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Macroscopic behavior of the P1 (β) and P2 (distorted β) phases of superfluid 3He:
Soundlike excitations
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We describe the macroscopic behavior of superfluid 3He in the P1 (β) phase in an anisotropic aerogel. It turns
out that the P1 phase shares many features with superfluid 3He -A1. It exists only in an external magnetic field
and has only one spin orientation in its superfluid condensate. In the P1 phase, the direction of the external
magnetic field, the preferred direction in orbit space m̂ and the average preferred direction of the silica strands
ζi, are all parallel. While the preferred direction in orbit space and the average preferred direction of the silica
strands are even under time reversal, the preferred direction ŵ in spin space is odd under time reversal. As new
macroscopic variables compared with superfluid 3He we have for the superfluid P1 phase in an aerogel the strain
field associated with the aerogel network. As a result of these additional macroscopic variables we find new static
and dynamic cross-coupling terms, which come as reversible (zero entropy production) as well as as irreversible
contributions. As an outstanding feature of the P1 phase we find that second sound and, to a lesser extent, fourth
sound assume spin-wave character, a feature that should be testable experimentally. This result closely parallels
that for the A1 phase of bulk superfluid 3He in spite of the fact that the l̂ vector of the A1 phase, which is odd under
time reversal, does not exist in the P1 phase. We also discuss briefly the macroscopic behavior of the distorted
β (P2) phase, which shares several features with the distorted A phase of bulk superfluid 3He, in particular with
respect to its properties in spin space.

DOI: 10.1103/PhysRevB.105.174508

I. INTRODUCTION

Quite recently two new superfluid phases of 3He have been
discovered in strongly anisotropic aerogels [1], which both
exist only in a sufficiently strong external magnetic field. They
have been found using a vibrating aerogel resonator via the
splitting of the superfluid phase transition into two discrete
transitions as a function of temperature in a strong magnetic
field. The two new superfluid phases have been denoted as
β (or P1) phase and as distorted β (or P2) phase as one is
cooling from the isotropic liquid phase. Their existence has
been anticipated on the basis of a Landau energy for superfluid
3He incorporating high magnetic fields [2,3]. The discovery
followed earlier vibrating-wire experiments on the same type
of mullite samples at lower magnetic fields [4] by the same
group of authors.

The recent discovery of the P1 and P2 phases followed
about five years after the detection of the polar phase, an-
ticipated for a long time [5,6], using NMR [7] in strongly
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anisotropic aerogels called Nafen [8–10]. In addition, a dis-
torted A and a distorted B phase [11–13] due to the strong
influence of the anisotropic aerogel have been found [7,14]
further elucidated experimentally in detail using cw and
pulsed NMR techniques [14,15]. More recently, the polar
phase has also been found [16] for a second class of strongly
anisotropic aerogels called mullite, the same system that has
been used in detecting the superfluid P1 and P2 phases.

In parallel to the various experimental developments, the
modeling of the various superfluid phases in an anisotropic
aerogel has been advanced [17–19]. In addition it had been
shown previously that the polar phase could be stable in
anisotropic aerogels [20].

With the discovery of the polar phase and the distorted A
and distorted B phase the situation for superfluid 3He in an
anisotropic aerogel closely resembled that of 3He -A and B in
the bulk. However, what was missing was the analog of bulk
3He -A1, which exists only in a (strong) magnetic field. It has
only one spin projection, that is, only up-up or down-down
pairs [5,6]. And this missing link is the P1 phase, which has
also only pairs with one spin projection [1] and exists only in
an anisotropic aerogel and an external magnetic field.

In contrast with the A1 phase, however, the orbit part of the
order parameter in the P1 phase—and also of the P2 phase—is
the same as for the polar phase. This in turn leads to different
macroscopic properties when comparing the P1 and P2 phases
with 3He -A1 and 3He -A in high magnetic fields (sometimes
called 3He -A2 phase). It is therefore the goal of this paper
to derive the macroscopic dynamics of P1 and P2 and to
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elucidate the similarities and the differences to 3He -A1 and
3He -A in high magnetic fields. To achieve this we draw on our
recent paper on the macroscopic behavior of the polar phase
in anisotropic aerogels [21], as well as on previous work on
the macroscopic behavior of the A1 phase [22–25] and the A
phase in high magnetic fields in the bulk [26,27].

The paper is organized as follows: In Sec. II we present
the relevant variables due to hydrodynamic conservation laws,
including the elastic and magnetic ones (II A), due to broken
gauge (II B) and rotational symmetries, in particular those
resulting from the structures of the P1 phase (II C) and the P2

phase (II D), and finally due to the slowly relaxing rotations
(II E). The macroscopic orbital dynamics of the P1 phase is
discussed in detail in Sec. III, also including spin-orbit cou-
pling (III G) and sound spectra (III E and III F). In Sec. IV we
analyze selected aspects of the macroscopic behavior of the P2

phase, including sound spectra (IV D) and spin-orbit coupling
(IV E). In Sec. V we give a summary.

II. THE RELEVANT MACROSCOPIC VARIABLES
FOR THE P1 AND P2 PHASES

A. Hydrodynamic variables

In this paper we use linearized hydrodynamics [28] to
describe the macroscopic behavior of superfluid 3He in the P1

and P2 phases. We derive the balance equations describing the
behavior of the system in the low-frequency, long-wavelength
limit. Low frequencies in this context mean small com-
pared with all collisional frequencies while wavelengths are
considered to be long if they are large compared with all
microscopic lengths. Naturally these conditions for the purely
hydrodynamic regime impose rather severe constraints on
the frequencies and wave vectors for which this approach is
strictly valid. Nevertheless, the hydrodynamic description and
its generalization to include variables that relax on a long but
finite timescale have turned out to be rather useful [29].

The conserved quantities in superfluid 3He are ρ (mass
density), ε (energy density), and gi (momentum density), just
as in any normal fluid. The entropy density σ is conserved
only for reversible processes and contains the entropy produc-
tion of irreversible processes as a source term. They act as
hydrodynamic variables and are related to the energy density
by

dεh = T dσ + μdρ + vn · dg, (1)

with μ being the chemical potential, T the temperature, and
vn

i the normal velocity.
Since the P1 and P2 phases only exist in the presence of an

anisotropic aerogel, we have to take into account its elastic
strain εi j as a hydrodynamic variable. The aerogel breaks
translational symmetry, which gives rise to a translation vector
as a symmetry variable. To exclude homogeneous transla-
tions and homogeneous rotations, the strain symmetric and
is, to linear order, given by εi j = (1/2)(∇iu j + ∇ jui ). Elastic
strains enter the energy density by

dεe = �i jdεi j, (2)

thereby defining the elastic stresses �i j .

The anisotropy of the elastic network is described by a unit
vector ζi. Its role as a variable is discussed in Sec. II E.

Since the 3He atoms have spin 1/2 each, they give rise
to a magnetization density Mν . The frame to describe the
orientation of spins is a priori not the same as that of, e.g.,
the flow variables. Therefore, it is customary to use in “spin
space” a different Cartesian frame indicated by Greek indices.
The magnetization enters the energy density by

dεM = (hν − Hν )dMν, (3)

thereby defining the internal field hν . The external field is Hν .
In equilibrium M0

ν = Hν .

B. Order parameter for superfluid 3He

In superfluid 3He the neutral 3He atoms combine to form
Cooper pairs similar to those found in superconductors which
can be viewed as composite bosons. While the electrons in
conventional superconductors are in a spin-singlet s-wave
state, the 3He atoms are in a spin-triplet p-wave state. This fact
clearly distinguishes the two situations: The pair of electrons
has no internal structure, but the pair of 3He atoms is intrin-
sically anisotropic. Because of the spin-triplet and p-wave
pairing the order parameter Tν j has to be a complex 3×3
matrix whose expectation value can in general be written as
[5,30]

〈Tν j (|c|, r)〉 = F (||c||)Aν j (r)eiϕ(r), (4)

where ν is an index in spin space, j is an index in orbital space,
r is the position vector of the center of gravity, and c is the
relative vector between the two 3He atoms.

The macroscopic properties of the different 3He phases are
represented by the matrix Aν j . The normalization amplitude
F describes the degree of ordering and is considered as a
microscopic variable, which does not appear in the macro-
scopic dynamics of the system. Therefore, one can impose the
restriction of normalization

Aν jA
∗
ν j = 1. (5)

The overall phase factor is characteristic for superfluids
and superconductors because it reflects the fact that gauge
invariance is spontaneously broken and the phase variation δϕ

has to be used in the hydrodynamic description. Therefore, we
will use the superfluid velocity

vi
s = h̄

2mH
∇iϕ (6)

according to the two-fluid model developed by Landau [28]
and Khalatnikov [31] to describe the macroscopic behavior of
the system (mH is the bare mass of 3He).

In equilibrium the superfluid velocity is zero and a finite
superfluid velocity gives a contribution to the free-energy
density

dελ = λs
i dvs

i = (h̄/2mH )λs
i d∇iϕ, (7)

with λs
i being the conjugate quantity.

To make contact with a more microscopic description [30],
we recall that the triplet pairing in the superfluid phases of
3He can be described by the matrix of anomalous expectation
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values

〈T̂ν j (|c|, r)〉 = Tr{ρ̂T̂ν j (|c|, r)}, (8)

where the order parameter T̂ν j is defined by

T̂ν j (|c|, r)〉 = 3

4π

∫
d�cψ̂α

(
r − 1

2
c
)

(σνσ2)αβ

× c j

|c| ψ̂β

(
r + 1

2
c
)

, (9)

which includes an integration over the solid angle of the
relative coordinate. ψ̂α is the fermion operator annihilating a
3He particle with spin α, and σν are the Pauli matrices.

The restricted ensemble ρ̂ in Eq. (8) is

ρ̂ = Z−1 exp(−β0Ĥr ), (10)

with Z being the proper normalization and

Ĥr = Ĥ − μmH N̂ − vn · P̂ − γ h · Ŝ

− η

∫
d3r[λ∗

ν j (r)Âν j (r) + λν j (r)Â†
ν j (r)], (11)

where Ĥ is the Hamiltonian, N̂ is the number operator, P̂ is
the total momentum operator, Ŝ is the spin operator, and

Âν j (r) =
∫ ∞

0
c2F ∗(c)T̂ν j (|c|, r)dc (12)

with the normalization
∫ ∞

0 c2F ∗(c)F (c)dc = 1. The quanti-
ties μ (chemical potential), vn, h, β0 (Boltzmann factor), and
ηλi j act as Lagrange parameters with mH being the bare 3He
mass and γ the gyromagnetic ratio [30].

C. Structural variables for the P1 phase

In the P1 phase, the matrix Aν j defined in Eq. (4) can be
written in the non-normalized form

Aν j (r) = �1v̂ν (r)m̂ j (r), (13)

with the gap function �1. The unit vector m̂i is the preferred
direction in orbital space breaking rotational symmetry. The
orbital part of the order parameter in the P1 phase is identical
to the orbit part of the polar phase.

Since there is only ms = +1 (or ms = −1) pairing in the P1

phase, one can write

v̂ν (r) = 1√
2

(d̂ν (r) + iêν (r)), (14)

with d and e being mutually orthogonal unit vectors in spin
space, which are perpendicular to the external magnetic field
in equilibrium. They allow the introduction of the real unit
vector as the preferred direction in spin space (indicating
spontaneously broken rotational symmetry):

ŵ = i(v̂ × v̂∗), (15)

which is odd under time reversal and is an axial vector. Thus,
ŵ can be introduced for the P1 phase in the same spirit as in
the A1 phase with

dεw = �w
νid∇iwν (16)

defining the conjugate quantity �w
νi.

As mi follows from Eq. (13) via the contraction AνiAν j ∼
mimj , a form similar to the nematic order parameter, it is
obvious that mi is not really a vector but a director, meaning
a substitution of mi with −mi must not change the hydrody-
namics. It can be viewed as a direction that cannot distinguish
head from tail. Breaking spontaneously rotational symmetry
in orbital space, rotations give rise to two hydrodynamic vari-
ables in orbital space that enter the energy density

dεp = �m
i jd∇ jmi (17)

defining the conjugate quantity �m
i j .

Both preferred directions are even under space inversion,
while m̂ is also even under time reversal. This is in contrast
with the A phase, where the preferred direction in orbital space
is odd under time reversal. Since mi and wν are unit vectors,
there is mi∇ jmi = 0 = wν∇μwν .

The small dipole interaction leads to a coupling of the
preferred directions in orbital and spin space such that wi ‖
mi. As a consequence also the preferred direction of the
anisotropic network ζi and the external magnetic field Hν are
parallel to that direction in equilibrium, rendering the P1 phase
uniaxial. In the following we disregard the dipole coupling
and comment on its effect briefly in Sec. III G.

Returning to the operator representation we have for the
variables in orbit space the following Hermitian operators
[30]:

δm̂i = εi jkδ�̂ jm
0
k , (18)

δ�̂i(r) = 1

2
εi jk

[
A∗0

ν j Âνk (r) + A0
ν j Â

+
νk (r)

]
, (19)

δϕ̂(r) = 1

2i

[
A∗0

ν j Âν j (r) − A0
ν j Â

+
ν j (r)

]
. (20)

They satisfy a number of commutation relations with the
magnetization γ Ŝν = M̂ν , the angular momentum L̂i, and the
particle number N̂ :

〈[δm̂i, M̂ν]〉 = 0, (21)

〈[δϕ̂, M̂ν]〉 = iγ
Hν

|H| , (22)

〈[δm̂i, L̂ j]〉 = −ih̄εi jkm0
k , (23)

〈[δϕ̂, L̂ j]〉 = 0, (24)

〈[δm̂i, N̂]〉 = 0, (25)

〈[δϕ̂, N̂]〉 = −2i, (26)

from which we make a number of important observations.
From Eqs. (21), (23), and (25) we see that m̂i commutes with
rotations in spin space and is invariant under gauge transfor-
mations, while it describes rotations in orbit space. This is
the behavior one expects for a director-like quantity. We see
from Eq. (26) that δϕ̂ breaks gauge invariance as expected
for a superfluid. In addition it is invariant under rotations in
real space. The most important result, however, follows from
Eq. (22): δϕ̂ is conjugate to the magnetization in the direction
of the external field, necessary for the P1 phase to exist. The
latter effect is reminiscent of a similar behavior known from
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the A1 phase of bulk superfluid 3He. In the following we show
that this coupling leads to important consequences for the
velocities of second and fourth sound: These hydrodynamic
excitations acquire spin-wave character, a feature unknown
from the polar phase without external magnetic field.

D. Structural variables of the P2 phase

In the P2 phase (sometimes also called the distorted β phase
[1]) the orbit part of the matrix Aν j is unchanged, while the
spin part is changing when compared with the P1 phase:

Aν j = mj
1√

2
(
�2

1 + �2
2

) [(�1 + �2)δνy + i(�1 − �2)δνx],

(27)
where we have now two gap parameters. It is easily checked
that the expression given in Eq. (27) is equivalent to Eq. (2) of
Ref. [1].

In the limit �1 = 0 (or �2 = 0), we obtain the result for
the P1 phase for which one has only up-up or down-down
pairs in the spin projection. In particular, there is the preferred
direction ŵ0 parallel to the magnetic field. For �1 → �2 (or
magnetic field H → 0) we obtain the corresponding result
for the polar phase, i.e., a preferred direction d̂0, which is
perpendicular to ŵ0 (and to the field). As a result there are two
preferred spin space directions in the P2 phase. To be definite
we have chosen a fixed coordinate system with ŵ0 ‖ êz and
d̂0 ‖ êy.

There is only one rotation of the ŵ0/d̂0 system that breaks
rotational symmetry spontaneously, δdα , which is orthogonal
to both ŵ0 and d̂0. It gives rise to a hydrodynamic variable
δn ≡ −εαβγ δdα d̂0

βŵ0
γ that enters the free energy:

dεn = ψid∇in, (28)

defining the conjugate ψi. Since n is a scalar, this degree of
freedom also enters the orbit dynamics of the P2 phase. It
transforms even under parity and odd under time reversal.

The orbit part of the order parameter is the same for
the P1 and P2 phases [1–3] (as well as for the polar phase
[5,6,29,32]). They all have a line node, since the energy
gap is zero in the plane normal to the preferred direction
mj . Breaking spontaneously the rotational symmetry in orbit
space, rotations of mi give rise to two hydrodynamic variables,
as in the P1 phase, Eq. (17):

dεA = �m
i jd∇ jmi, (29)

defining the conjugate quantity �m
i j . Thus we conclude that

the macroscopic variables in orbit space are the same in the P1

and P2 phase, except for n that does not exist in the P1 phase.
Spin-orbit coupling effects are briefly discussed in

Sec. IV E.
The commutation relations of the P1 phase, Eqs. (21)–(26),

can be taken over to the P2 phase, with the exception of
Eq. (22), which is replaced by

〈[δϕ̂, M̂]〉 = −iγ
2αβ

α2 + β2
≡ −iγ β1, (30)

involving the longitudinal magnetization M̂ = M̂νŵν and the
phase variations, with α = |�1 − �2| and β = �1 + �2. For

H → 0, we obtain α = 0 and thus the result for the polar
phase, while for �1 (or �2 = 0) the result for the P1 phase
is regained.

E. Slowly relaxing rotations relative to the elastic network

As an additional input from experimental results it is
known that, in the polar phase [7,14] as well as in the P1

and P2 phases [1], the preferred direction in orbit space, mi,
is parallel to ζi, the averaged strand direction, which is the
preferred anisotropy direction of the aerogel. This condition
is not due to a broken symmetry, but results from molecular
interaction forces. Therefore, deviations from m0

i ‖ ζ 0
i , e.g.,

δmi − δζi are relaxing variables, which, however, interact with
the hydrodynamic variables on timescales shorter than the
relaxation times. We take into account these slowly relaxing
relative rotations as has been done, e.g., for nematic liquid
crystal elastomers by de Gennes [33].

This variable can be written as

�i = δ(m × ζ)i = εi jkm0
j (δζk − δmk ) (31)

because of m0
i ‖ ζ 0

i . Another possible definition is

�i = δmi − 1
2ζ 0

j (∇iu j − ∇ jui ) (32)

involving rotations expressed by antisymmetric gradients of
the elastic translation vector.

The variables �i include the orientational dynamics of the
preferred direction of the strands and are independent of the
elastic deformations that only contain symmetric gradients of
ui.

The relative rotations lead in the energy density to

dεr = Wid�i, (33)

defining the conjugates Wi.

III. THE (ORBITAL) DYNAMICS OF THE P1 PHASE

In this section we present the derivation of the macroscopic
dynamics of the P1 phase mainly in orbit space. Spin space
dynamics will be discussed in connection with spin-orbit
coupling in Sec. III G. The procedure follows closely earlier
macroscopic descriptions of the superfluid 3He phases in the
bulk, i.e., the A phase [26,30,34–36], the B phase [30,37], as
well as the phases in high magnetic fields, i.e., the A1 phase
[22–24] and the A phase in strong magnetic fields [26,27].
Quite recently such a program has been carried out [21] for the
polar phase and for the distorted A and B phases in anisotropic
aerogels.

A. Statics and thermodynamics

To obtain the static properties of our system we formu-
late the local first law of thermodynamics relating changes
in the entropy density σ to changes in the hydrodynamic
and macroscopic variables discussed above. According to the
discussions in Sec. II, Eqs. (1)–(3), (7), (17), and (33), we
get the Gibbs relation for the variables acting in orbit space
[38,39]:

dε = T dσ + μdρ + vn
i dgi + λs

i dvs
i + (h − H )dM

+�m
i jd (∇ jmi ) + �i jdεi j + Wid�i, (34)
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with M = Mνŵν . Of the magnetic degrees of freedom we have
kept only the longitudinal one, since it is a scalar variable and
therefore effective also in orbit space. For the spin space part,
cf. Sec. III G. The thermodynamic conjugates are defined as
variational or partial derivatives of the energy density with
respect to the appropriate variables [38].

Let us list the symmetry properties used: Scalar quantities
are ε, σ , ρ, and M, while gi and vs

i are polar vectors, �i is
an axial vector, and εi j and ∇ jmi are tensors of second rank.
Even under time reversal are ε, σ , M, �i, εi j , and ∇ jmi, while
gi and vs

i are odd under time reversal. Odd under parity are vs
i ,

gi, and ∇ jmi, while ε, σ , ρ, εi j , and �i are even under parity.
The behavior of the thermodynamic conjugates defined via
Eq. (34) under time reversal and parity can then be read off
immediately.

To determine the thermodynamic conjugate variables we
need an expression for the local energy density. This energy
density must be invariant under time reversal as well as under
parity and it must be invariant under rigid rotations and rigid
translations, and covariant under Galilei transformations. In
addition to that, this energy density must have a minimum,
because there exists an equilibrium state for the gel. There-
fore, the expression for the energy density needs to be convex.
Taking into account these symmetry arguments we write down
an expansion for the generalized energy density up to second
order in the variables that describe deviations out of that
equilibrium:

ε = 1

2
ρ0

(
ρs

ρn

)
i j

vs
i v

s
j + 1

2

(
1

ρn

)
i j

gig j −
(

ρs

ρn

)
i j

vs
i g j

+ 1

2
μ̄i jklεi jεkl + 1

2
χ−1(δM )2 + cMσ (δM )(δσ )

+ cMρ (δM )(δρ) + 1

2
Ki jkl (∇ jmi )(∇lmk ) + 1

2
D1�i�i

+ D2
(
m0

jδ
⊥
ik + m0

kδ
⊥
i j

)
�iε jk + σσ

i jk (∇ jmi )(∇kσ )

+σ
ρ

i jk (∇ jmi )(∇kρ) + σ M
i jk (∇ jmi )(∇kM )

+ εi j
(
χσ

i jδσ + χ
ρ
i jδρ + χM

i j δM
)

+ 1

2
cρρ (δρ)2 + 1

2
cσσ (δσ )2 + cρσ (δρ)(δσ ), (35)

with δ⊥
i j = δi j − m0

i m0
j . A “δ” denotes deviations from the

(constant) equilibrium value of the appropriate variable, e.g.,
δρ ≡ ρ − ρ0 with ρ0δi j = ρn

i j + ρs
i j .

Equation (35) contains the generalized energy density of
the polar phase as a special case. In addition, we have the
terms related to the longitudinal magnetization, M. Therefore
we will focus in the following on the contributions involving
M and refer for a discussion of all other terms in Eq. (35) to
Ref. [21].

For the couplings between M and the strain field as well as
for the coupling between the gradient of M and the gradient of
the m vector, we have for the appropriate tensors the following
form, respectively:

χM
i j = χM

|| m0
i m0

j + χM
⊥ δ⊥

i j , (36)

σ M
i jk = σ M

(
δ⊥

ik m0
j + δ⊥

i j m
0
k

)
. (37)

In the following we give the expressions for the conju-
gated variables in terms of the hydrodynamic and macroscopic
variables. They are defined as the partial derivative of the
energy density with respect to the appropriate variable, while
all the other variables are kept constant, denoted by dots at the
brackets in the following. We obtain for the contributions in
Eq. (35) related to M,

�m
i j =

(
∂ε

∂ (∇ jmi )

)
...

= · · · + σ M
i jk∇kM, (38)

�i j =
(

∂ε

∂εi j

)
...

= · · · + χM
i j δM, (39)

δh =
(

∂ε

∂δM

)
...

= χ−1δM + cMσ δσ + cMρδρ

− σ M
i jk∇ j∇kmi + χM

i j εi j, (40)

δT =
(

∂ε

∂δσ

)
...

= · · · + cMσ δM, (41)

δμ =
(

∂ε

∂δρ

)
...

= · · · + cMρδM, (42)

with, e.g., δT = T − T0 and δh = h − H . The ellipses de-
note those contributions that already exist in the polar phase,
Eqs. (26)–(32) in Ref. [21].

B. Dynamic equations

To determine the dynamics of the variables we take into ac-
count that the first class of our set of variables, the conserved
quantities, obey a local conservation law, while the dynamics
of the other two classes of variables can be described by a sim-
ple balance equation, where the counter term to the temporal
change of the quantity is called a quasicurrent. For the set of
dynamical equations we get

ρ̇ + ∇igi = 0, (43)

σ̇ + ∇i jσi = 2R

T
, (44)

ġi + ∇ j (δi j p + σi j ) = 0, (45)

ṁi + εi jkm0
jωk + X m

i = 0, (46)

v̇s
i + ∇iIϕ = 0, (47)

ε̇i j + Yi j = 0, (48)

�̇i + Zi = 0, (49)

Ṁ + ∇i jM
i = 0, (50)

with ωi = (1/2)εi jk∇ jv
n
k being the vorticity. The entropy pro-

duction R/T , with R being the dissipation function, acts as a
source term in Eq. (44). The pressure p in Eq. (45) is given
by −∂E/∂V , with E being the total energy, cf. Ref. [38], and
reads for our system

p = −ε + μρ + T σ + Mh + vn
i gi. (51)
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The time derivatives in Eqs. (43)–(49) have the following
behavior under time reversal: ρ̇, σ̇ , Ṁ, ṁi, ε̇i j , and �̇i are odd,
while ġi and v̇s

i are even under time reversal.
Now we can decompose all currents and quasicurrents

listed in Eqs. (43)–(49) into reversible and irreversible contri-
butions. To describe reversible dynamics, the reversible part
of a currents (superscript R) must have the same behavior
under time reversal as the time derivative of the appropriate
variable in Eqs. (43)–(49). In contrast, the dissipative parts
of the currents (superscript D) have the opposite sign under
time reversal as the time derivatives of the variables. Ac-
cording to the second law of thermodynamics, the entropy
production has to vanish identically for reversible processes,
R ≡ 0, and the entropy obeys a conservation law, Eq. (44). For
irreversible processes R > 0 is required. With the help of the
full set of dynamic equations the Gibbs relation, Eq. (34) leads
to an expression for the entropy production R/T , bilinear in
the currents and thermodynamic conjugates. This can be used
to impose the restrictions on the reversible and irreversible
parts of the currents, separately, in particular on the form of
cross-coupling terms.

Since we restrict ourselves to a linear description, we do
not have to worry about which velocity should be chosen for
the transport derivatives [40].

C. Reversible dynamics

Implementing the condition R = 0 and the required behav-
ior under time reversal and parity, we obtain the following
expressions for the reversible contributions to the currents:

gR
i = ρ0v

n
i + λs

i , (52)

jσR
i = T0σ0v

n
i , (53)

σ R
i j = −�i j − λk ji∇l�

m
kl + ξR

k jiWk, (54)

Y R
i j = −Ai j, (55)

X mR
i = −λi jkA jk, (56)

IR
ϕ = μ + γ̃ δh, (57)

ZR
i = −ξR

i jkA jk, (58)

jMR
i = M0v

n
i + γ̃ λs

i , (59)

where Ai j = (1/2)(∇iv
n
j + ∇ jv

n
i ) and γ̃ = (h̄/2mH )γ .

Inspecting Eqs. (54)–(58), we see that σ R
i j and IR

ϕ are even
under time reversal, while Y R

i j , X mR
i , and ZR

i are odd under time
reversal—just as expected from the general analysis discussed
above for the time derivative of the variables and their time-
reversal properties.

The density current gi is at the same time the momentum
density and therefore cannot have dissipative contributions. It
is part of the kinetic energy and has been given in Eqs. (35).
The result for IR

ϕ , Eq. (57), follows from the fact that ϕ is the
canonical conjugate to the particle number [28,31] as well as
to the component of the magnetization parallel to the external
magnetic field, M [compare Eqs. (26) and (22)].

The material tensors λi jk and ξR
i jk describe the coupling of

the stress tensor with the quasicurrents X mR
i and ZR

i and have

the form

αi jk = α
(
m0

kδ
⊥
i j + m0

jδ
⊥
ik

)
. (60)

These tensors have to be symmetric in the last two indices, the
first index has to be transverse to mi, and they must contain an
odd number of mi factors because mi is a director.

We also point out that—except for the terms related to su-
perfluidity and to M—the reversible currents for the P1 phase
are isomorphic to those given in uniaxial nematic elastomers
[41].

D. Irreversible dynamics and entropy production

We can use the dissipation function R as a Lyapunov func-
tional to derive the irreversible currents and quasicurrents.
This automatically includes the famous reciprocity rules for
dissipative cross-couplings [39]. One can expand the function
R (R/T is the amount of entropy produced within a unit
volume per unit time) into the thermodynamic forces using
the same symmetry arguments as in the case of the energy
density. We obtain

R = 1
2κi j (∇iT )(∇ jT ) + 1

2νi jkl Ai jAkl

+ 1
2μi j (∇ih)(∇ jh) + κ ′

i j (∇ih)(∇ jT )

+ 1
2ξi j (∇k�ik )(∇l� jl ) + ξT

i j (∇iT )(∇k� jk )

+ ζ
(∇iλ

s
i

)(∇ jλ
s
j

) + ζ n
i jAi j

(∇kλ
s
k

)
+ 1

2 bδ⊥
i j

(∇l�
m
il

)(∇m�m
jm

) + ξmδ⊥
i jWi

(∇l�
m
jl

)
+ 1

2τδ⊥
i jWiWj + ξD

i jk (∇iWk )(∇l� jl ). (61)

Since there is also considerable overlap between the dis-
sipation functions of the polar phase and the P1 phase,
respectively, we focus on the following on the dissipative
contributions involving M and refer for all other contributions
to Ref. [21]. For the two additions involving ∇ih, the second-
rank tensors μi j and κ ′

i j take the form

αi j = α‖m0
i m0

j + α⊥δ⊥
i j . (62)

To obtain the dissipative parts of the currents and quasi-
currents we take the partial derivatives with respect to the
appropriate thermodynamic force. We find for the additional
contributions due to the longitudinal magnetization, M

jσD
i = −

(
∂R

∂ (∇iT )

)
...

= −κ ′
i j∇ jh, (63)

jMD
i = −

(
∂R

∂ (∇ih)

)
...

= −μi j∇ jh − κ ′
i j∇ jT . (64)

In this section we have so far taken into account (as
macroscopic variables with a finite, but sufficiently long re-
laxation time) the relative rotations between the preferred
direction for the aerogel, ζi, and the preferred direction in orbit
space, mi. Should this relaxation time be very short, the rela-
tive rotations are no longer macroscopic variables, meaning
�̇i = 0 macroscopically, and therefore Wi = 0. In this case
the cross-coupling terms between the relative rotations and
the other macroscopic variables no longer exist. This affects
in the reversible dynamics, Eq. (54), the coupling to the stress
tensor (ξR

k ji = 0), and in the dissipative dynamics, Eq. (61),
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the coupling terms to strains (ξD
i jk = 0) and to gradients of the

vector mi, (ξm = 0). In the statics, Wi = 0 leads to an irrele-
vant renormalization of the elastic tensor μi jkl in Eq. (35).

E. On the dispersion relation for fourth sound

Fourth sound is obtained when normal flow of the liquid
is suppressed and one has vn ≡ 0. In this case one has as
macroscopic variables σ , δϕ, ρ, δmi, and the longitudinal
magnetization M. To lowest order in k (ω ∼ k) the director
variables δmi are decoupled from the rest. In addition, δmi

does not lead to a propagating mode, just like the director
in nematic liquid crystals. We then obtain for the dispersion
relation of fourth sound

ω2
4 = ρ̂2

s N + i

2

(
ζ ρ̂2

s + P

N

)
, (65)

ρ̂2
s = ρs

‖k2
‖ + ρs

⊥k2
⊥, (66)

N = 2γ̃ cMρ + γ̃ 2χ−1 + cρρ, (67)

P = μ̂2(γ̃ 2χ−2 + 2γ̃ χ−1cMρ + c2
Mρ

)
+ κ̂2

(
γ̃ 2c2

Mσ + 2γ̃ cMσ cρσ + c2
ρσ

)
+ 2κ̂ ′2(γ̃ 2χ−1cMσ + γ̃ cρσ χ−1

+ γ̃ cMσ cMρ + cMρcρσ ), (68)

with π̂2 = π‖k2
‖ + π⊥k2

⊥ for π ∈ {κ, κ ′, μ} and γ̃ = h̄
2m γ .

The influence of the strain field εi j on fourth sound has
been neglected so far. Since the aerogel network cannot move,
we assume ε̇i j = 0 and there is no transverse elastic propagat-
ing mode, nor an elastic contribution to first sound velocity.
However, there are elastic strains coupled statically to the
scalar variables, expressed by ≈χ

ξ
i j for ξ = ρ, σ , or M in

Eq. (35). As a result, all static cross-couplings among these
variables, cρρ , cρσ , cMρ , cσσ , cMσ , and cMM ≡ χ−1 are renor-
malized, e.g., cMσ is replaced by

cMσ → cMσ +
∑

ab

χM
a χσ

b (μ̄−1)ab, (69)

with {a, b} ∈ {⊥, ‖}, and μ̄i jkl the elastic tensor. The replace-
ments of Eq. (69) apply to all propagating modes in the P1 and
P2 described below.

Inspection of the velocity of fourth sound Eq. (65) shows
that in the P1 phase acquires a spin-wave contribution—just
as for the A1 phase in bulk superfluid 3He [23]. We note
that ω4 contains the velocity of fourth sound for the polar
phase as a special case in the limit of zero magnetization
(formally γ → 0). As it is easily checked, all dissipative chan-
nels except for those associated with the director variables δmi

contribute to the damping of fourth sound. This is common for
hydrodynamic soundlike excitations and already well known
for simple fluids [28] and superfluid 4He [31].

We also notice the close similarity between the structure of
the velocity of fourth sound in the A1 phase and P1 phase. In
lowest order in k the l̂-vector in the A1 phase as well as the m̂
vector in the P1 phase are decoupled from the other variables,
respectively.

On the other hand, there is a qualitative difference in the
spectra between 3He -A1 and the P1 phase. In 3He -A1 the l̂

vector is odd under time reversal allowing for orbit waves.
In P1 orbit waves cannot exist and are replaced by purely
diffusive processes, since m̂ is even under time reversal and
the stiffness coefficient for orbit waves (β in 3He -A1 and A)
cannot exist.

F. On the dispersion relation for first and second sound

First and second sound are obtained when normal flow of
the liquid is present and one has as macroscopic variables σ ,
vs

i , ρ, the longitudinal magnetization M and ∇igi to lowest
order in k (ω ∼ k). In this case the director variables δmi

and the vorticity εi jk∇ jv
n
k are decoupled and one obtains the

velocities of first and second sound. Neglecting the static
couplings cρσ (between δρ and δσ ) and cMρ (between δρ and
δM), rather simple expressions for the velocities are found for
second sound:

ω2
2 = ρ̂2

D

D

ρ0
≡ C2

20k2, (70)

where

D = σ 2
0 cσσ + 2σ0γ1cMσ + γ 2

1 χ−1, (71)

ρ̂2
D = ρs

‖
ρn

‖
k2
‖ + ρs

⊥
ρn

⊥
k2
⊥, (72)

with γ1 = ρ0γ̃ − M0.
For first sound we find

ω2
1 =

(
ρ0cρρ − 1

ρ0

[
M2

0χ−1 − 2M0σ0cMσ + cσσ σ 2
0

])
k2

≡ C2
10k2, (73)

with M0 = χH . We note that, in this approximation, the ve-
locity of first sound remains isotropic.

We emphasize that second sound acquires mainly spin-
wave character, quite differently from the usual second sound
in the polar phase or the superfluid phase of 4He. Most
likely the spin contributions to second sound dominate—just
as is the case for superfluid 3He -A1—and we obtain from
Eq. (70) the simplified expression

ω2
2 ≈ ρ̂2

Dγ 2
1 /ρ0χ. (74)

Without the approximations mentioned above to get first
and second sound we obtain

ω2
1 + ω2

2 = C2
10k2 + C2

20k2, (75)

ω2
1ω

2
2 = C2

10C
2
20k4

(
1 − ρ0�

D�

)
, (76)

where

� = (γ1ε2 − σ0ε1)2, (77)

� = cρρρ0 + (cMρ + ε2)M0 + (cσρ + ε1)σ0, (78)

with

ρ0ε1 = cσσ σ0 + cMσ M0 + cσρρ0, (79)

ρ0ε2 = χ−1M0 + cMσ σ0 + cMρρ0. (80)
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We note that there are, up to now, no experiments on
first and second sound—as well as on fourth sound—for the
superfluid P1 phase in uniaxial aerogels. Therefore, the results
presented inSecs. III E and III F are predictions which should
be tested experimentally.

Reviewing the experimental literature we see that, for bulk
superfluid 3He -A1, second sound has been demonstrated to be
predominantly a spin wave using NMR as well as an acous-
tic cell [42], following the suggestions of Liu [23]. Given
this background, we conjecture that, for superfluid 3He in
anisotropic aerogels, second sound should also be the prime
candidate to check the predictions made here experimentally.

G. The spin space dynamics and its coupling to orbit space

In the P1 phase there are two different types of variables
in spin space—the magnetization δMν and the rotations of the
preferred axis ŵ0

ν , Eq. (16), δwν . The longitudinal magnetiza-
tion is a scalar quantity that enters orbit space and its influence
on the propagating soundlike excitations has been discussed
in the previous two subsections. The transverse magnetization
gives rise to Larmor precession about the magnetic field,
which is strongly damped due to the strong field present.
The symmetry variables δwν are due to a spontaneously bro-
ken rotational invariance in spin space and do not lead to a
propagating mode, similar to the case of director rotations in
nematic liquid crystals and to the rotations δmi, Eq. (17), of
the preferred direction in orbit space, m0

i .
If spin-orbit coupling due to the tiny magnetic dipole-

dipole interaction is taken into account, rotational symmetry
breaking in spin and orbit space is no longer independent,
but restricted by ŵ0

i ‖ m̂0
i , rendering the distinction between

Greek and Latin indices obsolete. The spin-orbit coupling en-
ergy εso ∼ (δmi − δwi )2 gives rise to the coupling δmi = δwi

and to two coupled, nonpropagating, spin-orbit excitations
with ω ∼ k2.

IV. THE ORBITAL DYNAMICS OF THE P2 PHASE

A. Statics and thermodynamics

The relevant variables to describe the orbital dynamics of
the P2 phase have been discussed in Sec. II. Thus we get for
the Gibbs relation in the P2 phase:

dε = T dσ + μdρ + vn
i dgi + λs

i dvs
i + (h − H )dM

+ ψid∇in + �m
i jd (∇ jmi ) + �i jdεi j + Wid�i. (81)

Equation (81) is thus very similar to the Gibbs relation for
the P1 phase, Eq. (34), except for the additional variable n,
which is associated with the additional broken symmetry in
the P2 phase in spin space but also enters the orbital dynamics,
similarly to M, the longitudinal component of the magnetiza-
tion.

Next we discuss the equations of state. We focus on the
equations of state which change when going from the P1

to the P2 phase. To obtain explicit expressions for the ther-
modynamic conjugates in terms of the hydrodynamic and
macroscopic variables we expand gi, λs

i , and ψi in terms of

vn
i , vs

i , and ∇in and obtain the result

gi = ρn
i jv

n
j + ρs

i jv
s
j + ρw

i j ∇ jn, (82)

λs
i = ρs

i j

(
vs

j − vn
j

) + (
ρw

i j − β1μi j
)(∇ jn − β1v

s
j

)
, (83)

ψi = ρw
i j

(
vs

j − vn
j

) + μi j
(∇ jn − β1v

s
j

)
. (84)

To arrive at Eqs. (82)–(84) we have used general symme-
try arguments and that the Legendre transformed energy
d ε̃ ≡ dε − d (vn

i gi ) [Eq. (81)] is a complete differential form.
In addition we take into account the commutation relations
discussed in section II D and the fact that gi, the density of
linear momentum, also serves as the current for ρ:

gi = ρ0v
n
i + λs

i + β1ψi, (85)

with ρ0δi j = ρn
i j + ρs

i j + β1ρ
w
i j .

We note that 1
2μi j (∇in)(∇ jn) is the gradient energy for

deformations of the additional variable δn, due to the sponta-
neously broken continuous symmetry in spin space, with μi j

of the standard uniaxial form.
For the static behavior of the P2 phase it is important to

emphasize that it contains the statics of the P1 phase as a
special case, when the additional variable is discarded. We
also mention in passing that there is, for the static behavior,
considerable overlap between the P2 phase and the A phase in
high magnetic fields [24,27]: when discarding all terms with
the l̂ vector in Refs. [24,27], the results presented here are
recovered.

B. Dynamic equations and reversible dynamics

The dynamic Eqs. (43)–(50) of the P1 phase can be taken
over for the P2 phase. In addition, however, we have a dynamic
equation for δn, the additional variable associated with the ad-
ditional broken continuous rotational symmetry as discussed
above:

ṅ + Y = 0. (86)

For the reversible currents up to linear order in the thermo-
dynamic forces we find for the changes compared with the P1

phase, where . . . refers to the contributions already present in
the P1 phase, Eqs. (52)–(59),

gR
i = · · · + β1ψi, (87)

jσR
i = · · · + β2ψi, (88)

Y R = β1μ + β2T + γ̃ δh, (89)

jMR
i = · · · + γ̃ ψi + γ̃ β1λ

s
i , (90)

IR
ϕ = · · · + γ̃ β1δh, (91)

where β1, Eq. (30), describes couplings between spin order
and density, and β2 ≡ (T0σ0/ρ0)β1 + γ̃ H between spin order
and entropy density. They can be calculated from an equal-
time commutator [27].
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C. Irreversible dynamics and entropy production

Compared with the dissipation function for the P1 phase we
have additional contributions associated with n:

RP2 = · · · + 1
2ν(∇ jψ j )(∇iψi ) + η7(∇iψi )

(∇lλ
s
l

)
+ η

(8)
i j (∇kψk )Ai j, (92)

where . . . denotes all the terms already arising for the P1

phase, which were given in Sec. III. The second-rank tensors
η

(8)
i j are of the standard uniaxial form [43]. From Eq. (92) we

see that there are cross-coupling terms of n to the conjugate
of the superfluid velocity as well as to symmetrized velocity
gradients Ai j .

To obtain the dissipative parts of the additional currents
and quasicurrents due to n when compared with P1 we take
the partial derivatives with respect to the appropriate thermo-
dynamic forces

Y D = −ν∇kψk − η7∇kλ
s
k − η

(8)
i j Ai j, (93)

Iϕ
D = · · · − η7∇kψk, (94)

σ D
i j = · · · − η

(8)
i j ∇kψk . (95)

D. Propagating modes in the P2 phase: Selected aspects

In the present section we discuss briefly selected aspects of
propagating modes in the P2 phase. We focus exclusively of
the velocities of these propagating modes. It turns out that, for
the P2 phase, the hydrodynamic variable δn associated with
the spontaneously broken symmetry in spin space couples in
an intricate manner to fourth sound (vn ≡ 0) on the one hand
and to second sound (vn �= 0) on the other.

We will give here explicitly the expressions for the coupled
excitations of fourth sound and spin waves and discuss only
qualitatively the coupling of spin waves to second sound.

To address this task it is useful to recognize the close
similarity of the problem at hand to that of the superfluid
3He -A phase in high magnetic fields, which has been studied
in quite some detail in Refs. [27] and [24].

First we analyze the coupled excitations of fourth sound
and spin waves. As macroscopic variables entering the picture
to lowest order in the wave vector k we have the variations of
the superfluid velocity vs

i , the entropy density δσ , the density
δρ, the longitudinal component of the magnetization δM, and
the broken-symmetry variable δn.

We obtain a quintic equation with one root ω ≡ 0 and
the equations for the sum and the product of fourth sound
ω2

4 = c2
4k2 and spin waves ω2

s = c2
s k2 read

ω2
4 + ω2

s = [
a
(
ρ0k2 − ρ̂2

n

) + bμ̂2
]
, (96)

ω2
4ω

2
s = (ab − c2)

[
μ̂2

(
ρ0k2 − ρ̂2

n

) − (
ρ̂2

w

)2]
, (97)

where

a = cρρ + 2β1γ̃ cMρ + β2
1 γ̃ 2χ−1, (98)

b = β2
2 cσσ − 2

(
1 − β2

1

)
β2γ̃ cMσ + (

1 − β2
1

)
γ̃ 2χ−1, (99)

c = β2(cρσ + β1γ̃ cMσ ) + (
1 − β2

1

)
(γ̃ cMρ + β1γ̃

2χ−1),

(100)

with π̂2
q = π

q
‖ k2

‖ + π
q
⊥k2

⊥ for π ∈ {ρn, ρw, μ} and ‖ and ⊥
referring to the preferred direction in orbit space, m̂0

i , which
is also the elastic anisotropy axis. The static susceptibilities
cρρ , cρσ , cMσ , and cMρ have already been introduced for the
P1 phase in Eq. (35). Equations (96)–(100) show that μ̂2, ρ̂2

w,
and β1 �= 1, which are characteristic for the P2 phase when
compared with the P1 phase, are instrumental for the existence
of spin waves and their coupling to fourth sound even to
lowest order in the wave vector k. The fundamental difference
is that in the P1 phase the hydrodynamic variable δn does not
exist.

In closing this section we mention briefly that, for vn �= 0,
one gets a mixture of second sound, first sound, and spin
waves. And even neglecting cross-coupling terms between δρ

and the other macroscopic variables, the resulting expressions
for the velocities of second sound, c2

2, and for the spin waves,
c2

s , are rather lengthy, and we therefore refrain from giving
them explicitly. We note, however, that their structure is rather
similar to that found for 3He -A in high magnetic fields in
Ref. [24].

E. Spin space dynamics and spin-orbit coupling

In spin space there are two orthogonal preferred directions,
d̂0

i and ŵ0
i . Since ŵ0

i is parallel to the external field, only the
rotation δn about the third direction ŵ0×d̂0 is a hydrodynamic
variable. It is a scalar quantity, independent of the relative
orientation of spin and orbit space and therefore enters orbit
space dynamics, as discussed in Secs. IV A–IV D. The other
variables in spin space is the transverse magnetization, giving
rise to a strongly damped Larmor precession.

The small spin-orbit coupling leads to m̂0, ŵ0, H0 being all
parallel and d0 perpendicular to them (we always consider the
case ζ0 ‖ m̂0). As a result, the P2 phase becomes biaxial. The
main consequence of biaxiality is a more complicated struc-
ture of the material tensors, e.g., for symmetric second-rank
tensors μi j = μ‖m0

i m0
j + μ3d0

i d0
j + μ⊥(δi j − m0

i m0
j − d0

i d0
j ).

The spin-orbit coupling energy εso ∼ (δmi − δwi )2 does not
lead to a coupling to δni and there are no contributions to the
propagating modes in lowest order, similar to the P1 phase.

V. SUMMARY AND PERSPECTIVE

In this paper we have studied the macroscopic behavior
of the P1 phase and the P2 phase of superfluid 3He observed
experimentally in anisotropic aerogels. Both phases exist only
in an external magnetic field, an aspect which is similar to
the A1 phase and the A phase in high magnetic fields in bulk
superfluid 3He. It turns out that the order parameter in real
space is the same for the P1 and the P2 phase as for the polar
phase without an external field studied before.

In the P1 phase one has only one type of pairs in
spin space, either up-up or down-down pairs for the
spin projection, just as for the A1 phase. As an addi-
tional hydrodynamic variable contributing to the orbital
dynamics, one has in this case the longitudinal compo-
nent of the magnetization, which is in equilibrium parallel
to the external magnetic field and also parallel to the
preferred direction in real space characterized by a director
and also to the average preferred direction of the silica strands
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of the mullite aerogel. For the P1 phase we have presented
the full macroscopic equations and also discussed in some
detail the overlap with the dynamics of the polar phase. In
addition, we have discussed the velocities of fourth sound
for vanishing normal velocity as well as of second and first
sound. It turns out that second sound acquires predominantly
spin-wave character. This result is closely in parallel to that
predicted [23] and observed [42] for the A1 phase of bulk
superfluid 3He. Thus there is a clear-cut prediction for the P1

phase, which could be tested experimentally using NMR as
well as sound measurements.

In the P2 phase the order parameter in spin space differs
from that of the P1 phase, where one has only one spin
projection, as well as from that of the polar phase, in which
one has an equal amount of “up” and “down” pairs in the
spin projection. This fact leads to two preferred directions in

spin space, one which is parallel to the preferred direction
in the P1 phase, ŵ0, and the other one, which is parallel to
the preferred direction in the polar phases, d̂0. As a con-
sequence one can construct a variable δn associated with a
spontaneously broken continuous rotational symmetry in spin
space along the direction, which is orthogonal to ŵ0 as well
as to d̂0. The additional variable n is even under parity, odd
under time reversal, and can couple to the other macroscopic
variables familiar from the P1 phase in orbit space. As a
result one finds for the propagating excitations even to low-
est order in the wave vector a coupling between spin waves
on the one hand and fourth sound (for vn ≡ 0) or first and
second sound (for vn �= 0) on the other. In closing we point
out that there are so far no experimental results available on
the hydrodynamic propagating modes in both, the P1 and P2

phases.
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