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We re-examine the problem of a magnetic impurity coupled to a superconductor focusing on the role of
quantum fluctuations. We study in detail a system that consists of a one-dimensional charge conserving spin-
singlet superconductor coupled to a boundary magnetic impurity. Our main finding is that quantum fluctuations
lead to the destruction of Yu-Shiba-Rusinov (YSR) intragap bound states in all but a narrow region of the phase
diagram. We carry out our analysis in three stages, increasing the role of the quantum fluctuations at each
stage. First we consider the limit of a classical impurity and study the bulk semiclassically, finding YSR states
throughout the phase diagram, a situation similar to conventional BCS superconductors. In the second stage, we
reintroduce quantum fluctuations in the bulk and find that the YSR state is suppressed over half of the phase
diagram, existing only around the quantum critical point separating the unscreened and the partially screened
phases. In the final stage we solve exactly the full interacting model with arbitrary coupling constants using the
Bethe ansatz. We find that including both the quantum fluctuating bulk and quantum impurity destabilizes the
YSR state over most of the phase diagram allowing it to exist only in a small region, the YSR regime, between a
Kondo-screened and an unscreened regime. Within the YSR regime a first-order phase transition occurs between
a spin singlet and doublet ground state. We also find that for large-enough impurity spin exchange interaction a
renormalized Kondo-screened regime is established. In this regime, not found for BCS superconductors, there is
no YSR state and a renormalized Kondo temperature scale is generated.
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I. INTRODUCTION

The study of magnetic impurities in superconductors has a
long history [1–12] but still remains of great significance in
contemporary condensed matter physics [13–18]. This is due
to the extensive recent experimental advancements in control-
ling a single magnetic adatom on superconducting substrates
[19–21] and the prospect of realizing nanostructures with
topological character [22–25]. An important element in this
direction is the existence of bound states with energies lying
within the superconducting gap, localized close to the mag-
netic impurity: the so-called Yu-Shiba-Rusinov (YSR) states
[1–3]. These states play a key role in the Kondo screening
of the magnetic impurity in Bardeen–Cooper–Schrieffer-type
superconductors and form the basis of current understanding
for the coupling between adatoms which eventually may lead
to one-dimensional topological structures [22,23,26–37].

In a BCS s-wave superconductor the YSR state is a bound
state resulting from the scattering of Bogoliubov quasiparti-
cles on a classical spin impurity S. It is associated with the
longitudinal exchange interaction JSzsz between the impurity
and the bulk electrons where J is the contact exchange cou-
pling, sz is the spin density of the electrons at the impurity
site and Sz = S. The YSR state corresponds to a localized
excited-state electron which aligns its spin opposite to that of
the impurity and partially screens it. Its energy ε lies below

the superconducting gap �,

ε = � cos 2α, (1)

with the phase shift α = tan−1(πN0JS/2), N0 being the nor-
mal state density of states (DOS) at the Fermi level. When ε >

0 the impurity is unscreened, whereas it is partially screened
when ε < 0; a quantum phase transition between these two
states taking place at ε = 0 when they cross [6].

When a quantum S = 1/2 impurity is considered (with the
electrons described by a BCS mean-field theory), quantum
fluctuations described by spin-flip processes J (S+s− + S−s+)
need to be taken into account. These lead to the Kondo ef-
fect in the normal state, whereas in the superconductor the
accepted view is that they merely renormalize the exchange
interaction between the bulk electrons and the impurity. A
localized intragap bound state, whose energy is given by (1),
still exists but with a phase shift α depending on the ratio
T 0

K /� where T 0
K ∝ e−π/2J is the bare Kondo temperature in

the normal state. At the quantum level, the YSR state is seen
as an intragap state which arises from the interplay between
Cooper pairing and Kondo screening of the impurity spin by
bulk fermions. When ε < 0 (i.e., T 0

K /� � 1), Kondo screen-
ing takes place before the onset of superconductivity and the
ground state is a spin singlet with total spin (including both
the impurity and electron spins) ST = 0 and an odd fermion
parity [4]. When ε > 0 (i.e., when T 0

K /� � 1) the Kondo
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effect is suppressed by superconductivity: the impurity spin
remains unscreened, the ground state is a doublet with spins
Sz

T = ±1/2 with an even fermion parity [5]. Results from nu-
merical renormalization group indicate that a phase transition
occurs when T 0

K /� � 0.3 [38].
The question we shall address in this work is how this

scheme survives strong phase fluctuations of the super-
conducting order parameter. This is typically the case for
one-dimensional, s-wave charge conserving superconductors
where superconductivity is not induced by proximity effect
but intrinsically due to the attractive interactions between the
electrons. In this case quantum fluctuations destroy super-
conducting long-range order leaving the system with only
quasi-long-range superconducting order, i.e., a spin gap opens
(and hence also does the single-particle gap), but Cooper pair
correlations functions display only power-law asymptotics.
One may hence anticipate that fluctuations may strongly affect
the mean-field description of the YSR states. We shall indeed
find in this work that the strong quantum fluctuations in the
bulk significantly modify the BCS picture described above,
both when a classical impurity or a quantum impurity are
considered. Before going into the details of our study let us
first briefly present our results.

For a classical impurity we find, by solving different limits
of an anisotropic bulk superconductor model consistent with
the classical impurity limit, an intragap YSR bound state as in
the BCS case. However, it exists only in a domain of exchange
interaction that narrows as one increases the quantum fluctu-
ations in the bulk. Still, as in the BCS case, the YSR level
controls the phase transition between a partially screened and
unscreened phase at a quantum critical point where it has zero
energy. When a quantum S = 1/2 spin impurity is considered,
the interplay between the spin-flip quantum fluctuations of the
impurity spin with those of the superconducting phase leads
to even more striking effects. The qualitative phase diagram of
the Gross-Neveu model, which is the field theory describing a
SU(2) invariant one-dimensional s-wave superconductor, with
a spin S = 1/2 impurity at one of its edges is depicted in
Fig. 1. To begin with, in our exact solution, the control pa-
rameter is a Renormalization Group (RG) invariant d , which
can be real or purely imaginary with d = ia, and is a function
of the couplings [see Eqs. (45) and (46)] and not of T 0

K /�. For
moderate exchange interaction, which corresponds to the do-
main 1/2 < a < 3/2, the spin-flip processes renormalize the
exchange interaction as in the BCS case and the YSR state still
exists in a narrow part of the phase diagram, thereafter coined
YSR regime, between the doublet and screened phases found
in Ref. [39]. However, when the exchange interaction is large
enough, i.e., when d ∈ R or a < 1/2, the YSR level disap-
pears from the spectrum and a renormalized Kondo screened
regime is stabilized. In this regime the spin-flip processes are
enhanced by the quantum fluctuations in the bulk and the
screening of the impurity resembles a genuine Kondo effect.
The Kondo screening in the superconductor is then character-
ized by a renormalized Kondo temperature TK � � which is
different from the bare Kondo temperature T 0

K of the normal
state. For instance, deep in the Kondo regime, i.e., when
TK � �, the impurity DOS takes the characteristic Kondo
Lorentzian form ρimp(E ) � 1

π
TK/[E2 + (TK )2] and TK marks

the energy scale where the renormalized exchange interaction

FIG. 1. Schematic phase diagram of the Gross-Neveu model
with a quantum spin S = 1/2 impurity at one of its edge. The fig-
ure displays the spectrum as a function of d , the RG invariant which
encodes the bulk and impurity coupling constants, see Eq. (45) (when
d turns imaginary we use d = ia). The YSR state exists only for
1
2 < a < 3

2 , its energy is the solid red line. A first-order quantum
phase transition between screened (S = 0) and unscreened (S = 1

2 )
phases occurs at a = 1. For a > 3

2 , the impurity is unscreened and no
YSR states exist. In the Kondo regime, a < 1

2 or d ∈ R, a many-body
screening of the impurity takes place and a renormalized Kondo scale
TK > � is generated. The shaded orange represents the continuum of
bulk states. For comparison, the BCS phase diagram would exhibit
YSR states throughout.

reach the strong-coupling regime while the bulk pairing inter-
action remains at weak couplings. As TK decreases toward �,
a smooth crossover between many-body screening to single-
particle screening of the impurity takes place. Similarly, for
weak-enough exchange coupling, i.e., when a > 3/2, the YSR
states also disappear from the spectrum. The system is in an
unscreened regime, the ground state is a twofold degenerate
spin doublet. These results highlight the significant impact
that quantum fluctuations can have on the existence of YSR
states. Although we have focused on a concrete example of a
one-dimensional charge conserving superconductor our find-
ings suggest that the role YSR states need to be reexamined in
other nonconventional superconductors where fluctuations are
prominent, including higher dimensional superconductors.

In the following we shall present a detailed study of the
effect of a magnetic impurity in one-dimensional charge con-
serving s-wave superconductors. We shall use a field-theoretic
approach in which these systems are described by the one-
dimensional Gross-Neveu (GN) model and study both the case
of a classical impurity and of a quantum spin S = 1/2. This
paper is organized as follows. In the first section (Sec. II),
we introduce our model and recall some properties of one-
dimensional charge conserving superconductors. In Sec. III
we study the case of a classical spin impurity in a suitable
anisotropic limit where bulk fluctuations are minimal and
also at a special point where it is described in terms of free
fermions (Luther-Emery point). In Sec. IV we consider the
case of quantum spin S = 1/2 impurity. We discuss the Bethe
ansatz solution and relegate the details of the calculation to
the Appendix. Finally, in Sec. V we discuss our results and
comment on possible implications for other systems.
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II. THE GROSS-NEVEU MODEL WITH A SPIN
S = 1/2 IMPURITY

Our approach is a field-theoretic one in which we shall
model the superconducting bulk by the Gross-Neveu model.
The latter model is the well-known effective low-energy field
theory describing one-dimensional s-wave superconductors
such as the attractive Hubbard model in one dimension.
In this framework, the effects of a magnetic impurity in a
one-dimensional s-wave superconductor is described by the
Hamiltonian

H = HGN + Himp, (2)

where HGN = ∫ 0
−L/2 dx HGN is the Hamiltonian of the GN

model with

HGN = −i(ψ†
Ra∂xψRa − ψ

†
La∂xψLa)

− 2gψ†
Raψ

†
Lc

(
σ x

abσ
x
cd + σ

y
abσ

y
cd + σ z

abσ
z
cd

)
ψRbψLd , (3)

and

Himp = −J �σab · �Sαβψ
†
La(0)ψRb(0), (4)

where we have set the Fermi velocity vF ≡ 1 and have
absorbed a factor πN0 into the definition of the contact
antiferromagnetic exchange interaction J > 0. In the above
equations �σab, �Sαβ are the Pauli matrices acting in the spin
spaces of the bulk fermions and impurity spin, respectively,
and ψL(R)a(x), a = (↑,↓), describe left and right moving
fermions carrying spin 1/2. In the geometry we are consid-
ering they satisfy open boundary conditions (OBC) at both
left and right edges which read,

ψR(−L/2) = −ψL(−L/2), ψR(0) = −ψL(0), (5)

where we have introduced the spinor notation ψT
L(R) ≡

(ψL(R)↑, ψL(R)↓). The Hamiltonian (2) conserves the total
number of fermions N ,

N =
∫ 0

−L/2
dx [ψ†

L (x)ψL(x) + ψ
†
R(x)ψR(x)], (6)

and is spin rotation invariant as it commutes with the total spin
operator

�ST = �s + �S, (7)

where �S is the impurity spin operator and �s = ∫ 0
−L/2 dx �s(x)

with

�s(x) = 1
2 [ψ†

L (x)�σψL(x) + ψ
†
R(x)�σψR(x)], (8)

that of the bulk fermions. In the absence of the four-fermion
interaction, i.e., when g = 0, the Hamiltonian (2) describes
a Kondo impurity in a metal and its physics is well under-
stood. When J = 0 and g > 0, the GN model describes an
s-wave superconductor: a spin gap � = De−π/2g (where D
is a cut-off scale) opens which stabilizes quasi-long-range
s-wave superconducting order with 〈Os(x)Os(0)〉 ∼ |x|−1/2,
where Os ∝ ψ

†
R↑ψ

†
L↓ − ψ

†
R↓ψ

†
L↑. When both g > 0 and J > 0

the superconducting instability compete with the Kondo ef-
fect and the model (2) is well suited to study the impact of
superconductivity on the Kondo effect and vice versa.

III. CLASSICAL SPIN IMPURITY

Let us first consider the case where the impurity is treated
as a classical spin. This can be achieved by taking the limit
of large quantum spin S together with that of small exchange
interaction J > 0 while keeping JS = cst. In this limit the
localized impurity spin acts as a local magnetic field, in, say,
the “z′′ direction, and the Kondo interaction becomes strongly
anisotropic,

Himp = −JS (ψ†
Lσ zψR)(0). (9)

As we shall now see, in one dimension, the boundary mag-
netic field can be reabsorbed into the boundary conditions.
Consider indeed the shift

ψR(L)(x) = e±iα(x)σ z
ψ ′

R(L)(x), (10)

with

α(x) = −α0[1 + sgn(x)], α0 = JS

2
, (11)

where sgn(x) is the sign function. Since α(x) vanishes in the
bulk (where x < 0) and due to the OBC (5), the Hamiltonian
(2) reduces to that of the GN model (3) without any coupling
to the impurity spin, i.e.,

H (ψ, g, J ) = H (ψ ′, g, 0), (12)

but with twisted OBC at the right boundary x = 0 for the
shifted fermions

ψ ′
R(−L/2) = −ψ ′

L(−L/2),

ψ ′
R(0) = −ei2α0σ

z
ψ ′

L(0). (13)

Even with this simplification, the problem remains nontriv-
ial [40]. To gain some insights we begin by considering an
anisotropic bulk interaction for which approximate methods
are available.

A. Breaking SU(2) symmetry in the bulk

We shall now break the SU(2) symmetry in the bulk, con-
sistently with the strong anisotropic Kondo coupling (9), and
consider the XXZ deformation of the GN model in which the
quartic term in (3) is replaced by

ψ
′†
R,aψ

′
R,b

(
g⊥

[
σ x

abσ
x
cd + σ

y
abσ

y
cd

] + g‖σ z
abσ

z
cd

)
ψ

′†
L,cψ

′
L,d , (14)

where g‖, g⊥ > 0 are couplings in the “z” and “xy” directions
in spin space. As shown in Ref. [41], in the limit of large
g‖ and small g⊥, quantum fluctuations are small in the bulk.
We shall therefore, consistently with the classical limit of the
impurity spin, assume in the following that g‖ � 1, g⊥ � 1.
Our approach in what follows is based on the well-known
correspondence between the XXZ deformation of the GN and
sine-Gordon (SG) models. On bosonizing the fermions with

ψ ′
L(R),a = κae−i

√
π (θa±φa )/

√
2πa0, (15)

where φ↑,↓ and θ↑,↓ are boson fields and their duals and
κa are Klein factors satisfying {κa, κb} = 2δab, the Hamilto-
nian (14) can be expressed as the sum of two commuting
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Hamiltonians describing charge and spin fluctuations, i.e.,
Hbulk = Hc + HSG, where

Hc = 1

2
[(∂xφc)2 + (∂xθc)2], (16)

HSG = 1

2
[(∂xφ)2 + (∂xθ )2] − m2

0

β2
cos(βφ), (17)

In the above equations (16) is the Luttinger liquid Hamilto-
nian which describes the massless charge degrees of freedom
with φc = (φ↑ + φ↓)/

√
2 and θc = (θ↑ + θ↓)/

√
2. The spin

degrees of freedom of the fermions (15) are described by
the spin field bosons, φ = 2

√
π (φ↑ − φ↓)/β and its dual

θ = β(θ↑ − θ↓)/4
√

π whose dynamics is controlled by the
SG Hamiltonian (17). The parameters β and m0 are related
in a nonuniversal way to the couplings g‖ and g⊥ but in
the limit we are interested with, which corresponds to the
semiclassical regime of (14) [41], we have 0 < β2 � 4π and
m2

0/β
2 ∼ g⊥/(πa0)2 � 1 (a0 being a short distance cutoff).

The limit β → 0 corresponds to the classical limit where the
boson field is locked by the cosine potential to one of its min-
ima. When β increases, quantum fluctuations become more
important and are maximal in this regime when β = √

4π .
In the bosonic framework the boundary twist on the

fermions (13) translates into twisted boundary conditions on
the boson spin field φ. Using (15) one finds

φ(−L/2) = 2π

β
n, φ(0) = 4α0

β
, (18)

where n ∈ Z. Thus, given that

s′z(x) = β

4π
∂xφ(x), (19)

the contribution of the boson to the spin of the system is s′z =
α0/π − n/2. To get the total spin sz one must take into account
the shift (10) which has a nontrivial determinant. The easiest
way to calculate its contribution to the spin density is to use
bosonization and one eventually using Eqs. (8), (10), and (15)
obtains

sz(x) = −2α0

π
δ(x) + β

4π
∂xφ(x). (20)

Hence, with the twisted boundary conditions (18), the total
spin enclosed in the system is ±(1/2) integer, as it should,
i.e., sz = ∫ 0

−L/2 dx sz(x) = −n/2.
Before going further, some comments are in order. As is

clear from (18), the boson dynamics is periodic under the
shift α0 → α0 + π/2. The reason for this is that the boson
field has radius 2π/β. In contrast, the contribution coming
from the determinant of the transformation (10) [the δ term in
(20)] corresponds to an accumulation of spin −α0/π which
is not periodic. One may, however, restrict ourselves to the
fundamental interval

α0 ∈ [0, π/2], (21)

keeping in mind that, due to the delta term in (20), the spin sz

of any state is to be shifted by −n/2 each time one shifts α0

by nπ/2. One must be careful, however, when drawing any
conclusions for α0 > π/2 since the contribution of the deter-
minant is localized at the right edge of the system. One should
recall that our continuous field theory describes a system that

cannot allow more than one fermion per spin to be localized
at the right edge. For instance, if the interaction between the
impurity and the electrons is local in real space, then only one
down spin fermion can be localized at the impurity site and
α0 � π/2. In this case the local spin accumulation at the edge
may range between 0 and −1/2 in the fundamental interval
(21). This is the case that will be considered in this work.

B. The classical limit of the bulk

We consider the classical approximation which corre-
sponds to the limit β → 0 in Eq. (17). In this limit the boson
field φ(x) is locked in one of the minima of the cosine po-
tential in Eq. (17) located at φp = 2π

β
p, p ∈ Z. The minimal

energy configurations, consistent with the boundary condi-
tions (18), correspond then to kinks or antikinks interpolating
between one of the minima of the potential when x = −L/2
and φ = 4α0/β at x = 0. In the fundamental interval of twists,
0 � α0 � π/2, one finds that the two minimal energy states
consists of a kink |�+〉 interpolating between φ = 0 at x =
−L/2 and φ = 4α0/β at x = 0 and an antikink |�−〉 which
interpolates between φ = 2π/β at x = −L/2 and φ = 4α0/β

at x = 0. Their energies E± can be calculated using standard
methods [42] and are given, up to a constant, by

E+ = m0

β

∫ 4α0/β

0
dφ

√
2(1 − cos βφ),

E− = m0

β

∫ 2π/β

4α0/β

dφ
√

2(1 − cos βφ), (22)

or

E± = 1
2 M(1 ∓ cos 2α0), (23)

where M = 8m0/β
2 is the mass of the fundamental soliton of

the SG model. The spins sz
± of the kink and antikink states are

obtained from (20) and are given by

sz
+ = 0, sz

− = − 1
2 . (24)

In the kink state the impurity remains unscreened with total
spin (including that of the impurity) Sz

T = S, whereas in the
antikink state it is partially screened with Sz

T = S − 1/2. De-
pending on the value of the twist α0, the ground state consists
of either the kink or the antikink state. From (23) one can
easily find that the ground state is given by

|�+〉 when 0 � α0 � π

4
, |�−〉 when

π

4
� α0 � π

2
,

(25)

and become degenerate at α0 = π/4 when the two states
cross. In each of the domains (25), the first excited state is
given by the antikink |�−〉 or the kink |�+〉, respectively, and
has an energy gap

ε = |E+ − E−| = M| cos 2α0|, (26)

above the ground state. As ε � M, these states lie in the
superconducting gap below the continuum made of propa-
gating solitons or antisolitons. These midgap states are the
one-dimensional analog of the YSR states found in the mean-
field approach. The phase diagram in the fundamental period
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α0

|Ψ+〉 |Ψ−〉
Sz = −1

2Sz = 0

unscreened partially screened1
2

E/M
1

π/40 π/2

FIG. 2. Kink and antikink boundary states and excitations with
energies given as a function of the twist angle α0 = JS/2. Sz denotes
the spin of the bulk fermions which is zero in the unscreened phase
and −1/2 in the partially screened phase. Both the kink and the
antikink states are degenerated at the quantum (boundary) phase
transition point at α0 = π/4.

α0 ∈ [0, π/2] is depicted in Fig. 2. In the regime π/4 � α0 �
π/2 the impurity spin is partially screened in the ground state
which has total spin Sz

T = S − 1/2. In the domain 0 � α0 �
π/4 the total spin is Sz

T = S and the impurity spin remains un-
screened. At α0 = π/4 a first-order quantum phase transition
occurs, between unscreened and a partially screened phase,
where the midgap (26) closes.

One may finally observe that the phase diagram qualita-
tively matches with that obtained from the mean-field or BCS
approach in the range of twists in the fundamental interval
α0 ∈ [0, π/2]. Both predict a phase transition between un-
screened and screened phases driven by an YSR level but with
different critical values of the twist or exchange interaction,
i.e., α0 = π/4 [(JS)c = 2/πN0] and α0 = 1 [(JS)c = 1/2N0]
for the semiclassical and BCS case, respectively.

C. Quantum bulk at the Luther-Emery point

We would now investigate the effects of the quantum fluc-
tuations in the bulk, i.e., the effect of a nonzero β in (17).
One route would be to calculate perturbatively the fluctuations
around the semiclassical kink and antikink configurations
|�±〉 defined above. For the purpose of the present work we
shall rather content ourselves by solving the model at the value
of β2 = 4π . For this value of the interaction, the SG model
can be mapped onto a model of free massive spinless fermions
and can be solved exactly. This is the so-called Luther-Emery
point [43]. To proceed further we define the left and right
moving Luther-Emery fermions

�L(R) = e∓i
√

4πφL(R)/
√

2πa0, (27)

where φL(R) = (φ ± θ )/2 are left and right moving boson
operators and a0 is a short distance cutoff. With help of (27)
one can rewrite the SG Hamiltonian (17) as

H =
∫ 0

−L/2
dx �†(x)hD� (x), (28)

where �T = (�R, �L ) is a two-components spinor and

hD = −(iσ z∂x + mσ y), (29)

is the Dirac Hamiltonian where m = g⊥/(πa0) > 0 is a mass
parameter. The spin density operator (20) expressed in terms
of the Luther-Emery fermions is

sz(x) = −2α0

π
δ(x) + 1

2
�†(x)� (x). (30)

To complete the mapping we also need to translate the bound-
ary conditions of the boson field (18) into boundary conditions
of the spinor field (27)

�R(−L/2) = �L(−L/2), �R(0) = −ei4α0�L(0), (31)

which are obviously invariant under the shift α0 → α0 +
π/2 as expected. With these results at hand, the physics
at the Luther-Emery point boils down to the knowledge of
the solutions of the Dirac equation hD�(x, t ) = i∂t�(x, t )
with the boundary conditions (31). As we shall focus on the
ground-state properties we shall need only the negative energy
solutions.

The wave functions corresponding to negative energies
Eλ = −m cosh (πλ) and pseudo-momenta pλ = m sinh (πλ)
are given by χλ(x, t ) = e−iEλt χλ(x) where

χλ(x) = aλ

(−ie−πλ/2

eπλ/2

)
eipλx + a−λ

(−ieπλ/2

e−πλ/2

)
e−ipλx. (32)

The amplitudes aλ and a−λ are obtained (up to a normaliza-
tion) by matching the right boundary condition at x = 0 (31)
which gives the impurity S matrix

S−
imp(λ) = aλ/a−λ = −cosh π

2

[
λ − i

(
1
2 − a

)]
cosh π

2

[
λ + i

(
1
2 − a

)] . (33)

The boundary condition at the left boundary x = −L/2 itself
yields to the Bethe equation

eim sinh (πλ)L = cosh π
2

[
λ − i

(
1
2 − a

)]
cosh π

2

(
λ − i

2

)
cosh π

2

[
λ + i

(
1
2 − a

)]
cosh π

2

(
λ + i

2

) . (34)

In the above equations, we have introduced the parameter

a = 2 − 4α0

π
, (35)

instead of α0 for convenience. In terms of a, the periodicity of
the boundary conditions, i.e., α0 → α0 + π/2, translates into
a → a − 2 and the fundamental period α0 ∈ [0, π/2] is given
by a ∈ [0, 2].

Boundary bound states are obtained by looking at the zeros
or the poles of the S matrix (33) which are solutions of the
Bethe equations. Both eventually lead to the same bound state
localized at the right boundary close to x = 0 corresponding
to the imaginary roots λ = ±i(1/2 + a). They both give the
same bound-state solution with energy

ε = m sin (πa), (36)

and wave function

χbs(x) = ξ−1/2
a

(−e−iπa/2

eiπa/2

)
ex/ξa , (37)

where

ξa = [−m cos (πa)]−1. (38)
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The bound-state wave function being normalizable only when
m cos (πa) < 0. The bound state exists only in the midgap
domain

a ∈
[

1

2
,

3

2

]
⇔ α0 ∈

[
π

8
,

3π

8

]
, (39)

and is localized close to the impurity site with a characteristic
length scale ξa. The above bound-state solution corresponds
to the midgap state found in the semiclassical analysis and in
previous mean-field approaches. However, in sharp contrast
with the former analysis, a midgap state exists only in a
narrowed domain of twists α0, or a, at the Luther-Emery point.

The ground state of the system is obtained by “filling”
the vacuum with all negative energy states. In the region
a ∈ [1/2, 3/2] it may or may not include the bound state
(37) depending on whether ε is negative or positive. In the
following we shall distinguish between the fermion operator
b† that creates the bound state (37) and (a−

λ )†, with λ real,
those associated with the propagating negative energy modes
χ∗

λ (x). We shall accordingly consider the two states

|�〉 = �λ(a−
λ )†|0〉, |B〉 ≡ b†|�〉, (40)

and compare their energies as a function of a. After a straight-
forward calculation one finds that the ground state |GS〉 is
eventually given by

|GS〉 ≡ |�〉, a ∈ [0, 1] and a ∈ [
3
2 , 2

]
,

|GS〉 ≡ |B〉, a ∈ [
1, 3

2

]
, (41)

with energy EGS(a) given, up to a constant, by:

EGS(a) = E�(a), a ∈ [0, 1] and a ∈ [
3
2 , 2

]
,

EGS(a) = E�(a) + m sin πa a ∈ [
1, 3

2

]
, (42)

where E�(a) = m + m sin πa tan−1 [tan (π/4 − πa/2)]/π
when a �= 3/2 and E�(a) = m/2 when a = 3

2 is the energy of
the Fermi sea. In the intervals a ∈ [1/2, 1] and a ∈ [1, 3/2]
the states |B〉 and |�〉 are midgap states with an energy
±m sin πa above the ground state, respectively. The two
states cross at a = 1, or α0 = π/4, where the ground state is
doubly degenerated and a first-order phase transition occurs.

The spin quantum numbers of the states |�〉 and |B〉 can
be obtained from Eq. (30). Denoting by sz

�(a) the spin of
the Fermi sea, since the state |B〉 = b†|�〉 contains one more
Luther-Emery fermion, its spin is given by sz

B(a) = sz
�(a) +

1/2. The calculation is standard and one finds for sz
GS(a) =

〈GS|sz|GS〉 in the fundamental interval a ∈ [0, 2]

sz
GS(a) = − 1

2 , a ∈ [0, 1];

Sz
GS(a) = 0, a ∈ [1, 2]. (43)

In the midgap region (39) the two midgap states |B〉 and |�〉
in the sectors a ∈ [1/2, 1] and a ∈ [1, 3

2 ] carry an additional
spin �Sz = ± 1

2 with respect to that of the ground state, re-
spectively.

When comparing to the semiclassical phase diagram of
(2) we see that both qualitatively match in the midgap in-
terval a ∈ [1/2, 3/2] ⇔ α0 ∈ [π/8, 3π/8]. In particular, we
observe that the two analyses predict a quantum critical point
between the unscreened and a partially screened phase at the
same point a = 1 or α0 = π/4. However, for larger departures

0 1
2 1 3

2 2

|Ω〉

Sz = −1
2 Sz = 0

|B〉

1

2
EGS/m

a
partially screened unscreened

α0

0
π
8

π
4

3π
8

π
2

FIG. 3. Phase diagram in the fundamental interval a ∈ [0, 2] ⇔
α0 ∈ [0, π/2] at the Luther-Emery point. The curve in red denotes
the energy of the Fermi sea |�〉 while the one in blue that of the state
|B〉 where the bound state is present. The ground state is represented
by a solid line whereas the midgap YSR state by a dashed line. The
vertical dashed green lines define the domain where the YSR state
exists.

from the phase transition point they differ significantly in that
the midgap region, where a bound state exists, gets narrowed
to the interval a ∈ [1/2, 3/2] (i.e., α0 ∈ [3π/8, π/8]) at the
Luther-Emery point. This is due to the quantum fluctuations in
the bulk. As a consequence, both the partially screened phases
(a < 1) and the unscreened phase (a > 1) are split into two
regimes which depend on the existence, or not, of a bound
state in the midgap region.

We display the phase diagram in the fundamental interval
a ∈ [0, 2] ⇔ α0 ∈ [0, π/2] in the Fig. 3. The observations
made above lead us to the following picture for the screen-
ing process. When α0 = 0, the impurity decouples form the
superconductor which is in a singlet state with Sz = 0. As one
increases the coupling to the impurity J , α0 also increases and
nothing dramatic happens until it reaches the value π/8. In
the region 0 � α0 < π/8 the ground state is a singlet with
Sz = 0. Above the gap, at energies E � m, the excitations
consist of spin Sz = ±1/2 propagating electrons or holes.
When α0 � π/8 a hole state, with spin Sz = −1/2, is dragged
from the continuum into the midgap region where it becomes a
bound state localized close to the boundary with a localization
length ξa (38). When α0 ∼ π/8, ξa is large and the trapped
spin −1/2 particle is almost delocalized in the bulk with a
vanishingly small amplitude. However, when α0 > π/8 the
particle becomes increasingly more localized with ξa reaching
its minimum value ξ = 1/2m when α0 = π/4 at the critical
point. At this point this state become the ground state and has
a total spin Sz = −1/2 thus partially screening the impurity.
As α0 further increases this state remains the ground state until
one reaches α0 = π/2.

In this section we have solved the model with a classical
impurity spin in the two limits β → 0 and β = √

4π . In both
limits a two-phase structure emerges, corresponding to an
unscreened and a partially screened impurity, separated by
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a quantum critical point at α0 = π/4 which is unaffected by
quantum fluctuations. Our solutions demonstrate that the main
effect of quantum fluctuation is to reduce, in the fundamental
interval, by half the domain in which YSR states exist. De-
spite this, in both cases, the quantum phase transition is still
driven by the intragap YSR state. We now turn to study the
effect of the dynamics of the impurity spin to inquire how,
as in the BCS case, this scheme is modified by the quantum
fluctuations of the impurity degrees of freedom generated by
spin flip processes.

IV. QUANTUM IMPURITY: THE BETHE ANSATZ RESULTS

In this section we discuss the results of the solution of
the model obtained by the Bethe ansatz, relegating the de-
tails of the calculation to the Appendix. This method allows
access to the exact spectrum and has been used recently to
investigate boundary and impurity effects in interacting field
theories [39,40,44–48]. In particular, it was shown in Ref. [39]
that the Hamiltonian (2) is integrable for generic values of
the bulk coupling g and contact exchange interaction J . The
resulting physics is described in terms of two RG invariants:
the superconducting gap � and a parameter d that labels the
RG invariant flow lines in the (g, J ) plane. In terms of the
latter couplings, � and d express as

� = D arctan

(
1

sinh πb

)
, (44)

d =
√

b2 − 2b/c − 1, (45)

b = (1 − g2/4)/2g, c = 2J/(1 − 3J2/4). (46)

The RG invariant d may be real or purely imaginary in which
case we shall use the notation d = ia. Notice that although we
are using the same symbol a as for the twist in the previous
section, here a depends on both J and g. Preliminary investiga-
tions of the Bethe equations associated with (2) have revealed
a two-phase structure: a screened Kondo phase when d � 1
corresponding to J � g and an unscreened phase when a � 1
corresponding to g � J . In the following we extend the anal-
ysis made in Ref. [39] to the full domain of couplings d and
a. We shall distinguish between three regimes of d or a where
the Bethe equations take different forms and have different
types of solutions. First is the regime of a � 3/2 that we shall
label the unscreened regime since in this region the impurity
remains always unscreened. The second region of couplings is
obtained when d is real and a � 1/2. It is a Kondo-screened
regime where the impurity is always screened in a Kondo-like
fashion. Finally, we shall call the third regime, i.e., 1/2 < a <

3/2, the YSR regime. In the scaling limit, as � and d are
held fixed while D → ∞ and both J, g → 0 it corresponds to
a narrow sliver in coupling space. In this regime a localized
bound state appears with energy within the superconducting
gap. As in the BCS case screened and unscreened states are
obtained by adding or removing the bound state and crossing
at a = 1 where a boundary quantum phase transition occurs
between a screened phase when a < 1 to an unscreened phase
when a > 1.

A. The unscreened regime: a � 3/2

This phase exists in the purely imaginary d = ia regime
when a � 3/2. The ground state is doubly degenerate,

|GS〉 ≡ {| + 1/2〉, | − 1/2〉}, (47)

having a total spin Sz
T = ±1/2 and an even fermion parity

P = (−1)N = +1. In this phase the impurity spin remains
unscreened. Holon excitations, which are charged spin-singlet
excitations, are gapless while in the spin sector all excitations
have energies above the gap �. In contrast to the BCS model
there are no intragap YSR bound states.

B. The Kondo-screened regime: a � 1/2 and d ∈ R

For a � 1/2 or when d is real, a Kondo-screened regime is
obtained. The ground state of (2) is a spin singlet,

|GS〉 ≡ |0〉, (48)

with total spin �ST = 0 and an odd fermion parity, i.e., P =
(−1)N = −1. As in the unscreened phase, on top of the
gapless holon excitations, all excitations are above the super-
conducting gap. There are no intragap states in sharp contrast
with results in mean-field or BCS case. In particular, one can-
not interpret the singlet state |0〉 (48) in the screened regime
as a midgap state obtained by adding a localized bound state
close to the right edge in one of the doublet ground states
| ± 1/2〉 (47) of the unscreend regime. As we shall argue,
the screening of the impurity resembles a genuine many-body
Kondo effect in a metallic phase.

The Kondo-screened regime is characterized by the gener-
ation of an energy scale TK which is the analog of the Kondo
temperature in the metallic phase. It must be expressed in
terms of the RG invariants, TK = � f (d ), with the choice of
f (d ) depending on the particular question examined. Here we
determine it by considering the ratio of impurity DOS to that
of the bulk DOS per unit length as given in Ref. [39],

R(E ) = L

2

ρimp(E )

ρbulk (E )
= � cosh πd

(E2 + �2 sinh2 πd )
, E � �, (49)

where ρbulk (E ) = E
π

√
E2−�2 , and define

TK = �
√

1 + cosh2 πd, (50)

as the width of R(E ) at half its maximum. In the Kondo-
screened regime TK � � for all d real and d = ia. It
eventually reaches its minimum value at a = 1/2 where
TK = �.

In the limit of large real d � 1, TK/� � 1 and TK

defines an energy scale which is sharply different from
the superconducting gap. In this regime (49) takes a
characteristic Loretzian form R(E ) � TK/(E2 + T 2

K ) with
TK � �

2 eπd � �. We then deduce that the impurity density
of state in the large E limit

ρimp(E ) � TK

π
(
E2 + T 2

K

) , E � �, (51)

matches with that of the Kondo model in the normal state with
a Kondo temperature TK . In particular, in the massless limit
(g,�) → 0, TK → T 0

K and ρimp(E ) matches with impurity
DOS in the normal phase. In this respect, the scale TK , as given
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by (50), may be seen as a renormalized Kondo temperature
which depends on both J and g through the gap � and the RG
invariant d , as noted above. In the regime TK/� � 1 the scale
TK distinguishes, exactly as in the metallic phase, between the
strong- and weak-coupling regimes of the Kondo interaction
J . Indeed, using the RG equations obtained in Ref. [39], one
finds that at some scale � � � � D the coupling (c, b) scale
as

c� = 2b�

b2
� − (1 + d2)

, b� � 1

π
ln

2�

�
� 1. (52)

We immediately see that c� diverges when � → TK , indicat-
ing that J reaches a strong-coupling regime while, since bTK �
d � 1, the bulk coupling g remains small. Hence, despite the
presence of the superconducting gap �, the condition TK � �

insures that J reaches the strong-coupling regime while the
bulk coupling g is still in the scaling region. Therefore,in the
deep Kondo regime d � 1, the screening of the impurity in
this region is similar of the Kondo screening in the metallic
phase.

For other values of the couplings, i.e., d � 1 or d = ia
with a < 1/2, we have TK/� � 1 and both J and g reach the
strong-coupling regime when � � TK . Although the screen-
ing of the impurity competes with the formation of Cooper
pairs, the impurity eventually gets screened as our exact so-
lution shows. The main difference between the large TK and
TK � � regimes lies in the fact that the DOS ratio R(E ) gets
more and more peaked close to E = � as TK approaches �.
In particular we notice that when a → 1/2, R(E ) → 0 for
all values of E �= �. We interpret this fact as a crossover
from many-body screening to single-particle screening as TK

range from TK � � to TK = �. As we shall now see, when
1/2 < a < 3/2, a different situation emerges in which the
screening of the impurity is related to a localized bound state
mode in the midgap region.

C. The YSR regime: 1/2 � a � 3/2

In this regime of couplings the states with the lowest en-
ergy may have different fermion parities P = ±1. In the even
fermion parity sector, i.e., P = +1, there exists two degen-
erate states, | ± 1/2〉, with total spins Sz

T = ±1/2 as in the
unscreened regime (Sec. IV A). On top of that, there exists
also a state |0′〉 with total spin �ST = 0 and odd fermion parity
P = −1. This state is obtained from the latter by adding a
bound state localized at the right boundary x = 0 to either of
the states | + 1/2〉 or | − 1/2〉. In the Bethe ansatz framework,
such a bound state corresponds to a boundary string which
arises as a purely imaginary solutions of the Bethe equations.

The energy of the bound state is found to be the energy
difference between the ground states with total spins Sz

T = 0
and Sz

T = ±1/2,

EB = E0
N − 1

2

(
E0

N−1 + E0
N+1

)
, (53)

where E0
N is the ground-state energy of the system with an odd

number of fermions N and total spin Sz
T = 0 and E0

N±1 are the
energies of the states with an even number of particles and
total spins Sz

T = ±1/2. The energy EB precisely measures the
energy cost, up to the chemical potential, of adding an electron
to the system. It consists of a charge part and a spin part, i.e.,

EB = Echarge + ε, where

Echarge = − π

2L
, (54)

and the spin part

ε = −� sin πa, (55)

is the energy of the bound state in the thermodynamic limit.
Since it is always smaller that the superconducting gap the
ground state of the system is given, in the limit L → ∞, by

|GS〉 ≡ |0′〉, 1
2 � a � 1,

|GS〉 ≡ | ± 1/2〉, 1 � a � 3

2
. (56)

In the regime 1 < a < 3/2, the ground state is doubly degen-
erate and the impurity is unscreened. Adding a bound state
to the system produces the singlet state |0′〉 in which the
impurity is screened. This state has an energy |ε| < � above
the ground state and is hence a midgap state. In the regime
1/2 < a < 1, the screened state and unscreened states switch
their roles. The ground state is given by |0′〉 and the impurity is
screened while the two degenerate unscreened states | ± 1/2〉
are midgap states at an energy |ε| above the ground state.
Finally, at a = 1, ε = 0, the three states | ± 1/2〉 and |0′〉 are
degenerate and there is a first-order quantum phase transition
between screened and unscreened phases. We notice that,
thanks to (54), adding or removing an electron when a = 1
costs no energy in the thermodynamic limit. This corresponds
to a genuine zero-energy mode in the system. The situation at
hand is similar to what happens in the BCS case.

V. DISCUSSION

In this paper we have studied the physics of a magnetic
impurity coupled to a superconductor with a view to un-
derstanding the role of quantum fluctuations. We considered
a charge conserving s-wave superconductor which exhibits
several regimes depending on the strength of the fluctua-
tions. We have established that bulk quantum fluctuations can
drastically affect the phase diagram inferred using mean-field
methods for the BCS model.

We first considered a classical impurity system in the limit
where bulk quantum fluctuations are minimal. In this case,
using bosonization, it was seen that the YSR state exists
throughout the phase diagram. Subsequently, the quantum
fluctuations were reintroduced by studying the classical im-
purity system at the Luther Emery point via refermionization.
It was shown that the YSR state is destabilized in half of the
phase diagram.

Finally, the full problem of a quantum impurity and quan-
tum fluctuating SU(2)-invariant bulk was studied using Bethe
ansatz revealing a richer structure with three regimes named
Kondo, YSR, and unscreened. The main effect of the quantum
fluctuations is the suppression of the YSR state everywhere
except in the narrow YSR regime around the quantum critical
point. Further, the quantum nature of the impurity reveals
itself in the Kondo regime where a renormalized Kondo effect
takes place. This is due to the strong quantum fluctuations
resulting from high scattering rate between the electrons in the
bulk and the impurity, there exists no YSR states. However,
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when the impurity coupling strength is decreased such that
TK � �, a smooth crossover from the many-body screening
to a single-particle screening of the impurity takes place, and
the system enters YSR regime. In this regime, the effect of
the bulk fluctuations on the quantum impurity is drastically
reduced and the YSR states appear.

As in the BCS case, we expect that this regime of the
phase diagram can be described by treating the impurity as
classical provided one uses a renormalized value of the twist
a or α0 which depends on both g and J . This was explicitly
shown to be the case at the special anisotropic (XXZ bulk)
Luther-Emery point where we found that the renormalized
value of a in Eq. (36) is given by Eqs. (45) and (46). Pre-
liminary calculations made for an SU(2) invariant bulk, as
well as for small departures from the Luther-Emery point,
show that this feature also holds in the more general case. The
domain of stability of the YSR state narrows as one increases
the strength of the quantum fluctuations. These results will
be published in a separate paper [49]. In any case, in the
YSR regime the impurity is screened by a local single-particle
spin accumulation, and a level crossing occurs between the
screened and unscreened states which correspond to presence
and absence of the spin accumulation.

Our results highlight the prominent role that quantum fluc-
tuations can play in the physics of YSR states. Although
they have been derived in the specific example of a one-
dimensional charge conserving superconductor they suggest
that YSR states in other nonconventional superconductors,
where fluctuations are prominent, including systems in higher
dimensions such as d-wave superconductors, need to be re-
examined. Furthermore, we have studied the case of a single
impurity; however, applications of YSR states to topological
superconductors require chains of such impurities and the
hybridization of many YSR states. The effects of quantum
fluctuations on such multiple impurity systems shall be the
focus of a forthcoming paper.
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APPENDIX: BETHE ANSATZ SOLUTION

The Bethe equations were derived in Ref. [39]. In Ap-
pendix 1 we present a brief overview of the derivation of the
Bethe equations. In Appendix 2 we present the solution to the
Bethe equations in all the regimes.

1. Bethe equations

Since the Hamiltonian (2) commutes with total particle
number N = ∫

dx (ψ†
LψL + ψ

†
RψR), H can be diagonalized

by constructing the exact eigenstates in each N sector. From
here on, for notational convenience, we shall use the notation
(+,−) to indicate the chirality index of the fermions replacing
(R, L) notation. The N-particle eigenstate takes the standard
reflection Bethe ansatz form of a plane-wave expansion in
N! 2N different regions of coordinate space. The state is la-
beled by momenta k j, j = 1 · · · N , the same in all regions, and

is given by

|{k j}〉 =
∑

{a j},{σ j}
Q

∫
d�x F {σ }

{a} (�x)
N∏

j=1

ψ†
σ j ,a j

(x j )|0〉 ⊗ |a0〉.

where F {σ }
{a} (�x) = θ (xQ)A{σ }

{a} [Q]ei
∑N

j σ j k j x j is the N-particle
wave function. Here the sum is over all different chirality and
spin configurations specified by {σ j} = {σ1, . . . , σN }, {a j} =
{a0, a1, . . . , aN } where σ j = ± and a j =↑,↓ are the chirality
and spin of the jth particle. a0 denotes the spin of the impurity
with |a0〉 being the state of the impurity and |0〉 is the vacuum
which contains no particles. We also sum over all different
orderings of the particles, labeled by Q which are elements
of the symmetric group Q ∈ SN . A{σ }

{a} [Q] are the amplitudes
for a particular spin and chirality configuration and ordering
of the particles while θ (xQ) is a Heaviside function which
is nonzero only for the ordering of particles labeled by Q.
These amplitudes are related to each other via application of
the various S matrices in the model which are determined by
the N-particle Schrödinger equation and the consistency of the
solution. Amplitudes which differ by changing the chirality
of the rightmost particle + → − are related by the particle-
impurity S matrix S j0 and the amplitudes which are related by
swapping the order of particles with different chiralities are
related by the particle-particle S matrix Si j . These are given
by

Si j = 2ib Ii j + Pi j

2ib + 1
, § j0 = I j0 − icP j0

1 − ic
, (A1)

where I i j is the identity operator and Pi j = (I i j + �σi · �σ j )/2 is
the permutation operator acting on the spin spaces of particles
i and j with 0 indicating the impurity. Furthermore, we have
introduced the parameters b = 1−3g2/4

4g and c = 2J
1−3J2/4 which

encode separately the bulk and impurity coupling constants.
An additional S matrix, denoted by W i j , is also required. It
relates amplitudes that differ by exchanging particles of the
same chirality. This is given by W i j = Pi j . The consistency
of the solution is then guaranteed as the S matrices satisfy the
Yang-Baxter and Reflection equations [50,51].

Imposing the boundary condition at x = −L/2 quantizes
the single-particle momenta k j which are expressed in terms
of M parameters λβ , the Bethe rapidities or Bethe roots, which
satisfy a set of coupled nonlinear equations called the Bethe
equations. In a state, M denotes the number of down spins and
N − M is the number of up spins and vice-versa. We use the
method of boundary algebraic Bethe ansatz to obtain

e−ik j L =
M∏

α=1

f (2b, 2λα ), f (x, z) =
∏
σ=±

x + σ z + i

x + σ z − i
, (A2)

where λα , α = 1, . . . , M satisfy the Bethe ansatz equations

[ f (2λα, 2b)]N f (2λα, 2d ) =
M∏

α �=β

f (λα, λβ ), (A3)

with d =
√

b2 − 2b/c − 1. These Bethe equations correspond
to Bethe reference state with all up and all down spins.
The Bethe roots govern the spin degrees of freedom of the
system and M � N/2 gives the total z component of spin,
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Sz = N/2 − M. The solutions to equations of type (A3) are
well studied in the literature [52,53]. The solutions λα can
be real or take complex values in the form of strings. In
order to have a nonvanishing wave function they must all be
distinct, λα �= λβ . In addition, the value λα = 0 should also
be discarded as it results in a vanishing wave function [53].
Bethe equations of the type (A3) are reflective symmetric, that
is they are invariant under λα → −λα transformation. Due to
this symmetry, solutions to the Bethe equations occur in pairs
{−λα, λα}.

Applying logarithm to (A3) we obtain

−π I j +
∑
σ=±

N�(λα + σb, 1/2) + �(λα + σd, 1/2)

+�(λα, 1/2) + �(λα, 1) =
M∑

β=−M

�(λα − λβ, 1), (A4)

where �(x, n) = arctan[x/n]. Likewise, taking the logarithm
of (A2) we get

k j = 2πn j

L
+ 2

L

M∑
β=−M

�(b − λβ, 1/2). (A5)

The integers nj and Iα arise from the logarithmic branch
and serve as the quantum numbers of the states. The quan-
tum numbers Iα correspond to the spin degrees of freedom
while the quantum numbers n j are associated with the charge
degrees of freedom and they must all be different. Iα and n j

can be chosen independently implying the charge spin decou-
pling. Minimizing the ground-state energy results in a cutoff
such that π |n j |/L < πD where D = N/L is the density [54].
We consider here b > 0. The model exhibits several regimes
depending on the values of b and c or equivalently d , where
d can be real or purely imaginary. Below we will solve the
Bethe equations and construct the ground state separately in
each regime.

2. Ground-state properties

a. Kondo regime

The Kondo regime corresponds to all real values of d and
imaginary values a < 1

2 where d = ia. Consider first the case
where d is real. The ground state is given by the particular
choice of charge and spin quantum numbers n0

j , I0
α , where n0

j
are consecutively filled from the lower cutoff −LD upwards,
and the integers I0

α take consecutive values which corresponds
to real valued λα roots. In the limit N → ∞ the Bethe roots fill
the real line and the ground state can be described by ρ(λ) the
density of solutions λ, from which the properties of the ground
state can be obtained. Reflection symmetry of the Bethe equa-
tions (A3) allows us to define λ−α = −λα, λ0 = 0 [55] and
introduce the counting function ν(λ) such that ν(λα ) = Iα .

Differentiating (A4), and noticing that ρ(λ) = d
dλ

ν(λ)
[56], we obtain the following integral equation:

gsr (λ) = ρsr(λ) +
∫ ∞

−∞
dμϕ(λ − μ, 1)ρs(μ), (A6)

where gsr (λ) = ∑
σ=± Nϕ(λ + σb, 1/2) + ϕ(λ + σd, 1/2) +

ϕ(λ, 1/2) + ϕ(λ, 1) and ϕ(x, n) = (n/π )(n2 + x2)−1.

Solving (A6) by Fourier transform we obtain the following
Fourier transformed density distribution of Bethe roots:

ρ̃sr(ω) = Ne cos[bω] + cos[d ω] + 1
2 e− |ω|

2 + 1
2√

2π cosh
[

ω
2

] . (A7)

Each of the terms here may be identified with a certain
component of the system. The term which is proportional to N
is the contribution of the left and right moving electrons, the
next term which depends on d is the contribution due to the
impurity while the remaining terms can be associated with the
boundaries at x = 0,−L/2. The number of Bethe roots Msr in
the ground state of Kondo regime for d real is given by

2Msr + 1 =
∫ +∞

−∞
dλ ρsr (λ), (A8)

from which the z component of spin (Sz )sr of the ground state
in this region is obtained using the relation Sz

sr = N/2 − Msr.
Taking into account that ρ̃(0) = ∫

dλ ρ(λ) along with (A7)
we find that

(Sz )sr = 0. (A9)

Defining the fermionic parity as P = (−1)Ne we find P =
−1. For the case of imaginary d with a < 1/2, d = ia,
we have the following logarithmic form of the Bethe equa-
tions from (A3):∑
σ=±

N�(λα + σb, 1/2) + �(λα, a + 1/2) + �(λα, 1/2 − a)

+ �(λα, 1) =
M∑

β=−M

�(λα − λβ, 1) + π I j . (A10)

Differentiating (A10) and following the same procedure as
before we obtain

gsi(λ) = ρsi(λ) +
∫ ∞

−∞
dμϕ(λ − μ, 1)ρs(μ), (A11)

where gsi(λ) = ∑
σ=± Nϕ(λ + σb, 1/2) + ϕ(λ, a + 1/2) +

ϕ(λ, 1/2 − a) + ϕ(λ, 1/2) + ϕ(λ, 1).
Solving (A11) by Fourier transform we obtain the follow-

ing Fourier transformed density of roots:

ρ̃si(ω) = Ne cos[bω] + cosh[a ω] + 1
2 e− |ω|

2 + 1
2√

2π cosh
[

ω
2

] , (A12)

The number of roots is given by formula same as (A8),
from which we obtain the z component of the spin of the
ground state of Kondo regime for imaginary d as

(Sz )si = 0. (A13)

Fermionic parity of this state is again P = −1. The ground
state in the Kondo regime |0〉 is unique and is described by
the distribution ρ̃sr(ω) for d real and by the distribution ρ̃si(ω)
for imaginary d with a < 1/2, d = ia. Hence the ground
state |0〉 in the Kondo regime has total spin �ST = 0 with
odd fermionic parity. Therefore the impurity spin has been
completely screened by the electrons in the bulk, indicative of
the Kondo effect.
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b. YSR regime

The YSR regime corresponds to the range 1/2 < a < 3/2.
Consider the state with all real λα . Applying logarithm to
Bethe equations (A3) we obtain∑
σ=±

N�(λα + σb, 1/2) + �(λα, a + 1/2) − �(λα, a − 1/2),

(A14)

+�(λα, 1) =
M∑

β=−M

�(λα − λβ, 1) + π I j . (A15)

Differentiating (A14) and following the same procedure as
before, we obtain

gus(λ) = ρus(λ) +
∫ ∞

−∞
dμϕ(λ − μ, 1)ρs(μ), (A16)

where gus(λ) = ∑
σ=± Nϕ(λ + σb, 1/2) + ϕ(λ, a + 1/2) −

ϕ(λ, a − 1/2) + ϕ(λ, 1/2) + ϕ(λ, 1).
Solving (A16) by Fourier transform we obtain the follow-

ing Fourier transformed density of roots:

ρ̃us(ω) = Ne cos[bω] + e−a|ω| − e−(a−1)|ω| + 1
2 e− |ω|

2 + 1
2√

2π cosh
[

ω
2

] .

(A17)

The number of roots is given by formula same as (A8),
from which we obtain the z component of the spin of this state
as

(Sz )us = 1
2 . (A18)

This state has fermionic parity P = −1. Due to the SU(2)
symmetry we immediately deduce that there is another ground
state in the same fermion parity sector, degenerate with the
above, which has the opposite spin

(Sz )ûs = − 1
2 . (A19)

Actually, this state can be obtained by choosing the Bethe
reference state with all spins down instead of up [57]. Hence
there exists two degenerate states |1/2〉, | − 1/2〉 in the YSR
regime with spins 1/2 and −1/2, respectively, which are both
described by the distribution ρ̃us(ω).

We now show that there exists another state |0′〉 in the YSR
regime. This state can be obtained by adding a boundary string
to either of the states |1/2〉, | − 1/2〉. The boundary strings
arise as purely imaginary solutions of the Bethe equations.
These purely imaginary Bethe roots, which correspond to
the bound states, appear as poles in the dressed or physi-
cal boundary S matrix [58–60]. We categorize the boundary
strings as short boundary strings and wide boundary strings
if the absolute value of the imaginary part is lesser or greater
than one respectively. By observation we see that, in the limit
N → ∞, for a > 1/2, the Bethe equations (A3) have a unique
solution

λbs = ±i(a − 1/2), (A20)

as the two ± strings leads to the same state by reflection sym-
metry. |Im(λbs)| < 1 for 1/2 < a < 3/2, hence it is a short
boundary string in the YSR regime.

Adding the boundary string (A20) to the Bethe equa-
tions (A3) for 1/2 < a < 3/2 and taking the logarithm we
obtain∑

σ=±
N�(λα + σb, 1/2) − �(λα, a − 1/2) + �(λα, 1)

= �(λα, 3/2 − a) +
M∑

β=−M

�(λα − λβ, 1) + π I j . (A21)

The above equation can be solved by following the same
procedure as above, we obtain

ρ̃b
bs(ω) = ρ̃us(ω) + �ρ̃b

bs(ω), (A22)

where the shift �ρ̃b
bs(ω) is due to the presence of the boundary

string which is given by

�ρ̃b
bs(ω) = e−(1−a)|ω| + e−a|ω|

2
√

2π cosh[ω/2]
. (A23)

In the presence of the boundary string, the relation between
the number of Bethe roots and the density distribution also
takes a different form as compared to (A8). Namely

2Mb
bs − 1 =

∫ +∞

−∞
dλ ρb

bs(λ), (A24)

from which, using (Sz )b
bs = N/2 − Mb

bs, we find

(Sz )b
bs = 0. (A25)

Thus the resulting state |0′〉 described by the Bethe root distri-
bution ρ̃b

bs(ω) which has a boundary bound state has total spin
�ST = 0 and has odd fermionic parity P = −1.

To get the energy of this state, or of the boundary string,
we notice that it is given by the energy difference, up to
chemical potential, between the ground states with Sz = 0 and
Sz = ±1/2,

EB = E0
N − 1

2

(
E0

N−1 + E0
N+1

)
. (A26)

Here E0
N refers to the energy of the state with odd number

of particles which, in our system, corresponds to the state
|0′〉 which includes the boundary string and has spin Sz = 0.
Similarly E0

N+1 and E0
N−1 refer to the energies of the states

|1/2〉 or | − 1/2〉 with an even number of particles and spin
Sz = ±1/2. The expression (A26) is defined in Ref. [61] as
the binding energy, which precisely measures the energy cost
of adding an electron to the system. To calculate EB we use
(A5), from which we obtain the following expression for total
energy of a state with N fermions

E =
N∑

j=1

π

L
nj + iD

2

∫ ∞

−∞
dλ �(b − λ, 1/2)ρ(λ). (A27)

From (A26) we find that EB has two contributions, one from
the charge degrees of freedom and one from the spin de-
grees of freedom: EB = Echarge + ε. The charge contribution
is given by the charging energy

Echarge =
N∑

j=1

π

L
nj − 1

2

(
N+1∑
j=1

π

L
nj +

N−1∑
j=1

π

L
nj

)
. (A28)
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Note that the charge quantum numbers take all the values from
the cutoff −DL upwards. In the ground state they fill all the
slots from n j = −N to n j = −1. In the state with one extra
particle they fill all the slots from n j = −N to n j = 0. In the
state with one less particle there is an unfilled slot at nj = −1
which corresponds to a holon excitation. We obtain

Echarge = − π

2L
, (A29)

hence it vanishes in the thermodynamical limit. The spin
contribution is given by the expression

ε = E0 + iD

2

∫ +∞

−∞
dλ �(b − λ, 1/2)�ρb

bs(λ), (A30)

where E0 = D�(b − i(a − 1/2), 1/2) + D�(b + i(a −
1/2), 1/2) and �ρb

bs(λ) is the shift of the Bethe roots
distribution due to the boundary string which is given in
(A23). Evaluating (A30) we find that the spin part of the
energy of the boundary string is

ε = −� sin(aπ ). (A31)

Hence the energy of the boundary string or equivalently
the energy difference between the states |0′〉 and | ± 1/2〉 is
always less than the bulk gap �. For 1/2 < a < 1, ε < 0,
hence the ground state is |0′〉 which contains a boundary
mode which is bound to the edge where the impurity lives

and screens it. Removing this boundary mode would un-
screen the impurity which would cost energy less than the
bulk gap yielding the states | ± 1/2〉. For 1 < a < 3/2, ε > 0,
hence the ground state comprises the states | ± 1/2〉 and is
twofold degenerate. At a = 1, ε = 0 and hence the ground
state is threefold degenerate where a level crossing occurs
between the states |0′〉 and | ± 1/2〉. We also find that the
energy difference between the ground state |0〉 in the Kondo
regime and the ground state |0′〉 in the YSR regime van-
ishes as one approaches the boundary between these phases
at a = 1/2.

c. Unscreened regime

The unscreened regime corresponds to a > 3/2. By con-
sidering the state with all real Bethe roots λα , one again
obtains the states |1/2〉 and | − 1/2〉 which are given by the
distribution ρ̃us(ω). The boundary string solution λbs = i(a −
1/2) still exists but adding this solution to the states |1/2〉 or
| − 1/2〉 is not possible unless one adds bulk holes. This is due
to the fact that |Im(λbs)| > 1 for a > 3/2, making it a wide
boundary string. The energy of the state corresponding to the
addition of the wide boundary string goes above the mass gap
due to the presence of the bulk hole and hence it does not
correspond to a midgap state. Hence in the unscreened regime
the ground state comprises two states, |1/2〉 and | − 1/2〉, and
is twofold degenerate.
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