
PHYSICAL REVIEW B 105, 174513 (2022)
Editors’ Suggestion

Superconductivity in black phosphorus and the role of dynamical screening
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Simple cubic phosphorus exhibits superconductivity with a maximum Tc of up to 12 K under pressure. The
pressure dependence of Tc cannot be consistently explained with a simple electron-phonon mechanism, which
has stimulated investigations into the role of electronic correlations and plasmonic contributions. Here we solve
the gap equation of density functional theory for superconductors using different electron-electron and electron-
phonon contributions to the kernel. We find that the phonon contribution alone yields an overestimation of Tc,
while the addition of the static electronic contribution results in an underestimation. Taking into account the full
frequency dependence of the screened interaction, the one-shot GW approximation predicts Tc values in good
agreement with the experiments in the pressure range appropriate for the cubic phase. We also explore the use
of quasiparticle bands in the calculation of the electronic and phononic kernels, and show that this modification
significantly improves Tc in the high-pressure region.
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I. INTRODUCTION

Black phosphorus at ambient conditions is a layered semi-
conductor with a narrow gap. It turns into a metallic simple
cubic phase at a pressure of about 10 GPa [1], and the cubic
structure has been reported to remain stable up to 107 GPa
[2]. At low temperatures, superconductivity is observed for
pressures above 5 GPa, and the pressure dependence of the
superconducting critical temperature Tc has been the subject
of numerous experimental and theoretical studies. Despite
this effort, a thorough theoretical understanding of the pairing
mechanism and superconductivity in cubic phase phosphorus
is still lacking. On the experimental side, the situation is
further complicated by the wide variation in the measured
Tc values, depending on the experimental protocol, as indi-
cated in Fig. 1. For example, it was shown by Kawamura
et al. [3–5] that the precise pressure-temperature path has
significant effects on the pressure dependence of the su-
perconducting critical temperature. With a certain choice of
thermodynamical path, they obtained an almost constant Tc

with increasing pressure, whereas another path produced a
more rapidly increasing Tc. Later experiments by Wittig et al.
[6] showed a valleylike structure at lower pressures, which
agrees with a similar finding by Guo et al. in Ref. [7]. The
latter results, however, predicted a roughly constant Tc at
higher pressures forming a ridgelike structure, whereas the
former found a decreasing Tc after a maximum near 23 GPa.
Yet another form of the Tc versus pressure curve was reported
by Karuzawa et al. [8] who measured a pressure dependence
with a single maximum of Tc around 32 GPa.

Different mechanisms have been proposed to explain the
remarkable robustness of Tc under high pressure and vari-
ous features in the experimental measurements. However, no
consistent theory for the full pressure dependence and for
the pairing mechanism has so far emerged. Based on mea-
surements of the Hall coefficient, Guo et al. [7] interpreted

the valley structure in the Tc-versus-pressure diagram around
17 GPa as originating from a Lifshitz transition in the simple
cubic phase. This has later been supported by the theoretical
analysis of Wu et al. [10] who performed density functional
theory (DFT) [11,12] calculations of the Fermi surface and
reported two subsequent Lifshitz transitions occurring in the
pressure range where, using the McMillan equation [13,14],
a Tc valley was also predicted. Flores-Livas et al. [9], using
an ab-inito calculation based on DFT for superconductors
(SCDFT) [15–17] and the static interaction coming from
a random-phase approximation (RPA) [18] calculation, also
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FIG. 1. Pressure dependence of the experimental superconduct-
ing critical temperature Tc. The data have been extracted from Refs.
[5,7–9], as indicated in the legend. The shaded area outlines the
spread of measured values of Tc and will be used to test our theo-
retical results.
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argued that the rapid increase of Tc was due to a Lifshitz
transition. These authors furthermore argued that the Lifshitz
transition did not occur within the simple cubic phase but
rather as a result of a structural transition from the rhom-
bohedral to the simple cubic phase, while Ref. [7] reports
a transition to the simple cubic phase around 10–13 GPa.
Their analysis further suggested that the discrepancies seen
in the experimental results up to 25 GPa can be explained by
the coexistence of different structural phases. Neither of the
theoretical studies was, however, able to reproduce the plateau
found experimentally by Guo et al. for pressures between 30
and 50 GPa as well as Flores-Livas et al. in their second ex-
perimental run. Since the static interaction used in the earlier
work by Flores-Livas et al. predicted a peak instead of a ridge,
Wu et al. hypothesized that plasmonic contributions from the
inclusion of the full frequency-dependent interaction [19] may
provide an additional effective attraction which stabilizes the
Tc at higher pressures.

The goal of our study is to go beyond the previous
predictions based on the McMillan formula or static RPA
interactions by considering also the dynamic (frequency-
dependent) contribution to the screened interaction in SCDFT,
as proposed by Akashi and Arita in Ref. [19]. Using this
ab-initio scheme, we will study different levels of approxima-
tions to the electron-electron interaction, including RPA, one-
shot and self-consistent (sc)GW [20], and GW plus extended
dynamical mean-field theory (GW +EDMFT) [21–24]. For
better consistency between the calculation of the interaction
and the SCDFT scheme used to predict Tc, we furthermore
explore a quasiparticle extension of the formalism. In contrast
with the previous SCDFT study [9], we assume the simple
cubic phase in the whole pressure range, since this is the
experimentally observed structure for pressures in the most
interesting region of the possible valley-ridge Tc structure.

The paper is organized as follows. In Sec. II we detail
the SCDFT formalism and the methods we use to obtain the
screened interaction. In Sec. III we present our results and
compare them to the available experimental data and earlier
theoretical studies, while in Sec. IV we summarize our con-
clusions.

II. METHOD

A. General remarks

In this section, we introduce the methods we use for pre-
dicting Tc within the framework of SCDFT, as well as some
computational details. First, the band structure of cubic phase
phosphorus obtained from a DFT calculation will be presented
in Sec. II B, where we also show the theoretical pressure-
volume curve which is used to compare to experiments. In
Sec. II C we introduce our seven-band model and the methods
used to compute the dynamically screened interactions for it,
while the estimation of the phononic contribution is discussed
in Sec. II D. In Sec. II E we explain the calculation of Tc by
the SCDFT formalism.

B. Band structure for cubic phase phosphorus

All the calculations start with a DFT calculation of the elec-
tronic structure of phosphorus in the simple cubic phase. The
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FIG. 2. (a) DFT band structure along high-symmetry lines for
simple cubic phosphorus at a pressure of ∼38 GPa. The colored
superimposed lines define the low-energy subspace spanned by seven
bands; red, blue, and green indicate majority s-, p-, and t2g-like or-
bital characters, respectively. (b) Theoretical pressure dependence of
the lattice constant a used for the comparison between experimental
and theoretical data from FLEUR (red) and ELK (dotted black). The
diamonds mark the pressures used for the Tc estimates. (c) Pressure
dependence of the band structure.

generalized-gradient approximation (GGA) [25], as imple-
mented in the full-potential linearized augmented plane-wave
code FLEUR [26], is used to obtain the ab-initio band struc-
ture on a 32 × 32 × 32 k-point grid. The band structure along
high-symmetry lines for one pressure (P ≈ 38 GPa) is shown
in Fig. 2(a). The orbital characters of the bands near the Fermi
energy are superimposed in Fig. 2(a), showing the dominant
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contribution to the bands crossing the Fermi energy to come
from orbitals of p character. In agreement with earlier the-
oretical works [10,27–29], on increasing pressure we observe
two consecutive Lifshitz transitions; the first is associated with
the disappearance of a pocket of predominantly s character
around the R momentum between 21 and 22 GPa, which is
followed by a second one between 22 and 23 GPa with a
pocket of d character appearing around the M momentum.
We show the pressure dependence of the band structure in
Fig. 2(c). Additional details on the electronic structure for
simple cubic phosphorus under pressure can be found, e.g.,
in Refs. [10,27–29].

For comparison with the experimental results, we also fit
the energy-volume data of the DFT calculations using the
Vinet equation of state [30] to obtain the theoretical pressure
corresponding to a lattice constant in the simple cubic phase;
see Fig. 2(b).

C. Dynamically screened interactions

To move beyond DFT, we define a low-energy model con-
sisting of seven orbitals using maximally localized Wannier
functions [31] from the Wannier90 library [32] starting from
orbitals of 3s, p, and t2g character. This provides a low-energy
model in good agreement with the DFT band structure in
a large energy range around the Fermi energy, as shown in
Fig. 2(a). The band character is indicated by the majority
contribution of the s-, p-, and t2g-like Wannier orbitals to
the model bands. The Wannier spreads for these orbitals are
1.048, 1.500, and 1.399 Å2, respectively. We have checked
that additionally including states of eg character in a nine-band
model does not significantly change the description around the
Fermi energy.

We subsequently perform a systematic downfolding of the
full band structure to the low-energy space by means of a
constrained RPA (cRPA) [33] and a one-shot GW calcula-
tion [20]. In the GW approximation [20], the self-energy is
expanded to first order in the screened Coulomb interaction
W , which produces a set of coupled equations for the Green’s
function G, self-energy �, screened interaction W , and polar-
ization �.

In reciprocal space and at zero temperature the self-energy
is given by

�k(ω) = i

2π

∑
q

∫
dω′Gk−q(ω + ω′)Wq(ω′). (1)

The screened interaction Wq is calculated by screening the
bare Coulomb interaction vq by the polarization function �q,

Wq(ω) = vq + vq�q(ω)Wq(ω), (2)

where �q is calculated within RPA as

�q(ω) = − i

2π

∑
k

∫
dω′Gk(ω′)Gk−q(ω′ − ω). (3)

The GW approximation requires as initial input a noninter-
acting Green’s function, G0

k, which is commonly taken from a
DFT calculation. This replaces initially Gk in Eqs. (1)–(3),
which yield the Green’s function of the one-shot GW (or

G0W 0) approximation,

G−1
k (ω) = (

G0
k

)−1
(ω) − �k(ω). (4)

Starting from the DFT-derived G0
k, Eqs. (1)–(4) can be iterated

by using the updated Green’s function G in the next iteration,
and if this is repeated until self-consistency, the method is
referred to as scGW . In practice, however, good or even better
results are obtained by one-shot GW in many cases, unless the
self-consistency loop is modified [34].

Through a G0W 0 calculation in the full space, using the
disentangled band structure [35], we obtain the embedding
self-energy for the seven bands of our model, �

embedding
k (ω)

which, together with G0
k, yields the effective bare propagators

in the model subspace [23,24]. Similarly, the cRPA method
is used to calculate the effective bare interaction within the
model space; the bands inside the low-energy subspace, in our
case the seven-band model, are excluded from the polarization
in the G0W 0 calculation [Eq. (3)]. An equation similar to
Eq. (2) is then obtained for the partially screened interaction

Uq(ω) = vq + vq�
r
q(ω)Uq(ω), (5)

where the superscript r indicates that the summations in the
formula for the RPA polarization should be done over all
bands except for transitions within the model subspace. The
resulting frequency-dependent interaction Uq(ω) represents
the effective bare interaction for the model space. By sub-
sequently screening Uq with the polarization �model

q from the
previously excluded bands that define the model subspace, the
fully screened interaction Wq in Eq. (2) is recovered.

The G0W 0 and cRPA calculations were performed with
the SPEX code [36] at zero temperature. A 8 × 8 × 8 k grid
was used and DFT bands up to 100 eV were included in the
calculation for both the polarization function and the self-
energy. Having obtained the effective bare propagators G0

k
and interactions Uq in the model space, we employed sev-
eral approximate methods to compute the screened interaction
needed for the SCDFT formalism (see Sec. II E). These will
be briefly explained in the following.

For the RPA and GW variants of the screened interaction,
we have evaluated Wq in Eq. (2) using the RPA-type polariza-
tion function [Eq. (3)] with the following choices of Gk and
interaction parameters:

(1) The DFT noninteracting Green’s function, rotated
from the Kohn-Sham basis to the Wannier basis, and the bare
interaction vq. This defines W RPA.

(2) The bare effective propagator in the model space ob-
tained with Eq. (4) using the DFT G0

k and �
embedding
k from the

G0W 0 calculation. Furthermore, vq is replaced by the partially
screened interaction Uq(ω). This procedure defines W G0W 0

.
(3) Similar to point 2, but with the Green’s function ob-

tained in a self-consistent manner from the finite-temperature
equivalents of Eqs. (1)–(4) (see, e.g., Ref. [24]) within the
model subspace. Again, Uq(iωn) replaces vq as the bare in-
teraction in Eq. (2). This calculation defines W scGW .

The full expression for the Green’s function in method 3 is

G−1
k = iωn + μ − εDFT

k + V XC
k

− (
�G0W 0

k − �G0W 0

k

∣∣
model + �scGW

k

∣∣
model

)
. (6)
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FIG. 3. (a) Frequency dependence of the fully screened local
interaction, Wloc(ω), calculated within RPA on the real axis. The full
and dashed lines show the real and imaginary parts for the orbitals
with s (red), p (blue), and t2g character (green). (b) Comparison of
the local fully screened interaction on the Matsubara axis for the
orbital with t2g character calculated within RPA (blue), G0W 0 (red),
scGW (green), multitier GW +EDMFT (black), and GW +EDMFT
(orange).

The G0W 0 calculation provides the contribution from the
states outside the model, with the exchange-correlation po-
tential V XC

k from the DFT calculation and the self-energy
from a one-shot G0W 0 calculation within the model space
(�G0W 0

k |model) removed to avoid double countings of interac-
tion contributions [23,24].

In addition we have calculated the screened interaction
obtained from a fully self-consistent GW +EDMFT simulation
[21,23,24] (W GW +EDMFT) where we update all seven orbitals
with the local vertex corrections from EDMFT [37–39] and
in a multitier GW +EDMFT simulation, where we limit the
EDMFT corrections to only the t2g-like orbitals (W multitier)
[24].

We perform the GW +EDMFT and scGW calculations
at nonzero temperatures by first analytically continuing the
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FIG. 4. The Eliashberg function α2F (ω) for simple cubic phos-
phorus at several pressures used in this work.

initial zero-temperature calculations to the Matsubara axis.
Due to the large computational cost associated with these non-
local, frequency-dependent calculations, we are here limited
to a relatively high temperature of T ≈ 380 K (inverse temper-
ature β = 30 eV−1). We have checked that the screened inter-
actions obtained in this way do not display significant changes
when the temperature is further lowered, so that we use them
as an approximation also for the low-temperature system.

In Fig. 3(b) we show the t2g-like component of the in-
teraction from the different methods. The SCDFT formalism
requires the interaction on the Matsubara axis, but for compar-
ison we also show in Fig. 3(a) the real-frequency dependence
of the local W RPA which we can obtain directly from the
G0W 0 downfolding without analytical continuation. This fig-
ure displays the RPA interactions for the s-, p-, and t2g-like
components, which are very similar. For the calculation of
Tc in Sec. II E we retain all the off-diagonal components of
W . The method employed in this work does not allow us to
directly identify the relative importance of the contributions
from the different bands.

D. Eliashberg function

The phononic contribution to the superconductivity enters
the SCDFT formalism used in this work via the Eliashberg
function [40] which is calculated as

α2F (ω) = 1

N (0)

∑
λ,q

∑
nn′,k

∣∣gnk,n′(k+q)
λ,q

∣∣2

× δ(εnk )δ(εn′k+q)δ(ω − ωλq). (7)

Here εnk denotes the one-particle energies (measured from the
Fermi energy) for the states (n, k) obtained from the DFT
band structure, the phonon frequencies are ωλq for wave-
vector q and mode λ, and N (0) is the density of states (DOS)
at the Fermi energy. The matrix elements of the electron-
phonon coupling constants are given by

gnk,n′(k+q)
λ,q = 1√

2Mωλq

〈
n′, (k + q)

∣∣δλ
q V KS

∣∣n, k
〉
, (8)

where the variation of the Kohn-Sham potential with respect
to the displacements is denoted by δλ

q V KS, and M is the mass
of the atom. In Fig. 4 we show α2F (ω) at several pressures
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FIG. 5. Diagrammatic representation of the exchange-
correlation kernels used in this work; (a) and (b) show the
electron-phonon contributions to Zph and Kph, respectively, while
(c) illustrates the electron-electron contribution to Kel (the kernels
are defined in the text). The curled line represents the phonon
propagator D, the wavy line represents the screened Coulomb
interaction W , the single-arrowed lines the electronic Green’s
function G, and the double-arrowed lines represent the anomalous
Green’s functions F and F †.

used in this work. A more detailed discussion of the pressure
dependence of the phonons for simple cubic phosphorus can
be found, e.g., in Refs. [9,10,29].

The phononic contributions were calculated with the su-
percell method as implemented in the ELK code [41] using
the GGA functional on a 8 × 8 × 8 q grid and a 32 × 32 ×
32 k grid. The interpolated fine grids used for the k and
q integrations in Eq. (7) were taken to be 128 × 128 × 128
and 200 × 200 × 200, respectively, which was sufficient for
good convergence. Since the volume-pressure curve is in good
agreement between FLEUR and ELK, as shown in Fig. 2(b),
and as both are full-potential all-electron codes, the electronic
and phononic contributions to the SCDFT calculations de-
scribed in the next section should be compatible.

E. SCDFT

SCDFT [15–17] is a formalism which allows to pre-
dict the superconducting critical temperature Tc from first
principles. The Tc is estimated from the vanishing of the gap
function �nk, which is obtained as the self-consistent solution
of the gap equation

�nk = −Znk�nk − 1

2

∑
n′k′

Knk,n′k′
tanh[(β/2)En′k′]

En′k′
�n′k′ .

(9)
This equation involves the exchange-correlation kernels Z
and K, the energies Enk =

√
ε2

nk + �2
nk , and the inverse

temperature β. In this study, the diagonal Z term is as-
sumed to consist of only the electron-phonon contribution
Z = Zph, whereas for the K kernel we include both the
electron-phonon and the electron-electron contributions K =
Kph + Kel. A diagrammatic representation of the exchange-
correlation functionals is shown in Fig. 5.

Within the k-dependent formalism derived in Ref. [16], the
expressions for the electron-phonon kernels are

Zph
nk = 1

tanh[(β/2)εnk]

∑
nk′

∑
λq

∣∣gnk,n′k′
λq

∣∣2

× [J (εnk, εn′k′ , ωλq) + J (εnk,−εn′k′ , ωλq)] (10)

and

Kph
nkn′k′ = 1

tanh[(β/2)εnk]

1

tanh[(β/2)εn′k′]

∑
λq

∣∣gnk,n′k′
λq

∣∣2

× [I (εnk, εn′k′ , ωλq) − I (εnk,−εn′k′ , ωλq)], (11)

with the functions I and J defined in terms of the Fermi-Dirac
(nF (ε)) and Bose-Einstein (nB(ω)) distributions as

I (ε, ε′, ω) = nF (ε)nF (ε′)nB(ω)

×
(

eβε − eβ(ε′+ω)

ε − ε′ − ω
− eβε′ − eβ(ε+ω)

ε − ε′ + ω

)
, (12)

J (ε, ε′, ω) = J̃ (ε, ε′, ω) − J̃ (ε, ε′,−ω), (13)

J̃ (ε, ε′, ω) = −nF (ε) + nB(ω)

ε − ε′ − ω

(
nF (ε′) − nF (ε − ω)

ε − ε′ − ω

−βnF (ε − ω)nF (−ε + ω)

)
. (14)

For the electronic contribution to the K kernel, we employ
the fully frequency-dependent interaction kernel proposed
in Ref. [19], which has been shown in previous studies to
properly account for the electron-electron interaction effects.
This term is separated into the static and dynamic contribu-
tions, Kel = Kel, static + Kel, dynamic, to identify their respective
effects. The static part of the kernel is given by the static
screened interaction

Kel, static
nk,n′k′ = Wnk,n′k′ (0), (15)

and the dynamic (frequency-dependent) part by

Kel, dyn
nk,n′k′ = lim

�nk→0

1

tanh[(β/2)Enk]

1

tanh[(β/2)En′k′]

× 1

β2

∑
ω1ω2

Fnk(iω1)Fn′k′ (iω2)
[
W dyn

nkn′k′ (iω1 − iω2)
]
.

(16)

The anomalous (electronic) Green’s function Fnk is given by

Fnk(iω j ) = 1

iω j + Enk
− 1

iω j − Enk
, (17)

where the ω j are fermionic Matsubara frequencies, and for
simplicity we have introduced the notation W dyn

nkn′k′ (iω1 −
iω2) = Wnkn′k′ (iω1 − iω2) − Wnkn′k′ (0). This can be simpli-
fied [42] using the variable transformation iν = i(ω1 − ω2)
to the following expression which only requires a summation
over a single bosonic frequency ν,

Kel, dyn
nk,n′k′ = lim

�nk→0

1

tanh[(β/2)Enk]

1

tanh[(β/2)En′k′]

1

β

×
∑

ν

[
W dyn

nk,n′k′ (iν)
]

×
(

2(Enk − En′k′ )

(Enk − En′k′ )2 + ν2
(nF (Enk ) − nF (En′k′ ))

+ 2(Enk + En′k′ )

(Enk + En′k′ )2 + ν2
(nF (−Enk ) − nF (En′k′ ))

)
.

(18)
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The screened interaction W has commonly been computed us-
ing RPA or the adiabatic local density approximation [43,44],
whereas in the present study we will compare the results for
the screened interactions obtained by the different diagram-
matic schemes described in Sec. II C.

The phononic contribution requires a sufficiently dense
k grid close to the Fermi energy for convergence in the
low-energy regime. Often this is handled by a random sam-
pling method with a higher density of k points close to the
Fermi energy to ensure a sufficient resolution [17,45]. Due
to the prohibitively large computational cost for scGW and
GW +EDMFT, which scales quadratically with the number
of k points, we are unable to calculate Wnkn′k′ directly in this
way and instead would have to interpolate from a coarse grid.
For this reason, we resorted to the energy-averaged formalism
[17] where the electron-electron interaction is first evaluated
using the ab-initio methods on a coarse grid, as described in
Section II C. We thereafter obtain the kernels by averaging
over isoenergetic surfaces using analytical expressions for the
phononic parts while the electronic kernel has to be obtained
numerically.

The energy-averaged version of the gap equation takes the
form [17]

�(ε) = −Z (ε)�(ε)

− 1

2

∫ ∞

−μ

dε′N (ε′)K(ε, ε′)
tanh[(β/2)E ′]

E ′ �(ε′),

(19)

and the energy-averaged phononic kernel Zph becomes

Zph(ε) = − 1

tanh[(β/2)ε]

∫ ∞

−μ

dε′

×
∫

dωα2F (ω)[J (ε, ε′, ω) + J (ε,−ε′, ω)],

(20)

where μ is the chemical potential, and the Eliashberg func-
tion, αF (ω), has been defined in Sec. II D. As previously
noted, the K kernel consists of two parts in our calculations:
The electron-phonon (Kph) and the electron-electron (Kel)
contributions. The electron-phonon kernel within the energy-
averaged formalism is expressed as

Kph(ε, ε′) = 2

tanh[(β/2)ε] tanh[(β/2)ε′]
1

N (0)

×
∫

dωα2F (ω)[I (ε, ε′, ω) − I (ε,−ε′, ω)],

(21)

with N (ε) the DOS, whereas the integrals over the isoen-
ergetic surfaces must be done numerically for the electron-
electron contribution,

Kel(ε, ε′) = 1

N (ε)N (ε′)

∑
nk,n′k′

δ(ε − εnk )δ(ε′ − εn′k′ )Kel
nk,n′k′ .

(22)
The final expressions used in this work are

Kel, static(ε, ε′) = 1

N (ε)N (ε′)

∑
nk,n′k′

δ(ε − εnk )δ(ε′ − εn′k′ )Wnk,n′k′ (0), (23)

Kel, dyn(ε, ε′) = 1

tanh[(β/2)ε]

1

tanh[(β/2)ε′]
1

β

∑
ν

[
1

N (ε)N (ε′)

∑
nk,n′k′

δ(ε − εnk )δ(ε′ − εn′k′ )W dyn
nk,n′k′ (iν)

]

×
(

2(ε − ε′)
(ε − ε′)2 + ν2

(nF (ε) − nF (ε′)) + 2(ε + ε′)
(ε + ε′)2 + ν2

(nF (−ε) − nF (ε′))
)

, (24)

where we made use of the tetrahedron method [46,47] to carry
out the k integrations numerically.

The methods used to compute W at nonzero temperatures
are limited to high temperatures (described in Sec. II C) com-
pared with the observed Tc. We assume that the same W
can be used for all Tc estimates. Noting that W is an even
function in ν, to perform the frequency summation, we replace
[48]

∑
ν → β

π
(
∫ νmax

0 dν + ∫ ∞
νmax

dν) and introduce a frequency
cutoff νmax = 300 eV, after which the tail of the interaction is
assumed to be constant. This can be justified by checking that
the high-energy behavior has approximately reached the bare
value. The second integral can then be evaluated analytically
and contributes[

W dyn(νmax)
](

1 − 2

π
arctan

[
νmax

(ε ± ε′)

])
(nF (∓ε) − nF (ε′))

to the kernel. The remaining integral up to the cutoff is treated
numerically using the change of variables ν = (ε ± ε′)(1 +
y)/(1 − y) [49].

III. RESULTS

A. General remarks

We computed the critical temperatures from the vanishing
of the superconducting gap in Eq. (19) at pressures ranging
from ∼17 to 50 GPa. For pressures below 17 GPa we ob-
tained significant imaginary phonon frequencies around the R
momentum, indicative of a structural instability, in agreement
with previous DFT calculations for simple cubic phosphorus
in this pressure range [10,29]. The weight of these unsta-
ble phonon modes rapidly decreases with increasing pressure
above 17 GPa and essentially vanishes around 20.5 GPa. We
indicate the region with a potential influence from unstable
phonon modes by the vertical black line in the P-Tc plots.
However, since the weight of the unstable modes is very small
in the considered pressure range, we have neglected their
contribution in the SCDFT calculations.

To investigate effects related to the method used to
obtain the interaction W entering the electron-electron
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FIG. 6. Theoretically calculated critical temperature Tc with only
the phonon kernels as a function of pressure P and compared with the
experimental results (gray shading). To the left of the vertical line we
observe a structural instability in our phonon calculations.

contribution, we evaluated the pressure dependence of Tc us-
ing the methods listed in Sec. II C for both the static and fully
dynamic Kel kernels. The results will be presented in order
of increasing complexity in the kernels considered starting
from a purely phononic kernel and then describing the ef-
fects of further including the static electronic part, followed
by the simulations with the fully dynamic kernel. Finally
we explore a strategy that allows to include the correlation
effects not only through the interaction but also through
the phononic contribution by replacing the noninteracting
band structure used in SCDFT with the quasiparticle band
structure.

B. Phonon contribution only

The pressure dependence of the Tc values obtained with
only the phonon contributions is shown in Fig. 6. The
phonon-only approximation severely overestimates Tc by
more than a factor of two compared with the experimental
values. This is because such a calculation misses can-
cellation effects between the phononic and the electronic
contributions, which are known to suppress Tc [17]. In more
phenomenological theories this problem is usually addressed
by introducing effective parameters, for example, in the
McMillan equation through the effective interaction param-
eter μ∗ [13,14]. Within the SCDFT formalism employed
here, a similar effect is produced by adding the contribution
from the static electronic kernel, Kel, static, which drastically
reduces the predicted Tc. This underestimation in turn is
to a varying extent mitigated by including the contribu-
tions from the dynamical kernel, as will be discussed in the
following.

C. Phonon contribution plus static electronic contribution

Considering only the static interaction in the calculation
of the electronic kernel, Kel = Kel, static, we obtain a severe
underestimation of the critical temperature for all methods
employed in this work, as shown in Fig. 7 by the dashed
lines. The static results from one-shot GW , scGW , and multi-
tier GW +EDMFT are in very close agreement and only one
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 10  20  30  40  50  60

T
c 
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]
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RPA
G0W0

scGW
multitier

GW +EDMFT
RPA stat

G0W0 stat
GW +EDMFT stat

FIG. 7. Theoretically calculated critical temperature Tc as a func-
tion of pressure P compared with the experimental results (gray
shading). To the left of the vertical line we observe a structural
instability in our phonon calculations. Dashed lines show results
obtained with the phononic plus static electronic kernels, and the
full lines show the results that additionally include the dynamical
contribution, i.e., which consider the full frequency dependence of
the electronic contributions.

representative pressure-Tc curve is shown for these (labeled
G0W 0 stat).

The predicted Tc from GW +EDMFT and RPA is slightly
higher but still severely underestimated compared with the
experimental measurements. This is a first indication that
adding the local EDMFT corrections to the s- and p-like
orbitals produces significant differences compared with the
other GW -based schemes, a result which will be discussed
further in the following sections. Within the current approach,
the different results can be understood from the behavior of
the static value of the local screened interaction presented
in Fig. 3; the low-frequency screening turns out to be more
pronounced for the GW +EDMFT and RPA methods, leading
to a larger reduction of the static electron-electron interac-
tion. Since Kel, static is a positive and approximately constant
quantity, it partly cancels the Tc enhancing contributions from
the oppositely signed Kph close to the Fermi energy, which
in turn produces the observed differences in the suppression
of Tc.

Let us compare these results to phenomenological theories
predicting a Tc valley in this region [10]. When only consider-
ing the static electronic kernel in our scheme, the static value
of the nonlocal, orbital-dependent interaction plays the role of
an effective parameter controlling the critical temperature and
its pressure dependence. Instead of using it as an adjustable

174513-7



CHRISTIANSSON, PETOCCHI, AND WERNER PHYSICAL REVIEW B 105, 174513 (2022)

parameter, however, it is calculated here in a fully ab-initio
way using a range of methods. All the used methods predict
the formation of a valley structure around 20 GPa in the simple
cubic phase, a few GPa above the value where such a structure
has been observed in experiments [6,7] although at severely
underestimated Tc values. Flores-Livas et al. [9] also predicted
a small valley in this region, although their calculations were
in the A7 phase instead of the simple cubic phase in this
pressure range.

The fact that our calculated values of Tc consistently under-
estimate the experimental values irrespective of the method
demonstrates the importance of including the dynamic ker-
nel and hence the retardation effect from single-particle and
collective charge excitations (plasmons) [19] for an accurate
description of the critical temperature.

D. Phonon contribution plus static and dynamic
electronic contributions

Within our formalism, the inclusion of the fully dynamical
electronic contribution enhances Tc and brings the calculated
results into the range of the experimentally measured values,
see the symbols connected by full lines in Fig. 7. In addi-
tion, compared with the static case, the Tc curves differ more
between the methods with an almost rigid shift between the
results for one-shot GW , scGW , and multitier GW +EDMFT.
This demonstrates the sensitivity of the SCDFT approach on
the dynamic contribution to the electronic kernel and allows
us to identify the most suitable method for the present system.
The best agreement with experiment is found for one-shot
GW . This is consistent with other studies on weakly correlated
systems where fully scGW is found to perform worse than
one-shot GW [50].

As discussed in the previous section, the static value of
W is almost the same for one-shot GW , scGW , and multitier
GW +EDMFT. Instead, we can relate the observed differences
to the frequency dependence of the local screened interaction
shown in Fig. 3, where the dynamical screening varies more
widely between the methods. The significantly reduced RPA
screening at higher energies (compared with one-shot GW )
together with the overscreened static interaction is respon-
sible for the overestimation of the Tc in this approximation
(see the full red line in Fig. 7). Also the GW +EDMFT in-
teraction shows two frequency regimes; at low frequencies,
it over-estimates the screening compared with one-shot GW
while at high energies, it underestimates it. The net result
is again a less accurate Tc (black line in Fig. 7). It should
also be noted that, unlike the static kernel, the dynamic one
is no longer approximately constant as a function of en-
ergy due to the additional factors in Eq. (24). This limits us
from drawing any conclusions based on the local interaction
only.

The fact that GW +EDMFT worsens the agreement with
experiments indicates that the local self-energy and polariza-
tion contributions are overestimated in GW +EDMFT relative
to the nonlocal ones. As was discussed in Ref. [24], for weakly
correlated materials with strong nonlocal screening, correc-
tions beyond the RPA-type diagrams would be needed for the
nonlocal part. The replacement of the local polarization by the
EDMFT result, but the restriction of the nonlocal polarization

to a simple bubble, produces a mismatch between local and
nonlocal screening effects and an incorrect estimation of the
interaction. In the case of one-shot GW , the local and nonlocal
polarizations are treated on equal footing, and the estimated Tc

is improved accordingly.
The Tc is substantially different when only the self-energies

and polarizations of the t2g orbitals are corrected with the local
quantities from EDFMT within the multitier GW +EDMFT
formalism, which produces results that are more similar to
one-shot GW and scGW . This indicates two things: First that
local corrections to the (almost empty) d orbitals are of minor
importance in this material for the calculation of W and the
description of the pressure dependence of the critical temper-
ature, and second that the effects of treating the s and p states
with the local EDMFT corrections is primarily responsible
for the overestimation of Tc in GW +EDMFT. This agrees
with the previous discussion on the importance of not adding
the full local contributions to states whose screening is not
well described by a bubble approximation to the nonlocal
diagrams.

In contrast with the very sharp Tc valley found by Wu et al.
[10] where the maxima on the two sides roughly coincide, we
observe a more shallow structure with a significantly lower
Tc on the low-pressure side of the valley for all methods
tested. This is in agreement with the available experimental
data which show a valley structure. The location of the valley
is shifted to too high pressures by a few GPa compared with
experiment, in agreement with Ref. [10]. Since the valley is lo-
cated around the same pressure (P ≈ 20 GPa) for all methods,
this position is determined by the underlying DFT calculation
and apparently is reasonably well described already at this
level.

It is, furthermore, worth pointing out a second change to
the P-Tc curves. In the case of GW +EDMFT, the modifica-
tions are less trivial compared with the rigidly shifted G0W 0,
scGW , and multitier GW +EDMFT curves as becomes clear
from Fig. 7. The most notable difference is an increase in the
separation between the valley minimum and the Tc maximum
(�T peak

c ≈ 3.5 K) on the inclusion of the EDMFT self-energy
and polarization. This behavior is consistent with the exper-
imental data of Guo et al. [7] (the maximum, however, is
located ∼5 GPa too low in our calculations). In addition,
at higher pressures, the Tc curve starts to deviate from the
monotonic decline predicted by the other methods. A more
thorough discussion on the changes to the valley and high-
pressure dependence observed will be presented in the next
section.

One may wonder if these deviations observed only in the
GW +EDMFT scheme are indicative of some nontrivial corre-
lation effects not properly captured within the current SCDFT
formalism, or if they merely represent an artifact of a method
that is not suitable for treating a weakly correlated system
such as simple cubic phosphorus, as discussed previously. To
explore this question we have extended the SCDFT formalism
to also take into account correlation-induced modifications of
the DFT one-particle energies by replacing them with quasi-
particle energies. This approach goes beyond a treatment of
correlations through the screened interaction W only and will
be described in the next section.
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E. Quasiparticle correction

In the simulations so far, electronic correlation effects en-
tered through the screened interaction W , while the phononic
contribution and the band structure were taken from the
original DFT calculation. Here we explore two more consis-
tent schemes without fundamentally changing the formalism.
Specifically, we will update the band structure and DOS in
(i) the electronic contribution only by replacing the DFT
one-particle energies and DOS by the quasiparticle energies
obtained from the solution of the quasiparticle equation and
(ii) by also approximately taking into account this change in
the phononic kernel.

Since the solution of the quasiparticle equation requires
knowledge of the frequency dependence of the self-energy,
we use in the following calculations the G0W 0 quasiparticle
energies. These can be obtained without analytical continua-
tion of �(iωn) to the real axis (the real-axis data are directly
available from SPEX).

The quasiparticle energies ε
QP
nk are calculated as the solu-

tion of the equation

ε
QP
nk = εDFT

nk + �nk
(
ε

QP
nk

) − V XC
nk (25)

and define the DOS NQP(ε). In scheme (i), these are then
substituted for εnk and N (ε) in Eqs. (19), (23), and (24). In
scheme (ii), we additionally replace the one-particle energies
in the Fermi surface integration in the calculation of α2F
[Eq. (7)] while keeping the electron-phonon coupling con-
stants from DFT. For a fully consistent calculation, gnk,n′k′

λq
would also need to be recalculated. This could be done within
the recently developed GW perturbation theory (GW PT) [51]
where, in a manner similar to Eq. (25), the effects of the
electronic self-energy correct the DFT V XC

nk also in the calcu-
lation of the electron-phonon coupling constants gnk,n′k′

λq . Such
a treatment, however, goes beyond the scope of the present
study.

Applying the procedures (i) and (ii) to one-shot GW ,
we obtain in both cases a reduction in Tc so that the the-
oretical results are in reasonable agreement with most of
the available experiments; see Fig. 8 (and Fig. 1 for addi-
tional experimental results). In addition to a rigid shift to
an overall improved Tc, we note that the quasiparticle cor-
rection has an additional nontrivial effect on the pressure
dependence. Method (i) produces a small upward shift in the
high-pressure region (orange curve) compared with one-shot
GW (blue curve), while the valley remains mostly unaffected.
Strikingly, when the phononic contribution is also corrected
in method (ii), the valley up to the peak maximum again
remains approximately unaffected, while the high-pressure
critical temperatures above 30 GPa are significantly pushed up
compared with the low-pressure region (green curve). The rel-
ative shift increases with pressure, and the resulting pressure
dependence becomes similar to the almost constant Tc found
in some of the experiments. For a simpler comparison of the
pressure dependence, we show the P-Tc curves shifted with
respect to the valley minimum in Fig. 9 and compare them
with the experimental data from Guo et al. [7] who observed
a valley-ridge structure of the critical temperature.

Finally we also remark on what happens if the quasi-
particle correction is applied to methods other than G0W 0.
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FIG. 8. Correction to the pressure dependence of the theo-
retically calculated critical temperature Tc for G0W 0 from the
quasiparticle band structure. The two methods (i) and (ii) described
in the text are compared with the experimental data from Ref. [7]
and the original G0W 0 results. Also the (multitier) GW +EDMFT
result corrected with the G0W 0 quasiparticle energies is shown for
comparison. To the left of the vertical line we observe a structural
instability in our phonon calculations. The full frequency dependence
of the electronic contributions has been considered here.

For this discussion, we focus on the most advanced method
considered in this work, GW +EDMFT. Since GW +EDMFT
calculations are performed on the Matsubara axis, we do
not have direct access to the �(ω) needed for the solution
of Eq. (25), and a numerical analytical continuation would
be required. Here we limit ourselves to just correcting the
band structure and DOS in methods (i) and (ii) with the
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FIG. 9. Calculated critical temperature Tc shifted with respect to
the valley minimum for the various G0W 0 calculations and the (mul-
titier) GW +EDMFT results corrected with the G0W 0 quasiparticle
energies compared with the experimental data reported in Ref. [7].
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ε
QP
nk obtained from one-shot GW which are known exactly.

In the SCDFT scheme, this change corresponds to using a
G0W 0 quasiparticle band structure instead of that of DFT
while ignoring further corrections to the quasiparticle ener-
gies from the EDMFT self-consistency cycle in the model
space. Since the bare propagators G0

k of the model contain a
G0W 0-type self-energy correction, we believe that this is more
consistent than the use of the DFT bands. The incorporation
of GW +EDMFT-derived quasiparticle energies into SCDFT
will be left for future work.

Before describing the results we want to repeat that
GW +EDMFT is arguably not the best choice for a weakly
correlated material like black phosphorus. Nevertheless, the
effects of the quasiparticle correction are once again remark-
able. As seen by comparing Figs. 8 and 7 (black curves), the
severe overestimation of Tc in the original GW +EDMFT is
to a large extent corrected, with the theoretical predictions
becoming closer to the experimental results, now comparable
in magnitude to the predictions from the uncorrected multitier
calculations (green curve in Fig. 7). This indicates either that
the quasiparticle approach somehow corrects the overestima-
tion of Tc coming from the inconsistent treatment of local
and nonlocal correlations in the s and p subspaces or (more
likely) that the overestimation of Tc is linked primarily to
an inconsistency between the screened interaction W and the
band energies used in the SCDFT calculation. In the latter
case, the lowest-order description of the nonlocal screening
would then merely be responsible for the remaining modest
overestimation of Tc.

The most interesting effect on the GW +EDMFT results is,
however, as in the case of G0W 0, the formation of a ridgelike
structure at higher pressures. While the structure of the valley
remains mostly unchanged, �T peak

c retains its good agreement
with the experiments of Guo et al., as demonstrated in Fig. 9.
The same quasiparticle correction applied to the multitier
GW +EDMFT scheme is shown as well with a mostly rigid
shift from the G0W 0 result, as in the uncorrected case. The
same ridgelike high-pressure dependence is observed, and the
shift to higher Tc brings the theoretically calculated critical
temperatures closer to the experimental reference values avail-
able in this pressure range.

The differences between the multitier and the
GW +EDMFT results support the previous conclusion
about the origin of the remaining overestimation of Tc

in the GW +EDMFT framework coming from the incorrect
description of the nonlocal screening in this class of materials.
On the other hand, the effects of the quasiparticle corrections
also indicate that a better starting point than the initial DFT
(GGA) calculation or more accurate quasiparticle energies is
required for a quantitatively accurate description.

IV. SUMMARY AND CONCLUSIONS

We have tested the reliability and predictive power of the
SCDFT scheme and showed how it can be combined with
the dynamically screened interactions from state-of-the-art
many-body methods. By systematically studying simple cu-
bic phosphorus under pressure, we have tested the strengths
and weaknesses of different schemes for this type of weakly

correlated material. Specifically, by adding the dynamic part
of the electronic kernel and limiting the effects of correlations
to only W , we do not observe any formation of a ridge in
the P-Tc dependence at high pressures, as speculated in Ref.
[10]. Instead, a rigid shift to higher Tc is found, bringing the
theoretical values closer to the experimental ones. In addition
to demonstrating the importance of using the full frequency
dependence of the interaction to obtain meaningful estimates
of the critical temperature for all the methods considered,
this suggests that the peculiar pressure dependence of Tc in
the high-pressure region is not only of plasmonic origin. We
further found that the formation of a Tc valley in the simple
cubic phase is predicted a few GPa too high compared with
the experiments, independent of the method. This feature is,
therefore, a result of the underlying DFT calculations and the
Lifshitz transitions observed in this region, in agreement with
the previous work by Wu et al. [10] based on the McMillan
equation.

Without corrections to the SCDFT formalism from corre-
lations beyond W , the theoretical methods related to one-shot
GW provide the overall best agreement of Tc with the avail-
able experimental data, confirming that the resummation of
a subclass of diagrams in scGW also worsens the accuracy
for this material-dependent property. Similarly, in the case
of GW +EDMFT, the omission of higher-order nonlocal po-
larization diagrams together with the more exact treatment
of local contributions does not work well (specifically when
applied to the s and p orbitals), in agreement with previous
discussions related to the application of GW +EDMFT to
weakly correlated materials [24].

We further observed that with increasing complexity of
the treatment of correlations, the pressure dependence of Tc

is changing from a monotonous decay (with increasing pres-
sure) toward a valley-ridge structure, in good agreement with
recent experiments predicting such a nontrivial structure [7].
Modifications in the treatment of the phononic contribution
have significant effects on the high-pressure (25–50 GPa) P-Tc

curve, whereas the low-pressure region remains mostly unaf-
fected. We have considered here an ad-hoc modification of
the phononic kernel, which corresponds to replacing the DFT
band structure with the quasiparticle energies from G0W 0 and
partially recalculating the phonons with these modified bands.
This indicates the importance of the initial starting point for
the phonon calculation. GW PT [51] could give an improved
description, or the use of alternative phononic kernels, such as
recently proposed in Ref. [52], may provide a viable route.

Although it is questionable if GW +EDMFT is a suitable
method for black phosphorus, we have demonstrated a relative
success in the description of the high-pressure dependence of
Tc, especially in combination with the quasiparticle correction
to the phonons. Due to the dependence of the theoretical
results on the method used to obtain the electronic kernel, we
speculate that the combination of GW +EDMFT and SCDFT
could work well for more strongly correlated systems, where
GW +EDMFT should provide a superior description of the
fully screened electron-electron interaction compared with the
other methods considered [23,24,53–55]. This point will be
investigated in future works. To properly capture the renor-
malized momentum-dependent spectral function also within
the SCDFT formalism, some type of quasiparticle correction
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would, however, have to be implemented in the calculation
of the electronic and phononic kernels. For the phononic
part, an improved starting point could be obtained from a
DFT+DMFT calculation of the phonons [56,57] or using
DFT+U [58,59].

To summarize, our results show that many-body calcula-
tions of the screened interaction W in combination with the
parameter-free SCDFT formalism for calculating Tc provides
a framework that is capable of predicting the correct range
of Tc values in the simple cubic phase of black phosphorus.
While the frequency dependence of the interaction is impor-
tant for obtaining realistic Tc values, it is not solely responsible
for the peculiar pressure versus Tc dependence that has been
observed in experiments. Instead, our results indicate that
it is important to use an improved phononic contribution,
which goes beyond the common DFT-based kernel. To clarify
whether or not quasiparticle corrections are sufficient for an
accurate prediction of the P-Tc diagram, more systematic and
rigorous calculations and additional accurate experimental
reference data would be needed.
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APPENDIX: Tc FROM THE MCMILLAN FORMULA

The superconducting critical temperature can also be es-
timated from the Allen-Dynes modified McMillan formula
[13,14]. In Fig. 10 this estimate is compared with the Tc

calculated within SCDFT using the fully frequency-dependent
electronic kernel from one-shot GW . The effective interaction
μ∗ = 0.10 was chosen such that the minima coincide in the
valley region. The electron-phonon coupling constants λ, ωln,
and ωrms used in the McMillan formula are listed in Table I. To
further highlight the importance of the details of the electronic
structure and its effect on the effective interaction for simple
cubic phosphorus under pressure, we also include the μ∗
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FIG. 10. Theoretically calculated critical temperature Tc from
the McMillan formula (with μ∗ = 0.10) and from SCDFT (with
the frequency-dependent electronic kernel from one-shot GW ) as
a function of pressure P compared with the experimental results
(gray shading). To the left of the vertical line we observe a structural
instability in our phonon calculations.

values corresponding to the Tc obtained from SCDFT. These
values show a ∼16% difference between the valley and the
peak maximum.

TABLE I. Pressure dependence of λ, ωln, and ωrms. Also shown
are the estimates of the effective interaction μ∗ based on the Tc

values calculated with SCDFT and the fully frequency-dependent
interaction kernel from G0W 0.

P (GPa) λ ωln (K) ωrms (K) μ∗ (G0W 0)

17.0 0.631 388 416 0.101
18.5 0.606 400 426 0.098
20.5 0.595 411 436 0.099
22.0 0.607 414 440 0.104
26.5 0.684 401 440 0.114
30.1 0.667 423 460 0.114
34.0 0.647 440 477 0.114
38.0 0.619 451 491 0.111
42.0 0.598 458 503 0.110
46.0 0.582 464 514 0.108
49.5 0.566 470 524 0.104
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