electric potential energy of the nucleus, h̄ is
the reduced Planck constant, me is the electron rest mass, c
is the speed of light in vacuum, sk is the spin of electron
k, pk is the momentum of electron k, and k sums over all
electrons [28]. By utilizing group theory, we omit the van-
ishing components of the matrix elements of lk . The elements
〈φi|lk|φ j〉 are nonvanishing only if 	(φi ) ⊗ 	(lk ) ⊗ 	(φ j ) ⊃
	A1 , where 	 is the irreducible representation. Since l is
proportional to r × p, it transforms as (B2, B1, A2). Based
on Table III, only ly, which transforms as IR B1, will have
nonzero values. Therefore,

HSO =
∑

k

l (y)
k

(
s(y)

k

h̄

)
. (6)
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TABLE III. Matrix elements of operators with specific symme-
tries in the {B2, A2} manifold where × indicates a nonzero value.

OA1 B2 A2

B2 × 0
A2 0 ×
OB2 B2 A2

B2 0 0
A2 0 0

OB1 B2 A2

B2 0 ×
A2 × 0

OA2 B2 A2

B2 0 0
A2 0 0

Because of the symmetry of the system and according
to Table III, we know that only elements in the form of
〈B2|Hso|A2〉 and their complex conjugate will be nonzero.
Also, since we know sy = 1

2i (s+ − s−), only the states whose
spin are different by one will yield nonzero values. After
considering these symmetry constraints, we obtain the matrix
elements provided in the Appendix (Sec. A 1).

V. SPIN-SPIN INTERACTION

The spin-spin interaction is described by

Hss = μ0γ
2
e h̄2

4π

∑
i> j

1

r3
i j

[si · s j − 3(si · r̂i j )(s j · r̂i j )]

= μ0γ
2
e h̄2

4π

∑
i> j

[si · D̂i j · s j]

= μ0γ
2
e h̄2

4π

∑
i> j

[
ŝ(2)

i j ⊗ D̂(2)
i j

](0)
, (7)

where ri j = ri − r j is the distance between electrons i and
j, r̂i j is the unit vector from electron i to electron j, si is
the spin of nucleus i, μ0 is the vacuum permeability, and γe

is the electron gyromagnetic ratio [34]. ŝ(2)
i j = ŝ(1)

i ⊗ ŝ(1)
j is a

rank two spin tensor and D̂i j is a traceless second-rank tensor
operator defined as,

D̂i j = 1

r5
i j

⎛
⎝r2

i j − 3x2
i j −3xi jyi j −3xi jzi j

−3xi jyi j r2
i j − 3y2

i j −3yi jzi j

−3xi jzi j −3yi jzi j r2
i j − 3z2

i j

⎞
⎠. (8)

Writing the interaction in this form simplifies the calculations
of matrix elements.

For spherically symmetric states, traceless D̂i j means all
three diagonal elements vanish. However, due to the lack of
spherical symmetry of this defect, we should consider these
elements in this magnetic dipole-dipole interaction. More de-
tails and matrix elements of the spin-spin Hamiltonian are
provided in the Appendix Sec. A 2.

VI. SPIN-ORBIT AND SPIN-SPIN INDUCED TRANSITIONS

For the spin-orbit interaction, as we discussed before,
only the matrix elements in the form of 〈B2|Hso|A2〉 and
their complex conjugate will be nonzero. This indicates
that there are no matrix elements in degenerate manifolds
of {A0,d ,B1,d ,B2,d ,A3,q}. Therefore, there is no mixing
due to the spin-orbit coupling. However, we have possible
spin-orbit-induced transitions between the states in these man-
ifolds, which are B1,d ↔ A0,d , B2,d ↔ A0,d , B1,d ↔ A3,q,
and B2,d ↔ A3,q. As discussed in Ref. [35,36], these types
of transitions can happen in two steps. First, spin-orbit as-
sisted transition occurs for example from B2,d to a vibrational
excited state of A3,q. This is followed by a relaxation to the
vibrational ground-state, for example, via the emission of one
or more phonons. Such a process will be possible if there is
an overlap between the initial vibrational level of B2,d and the
excited vibrational level of A3,q.

Similarly and based on the findings of the previous section,
the spin-spin interaction has no matrix element in the degener-
ate manifold of {A0,d ,B1,d ,B2,d}. However, there are nonzero
matrix elements of the spin-spin interaction in the quartet-
state manifold. D0 is the diagonal, and E3 is the off-diagonal
term. Hence, spin-spin interaction breaks the degenerate quar-
tet states into two states and separates them by 2D0. Also,
the nondiagonal terms in the same manifold mix these two
states. There are also possible spin-spin induced transitions
between the states in these manifolds, which are A0,d ↔ A3,q,
B1,d ↔ A3,q, B2,d ↔ A3,q.

VII. SELECTION RULES

Here we look at the dominant transition allowed by the in-
teraction of the electron with the electromagnetic field, which
is the electric-dipole transition. The electric-dipole interaction
is defined as

Hdipole = E · d =
∑

k

eE · rk, (9)

where E is the electric field, d is the electric-dipole moment,
rk is the position of k electron with respect to the nucleus,
and e is the elementary electric charge. The position r in the
C2v group transforms like (B1, B2, A1). Thus, according to
Table III, the allowed transitions are induced by either eExx or
eEzz and the dipole moment lies completely in the plane. The
dipole allowed transitions and the matrix elements are given
in the Appendix (Sec. A 3). These results are summarized in
Fig. 3(a), which shows radiative and nonradiative transitions
along with the energy levels of the states.

VIII. EXTERNAL MAGNETIC FIELD

In the presence of an external magnetic field, there will be
another term for the Zeeman interaction of the magnetic field
with spin and orbital angular momentum [27]. This interaction
is given by

HB = e

2me

∑
k

(lk + gesk ) · B, (10)

where ge is the electron-spin g factor, s is the electron
spin, l is electron orbital angular momentum, B is the

184101-4
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FIG. 3. (a) The electronic structure of the C2CN defect and possible radiative and nonradiative transitions. Red lines shows the possible
electric-dipole transitions, while dashed lines indicate possible phonon-assisted transitions. Yellow arrows show mixing between A(3,q)

±1/2 and

A(3,q)
±3/2 due to the spin-spin coupling. The spin-spin coupling splits 4A2 states by 2D0 if we assume that E3 is much smaller than D0. The relative

energy spacings of these states were obtained by our DFT calculations, which considers the Coulomb interaction and the HSE06 exchange-
correlation functional. In this figure, we have assumed the quartet state is further detuned from the doublets than the spin-orbit coefficient.
Usually the spin-orbit coefficient is on the order of GHz [27] and here the closest doublet to the quartet is separated by 0.1 eV, corresponding
to 24 THz. (b) The quartet-state anticrossing, which shows an anticrossing between the |�1〉 and |�2〉 states near B̃y/h̄ = 0.7 GHz. Here, we
have assumed that D̃0 and Ẽ3 are equal to 1 GHz. The dashed lines show the behavior of states with ms = 3/2 and ms = −1/2 in the presence
of a magnetic field.

external magnetic field, and k sums over all electrons. But
since lz transforms as IR A2 and lx transforms as IR B2,
according to Table III, they do not contribute to the Hamil-
tonian. Therefore, the Zeeman interaction will be simplified
to HB = e

2me

∑
k[Bxgesx,k + By(ly,k + gesy,k ) + Bzgesz,k]. The

matrix elements of the Hamiltonian above are given in
Appendix B.

A. Quartet-state anticrossing

As we discussed previously, the spin-spin interaction splits
and mixes the quartet-state eigenvalues and the spin-orbit
interaction does not affect them. Adding a magnetic field
perpendicular to the h-BN sheet (ŷ) modifies the energy eigen-
values of the quartet state. We add the matrix elements of the
interactions for the quartet state from preceding sections and
find its eigensystem. The energy eigenvalues are given by

E1 = B̃y − κ1, E2 = B̃y + κ1,
(11)

E3 = −B̃y − κ1, E4 = −B̃y + κ1,

and eigenvalues are given by

|�1〉 = μ1

∣∣A3,q
−1/2

〉 + iμ1

∣∣A3,q
+1/2

〉 + i
∣∣A3,q

−3/2

〉 + ∣∣A3,q
+3/2

〉
,

|�2〉 = −μ2

∣∣A3,q
−1/2

〉 − iμ2

∣∣A3,q
+1/2

〉 + i
∣∣A3,q

−3/2

〉 + ∣∣A3,q
+3/2

〉
,

|�3〉 = −ν1

∣∣A3,q
−1/2

〉 + iν1

∣∣A3,q
+1/2

〉 − i
∣∣A3,q

−3/2

〉 + ∣∣A3,q
+3/2

〉
,

|�4〉 = −ν2

∣∣A3,q
−1/2

〉 + iν2

∣∣A3,q
+1/2

〉 − i
∣∣A3,q

−3/2

〉 + ∣∣A3,q
+3/2

〉
,

(12)

where the coefficients are defined as

κ1 =
√

4B̃2
y + D̃2

0 + Ẽ2
3 − 2B̃y(D̃0 +

√
3Ẽ3),

κ2 =
√

4B̃2
y + D̃2

0 + Ẽ2
3 + 2B̃y(D̃0 +

√
3Ẽ3),

μ1 = (
√

3B̃y + Ẽ3)(κ1 − B̃y + D̃0)

3B̃2
y − Ẽ2

3

,

μ2 = (
√

3B̃y + Ẽ3)(κ1 + B̃y − D̃0)

3B̃2
y − Ẽ2

3

,

ν1 = (
√

3B̃y − Ẽ3)(κ2 + B̃y + D̃0)

3B̃2
y − Ẽ2

3

,

ν2 = (Ẽ3 − √
3B̃y)(−κ2 + B̃y + D̃0)

Ẽ2
3 − 3B̃2

y

. (13)

The variables with tilde are defined as below to simplify the
equations.

B̃y = γeh̄

2
By, D̃0 = μ0γ

2
e h̄2

16π
D0, Ẽ3 = μ0γ

2
e h̄2

16π
E3. (14)

Based on these results and as shown in Fig. 3(b), an
anticrossing happens between |�1〉 and |�2〉 when the mag-
netic field compensates the spin-spin splitting at B̃y near
(D̃2

0 + Ẽ2
3 )1/2/2. The |�3〉 state, remains unmixed as it is

diverging from other states. The |�4〉 state is not mixed
too, despite the fact that the |�2〉 state passes it at B̃y near
(D̃2

0 + Ẽ2
3 )1/2.
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IX. GROUND-STATE HYPERFINE INTERACTION

Nuclear spins in solids are a promising candidate for stor-
ing information and using them as quantum memories due to
their long coherence time [37]. Nuclear-spin quantum mem-
ories have been demonstrated experimentally for the orbital
ground state of the negatively charged nitrogen-vacancy cen-
ter in diamond [38,39]. In this section, we investigate the
effect of the presence of a carbon-13 nuclear spin in the defect,
which is given by ˆ̃H = Ĥ13C + V̂mhf + V̂ehf. The first term is
the Zeeman interaction of the nuclear spin with an external
magnetic field, which is given by Ĥ13C = −γ13CB · Î, where Î
is the nuclear spin and γ13C is the nuclear-spin gyromagnetic
ratio of 13C. The second (third) term is the electric (magnetic)
component of the hyperfine interaction of the ground elec-
tronic state of the defect with the 13C nuclear spin [29,40]. We
only have to look at the magnetic component since 13C has a
nuclear spin of I = 1/2, and the electric component is due to
the quadrupole moment of nuclei with spin I � 1 [41]. Also,
we ignored the nuclear spin-spin interactions in this paper.

The magnetic hyperfine Hamiltonian accounts for the in-
teraction between the nuclear spin and the electronic orbital
magnetic moment in addition to the dipole-dipole interac-
tion between the nuclear spin and the electron spin. The
component of the hyperfine interaction that is related to the or-
bital angular momentum is given by 2gIμNμB

μ0 h̄
4π

∑
i

1
r3

iC
I · L,

where μN is the nuclear magneton, μB is the Bohr magneton,
gI is the nuclear g factor, and riC is the distance between 13C
and electron i. This component is zero based on Table III,
since our ground states transform as IR B2 and do not have
orbital angular momentum. Hence, we only need to consider
the dipole-dipole interaction between the electron spin and the
nuclear spin. The magnetic part of the hyperfine Hamiltonian,
with these considerations, is given by

V̂mhf = Cmhf

∑
i

{(
8π

3
δ(r̂iC) − 1

r3
iC

)
ŝi · Î

+3(ŝi · r̂iC)
(
Î · r̂iC

)
r5

iC

}

= −Cmhf

∑
i

ŝi · Â(2)
i · Î

= −Cmhf

∑
i

[
Ĵ (2)

i ⊗ Â(2)
i

](0)
, (15)

where Cmhf = gIμN geμB
μ0 h̄2

4π
, and Â(2)

i is a second rank tensor.
The Fermi contact term contributes to the energy of orbitals
with nonzero value of the wave function at the position of the
nucleus. However, based on our DFT calculations [Fig. 2(a)],
the wave functions are zero at the position of the carbon nuclei
and we can ignore the Dirac delta term. Consequently, the
second-order tensor Â(2)

i is given by

Â(2)
i = 1

r5
iC

⎛
⎝r2

iC − 3x2
iC −3xiCyiC −3xiCziC

−3xiCyiC r2
iC − 3y2

iC −3yiCziC

−3xiCziC −3yiCziC r2
iC − 3z2

iC

⎞
⎠. (16)

For simplifying further calculations, we define Ĵ (2)
j = ŝi ⊗ Î

and write the interaction in the compound tensor form.

TABLE IV. Lifetimes τrad and rates 	rad of the radiative transi-
tions used in our ODMR simulation.

Transition μ μ [eÅ] EZPL [eV] τrad [ns] 	rad

2B2 → 2A2 〈a↓|er|b↓〉 0.68 1.6 64.5 15.5
2B′

2 → 2A2 〈b′
↑|er|a↑〉 0.11 4.2 144.4 6.9

According to Table III, for the ground states |A0,d
±1/2〉, only

the operators of the form OA1 contributes to the hyperfine
interaction. Thus, only the diagonal terms of Â(2)

i in Eq. (16)
transform as IR A1 contribute to the hyperfine interaction of
the ground state, and the off-diagonal terms do not contribute.
We write the basis of the ground state of the defect coupled to
a 13C nuclear spin as∣∣�g

1; 1,+1
〉 = ∣∣A0,d

+1/2

〉 |+〉I ,∣∣�g
2; 1, 0

〉 = 1√
2

( ∣∣A0,d
+1/2

〉 |−〉I + ∣∣A0,d
−1/2

〉 |+〉I
)
,

∣∣�g
3; 1,−1

〉 = ∣∣A0,d
−1/2

〉 |−〉I ,∣∣�g
4; 0, 0

〉 = 1√
2

( ∣∣A0,d
+1/2

〉 |−〉I − ∣∣A0,d
−1/2

〉 |+〉I
)
. (17)

Based on the symmetry of the system, there can only be
nonzero hyperfine matrix elements for states that have �S ∈
{0,±2}. The results of the calculations for matrix elements
are shown in the Appendix [Sec. (C2)].

X. TRANSITION RATES

Here we show our results for the radiative and the electron-
phonon induced nonradiative transition rates between the
{2A2,

2B2,
2B′

2} doublet states. The results of the calculations
are presented in the following sections.

A. Radiative rates

The radiative transitions occur at a rate given by

	rad = 1

τrad
= nE3

ZPLμ2

3πε0c3h̄4 , (18)

where n is the refractive index of h-BN, EZPL is the zero-
phonon transition energy, μ is the transition dipole moment,
and ε0 is the vacuum permittivity [42,43]. The refractive in-
dex of h-BN is taken to be n = 2.1 [44]. Equation (18) was
evaluated for the 2B2 → 2A2 and 2B′

2 → 2A2 transitions, which
amounts to calculating the corresponding transition dipole
moments. The WFCK2R.X module in QUANTUM ESPRESSO was
used to produce the spin-polarized, real-space wave functions,
from which the transition dipole moments were directly com-
puted. Table IV summarizes the results.

B. Nonradiative rates

The nonradiative rates due to electron-phonon coupling can
be calculated within the static coupling and one-dimensional
effective phonon approximations [45,46]. The nonradiative
transition rate between an initial electron state i and a final
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TABLE V. Nonradiative recombination properties within the static coupling and one-dimensional effective phonon approximations,
evaluated at 300 K. The relaxed atomic coordinates of the ground state are set to Q0 = 0, from which the excited-state equilibrium coordinates
are offset by �Q. For completeness, we have included the ground-state Huang-Rhys factor which quantifies strength of the electron-phonon
coupling, as computed in the one-dimensional approximation, Sf = (�Q)2� f /2h̄.

Transition EZPL[eV] �Q [amu1/2 Å] h̄ωi[meV] h̄ω f [meV] Sf Xi f [amu Å2 eV−1] Wi f [eV amu−1/2 Å−1] τnr [ms] 	nr [kHz]

2B2 → 2A2 1.6 0.36 95.7 95.4 1.49 3.66 × 10−11 5.40 × 10−2 0.5 2
2B′

2 → 2A2 4.2 0.21 91.8 94.9 0.52 2.31 × 10−20 3.55 × 10−1 >103 <10−3

electron state f is given by

	nr = 1

τnr
= 2π

h̄
g|Wi f |2Xi f , (19)

where g is the degeneracy of the final state. Equation (19) in-
cludes contributions from a phonon term Xi f and an electronic
term Wi f . The phonon term is given by

Xi f =
∑
n,m

pin| 〈χ f m|Q − Q0|χin〉 |2δ(EZPL + mh̄� f − nh̄�i ),

(20)
where Q is the generalized coordinate defined in Ref. [45], and
Q0 is taken to be the relaxed atomic coordinates of the final
electronic state (R0). Here, pin is the thermal occupation of
the phonon state n in the electronic state i, |χ jk〉 is the phonon
wave function of the phonon state k in the electronic state j,
and h̄�{i, f } are the effective phonon energies of the initial and
final states. The phonon overlap can be calculated directly
using the quantum harmonic-oscillator wave functions. The
electronic term is given by

Wi f = 〈ψi(r, R)|∂H

∂Q
|ψ f (r, R)〉 |R=R0 , (21)

which can be calculated numerically by finite differences
using the DFT single-particle wave functions at the 	

point [45,47]. The nonradiative rates for the 2B2 → 2A2 and
2B′

2 → 2A2 transitions were computed by modifying the open-
source NONRAD code [47]. The results are summarized in
Table V, which shows that the nonradiative rates are neg-
ligible compared with the radiative rates. The nonradiative
2B′

2 → 2B2 transition is a second-order two-phonon process,
and as such, it should occur at a much slower rate than the
already negligible nonradiative rates.

Calculating the nonradiative rates for the intersystem cross-
ing transitions is beyond the scope of this paper.

XI. OPTICALLY DETECTED MAGNETIC RESONANCE
SIGNAL

There have been reports of ODMR signals for defects
in h-BN. One of them is known to originate from the V −

B
defect [48], while the origins of the other observed ODMR
signals are not established yet [19,49]. Here, we present our
results for the ODMR simulation using the model in Fig. 4 for
the C2CN defect. We used the Lindblad master equation to de-
rive the second-order correlation function g(2) and the ODMR
contrast.

The Lindblad master equation is defined as

d

dt
ρ = Lρ

≡ −i[H, ρ] +
∑

k

	k

(
LkρL†

k − 1

2
{LkL†

k , ρ}
)

, (22)

where L is the Liouvillian superoperator [30]. The first term
of L gives the unitary time evolution of the density matrix ρ,
and the other terms are responsible for the transitions of the
system. The operators Lk are called jump operators, and the
constants 	k are the transition rates. We have used three types
of jump operators in our simulation, including operators for
optical, nonradiative, and spin transitions.

We simulate a coherent laser pulse to excite the ground
doublet state {|1〉, |2〉} to one of the two excited doublet states
{|3〉, |4〉} or {|5〉, |6〉}. All of these electronic states are spin-
1/2 states, and their spin states are split due to an external
magnetic field. We also simulate a coherent microwave pulse
to probe the ODMR signal by changing its energy around the
spin-splitting energy.

If the quartet dark states {|7〉, |8〉, |9〉, |10〉} do not overlap
with the phonon sideband of the first-excited states {|3〉, |4〉},
they can act as a metastable manifold during the decay of
the second-excited states {|5〉, |6〉}. Since we predict that the
quartet energy of around 4.1 eV is far above the 1.6 eV of the

FIG. 4. Our model for ODMR simulation. In this model, the
energy spacing between levels, denoted ωop1 and ωop2, and optical
rates, denoted by the red arrows, are based on DFT calculations and
nonradiative rates to and from the metastable states, denoted by blue
dashed lines, are approximated by rates from other studies on defects
in h-BN. There are also spin splittings due to the external magnetic
field, which are denoted by ωg, ωe, and ωe2. According to the matrix
elements of the spin-orbit and spin-spin of this defect, the dashed
lines are spin-dependent transitions which are vital for observing an
ODMR signal.
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FIG. 5. Results of exciting photons to the second excited dou-
blet state and detecting photon emissions from the same state to
the ground state. (a) Optical signal versus coherent Rabi frequency,
which shows saturation near 20 MHz. The grid line shows the Rabi
frequency that we used for the ODMR signal and the g2 function.
This is the frequency where the optical signal is near 80% of the sat-
uration point. (b) The ODMR signal, which shows 3.5% contrast at
700 MHz MW frequency. (c) The second-order correlation function,
which shows significant bunching at microsecond timescales due to
the metastable quartet state, and antibunching pattern at τ = 0. Inset
shows the same g2 function for smaller timescales.

first-excited doublet, it is unlikely that there is an overlap with
the phonon sideband, which is typically smaller than about
500 meV for defects in h-BN [16]. In addition, the decay to
the quartet state and from the quartet state to the first-excited
state can depend on the spin, and hence the system could
produce an ODMR signal. To see this signal, one should excite
the ground-state levels to the second-excited state doublet
{|5〉, |6〉}, after which a spin-dependent nonradiative transition
can occur into the quartet manifold.

The 2B′
2 state is the most promising candidate for photoex-

citation because its energy is very close to the quartet state
and, most likely, it will overlap with its phonon sideband, al-
lowing for fast nonradiative transitions to the metastable state.
Thus, we restricted the model to the 2B′

2 level and ignored 2A′
2

and 2A′′
2 levels because of their high energy. We also ignored

TABLE VI. Parameters used in the ODMR simulation. �op is
the coherent optical driving Rabi frequency, �MW is the coherent
microwave driving Rabi frequency, γspin is the spin relation rate, and
other parameters are shown in Fig. 4.

Parameter Value Parameter Value

ωop2 4.2 eV ωop1 1.6 eV
�op 7 MHz �MW 13 MHz
k51 6.9 MHz k62 6.9 MHz
k31 15.5 MHz k42 15.5 MHz
k57 0.1 MHz k68 1 MHz
k74 2 MHz k83 1 MHz
k510 0.95 MHz k69 0.045 MHz
k93 1.1 MHz k104 0.11 MHz
ωg 700 MHz ωe2 697 MHz
ωe 703 MHz γspin 0.06 MHz

nonradiative transitions related to 2B′
2 ↔ 2A2, 2B2 ↔ 2A2, and

4A2 ↔ 2A2 because the energy difference between them is
large and it is more likely that the radiative and intersystem
crossing transitions will be dominant. Consequently, we need
an ultraviolet (UV) laser pulse to excite the ground doublet
state to the second excited doublet state. Finally, we detect
photons emitted due to the decay of electrons from the second
doublet excited state, {|5〉, |6〉}, to the ground state, {|1〉, |2〉}.
UV lasers and detectors will be required to verify our predic-
tions. The equipment and techniques used in ion trap systems
could be helpful since some of the ions used in the ion trap
systems have a transition in the UV regime, for example, Be+
(3.96 eV) or Mg+ (4.43 eV) [50–52].

The results obtained by exciting the ground-state levels
directly to the second-excited state and then detecting photon
emissions from the same state to the ground state are given
in Fig. 5. We have used the optical decay rates from our DFT
calculation presented in the previous section. The intersystem
crossing rates, metastable decay rates, and spin-relaxation
rates for which we see ODMR signals are on the order of
magnitude of the rates seen in other defects [53,54], but more
calculations are needed to verify if the rates are in the proper
range for the C2CN defect. In our simulation, we chose the
optical Rabi frequency close to the saturation point so that
it is not in the resonance regime (Fig. 6). Additionally, the
microwave Rabi frequency was chosen such that the ODMR
signal had the highest value (Fig. 7). All the parameters used
to predict this ODMR signal are given in Table VI.

Some of the parameters used for this simulation were not
calculated by ab initio calculations. Hence, we probe a bigger
space of possible values, keeping the rates close to the rates
seen for other defects in h-BN, in order to see how the ODMR
signal would change. Varying the parameters used for this
model shows that the difference between k74 and k83 is essen-
tial for having an ODMR signal. Based on our calculations
for the spin-orbit and the spin-spin interactions, the matrix
elements responsible for these transitions are different for
the spin up and down. The transition amplitudes are propor-
tional to these matrix elements, allowing the defect to have
spin-dependent decay rates from and to the quartet state. The
effect of changing k74 and k83 on the ODMR signal and g2
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FIG. 6. The effect of changing �op on the optical signal, ODMR
contrast, and the second-order correlation function. All the variables
are in MHz. When the optical Rabi frequency is in the saturation re-
gion, e.g., �op = 15 MHz, there are oscillations in the g2(τ ) function.
This might be related to the oscillations seen by Stern et al. [19].

correlation function is shown in Fig. 8. Based on the matrix
elements of the spin-orbit and spin-spin interactions, the k74

and k83 rates are related to the k93 and k104 rates. So chang-
ing each of them will affect the other two. More figures are
provided in Appendix E. These results show that even for the
bigger space of possible transition rates, the ODMR signal of
a few percent is viable.

The calculated linewidth of the ODMR signal is due only to
the natural or lifetime broadening since we have not included
other broadening mechanisms such as the hyperfine interac-
tion in our simulation. However, the most abundant isotopes
of nitrogen and boron have nuclear spins of 1 and 3/2, re-
spectively. It has been shown that the hyperfine interaction of
the surrounding nuclear spins has a considerable effect on the
ODMR linewidth broadening of defects in h-BN (51 MHz for
the C2CN defect) [24]. As it can be seen in Fig. 8, the linewidth
of the ODMR signal due to the natural broadening changes
significantly for different nonradiative transition rates, which
are still unknown. Therefore, after finding the correct value
of the transition rates, it will be crucial to consider hyperfine

FIG. 7. The effect of changing �MW on the optical signal,
ODMR contrast, and the second-order correlation function. All the
variables are in MHz. It is important to choose �MW in a way that
the ODMR signal is maximum.

broadening, because the linewidth of the ODMR signal is
another parameter that helps identify defects found by the
experiment.

XII. COMPUTATIONAL DETAILS

The DFT calculations and postprocessing were performed
using the QUANTUM ESPRESSO open-source software pack-
age [55]. The calculations utilized a plane-wave basis set with
a kinetic-energy cutoff of 350 eV and projector augmented-
wave pseudopotentials [56]. All relaxation calculations were
performed with a force convergence threshold of 10−4 eV/Å.
Experimental investigations of point defects in h-BN typi-
cally consider multilayer samples; however, it has been shown
that DFT calculations result in negligible differences between
the electronic structure of defects in single- and multilayer
systems [7]. Our supercell consists of 98 atoms and a vac-
uum separation of 15 Å between layers, corresponding to
7 × 7 unit cells of monolayer h-BN. The atomic positions
and in-plane lattice constant for the pristine h-BN struc-
ture were relaxed using the Perdew-Burke-Ernzerhof (PBE)
exchange-correlation functional [57]. An in-plane lattice
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FIG. 8. The effect of changing k83 and k74 on the optical signal,
ODMR contrast, and the second-order correlation function. All the
variables are in MHz.

constant of a = 2.5 Å was obtained, consistent with previous
findings [58]. The Heyd-Scuseria-Ernzerhof (HSE06) hybrid
functional [59] was then used to optimize the direct band
gap at the K high-symmetry point [60] to the bulk value of
≈6 eV [17]. A band gap of 5.98 eV was obtained by setting
the mixing parameter to 0.32 and fine-tuning the screening
parameter to 0.086 Å−1.

The C2CN defect was then added to the hexagonal lat-
tice, the atomic positions were relaxed in-plane, and the
ground-state wave functions of the single-particle defect lev-
els were calculated. Next, the single-configuration excited
states (2A2, 2B2, 2B′

2, and 4A2) were created using the �SCF
method [61], and the atomic positions of each excited-state
electronic configuration were relaxed in-plane. The transition
energies between defect states were calculated by considering
the difference in total energies of the structures, obtained
via spin-polarized calculations performed within the 	-point

approximation. The HSE06 functional has been shown to
provide accurate results for defects in h-BN which exhibit low
correlation and charge transfer, and as such, it is expected that
the error in the DFT calculations of the single-configuration
states is on the order of 0.1 eV [22,62]. The remaining states
of interest (2A′

2 and 2A′′
2) are multiconfiguration states which

cannot be modeled in the DFT calculations using the �SCF
method. Rough estimates for the corresponding transitions
energies were obtained following the method of Ref. [42,63],
making use of the single-configuration states |bab′〉, |bab′〉,
and |bab′〉 which were created within the �SCF procedure
(see Appendix D for detailed calculations).

Reference [64] investigates the C2CN defect. A difference
between this work and Ref. [64] can be seen in the positioning
of the single-electron states with respect to the conduction and
valence bands. The electronic calculations of Ref. [64] were
performed within the GW approximation, which can impact
both the position and size of the band gap. We note, however,
that relative spacing and positions of the defect state energies
found in our work are consistent with the findings of both
Refs. [22] and [24].

XIII. CONCLUSION

We have used group theory and DFT calculations to find
the electronic structure and transitions of the C2CN defect in
2D h-BN. The results are summarized in Fig. 3(a), which
shows that there are several radiative transitions together
with spin-orbit and spin-spin assisted nonradiative transitions.
Also, the spin-spin interaction causes a splitting between quar-
tet states 4A2. We studied the effect of an external magnetic
field and found that, in the presence of an external magnetic
field perpendicular to the plane, there is an anticrossing be-
tween the states of the quartet manifold. We also looked at
the ground-state hyperfine interactions, which can be helpful
in future studies. Additionally, we calculated the radiative
rates and some of the nonradiative rates using DFT. Finally,
we simulated the system using the Lindblad master equation.
Although our results indicate that it is unlikely for the C2CN

defect to be responsible for the ODMR signals that have
been reported so far, we show that it could be possible to
see an ODMR signal contrast of ≈3.5% for the configuration
discussed in the text. Some of the nonradiative rates of the
C2CN are unknown. Hence, we looked at the ODMR signal in
a subspace of the possible rates where these variables are close
to the reported values from other defects in h-BN and show
that an ODMR signal of a few percent is still viable. Besides
the ODMR signal contrast, the ODMR linewidth would also
help identify this defect in experimental data. Thus, in future
research it will be essential to determine both the unknown
nonradiative rates and the hyperfine broadening, which has a
significant effect. In conclusion, the properties of the defect
that we considered are essential for future applications, e.g.,
for quantum networks and quantum sensing.
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APPENDIX A: MATRIX ELEMENTS OF THE
HAMILTONIAN

In this section, we provide the matrix elements of the
interactions discussed in the main text.

1. Spin-orbit interaction

The matrix elements of the spin-orbit interaction are given below, where the variables λ, and λ′ are defined as

λ = 〈a|l (y)|b〉, λ′ = 〈b′|l (y)|a〉. (A1)

Hso = i

2

×

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

A0,d
+1/2 A0,d

−1/2 B1,d
+1/2 B1,d

−1/2 B2,d
+1/2 B2,d

−1/2 A3,q
+1/2 A3,q

−1/2 A3,q
+3/2 A3,q

−3/2 A3,d ′
+1/2 A3,d ′

−1/2 A3,d ′′
+1/2 A3,d ′′

−1/2

A0,d
+1/2 0

A0,d
−1/2 0 0

B1,d
+1/2 0 −λ 0

B1,d
−1/2 λ 0 0 0

B2,d
+1/2 0 −λ′ 0 0 0

B2,d
−1/2 λ′ 0 0 0 0 0

A3,q
+1/2 0 0 0 −λ′/

√
3 0 −λ/

√
3 0

A3,q
−1/2 0 0 −λ′/

√
3 0 −λ/

√
3 0 0 0

A3,q
+3/2 0 0 −λ′ 0 −λ 0 0 0 0

A3,q
−3/2 0 0 0 −λ′ 0 −λ 0 0 0 0

A3,d ′
+1/2 0 0 0 −λ′/2

√
3 0 λ/

√
3 0 0 0 0 0

A3,d ′
−1/2 0 0 −λ′/2

√
3 0 λ/

√
3 0 0 0 0 0 0 0

A3,d ′′
+1/2 0 0 0 λ′/2 0 0 0 0 0 0 0 0 0

A3,d ′′
−1/2 0 0 λ′/2 0 0 0 0 0 0 0 0 0 0 0.

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(A2)

2. Spin-Spin Interaction

We can see from Table III that the only elements of D that
transform as IRs A1 and B1 would yield nonzero values. These
are D̂A1 = {D̂xx, D̂yy, D̂zz} and D̂B1 = (D̂xz + D̂zx )/2. In this
interaction, we have the product of two rank-two tensors (see
Table VII). This product can be reduced to a sum of rank four,
three, two, one, and zero irreducible tensor operators. Nev-
ertheless, here we need a compound tensor operator of rank
zero. This tensor product is given by the equation below [34]:

[ŝ(2) ⊗ D̂(2)](0)
0 = 1√

5

+2∑
q=−2

(−1)2−q ŝ(2)
−qD̂

(2)
q . (A3)

TABLE VII. Second-rank spin tensor.

Compound tensor q Spherical component

{ŝ(1)
i ⊗ ŝ(1)

j }(2)
q +2 ŝ(1)

i,+1ŝ(1)
j,+1

+1 (ŝ(1)
i,+1ŝ(1)

j,0 + ŝ(1)
i,0 ŝ(1)

j,+1)/
√

2

0 1√
6
(ŝ(1)

i,−1ŝ(1)
j,+1 + 2ŝ(1)

i,0 ŝ(1)
j,0 + ŝ(1)

i,+1ŝ(1)
j,−1)

−1 (ŝ(1)
i,−1ŝ(1)

j,0 + ŝ(1)
i,0 ŝ(1)

j,−1)/
√

2

−2 ŝ(1)
i,−1ŝ(1)

j,−1

To use Eq. (A3), we need the spherical components of D̂.
Spherical and Cartesian components of D̂ are related by the
equations below:

D̂
(2)
±2 =

(
D̂

(2)
xx − D̂

(2)
yy ± 2iD̂

(2)
xy

)/√
2,

D̂
(2)
±1 = ∓

(
D̂

(2)
xz ± iD̂

(2)
yz

)
,

D̂
(2)
0 =

(
2D̂

(2)
zz − D̂

(2)
xx − D̂

(2)
yy

)/√
6. (A4)

The components of ŝ(1) in the notation of spherical tensor
operators are given by

ŝ(1)
+1 = − 1√

2
(ŝx + iŝy), ŝ(1)

0 = ŝz,

ŝ(1)
−1 = 1√

2
(ŝx − iŝy), ŝ(1)

+1

∣∣∣∣−1

2

〉
= − 1√

2

∣∣∣∣+1

2

〉
,

ŝ(1)
−1

∣∣∣∣+1

2

〉
= 1√

2

∣∣∣∣−1

2

〉
. (A5)

Now that we have all the preliminary tools, we will de-
rive the matrix elements. For the elements in the form of
〈A|Hss|A′〉 and 〈B|Hss|B′〉, according to Table III, only the
parts of Hss that transform as IR A1 would yield nonzero

184101-11



OMID GOLAMI et al. PHYSICAL REVIEW B 105, 184101 (2022)

values. |A〉 and |A′〉 can be any of states in Table II that
transform as IR A2 and similarly |B〉 and |B′〉 can be any
of states in Table II that transform as IR B2. {D̂xx, D̂yy, D̂zz}
are the only components of D̂ that transform as IR A1. In the
spherical tensor form, D̂0 transforms as IR A1 and first two
components of D̂±2 also transform as IR A1. Therefore, just
D̂0, and D̂±2 contribute to nonzero values. At last, according
to Eq. (A3), �S ∈ {0,±2}. Similarly, for 〈A|Hss|B〉 according
to Table III, only the parts of Hss that transform as IR B1 would
yield nonzero values. {D̂xz, D̂zx} are the only components of

D̂ that transform as IR B1. Therefore, just D̂±1 contributes
to nonzero values. For these matrix elements, according to
Eq. (A3), we have �S ∈ {±1},

〈A|Hss|A′〉
〈B|Hss|B′〉

}
−→ A1 −→ D̂0, D̂±2 −→ �S ∈ {0,±2},

〈A|Hss|B〉 −→ B1 −→ D̂±1 −→ �S ∈ {±1}. (A6)

After doing all the calculations, we get the matrix elements
for the spin-spin interaction, shown below:

Hss = μ0γ
2
e h̄2

16π

×

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

A0,d
+1/2 A0,d

−1/2 B1,d
+1/2 B1,d

−1/2 B2,d
+1/2 B2,d

−1/2 A3,q
+1/2 A3,q

−1/2 A3,q
+3/2 A3,q

−3/2 A3,d ′
+1/2 A3,d ′

−1/2 A3,d ′′
+1/2 A3,d ′′

−1/2

A0,d
+1/2 0

A0,d
−1/2 0 0

B1,d
+1/2 0 0 0

B1,d
−1/2 0 0 0 0

B2,d
+1/2 0 0 0 0 0

B2,d
−1/2 0 0 0 0 0 0

A3,q
+1/2 E1 0 0 −F1 0 F2 −D0

A3,q
−1/2 0 −E1 F1 0 −F2 0 0 −D0

A3,q
+3/2 0 −E2

−1√
3
F1 0 1√

3
F2 0 0 E3 D0

A3,q
−3/2 E2 0 0 1√

3
F1 0 −1√

3
F2 E3 0 0 D0

A3,d ′
+1/2 0 0 0 −G 0 0 −H 0 0 K∗ 0

A3,d ′
−1/2 0 0 −G 0 0 0 0 −H K∗ 0 0 0

A3,d ′′
+1/2 0 0 0 0 0 0 I 0 0 L∗ J 0 0

A3,d ′′
−1/2 0 0 0 0 0 0 0 I L∗ 0 0 J 0 0.

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(A7)

The matrix elements used above are defined as

D0 = 1

2
√

5

(〈bb′ − b′b|D̂(2)
zz |bb′ − b′b〉 + 〈ba − ab|D̂(2)

zz |ba − ab〉 + 〈ab′ − b′a|D̂(2)
zz |ab′ − b′a〉),

E1 = 1

15
〈ab′ − b′a|D̂(2)

zz |ab − ba〉, E2 = 1

10
〈ab′ − b′a|D̂(2)

xx − D̂(2)
yy |ab − ba〉,

E3 = 1√
30

(〈ab′ − b′a|D̂(2)
xx − D̂(2)

yy |ab′ − b′a〉 + 〈bb′ − b′b|D̂(2)
xx − D̂(2)

yy |bb′ − b′b〉 + 〈ab − ba|D̂(2)
xx − D̂(2)

yy |ab − ba〉),
F1 =

√
3

2
√

5
〈bb′ − b′b|D̂(2)

xz |ab − ba〉, F2 =
√

3

2
√

5
〈ab′ − b′a|D̂(2)

xz |bb′ − b′b〉, (A8)

G = 1√
30

〈bb′ − b′b|D̂(2)
xz |ba − ab〉,

H = 1

6
√

10
{〈bb′ − b′b|D̂(2)

zz |bb′ − b′b〉 + 〈ba − ab|D̂(2)
zz |ba − ab〉 − 2〈ab′ − b′a|D̂(2)

zz |ab′ − b′a〉},

I =
√

3

2
√

10
{−〈bb′ − b′b|D̂(2)

zz |bb′ − b′b〉 + 〈ab′ − b′a|D̂(2)
zz |ab′ − b′a〉}, J = − 1

2
√

15
〈ab′ − b′a|D̂(2)

zz |ab′ − b′a〉,

K = 1

2
√

15
{+〈ab′ − b′a|(D̂(2)

xx − D̂(2)
yy

)|ab′ − b′a〉 + 〈bb′ − b′b|(D̂(2)
xx − D̂(2)

yy

)|bb′ − b′b〉 − 2〈ba − ab|(D̂(2)
xx − D̂(2)

yy

)|ba − ab〉},

L = 1

2
√

5
{−〈ab′ − b′a|(D̂(2)

xx − D̂(2)
yy

)|ab′ − b′a〉 + 〈bb′ − b′b|(D̂(2)
xx − D̂(2)

yy

)|bb′ − b′b〉}. (A9)
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3. Dipole transitions

The dipole-allowed transition rates would be proportional to the values defined below:

μx = eEx〈a|x|b〉, μ′
x = eEx〈a|x|b′〉, μz,0 = eEz{〈b|z|b〉 + 〈a|z|a〉 + 〈b′|z|b′〉}, μz,1 = eEz{2〈b|z|b〉 + 〈a|z|a〉},

μz,2 = eEz{〈b|z|b〉 + 2〈a|z|a〉}, μz,3 = eEz{2〈b|z|b〉 + 〈b′|z|b′〉}, μ′
z = eEz〈b|z|b′〉. (A10)

Furthermore, the matrix elements are as shown below:
Hdipole

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

A0,d
+1/2 A0,d

−1/2 B1,d
+1/2 B1,d

−1/2 B2,d
+1/2 B2,d

−1/2 A3,q
+1/2 A3,q

−1/2 A3,q
+3/2 A3,q

−3/2 A3,d ′
+1/2 A3,d ′

−1/2 A3,d ′′
+1/2 A3,d ′′

−1/2

A0,d
+1/2 μz,1

A0,d
−1/2 0 μz,1

B1,d
+1/2 −μx 0 μz,2

B1,d
−1/2 0 μx 0 μz,2

B2,d
+1/2 μ′∗

x 0 0 0 μz,3

B2,d
−1/2 0 μ′∗

x 0 0 0 μz,3

A3,q
+1/2 0 0 0 0 0 0 μz,0

A3,q
−1/2 0 0 0 0 0 0 0 μz,0

A3,q
+3/2 0 0 0 0 0 0 0 0 μz,0

A3,q
−3/2 0 0 0 0 0 0 0 0 0 μz,0

A3,d ′
+1/2

3μ′∗
z√
6

0 − 3μ′∗
x√
6

0 0 0 0 0 0 0 0

A3,d ′
−1/2 0 3μ′∗

z√
6

0 − 3μ′∗
x√
6

0 0 0 0 0 0 0 0

A3,d ′′
+1/2 −μ′∗

z√
2

0 −μ′∗
x√
2

0 2μ′
x√
2

0 0 0 0 0 0 0 0

A3,d ′′
−1/2 0 −μ′∗

z√
2

0 −μ′∗
x√
2

0 2μ′
x√
2

0 0 0 0 0 0 0 0

.

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(A11)

APPENDIX B: MAGNETIC INTERACTION

We define the following values for single molecular orbitals:

η = 〈a|ly|b〉, η′ = 〈a|ly|b′〉, (B1)

HB = γe h̄

2

×

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

A0,d
+1/2 A0,d

−1/2 B1,d
+1/2 B1,d

−1/2 B2,d
+1/2 B2,d

−1/2 A3,q
+1/2 A3,q

−1/2 A3,q
+3/2 A3,q

−3/2

A0,d
+1/2 Bz

A0,d
−1/2 (Bx + iBy ) −Bz

B1,d
+1/2

2By

ge
η 0 Bz

B1,d
−1/2 0 2By

ge
η (Bx + iBy ) −Bz

B2,d
+1/2

2By

ge
η′∗ 0 0 0 Bz

B2,d
−1/2 0 2By

ge
η′∗ 0 0 (Bx + iBy ) −Bz

A3,q
+1/2 0 0 0 0 0 0 Bz

A3,q
−1/2 0 0 0 0 0 0 2(Bx + iBy ) −Bz

A3,q
+3/2 0 0 0 0 0 0

√
3(Bx − iBy ) 0 3Bz

A3,q
−3/2 0 0 0 0 0 0 0

√
3(Bx + iBy ) 0 −3Bz.

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(B2)
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TABLE VIII. Eigensystem of the hyperfine interaction for the
ground state in Eq. (C2). Eigenvalues should be multiplied by − Cmhf

12
√

5
.

Hyperfine interaction

Eigenvalues Eigenstates Eigenstates in primary basis
−(1 + √

2)G0 (1 + √
2)�2 + �4 (1 + √

2)|bb̄a−〉 + |bb̄ā+〉
−(1 − √

2)G0 (1 − √
2)�2 + �4 −|bb̄a−〉 + (1 + √

2)|bb̄ā+〉
G0 − 3

√
2G1 �1 + �3 |bb̄a+〉 + |bb̄ā−〉

G0 + 3
√

2G1 −�1 + �3 −|bb̄a+〉 + |bb̄ā−〉

APPENDIX C: HYPERFINE INTERACTION

We can write the hyperfine interaction in the form of spher-
ical components as below:

V̂mhf = −Cmhf

∑
i

[
Ĵ (2)

i ⊗ Â(2)
i

](0)

= −Cmhf√
5

∑
i

q=+2∑
q=−2

(−1)2−qJ (2)
i,−qA(2)

i,+q. (C1)

After doing the calculations, we end up with the following
Hamiltonian for the ground state (cf. Table VIII):

Vmhf = − Cmhf

12
√

5

⎛
⎜⎜⎝

�1 �2 �3 �4

�1 G0

�2 0 −2G0

�3 −3
√

2G1 0 G0

�4 0 −G0 0 0

⎞
⎟⎟⎠, (C2)

where

G0 = 〈a|(2A(2)
zz − A(2)

xx − A(2)
yy

)|a〉,
G1 = 〈a|(A(2)

xx − A(2)
yy

)|a〉. (C3)

APPENDIX D: CALCULATIONS OF THE
MULTICONFIGURATION STATES

Here, we use the single-configuration states to estimate the
energies of the corresponding multiconfiguration states. We
only look at the spin-up quartet and doublet states, but the
spin-down calculations are similar. We start with quartet and
doublet superposition states:

|�q〉 = 1√
3
|βαα + αβα + ααβ〉,

|�d ′ 〉 = 1√
6
|βαα + αβα − 2ααβ〉,

|�d ′′ 〉 = 1√
2
| − βαα + αβα〉. (D1)

Since |ααα〉 is also a quartet state, we have Eq ≡
E [|�q〉] = E [|ααα〉]. By using the equation

1√
3

(|�q〉 −
√

2|�d ′ 〉) = |ααβ〉, (D2)

TABLE IX. Electron-spin configurations corresponding to |bab′〉
and their energies obtained from DFT. α (β ) represents spin up
(down).

State Energy

|ααβ〉 4.7 eV
|βαα〉 5.4 eV
|αβα〉 5.5 eV

we have E [|ααβ〉] = 1
3 (Eq + 2E [|�d ′ 〉]). Thus, Ed ′ ≡

E [|�d ′ 〉] = (3E [|ααβ〉] − Eq)/2. Based on our DFT cal-
culations in Table IX, E [|ααβ〉] = 4.7 eV and Eq = 4.1 eV,

FIG. 9. The effect of changing k57 and k68 on the optical signal,
ODMR contrast, and the second-order correlation function. All the
variables are in MHz. Based on the matrix elements of the spin-orbit
and spin-spin interactions, the k57 and k68 rates are related to the k510

and k69 rates. So changing each of them will affect the other two.
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FIG. 10. The effect of changing ωe and ωe2 on the optical signal,
ODMR contrast, and the second-order correlation function. All the
variables are in MHz.

which implies that Ed ′ = (3 × 4.7 − 4.1)/2 = 5 eV. Next, we
define auxiliary state φ:

|φ〉 ≡ 1

2
√

3
(
√

3|�d ′ 〉 + 3|�d ′′ 〉)

= 1

2
√

6
| − 2βαα + 4αβα − 2ααβ〉

= 1√
6
| − βαα + 2αβα − ααβ〉. (D3)

By using this auxiliary state, we show that

1√
3

(|�q〉 +
√

2|φ〉) = |αβα〉. (D4)

Similar to previous calculation, we can show that

E [|αβα〉] = 1
3 (Eq + 2Eφ )

= 1
3

{
Eq + 1

6 (3Ed ′ + 9Ed ′′ + 3
√

3〈�d ′ |H |�d ′′ 〉

+3
√

3〈�d ′′ |H |�d ′ 〉)
}

= 1
6 {2Eq + Ed ′ + 3Ed ′′ }. (D5)

Therefore, we can calculate Ed ′′ as below:

Ed ′′ = 1
3 {6E [|αβα〉] − 2Eq − Ed ′ }

= 1
3 (6 × 5.5 − 2 × 4.1 − 5) = 6.6 eV. (D6)

APPENDIX E: OPTICALLY DETECTED MAGNETIC
RESONANCE SIGNAL

In this section, we study the effect of changing parameters
used for ODMR signal in Table VI other than those discussed
in the main text. In each of the following figures, we change
only one or two parameters to see their effect on our model.
Figure 9 shows that for different values of transition rates k57

and k68 we can see an ODMR signal. In Fig. 10, we checked
the effect of changing the first- and second-excited state
spin splittings ωe and ωe2. The result shows that, although
changing them would affect the magnitude of the ODMR
signal, there is only one resonance in the ODMR signal, which

FIG. 11. The effect of changing γspin on the optical signal,
ODMR contrast, and the second-order correlation function. All the
variables are in MHz.
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suggests that the signals are not narrow enough to distinguish
the peaks of ωe and ωe2. Lastly, Fig. 11 shows that the spin
relaxation times in the range of 0.06 MHz do not have a

significant impact on the ODMR signal. Only very large
spin-relaxation times, which are very unlikely, decrease the
ODMR signal.
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