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The fluctuation conductivity of a moderately clean type II superconductor with strong Pauli paramagnetic
pair breaking (PPB) is studied by focusing on the quantum regime at low temperatures and in high magnetic
fields. First, it is pointed out that, as the PPB effect becomes stronger, the quantum superconducting fluctuation
is generally enhanced so that the renormalized Aslamasov-Larkin (AL) fluctuation conductivity tends to vanish
upon cooling above the irreversibility line. Furthermore, by examining other [the DOS and the Maki-Thompson
(MT)] terms of the fluctuation conductivity, the field dependence of the resulting total conductivity is found to
depend significantly on the type of the vortex lattice (or, glass) ordered state at low temperatures where the strong
PPB plays important roles. By comparing the present results on the fluctuation conductivity with insulating and
negative magnetoresistance behaviors seen upon entering a PPB-induced novel SC phase of iron selenide (FeSe),
it is argued that the vortex matter states of the superconducting order parameter in the second lowest (n = 1)
Landau level are realized in FeSe in the parallel field configuration in high fields and at low temperatures.
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I. INTRODUCTION

Conventionally, the electrical conductivity is a reasonable
measure of the effects of the critical fluctuation of the su-
perconducting (SC) order parameter [1]. In particular, the
resistive broadening [2-5] above a vortex lattice melting field
is the most remarkable transport phenomenon in a fluctuating
type II superconductor under an applied magnetic field. So
far this behavior measuring the width of the vortex liquid
regime [6,7] has been studied in detail in the relatively clean
superconductors [8,9] in low fields and dirty materials in a
broad field range including the low temperature regime [10].
In contrast, the fluctuation effect associated with the vortex
state has been rarely discussed [11] in a situation where a
strong paramagnetic pair-breaking (PPB) effect is remarkably
seen.

Recently, a novel high field SC (HFSC) phase has been
detected at low temperatures in the iron-based superconductor
FeSe in a field parallel (H L ¢) [12,13] and perpendicular
(H || ¢) [14] to the basal plane of the material, and these
HFSC phases are believed at present to belong to the category
of Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) states [15,16]
based on the anomalously high value of the ratio |A|/EF in
this material, where |A| (Ep) is a typical value of the SC
energy gap (Fermi energy) [17]. Although both of the PPB
strength (the so-called Maki parameter [18]) and the fluctu-
ation strength (the so-called Ginzburg number [1]) become
larger with increasing |A|/Ep, a large |A|/Ep in most of,
e.g., heavy-fermion materials known so far did not lead to an
enhanced fluctuation due to a large density of states (DOS)
N(0) in the normal state which reduces the Ginzburg number.

Among the features on the field vs temperature (H-T')
phase diagram of FeSe, the most remarkable ones are the
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diminished vortex liquid regime [13] above the HFSC phase
and the resistive behavior [12] in H L ¢. There, the resistivity
under a current J parallel to the field H (H || J) shows both
an insulating behavior in the temperature (7)) dependence and
negative magnetoresistance in the field (H) dependence [12].
The origin of this strange 7 and H dependencies is believed to
consist in the SC fluctuation effect because they are not seen
at higher temperatures and in higher fields far above the irre-
versibility line and the estimated H,; line. It will be interesting
to see whether this resistive behavior is related to the HFSC
phase or not. In fact, the insulating SC fluctuation behavior
has also appeared in other clean 3D materials [19] where no
behavior suggestive of strong PPB is seen, while the negative
magnetoresistance behavior in the quantum fluctuation regime
of a superconductor showing strong PPB effects, to the best of
our knowledge, has never been reported so far.

In this paper the fluctuation conductivity in an anisotropic
three-dimensional type II superconductor with a moderately
strong PPB effect is studied by focusing on the low 7" and high
H region. First, we point out that the friction coefficient of the
dissipative SC fluctuation remarkably diminishes as the PPB
effect is stronger, implying an enhancement of the quantum
SC fluctuation due to PPB. This qualitatively explains the
insulating 7' dependence [20,21] of the resistivity curve seen
in FeSe [12]. On the other hand, the remarkable negative
magnetoresistance [12] in the fluctuation regime is found to
be directly connected with the identity of the PPB-induced
HFSC phase. One example of possible phase diagrams is
shown in Fig. 1, where the temperature and the magnetic field
are normalized by the zero field SC transition temperature 7
and To|dH» /dT| at T = T, respectively. It will be seen that
the low T portion of the H.(T') curve is determined by the
second lowest (n = 1) Landau level (LL) mode of the SC

©2022 American Physical Society
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FIG. 1. Schematic high field phase diagrams of a type II super-
conductor with moderately strong PPB and strong fluctuation, where
h=H/|[T|dH,(T =T,)/dT|], and t = T /T,. The blue dashed
curve with square symbols denotes the mean field H,, curve of the
SC order parameter modes in the lowest (n = 0) LL, while the red
dashed curve with circle symbols is the corresponding one of the
second lowest (n = 1) LL modes. The remaining two dashed curves
are the first order H,,-transition line (blue) and the FFLO transition
line (black) for the n = 0 LL modes in the mean field approximation.
In the present situation with the SC fluctuation, all of these four
dashed curves are crossover lines, and the real phase transition lines
consist of the solid lines. The blue and red solid lines are the vortex
glass (VG) transition lines defined in » = 0 and n = 1 LLs, respec-
tively, while the black solid line expresses a structural first order
transition line between the ordinary triangular pinned vortex solid
(or, the vortex glass) in the n = 0 LL and an anisotropic n = 1 LL
vortex solid [22,23] which is believed to be the HFSC phase in FeSe
in H L c. We stress that all of the solid lines in this figure are just
sketches of real phase transition lines. Further details are explained
in Sec. I'V.

order parameter. It implies that, in the case with moderately
strong PPB, the SC ordered state at the low 7" and high H
corner should be the vortex lattice, or the corresponding vor-
tex glass, of the SC order parameter in the n = 1 LL [22-24].
By comparing the fluctuation conductivity in the n =1 LL
vortex liquid regime with that in the situation where the HFSC
phase is a vortex lattice in the lowest (n = 0) LL with a FFLO
modulation parallel to the field, we find that the sum of the
Maki-Thompson (MT) and DOS terms [1] of the fluctuation
conductivity in clean limit shows negative magnetoresistance
in the fluctuation regime at low enough 7' only when the SC
fluctuation is in the n = 1 LL. Through the resulting qualita-
tive agreement between the present theoretical result on the
resistivity curves and the data in FeSe in H L ¢, we argue that
the HFSC state found in FeSe in H L ¢ should be the vortex
lattice or the glass formed in the n = 1 LL.

The present paper is organized as follows. In Sec. II the
fluctuation conductivity in the Gaussian approximation is de-
fined, and the conductivity components to be found within the
Ginzburg-Landau (GL) approach are derived. In Sec. III the
terms of the fluctuation conductivity to be added to the nor-
mal conductivity are investigated by focusing on the quantum
regime. The resulting resistivity curves in the quantum regime

are discussed based on two different scenarios in Sec. IV, and
the summary and our conclusion associated with the data in
FeSe are mentioned in Sec. V. Some details on our theoretical
analysis are explained in Appendixes.

II. GINZBURG-LANDAU FLUCTUATION CONDUCTIVITY

We start from the weak-coupling BCS Hamiltonian

> 2
H = Z /d3r<p2(r)|:ﬁ<—iV + %A> —Io}pg(r)
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— gl Y vi(@w(g), ()
q

where ¢g = m/i/|e| is the flux quantum, [ is the Zeeman
energy, |g| is the attractive interaction strength, and

1
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is the pair-field operator expressed by a spin-singlet pair-
ing function w, and ¢, which is the Fourier transform
of the electron operator ¢, (r). Note that, in the mean field
approximation of superconductivity, the SC order parameter
field A(q) is the ensemble average of W(q), and, when the
Cooper-pairs have a finite momentum, it is expressed by a
nonvanishing q.

Hereafter we assume a situation with no SC long range
order. Then, A(q) expresses the fluctuation of the SC order
parameter. The total conductivity o, for a current parallel to
the z axis is given in the DC limit in terms of the current-
current response function Q,, by

0::(Q) = —o|Q], 3

where
1
0..(2) = V—T<(jz(k =0,Q2)j.k=0,-Q)e)g. @4

In Eq. (4), j denotes the current density operator, the bracket
( )e1 denotes the statistical average with respect to the electron
field, while ( )g implies the ensemble average with respect to
the fluctuation (boson) field A, (q), where 2 and w are the
bosonic Matsubara frequencies. Using the free energy F for
the model (1), Eq. (4) can be formally written as

1 &%F
V 8A8A; |54 o

0. = ©)
where a disturbance §A.Z was added to the vector potential A
in Eq. (1). By dividing F into the normal free energy and its
fluctuation contribution, the total conductivity o, consists of
the normal conductivity (on),; to be given later [see Eq. (29)]
and the corresponding fluctuation conductivity (oy),.. As is
presented in Fig. 2, the three contributions [Figs. 2(b), 2(d),
and 2(e)] are derived from Fig. 2(a) expressing the Gaussian
(free) fluctuation free energy based on Eq. (5).

In this section we focus hereafter on the AL term drawn in
Fig. 2(b) with Fig. 2(c) expressing the current vertex. In the
DC limit, the resulting conductivity o "™ takes the form

1
oM = —@QE?L)(Q), ©6)
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FIG. 2. Feynman diagrams describing (a) the free energy of the
Gaussian SC fluctuation, (b) Q¥1), (¢) the triangular vertex appear-
ing in 0V, (d) QP|o, and (e) the corresponding contribution
Q™D |, from the MT diagram. A thick solid curve and a double thin
solid one denote the electron Green’s function and the fluctuation
propagator, Eq. (18), respectively.

where

1
0A(Q) = 77 (e (e (= D)k, 7

and j,(2) = j,(k =0, Q). Equation (7) represents the dia-
gram Fig. 2(b). By using the quasiclassical treatment on the
orbital contribution of the magnetic field, the averaged current
vertex, i.e., Fig. 2(c), in the expression (7) takes the form

G = T 333 / de,N(0)

x <|wp|2ﬁz / d*r A% (1)Gy—c.—o (P)

X ge,a(_p - H)QH—Q,G(_p - H)> AaH—Q(r)a
p
®
where I1 = —iV, + 27 /¢o)A(T),
1
Geo(p+ 1) = )

ie[l+ Qrle)) N —¢,—vp-MM—0l

is the normal electron’s Green’s function, vg is the magnitude
of the Fermi velocity, v, and 7 are the group velocity and
the lifetime of a normal quasiparticle, respectively, and ( ),
denotes the angle average over the Fermi surface.

J

The €2 dependence of the response function Q{2 has two
origins. One is the 2 dependence carried by the fluctuation
field Ag, and the other is that carried by the normal electrons
in the current vertices Eq. (9). In contrast to the 2D case
in T — 0 limit [25], the latter contribution is nondivergent
when the transition field is approached, and, in 7 — 0 limit,
leads merely to a finite value in the present 3D case which
is, in the clean limit, much smaller than the corresponding
limiting values of the DOS and MT terms [1] to be discussed
in Sec. III. Then we may neglect the w and 2 dependencies in
the current vertices, and, as a consequence of the gauge invari-
ance, the resulting expression of o*) becomes equivalent to
the fluctuation conductivity following from the corresponding
Ginzburg-Landau (GL) free energy. To see this in an applied
field parallel to the z axis, the order parameter A will be
decomposed into the LLs in the form

> Cukgotinilx, y)e, (10)
k.q

An,w(r) =

where u, ; is a normalized eigenfunction of the nth LL, and
k is a wave number measuring the LL degeneracy. Using the
formula, D72 = fooo dpp exp(—Dp) in the expression appear-
ing after the €, integral in Eq. (9) and the relation

/d3rAZ,w(r) e—ipr<H/7}0An‘w+Q(r) = Z e_ivz‘p’oq/T"O

x(1 = a1 |1l 0De MO 2CE,  Crkgore (11

(see Appendix A), Eq. (9) is found to be rewritten in the form

2mh
(e = LN(O)Z( gn<q>>
Z n,k,q,0 nkqw-}—Q, (12)

where w is given in terms of the velocity v, = (vy, vy, v;) by

I vy +iv,
M =
\/EI’H TCO

with ry = /¢o/(2nH), and g,(I1;) is the gradient operator
of the resulting Ginzburg-Landau (GL) action

13)

71
SoL = N(0) / d3r<;[Tl;A;w[nn|w| +an<0>+gn(nz)]An,w} +§ fo drm(r)r‘) (14)

for the SC fluctuation A = Y, A, (1) = ), , Apwe " The
gradient operator is derived microscopically in the form [11]

g(T1,) = B, T2 + C,I12, (15)

where
Bn =GS9n = _' C%) ) PP P

11202
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x (v [wpPe (1 = 8,11l 07),,  (16)
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where & = vp/(2nTy). As is well known, in low fields
or at high temperatures, b, is positive, while ¢, tends to
be negative. In such cases, the q4 term in the fluctuation
propagator is conventionally neglected. In contrast, at lower
temperatures and in higher fields so that the PPB effect
becomes stronger, the coefficients b, and ¢, tend to change
their sign (see Fig. 5 in Sec. IV).

In Eq. (14) the mode-coupling (last) term was phenomeno-
logically introduced. Furthermore, here and below, the units
kg = 1 and i = 1 are used. Then, in the Gaussian approxima-
tion, the nth LL fluctuation propagator is given by

Dy(g, @) = {|Cukg.0lPn
_ T
— NO)nalo| + 74+ ga(@)]

which is k independent due to the LL degeneracy.

In the Gaussian approximation, the fluctuation is unrenor-
malized, and the mass parameter r,, in Eq. (18) becomes
a,(0) defined in Eq. (14) which vanishes as the H.,(T') line
is approached. In fact, the n =0 (n = 1) curve in Fig. 1 is
the line on which ag(0) =0 [a;(0) = 0]. However, r, re-
mains nonvanishing even in lower fields once the fluctuation is
renormalized by taking account of the mode-coupling terms.
Further details on how to renormalize a given nth LL fluctua-
tion will be mentioned in Sec. I'V.

Hereafter our discussion will be continued by focusing
on the cases with moderately strong PPB. In this case, on
cooling along the H.(T) curve, ¢, becomes positive at an
intermediate temperature, while the coefficient b,, of the q2
term depends on the LL indices [11]: The coefficient b, be-
comes negative at lower temperatures, and hence, A,_o(r)
tends to form a spatial modulation [15,16] parallel to the
applied magnetic field H. In contrast, b; remains positive even

(18)

J

at lower temperatures, indicating that the n = 1 LL vortex
state may not be accompanied by a spatial modulation parallel
to H. This difference in the sign between by and b; plays an
important role in discussing the resistivity data in FeSe [12]
later (see Sec. IV).

The microscopic expression on the friction coefficient of
the nth LL fluctuation is given by

1 o0 2.2
= — / dp pf () w21 — 8ot lul2pD)e PP 2y
T Jo
(19)

To see the PPB effect on this quantity, the 2D case under H
perpendicular to the 2D plane will be considered. In this case,
|i¢|? is independent of the momentum p on the Fermi surface,
and, in T — 0 limit, p f(p) approaches cos(2/p/T.y). Then,
we easily obtain

I 2
i = s () ]
F

%3

2
x{1+an,l[8(%> —1“. (20)

In the absence of PPB, i.e., in I — 0 limit, Eq. (20) reduces
to the corresponding result in 2D clean limit (see Eqs. (24)
and (25) in Ref. [25]). The crucial feature in Eq. (20) is the
exponential reduction factor due to finite PPB. It implies an
enhancement of the quantum fluctuation effect due to PPB.

It is easily performed to obtain oA by substituting
Eq. (12) into Eq. (7). Arranging the w summation and per-
forming the ¢ integral, the AL term of (oy),. is found to
become

o AL _ ZG(AL) _ _2mé H Z T Z by + 6/cpry(@)
2z 2z, n RQ ¢0 n 37‘,1((1))

n=0 n=0 w

2 b;21 - 4cn[rn + rn(w) + v rnrn(w)] + 2bn\/c_n[\/r_n+ v rn(w)]

23/ r(@)[by + 23/Ta(@)cn]

- \/E + vV r”(w) (bn - 2\/ Cnrn) bn + 2/\/ I'nCn + [bn - 2\/ Cnrn(w)]v bn + ZV rn(a))cn

where r,(w) = r, + nu|w|, and Ry = 2mh/(2e)? is the resis-
tance quantum 6.45 k2. The factor H/¢y is a result of the
k summation, i.e., the LL degeneracy [see Eq. (10)]. In the
case with a positive b, and a negative c,, it is conventionally
assumed that ¢, = 0. In this case, the corresponding GL result
of the thermal fluctuation conductivity [1,4,5,8]

(el) _ Té Z’?n\/b_n

3/2
r,,/

g

= 22
“ 8RQFI%I ( )

n=0

is obtained as the w = 0 term of Eq. (21). On the other hand,
Eq. (21) is found by changing the @ summation to the w
integral, to approach zero in T — 0 limit and hence, leads to
an increase, i.e., insulating behavior, of the resistivity [10,19—
21]. This quantum behavior is enhanced in the present case

], 2

(

with strong PPB due to the above-mentioned reduction of the
friction coefficient n,,.

Next, we turn to the vortex-glass (VG) fluctuation term
oY® which becomes divergent as the VG transition curve
Hyg(T) to be identified with the experimental irreversibility
line [12] is approached from above. In Ref. [13] the broad-
ened transition line of the vortex lattice melting has been
determined over a wide temperature range through the heat
capacity measurement in each of H || ¢ and H L ¢ cases.
However, in the low temperature regime of our interest where
the melting line in H L ¢ apparently merges with the H.»(T')
line [13], no clear data identifying the position of the melting
line has been found possibly due to an effective enhancement
of the vortex pinning strength at such lower temperatures. This
fact implying a continuous vanishing of the resistivity there
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FIG. 3. One example of the diagrams expressing oY®). A thick
dashed line denotes a square average of the pinning potential U(r), a
rectangle at the center denotes a VG fluctuation propagator, and the
triangular vertices at the left and right edges are defined by Fig. 2(c).

[12] justifies our description of the SC transition based on the
vortex-glass scaling [6].

The term 0Y® describing the vanishing of the resistivity
in the vortex states is expected to diverge like

H z—1
000 ~ gy (e
H — Hyg

with z >~ 4 in the 3D case [6,26]. Derivation of this scaling
within the n = 0 LL fluctuation theory was performed in

(23)

J

o VO ~ _

9 (2mE2
2z - a|Q|

q1 Y92 Y q3

Refs. [10,27] by focusing on H _L J case. It is straightforward
to extend the previous analysis to the present H || J case. The
outline of its derivation is described in Appendix B.

To obtain 0Y®, an additional pinning potential term

T—l
8SaL =/ dt/d3rU(r)|A(r,r)|2 (24)
0

needs to be added to the GL action (14), where the static
pinning potential U(r) has zero mean and is assumed to
obey a Gaussian ensemble, i.e., U(r)U(s) = Aps®(r —s).
Within the conventional impurity scattering model, the pin-
ning strength Ap is typically of the order of (Epr)~>
[28,29].

As a typical term describing 0Y®) which becomes diver-
gent according to the scaling behavior (23), let us examine
Fig. 3 in which the rectangle expresses the VG fluctuation
propagator to be denoted as yxvg(K; wi, w;) below (see Ap-
pendix B). By assuming only a single LL to be associated
with the VG ordering and applying the formulation [27] for
describing the VG scaling (23) to the present case, the contri-
bution 6 to the DC conductivity corresponding to Fig. 3
becomes

2
- Ap) /k / f f (61 + 4)Da(@)Dar + kD[Da(g1 + 43I (g + 45)Da(g2)

xDu(qa + k) Da(g2 + g3)PT Y xva(k; 0, 0 + Q), (25)

where inessential numerical factors are assumed to have been absorbed into the pinning strength Ap, and the frequency
dependence was assumed to be dominated by those in the VG fluctuation propagator xyg. As a concrete expression of xvg
which is the Fourier transform of the VG correlation function, the expression derived in Ref. [30]

=
2Apéyg

up to O(R), 0 Y0 is expressed, after the analytic continuation, by

[ #4

A} x 1073

VG) _
Jzz -

xvekiop, @) = ——— g (26)
2+ EVszrH + 4EVGnn(|w1 | + |w2l)
will be used here, where ngG = 1/[—1 + H/Hyg(T)]. Noting that, by arranging the w-summation in Eq. (25), we have
1 2E.
T Xw:[ch(k; w,0) — xvo(k: o, o+ Q)] = [ — 5 xva(k;0,0) + Af T ij[m(k; o, w)]z} [e] @7)
« 1 * € 14 k2

_— kkz[ — + / dee coth< ) } (28)

RQ ) rrltl/z “EVG /(; 1+ &2 —00 4nnT§j/G [(1+ kz)z + 82]2

where the cutoff k. is assumed to be a constant of order unity.
In the limit of T > (—1 4+ H/Hyg)?/(4n,), this expression
shows the VG scaling behavior (23). On the other hand, in
the quantum limit 7 < (—1 + H/Hvg)?/(4n,), o9 van-
ishes like o*). This vanishing should be expected. It is
because Fig. 3 is one of the diagrams with vertex corrections
to Fig. 2(b) due to the pinning potential (24), and, as shown
in Ref. [20], any diagrams like Fig. 9(a) belonging to the
fluctuation conductivity following from the GL action vanish
in T — 0 limit as far as the system is not at the VG criticality.
As mentioned above, the fluctuation conductivity terms UZ(ZAL)

and oY% arising from the GL action vanish upon cooling

(

above Hyg(T), and consequently, an insulating behavior is
created in the resistivity curve.

Before ending this section, we briefly comment on the
anisotropy effects appearing in real materials which have been
neglected above. Among them, one is the anisotropy in the
pairing function leading to some mixing between different LL
modes of the SC order parameter. For instance, in the case of
a d-wave pairing symmetry, the n = 4 LL modes couple to
the n = 0 LL ones. Such couplings to the higher LL modes
may play a key role in resolving a subtle effect [31] but do
not become important in considering the global phase diagram
[11]. The other occurs through the Fermi velocity components
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reflecting the Fermi surface anisotropy. Our treatment on this
anisotropy effect will be explained in Sec. IV.

III. FLUCTUATION CORRECTION TO NORMAL
CONDUCTIVITY

Other terms of the fluctuation conductivity and related di-
agrams derived from them will be examined below. The DOS

J

0Ly = 2T Y < [ et [ @85G 00 0~ TG0 (p— TG (b n>gw8,0<—p>Aw(r>>ﬂ> .

term, Fig. 2(d), corresponds to the self-energy correction to
the familiar Drude conductivity oy,

oN = Ert, (29)

37'[RQ

where kp is the Fermi wave number. The response function
ngos)lo corresponding to Fig. 2(d) is given by

b

(30)

As well as in the derivation of oy [32], the main contribution, proportional to t, of Eq. (30) is obtained from the frequency region
e(e + ) < 0. The remaining contributions from the (¢ + 2) > 0 region are of the same order as the neglected term in Qg‘L)
and hence, need not be considered. Then, Eq. (30) is straightforwardly rewritten in the form

DOS
0Po%)

_ QeyIQlr
C2mr(1+ Q)

where the corresponding DC conductivity o P99, is given by

—20'P9%)|,/|Q|. However, the first term of Eq (31) precisely
cancels with one half of the corresponding MT term with
&(e + Q) < 0 given by Fig. 2(e). Here, just as in Q{°%%)|o, the
contribution with (¢ 4+ ©2) > 0 was neglected in the present
case where a large 7 is assumed. Then, the DC conductivity
resulting from the sum of Fig. 2(e) and the two diagrams
corresponding to Fig. 2(d) is expressed as

‘L’%‘O —-T
b, 32
Ror Z " r(@)[by + 2i/enra(@)] G

The formal divergence in the @ summation will be properly
cut off in performing the numerical calculation (see Sec. IV).

Other diagrams derived from Figs. 2(d) and 2(e) are
sketched in Fig. 4. In Figs. 4(a) to 4(e), where the lifetime
T is due to the elastic impurity scattering, a thin dashed line
denotes an averaged impurity line. On the other hand, in
Fig. 4(f) the origin of a finite 1/t is the electron-electron
scattering, and the rectangle expressing an interaction vertex
takes the place of the impurity scattering. Among those addi-
tional diagrams, Figs. 4(a) and 4(b) vanish in the spin-singlet
paired cases of our interest, because the current vertex is odd
with respect to the relative momentum p, while the pairing
vertex wp is even in p. Below, let us discuss the roles of other
diagrams in Fig. 4 separately for the two cases:

A(oN)zzlo =

A. Interaction vertex

It is well known that, even in the clean limit, the quasiparti-
cle’s lifetime T occurs from the repulsive interaction between
the quasiparticles [32]. In general, T is given as the sum of
the two relaxation rates due to the impurity scattering and the

=2 2T <(|w |&>2[wd 70 [ @risgmer o, (r>>>N<0>[L+ ]
= T Pl A ppJlp il 1119 %

fN(O)D (q"”)[1+|sz| f ppf(p)<|wp| <TO) (1= 81l )e'“'2p2/2> +Bn]
¢ p

(3D

[
mutual interaction, in the form

1 1 1

-—=— 4+ —. (33)

T Timp Tint
When the impurity scattering is negligibly weak, any vertex
correction to the pairing interaction can be regarded as having
been already incorporated in determining the pairing function.
Then, the diagrams in Figs. 2(d), 2(e), and 4(f) have only
to be considered as the fluctuation correction to the normal
conductivity. However, Fig. 4(f) corresponding to Fig. 4(c) in
case B to be discussed below does not contribute to the con-
ductivity because, as discussed in a different context [33], the
top section in Fig. 4(f) composed of three Green’s functions

(d) (e) )

FIG. 4. Diagrams derived from Figs. 2(d) and 2(e). A thin dashed
line carrying the factor 1/[27N(0)7] and connecting two electron
Green’s functions denotes a square-averaged impurity potential, and
the rectangle in (f) denotes a vertex expressing a mutual interaction
between the electrons.
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with the Matsubara frequency ¢; is odd with respect to £; and
hence, vanishes after taking the frequency summations.

Therefore, as far as the quasiparticle lifetime is primarily
determined by an interaction effect, the correction term to the
normal conductivity is given by Eq. (32).

B. Impurity scattering vertex

Next, we assume that the interaction effect on the quasipar-
ticle lifetime is negligibly small. Then, a single dashed line
in Fig. 4, representing a correlator of the impurity potential,
carries no finite Matsubara frequency, and the leading term of
Fig. 4(c) is given by a form in which the last term of Eq. (31)
is dressed. Then, Eq. (32) is replaced by

‘C.‘;:() -T
A = — 8b, 34
O = Rord Zw Vrn(@)b, + 2/cara(@)] .
with
b= 5 / dpp* Fo)[v? = (@]

x wpPe MU =8, 1P p?),  (35)

which is the sum of Fig. 2(e) and the doubles of Figs. 2(d)
and 4(c). Here v} (j = x, y, or z) denotes the j component
of vy. Therefore, in the s-wave pairing case where w, = 1,
the expression (35) vanishes in 2D-like systems with H per-
pendicular to the plane, where ||? is independent of the unit
vector P, and in any system under a low enough magnetic field
where the |u|> dependencies carrying the nonlocal orbital
effects of the magnetic field are negligible. In the s-wave
impure case, we also need to take account of another diagrams
Figs. 4(d) and 4(e) with the correction due to the impurity
scattering to the pairing vertex. Keeping the contribution from
the vertex correction of O[(tT.)~'], it is found that the con-
tribution of the sum of the six diagrams corresponding to
Figs. 4(d) and 4(e) to (oy),, is given by

TéO T(bn)P
, 36
Rorg; ; Vrn(@)[by + 2/carn(@)] G0

A(oN)zlp =

where

1 o0 o0
(bn)p = 2/0 dp/O dp'(p+p")f(p, p")

T3k
X (V21 = butlpp + '/ e 0O ) (3T)
where ¢/ = (v}’. + iv)’c)/(\/z ruTy), and

L Sin(ZIp/TCO)Sin(zlp//TCO) e_p/(fT(_O)
Too sinh[27T(p + p')/Tw0] '

flp,p')=2m

(38)
Equation (38) implies that Eq. (36) vanishes in the absence of
PPB.

Therefore we reach the conclusion that, in any system in
zero field and a 2D-like system with no PPB and under a field
perpendicular to the plane, the Gaussian fluctuation conduc-
tivity in the s-wave case consists only of the AL term in the
clean limit. This seems to be consistent with the results in the
clean limit in Refs. [25,34]. As is clearly seen from Eq. (39),
however, when the pairing function w, has a p dependence,

and/or the nonlocality |x|? has some momentum dependence,
8b, remains nonvanishing with, in most cases, the same sign
as b,,. That is, a nonvanishing contribution to the MT and DOS
terms of the fluctuation conductivity in the 3D case in high
enough fields occurs, although its magnitude becomes gener-
ally smaller than that of Eq. (34). In particular, in the s-wave
case, the different contribution A(oy).|p induced by PPB
needs to be added to A(on)..|o, and, depending on the situ-
ation, the sign of the total contribution A(on),;|o + A(ON)z:|p
may change from that of A(on);;|o-

In the next section we consider two different situations be-
longing to the clean limit, i.e., the case in which Tcgl L Tipe K
Timp» and the case in which 7' < Timp < Tint. Furthermore,
the pairing function is assumed to be dominated by a d-wave
component [35] in which the diagrams Figs. 4(d) and 4(e) with
corrections to the pairing vertex are negligibly small.

IV. NUMERICAL RESULTS

To compare numerical data following from the theoretical
expressions in the preceding sections with experimental data,
one needs to specify electronic details which are reflected in
the Fermi velocity vector v, as well as the values of the dimen-
sionless parameters T.o/Er and 7T(. As a model on the Fermi
surface, we use here a single band model and follow Ref. [36]
in which the dispersion relation of the normal quasiparticle in
a quasi-two-dimensional system

1 .
€p = 2-(p* + PR/l = cos(pyd)l} 5%

has been used, where |p,d| < 7, d denotes the interlayer
spacing, p2 = p? + pﬁ, and the out-of-plane direction (i.e.,
¢ axis) was chosen to be the y axis. In this case, the anisotropy
between the in-plane coherence length and the out-of-plane
one is given by
2 V1-J

and the group velocity v; = de€,/dp; is parametrized by vp =
21&yT,0, J, and prd.

Equation (39) is a typical model of the dispersion rela-
tion of the normal quasiparticle in a quasi-two-dimensional
layered superconductor. It is known that, in the case where
the layer structure is important, the SC order parameter is
not diagonalized in terms of the LL-basis functions in a field
parallel to the layers [37], and that the n=0 (n =1) LL
mode weakly couples to other LLs with even (odd) n. As a
condition justifying the neglect of the discrete layer structure
and a crystalline anisotropy in describing the vortex states in
the parallel field configuration, the relation

&
y < l.3d—2aM 41)

has been pointed out in Ref. [36]. Here ay; is the Maki
parameter [18] «/ZHérzl? )(0)/Hp(0), which is the measure of
the strength of PPB. Then, the Zeeman energy [/ is given
by 1.62amhT,0, where h = 2w&3H /¢y = &3 /r7;. That is, if
Eq. (41) is satisfied, the discrete layer structure is unimportant
so that the layered superconductor may be described by the
corresponding anisotropic 3D GL model, which is obtained
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by replacing the gauge-invariant gradient IT; in Eq. (14) by
the following isotropized one I1;, where

ﬁx = yl/znm
1, = y~'%1,, (42)

while v, - IT =¥, - I is kept. Consistently, the complex ve-
locity p in Egs. (11), (16), (19), (31), (35), and (37) needs to
be replaced by

iy =20, 1y,
V2Tory

Below we focus on numerical results obtained based on the
theoretical formulation in Secs. IT and III and in terms of the
parameter values satisfying the relation (41). Therefore, when
the temperature T is normalized by the zero field SC transition
temperature T,y defined microscopically, we only need below
the dimensionless parameters y, ay, J, T.o/Eg, tT,o, and the
pinning strength Ap. In the present quasi-two-dimensional
case under a parallel field [36], the bare mass a,(0) in the GL
action (14) is expressed as

© =)+ / “aol L 2m
,(0) = In[ — N
i To) " Jo "\ T sinh@rpT/T.0)

~12 2
—f(p)<|wp|2<1 — 8u1lii*p?) exp (—M» }
p

= (43)

2
(44)

for n = 0 and 1. Hereafter we choose wy, = +/2(p? — p?) by
imagining that, in a model pairing function of FeSe [35],
the d-wave pairing component dominates over the sy-wave
component.

One might wonder if the present isotropized model can
cover description of the case with a more complicated crystal
structure in which each diagonalized order parameter mode is
represented not by a single LL but by a linear combinations of
the LLs. In particular, in the case with no inversion symmetry
of the material, even a coupling between an even LL and an
odd one occurs in the diagonalized modes of the SC order
parameter. As shown previously [24,38], however, a sharp
structural transition between one vortex lattice dominated by
even LLs and another one dominated by odd LLs occurs even
in such cases. In the familiar cases with inversion symmetry,
e.g., with tetragonal crystal symmetry, a sharp transition be-
tween a state consisting only of the even LLs and dominated
by the n = 0 LL and another one consisting only of the odd
LLs and dominated by the n = 1 LL is expected to certainly
occur in high fields in systems with moderately strong PPB.

According to Ref. [12], the quantity we focus on in the
following two scenarios is the field dependence of the nor-
malized DC resistance under a current parallel to the field

R _ o~ (45)
RN oN + (0);
where (oy),, is the sum of the relevant contributions to the
fluctuation conductivity. The parameters t 7,y and T,y/Ep de-
termine the relative magnitudes between those contributions
in the fluctuation conductivity.

To perform the fluctuation renormalization without making

the procedures more complicated, the Hartree approximation

[4,5,39] will be used for simplicity. Then, the renormalized
mass r, of the nth LL fluctuation defined in Eq. (18) is deter-
mined self-consistently by

ra = ay(0) +2(2n + 1) v/2Gih b, (46)

TCO w V I'n (a)) .
Here the ¢* term in the GL action was neglected by assuming
the coefficient b, of the corresponding ¢ term to be positive.
In fact, as is shown below, the relevant fluctuation at lower
temperatures is the n = 1 LL one with the coefficient b; being
positive. In Eq. (46) the Ginzburg number

.1 [ BT )
0= 3.2 (N(O)eg) “n

will be taken to be the value 6.1 x 10~ in the literature [40].

For the convenience of the numerical analysis, we rewrite
the self-energy term of Eq. (46) according to the standard
analytic continuation procedure [32] as

Z T 1 é deg th( & )
—_ = — —FCO
> (@) M Jo 2w 2n,T
&
X . (48

\/(r,% +&2)(rn+ /12 + &)
The cutoff ¢. of the ¢ integral will be set to a constant of

order unity. The same replacement needs to be performed in
Eq. (32) with ¢; = 0 if focusing on the n = 1 LL fluctuation.

A. Tcal K Tint K Timp
First, let us discuss numerical results obtained in the case
where the impurity scattering effects are negligible so that the
quasiparticle lifetime t is nearly equal to 7j,. In this case we
can set
AL VG
(@) = 05 + 07 + Alow)zzlo- (49)

e

In performing our numerical study in this case, we have cho-
sen the parameter values J=0.816, y =1.05, and tT, =
200 in addition to the large Maki parameter oy = 3.9 and the
large pinning strength Ap = 0.6. The mean field H,, curves,
defined as a,(0) = 0 [22-24,41], forthen =0 andn =1 LL
modes following from these parameter values are shown in
Fig. 1. Due to the large o value, the n = 1 LL H,, curve lies
at higher fields in ¢ < 0.2, suggesting that the n = 1 LL fluc-
tuation is more dominant there. Accordingly, the HFSC phase
lying in lower fields is expected to be an = 1 LL vortex solid.
Experimentally, the field-induced transition, on the black solid
line in Fig. 1, between the HFSC and the ordinary n =0
LL vortex lattice in lower fields, is discontinuous consistently
with our identification between the HFSC phase and the n = 1
LL state.

In Fig. 1 the two transition lines defined within the n = 0
LL order parameter modes and in the mean field approxima-
tion, i.e., the first order H,, transition and the onset of the
formation of the FFLO spatial modulation parallel to H, have
been drawn as the blue and black dashed curves, respectively.
In the real situation sketched in Fig. 1 with the SC fluctuation
included, both of them are crossover lines because they lie
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FIG. 5. Temperature dependencies of the coefficients defined in
Eq. (15) at H = H(0), corresponding to & = 0.1806 in Fig. 1,
which are obtained consistently with the a,(0) = 0 lines in Fig. 1
and in terms of the parameter values listed below Eq. (49).

in the non-SC region above the vortex-glass transition line
which can be identified with the experimental irreversibility
line [12] or the melting line [13]. As pointed out previously
[11], when a FFLO region expected within the mean field
approximation is situated within the vortex liquid regime in
the fluctuating real system, such a FFLO state is not realized
as a phase-coherent SC phase.

In Fig. 5 the temperature dependencies of the coefficients
of the gradient terms at H = H,,(0), obtained in terms of the
same set of the parameter values as in Fig. 1, are shown.
The fact that the coefficient b, is negative in the temperature
range of Fig. 5 implies that the FFLO modulation parallel to H
may develop in the same temperature range within the mean
field theory. On the other hand, it implies based on Eq. (32)
that the n = 0 LL term in A(on);|o iS positive so that the
negative magnetoresistance behavior [12] can never occur in
any situation where the SC fluctuation is dominated by the
n =0 LL one. In contrast, the corresponding coefficient b;
is positive at such temperatures. Thus, the n = 1 LL term in
Eq. (32) is negative and becomes the origin of the remarkable
negative magnetoresistance [12].

Then, using Eqgs. (45) and (46) and based on the procedures
explained above, we have obtained resistivity curves using
T.o/Er = 0.312 which are presented in Fig. 6. For simplicity,
Hyg(T) = H,(0)(1 —¢/2.8) was assumed in obtaining the
resistivity curves numerically. Based on the understanding on
Fig. 1 mentioned above, let us focus hereafter on the fluctu-
ation regime above the VG transition line in 7 < 0.157; by
neglecting the n = 0 LL fluctuation. That is, just the n = 1
contributions will be kept in Egs. (21) and (32) as well as in
Eq. (28). Then, the sign of the correction (32) to the normal
conductivity is negative and leads to negative magnetoresis-
tance. It should be noted that this negative contribution to the
conductivity is due to the n = 1 LL fluctuation and is different
in nature from that seen in the 2D dirty limit [10,25] in the
quantum regime, because the latter is a feature of the n = 0
LL fluctuation.

= 20000
Qo=

o
gy

NPCOOOo

0.0 1 Ty -
0.90 0.95 1.00 1.05 1.10 1.15 1.20

H/H5(0)

FIG. 6. Examples of the field dependencies of the resulting
curves of the normalized resistance, Eq. (45) with Eq. (49), at
each value of the normalized temperature ¢t = T'/T.,. We have used
T.0/Er = 0.312 besides the parameter values used in obtaining
Fig. 5.

The results in Fig. 6 clearly show the two main features
on the resistive transition in superconductors with strong PPB
effects in the quantum regime we have emphasized in the
preceding sections. First of all, the resistance increases on
cooling over a wide field range except in the vicinity of
H.»(0), reflecting JZ(ZAL) and az(zv ® reducing upon cooling due
to the quantum SC fluctuation. In Fig. 6 the quantum fluctu-
ation behavior of o*) was enhanced by the large ay (i.e.,
strong PPB). We also note that the pinning strength Ap = 0.6
used in Fig. 6 is too large compared with the fluctuation
strength. In fact, the resistance sufficiently decreases in higher
fields than H,, there, and the feature in Fig. 6 that the insulat-
ing behavior is remarkably seen is also a consequence of the
large value of Ap determining the magnitude of Y. In any
case, the details of the resistive curves in such low tempera-
tures and high fields are quite sensitive to the functional form
of H»(T) atlow T which, in turn, is sensitive to the electronic
Hamiltonian and the band structures.

Next, the negative fluctuation conductivity correction (32)
is found to create negative magnetoresistance at lower tem-
peratures like T = 0.017 and in the field range where the
insulating behavior is seen.

One might feel strange by looking at the high field behavior
of the curves at higher temperatures, = 0.1 and 0.15, which
lie beyond the normal resistance even in higher fields than the
fluctuation regime. This is a consequence of our neglect of
the n = 0 LL fluctuation. As Fig. 5 shows, the negative sign
of by at lower temperatures implies that the n = 0 LL con-
tribution to A(on);;|o is positive, and hence, if the crossover
from the n = 1 LL regime to the n = 0 LL regime is properly
described, the resistance values at ¢t = 0.1 and 0.15 would be
suppressed below the normal resistance value.

B. T;' < Timp < Tint

In turn we focus on the case in which the quasiparticle
lifetime 7 originates mainly from the impurity scattering
event. In this case, regarding the correction term to the normal
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FIG. 7. Temperature dependencies of the coefficients b, and b,
at H = H,,(0) obtained in terms of the parameter values J = 0.94,
y = 1.05, tT,o = 50, and ay = 3.0.

conductivity, Eq. (34) should be used so that the total
conductivity

(09 = oM + YD + A(on)z. (50)

needs to be used to obtain the resistivity curves.

To obtain the coefficients in the GL action in this case, we
have used the following set of the parameter values, J=0.94,
y = 1.05, tT,o = 50, and oy = 3.0. The PPB effect has been
slightly reduced compared with that in case A, as can be seen
from the smaller values of 7.y and ay;. Nevertheless, the
n =1 LL modes dominate over the n = 0 LL ones, like in
Fig. 1, at least in t < 0.1. The resulting temperature depen-
dencies of the coefficients appearing in Egs. (32) and (34) are
shown in Fig. 7. Since the coefficient b; remains positive in
the low temperature range of our interest, Eq. (46) withn = 1
can be used for the fluctuation renormalization.

To examine the resistivity curves in a current parallel to the
field [12] in terms of Egs. (45) and (50), we have used the pa-
rameter values Ap = 0.02 and T,¢/Er = 0.712 together with
the relation Hyg(T) = H.(0)(1 —¢/1.8) and the parameter
values used for Fig. 7. The small Ap value indicates that the
weight of O’Z(ZV © in Eq. (50), and thus the quantum fluctuation
contribution to (oy),., is reduced in this case. Furthermore, to
make negative magnetoresistance arising from the positive §b,
(see Fig. 7) visible, we have assumed here an unusually large
T.0/EE value.

In case A we have noted that the n» = 0 LL fluctuation
does not lead to the negative magnetoresistance of the type
seen in FeSe below 1 K [12] due to the negative sign of by.
Similarly, even in this case, the fact that §b remains negative
as well as by in the temperature range of our interest clarifies
based on the expression (34) that the » = 0 LL fluctuation
cannot become the origin of negative magnetoresistance at
the low temperatures. This conclusion is not changed even in
the case with a much lower value of the Maki parameter ay
where by at lowest temperatures remains positive, because
0by generally increases upon warming, and consequently, it
would be more difficult to find, as in the experimental data

n n

0.0 L L L i ¢
0.92 0.94 0.96 0.98 1.00 1.02 1.04 1.06

H/H5(0)

FIG. 8. Examples of the field dependencies of the resulting
curves of the normalized resistance, Eq. (45) with Eq. (50), at the nor-
malized temperatures t = T /T,o = 0.05 (blue square), 0.01 (black
solid curve), and 0.005 (red circle). We have used T,o/Eg = 0.712
besides the parameter values listed in the text and the caption of
Fig. 7.

[14], the situation with positive magnetoresistance at higher
temperatures.

The resulting resistivity curves obtained in terms of the
above-mentioned parameter values in the present case B are
shown in Fig. 8. Taking account of the fact that the temper-
ature region in which the n = 1 LL vortex lattice is stable
is narrower in this case, just the resistivity curves at the
lowest three temperatures are presented. The insulating be-
havior and the negative magnetoresistance are clearly visible
in H,(0) < H < 1.04H:,(0). In addition, the negative sign of
8b in Fig. 7 indicates that some disappearance of the negative
magnetoresistance at intermediate temperatures [12] would
be realized by including the n = 0 LL fluctuations in our
numerical calculations. The inclusion of the n = 0 LL modes
should be performed consistently with our future study on the
crossover between the two LL fluctuations and the transition
between the HFSC phase, i.e., the n = 1 LL vortex lattice, and
the ordinary n = O LL triangular vortex lattice.

V. SUMMARY AND DISCUSSION

In the present work the fluctuation conductivity in a super-
conductor with moderately strong PPB has been examined by
focusing on the low temperature and high field region, and the
obtained results have been discussed in relation to the strange
resistivity behavior seen in the fluctuation regime of FeSe in
a field parallel to the basal plane. It has been argued that the
sign of the sum of the DOS and MT contributions to the fluc-
tuation conductivity is the origin of the remarkable negative
magnetoresistance in FeSe at low temperatures in a current
parallel to the field [12]. Based on this observation, the novel
high field SC phase of FeSe in a field parallel to the basal
plane has been argued to be a pinned vortex lattice described
by the SC order parameter in the n = 1 Landau level (LL) and
not the familiar FFLO vortex lattice with a modulation parallel
to the field which is described by the order parameter in the
n =0 LL. Furthermore, an enhancement of the quantum
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fluctuation due to PPB has been pointed out and identified as
the origin of the insulating behavior of the resistivity, which is
another feature seen in FeSe in the fluctuation regime [12].

Realization of a higher LL vortex state in FeSe is, broadly
speaking, due to relatively strong PPB in the parallel field con-
figuration. In the perpendicular field configuration (H || ¢),
on the other hand, a different HFSC phase was argued to
be present in FeSe [14] and has been recently identified as
an =0 LL vortex lattice with a spatial modulation parallel
to the field [42]. In fact, the o value in H || ¢ case has been
estimated to be below 1.0 which is much smaller than those
used in the present work.

As already mentioned, the d-wave pairing has been as-
sumed in obtaining Figs. 6 and 8. In contrast, in the
conventional s-wave pairing, the negative magnetoresistance
in the fluctuation regime does not seem to occur. In addition,
we note that an unexpectedly large 7.o/Er value seems to be
necessary to obtain such a sizable negative magnetoresistance
theoretically. It suggests that the superconductivity in FeSe
cannot be described fully within the BCS framework [17],
and, in addition, that the present simplest model based on a
single-band weak-coupling BCS Hamiltonian is insufficient
for description. The corresponding analysis based on a two-
band model [35,43] appropriate for describing FeSe is needed
and will be left for our future work.
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APPENDIX A

Derivation of Eq. (11) will be presented in this Appendix.
Since we have shown in Eq. (42) how to rewrite the expres-
sions in the isotropic case into the corresponding ones in the
anisotropic case under the condition (41), we focus below on
the expressions in the isotropic case.

In obtaining Eq. (11), the dependencies on g and the fre-
quencies are trivially understood, and the order parameter in
the nth LL will be expressed, in place of Eq. (10), as A, (x, y)
under the gauge A = —Hyx. Then, the annihilation operator
a satisfying the commutation relation aa’ — aa = 1 will be
chosen as

a= L, —im,) (A1)
a = — y — 111y).
V2 ’
Here let us introduce the coherent state for the LLs
A (x,y) = e 11208 gm0d A (1 ). (A2)
Using the formula
€A+l§ — eAeée—C/Z (A3)
with a constant C = AB — BA, Eq. (A2) is rewritten as
AP (x,y) =@ RN,y +v/20),  (Ad)

where o is a complex constant. On the other hand, using the
formula (A3) twice, one can verify the relation

exp(va’ —v*@)A(x,y) = exp (%(v - v*)) AT (x, y),

(AS5)
where o is a real constant, and v is a complex constant.
Noting that ip(v - IT)/T.o = p(ua’ — w*a) where u is given
by Eq. (13) and using the relations (A4) and (AS5), we have the
following relation:

exp (z’pv : H)A“”(x »)
T 9

c0

. S ,02 2 2
= exp p(u—u«)a+7(u = ul?)

x Aolx,y + V2@ + up)l.

Then, as the O(@") (n =0, 1) contributions of the above
expression, we obtain

cv-1I
exp | ip To

2
= exp (%(uz - |M|2)> Ao(x,y +~2pp),

B
exp (ipVT )Al(x,w

c0

oo (5 )+ 525)
=exp | S —lu ol — 50ap)

(A6)

)Ao(x, Y)

X Ag(x,y + V2up).
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FIG. 9. (a) Diagram expressing o™ + Y9 prior to the pin-
ning potential average. A cross symbol denotes a pinning potential.
(b) Diagram correcting o™ arising from (a) after the pinning po-
tential average. (c) and (d) Diagrams associated with ¢ arising
from (a) after the pinning potential average. (e) Diagram on the VG
fluctuation propagator expressed within the ladder approximation.
The thick dashed lines in (b), (d), and (e) denote the pinning potential
line carrying the strength Ap.
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Finally, by performing the spatial integrals for the above two
expressions multiplied by A’ (x, y) from the left, one obtains
Eq. (11).

APPENDIX B

In this Appendix the formulation [27] leading to identify-
ing Fig. 3 as the diagram describing the VG scaling behavior is
briefly explained. Based on the GL action (14) with Eq. (24),
the AL fluctuation conductivity defined prior to the pinning
potential average can be regarded as being of the form of
Fig. 9(a), where the cross symbols denote the pinning poten-
tial U (r). After the pinning potential average, Fig. 9(a) results
in Figs. 9(b), 9(c), 9(d), and 3. Here Fig. 9(b) can be regarded

as one part of the diagram expressing o/*"), while other three
diagrams can lead to a different temperature dependence in the
conductivity through the VG fluctuation propagator sketched
in Fig. 9(e). Clearly Fig. 9(c) vanishes. However, Fig. 9(d)
is found to lead to a divergent contribution, proportional to
TA}ZEi;C?, to the conductivity at finite temperatures. On the
other hand, as is shown in Sec. II, Fig. 3 leads to a more

divergent contribution proportional to 7' A%Ei,},l. Although the
former may become dominant for a weaker pinning strength
far from the VG criticality, we have chosen only the latter,
which is of a higher order in Ap but is more divergent on
approaching the VG criticality, in performing the numerical
calculations leading to Figs. 6 and 8.
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