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Quasiparticle density of states and triplet correlations in superconductor/ferromagnetic-insulator
structures across a sharp domain wall
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A ferromagnetic insulator (FI) in contact with a superconductor (S) is known to induce a spin splitting of
the BCS density of states at the FI/S interface. This spin splitting causes the Cooper pairs to reduce their
singlet-state correlations and acquire odd-in-frequency triplet correlations. We consider a diffusive FI/S bilayer
with a sharp magnetic domain wall in the FI, and we study the local quasiparticle density of states and triplet
superconducting correlations. In the case of collinear alignment of the domains, we obtain analytical results
by solving the Usadel equation. For a small enough exchange field or weak superconductivity, we also find an
analytical expressions for arbitrary magnetic textures, which reveals how the triplet component vector depends
on the local magnetization of the FI. For an arbitrary angle between the magnetizations and the strength of the
exchange field, we numerically solve the problem of a sharp domain wall. We finally propose two different setups
based on FI/S/F stacks, where F is a ferromagnetic layer, to filter out singlet pairs and detect the presence of
triplet correlations via tunneling differential conductance measurements.
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I. INTRODUCTION

The exchange coupling at the interface between a ferro-
magnetic insulator (FI) and a thin superconducting layer (S)
can lead to a spin-splitting of the density of states (DOS) in
the S layer, as observed in numerous experiments [1–5]. Re-
cently, there has been a renewed interest in these systems due
to various proposed applications. These applications include
spin valves [6,7], spin batteries [8,9], magnetometers [10,11],
thermometers [12,13], caloritronic devices [14–16], thermo-
electric elements [17,18], and radiation detectors [19,20].
FI/S structures have also been explored in the context of
Majorana fermions in semiconducting wires [21–23].

Most of these applications require a robust superconduct-
ing gap with a sizable spin-splitting. This can be achieved,
for example, in EuS/Al systems [2,4,5,7,24], where the in-
terfacial exchange interaction leads to a sharp spin-splitting
in S layers with thicknesses smaller than the coherent length.
On the theoretical side, the effect of the interfacial exchange
field and the induced spin-splitting on the superconducting
state has been studied in numerous works [5,25–27]. Most of
these works assume a homogeneous spin-splitting field. This
assumption is justified, even in a multidomain situation, if the
characteristic domain size of EuS is much longer than the
superconducting coherence length ξ0.
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There are, however, situations in which the domain size
may be of the order of the superconducting coherence
length. The effect of domain walls in magnetic and insu-
lating ferromagnets on adjacent superconductors has been
studied theoretically [28–32] and experimentally [4,33], while
Ref. [34] studied the influence of domain-wall dynamics on
superconductivity. In particular, Ref. [4] provided experimen-
tal evidence that EuS consists of multiple domains with a size
of the order of the coherence length of the Al layer attached
to it. The authors of that work contrast spectroscopic mea-
surements with a theoretical model that assumed alternating
up/down domains of different sizes. In the present work, we
generalize this approach and study a FI/S structure with two
noncollinear magnetic domains.

Despite the amount of experimental work on FI/S sys-
tems, almost all of it focuses on studying its quasiparticle
spectrum. There is, however, an interesting aspect that is not
often mentioned in these works. The mere existence of an
interfacial exchange field leads to conversion of singlet super-
conducting correlations to triplet ones [35–38]. The induced
triplet component has a total zero spin projection if the FI
consists of a single domain with homogeneous magnetization.
However, in FI/S systems with noncollinear magnetization,
triplet components with different spin-projections may coexist
with the singlet one.

In this work, we study the equilibrium properties of a
FI/S bilayer with a sharp domain wall separating two mag-
netic domains. We present an analytical solution for the
Usadel equation for a FI/S bilayer consisting of two semi-
infinite magnetic domains with collinear magnetization and
noncollinear magnetization in the weak exchange field limit,
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FIG. 1. Schematic view of the S/FI structure under considera-
tion. The ferromagnetic insulator has two domains with arbitrary
in-plane magnetization direction. The inset shows the top view of
the FI. The magnetizations of the two domains lie on the xy plane,
and they form an angle α.

and we use numerical methods to solve the noncollinear case
with arbitrary exchange field strength. Additionally, we study
the spatial evolution of the triplet correlations near a domain
wall, and we propose a method to detect them using tunneling
spectroscopy of an additional ferromagnetic layer. The work
is organized as follows: In Sec. II we present the main equa-
tions describing a diffusive superconductor attached to a FI
layer with multiple domains and a general Lagrangian from
which one can derive the Usadel equation. We identify con-
served quantities within each domain. In Sec. III we use these
integrals of motion to derive an analytical expression for the
DOS of a FI/S system with two collinear domains of arbitrary
magnitude. In Sec. IV we generalized these results to the case
of noncollinear magnetization. Finally, in Sec. V we study the
properties and spatial evolution of the triplet correlations, and
we suggest a way to detect them. We summarize the results in
Sec. VI.

II. THE MODEL

We consider a FI/S bilayer structure; see Fig. 1. A diffusive
superconducting film is placed on top of a FI film. A typical
example is Eu/Al studied in several papers [2,4,5,7,24]. In
these systems the EuS film is polycrystalline, and magnetic
domains with sharp boundaries are very common, particularly
before the first magnetization of the EuS [4].

To describe the system, we use the quasiclassical Green’s
function (GF) formalism extended to treat spin-dependent
fields [35]. In this case, the GF ǧ is a 4 × 4 matrix in Nambu-
spin space. In the diffusive limit, it does not depend on
momentum and is determined by the Usadel equation [39].
The interfacial exchange field is introduced as an effective
boundary condition at the FI/S interface [38,40,41]. As-
suming that the thickness of the S layer is smaller than
the coherence length, one can integrate the Usadel equa-
tion over the thickness to reduce the dimension of the
problem. The resulting Usadel equation for the retarded GF
reads

D∇ · (ǧ∇ǧ) + [iετ3 − ih · στ3 − �̌, ǧ] = 0, (1)

where ∇ = (∂x, ∂y), D is the diffusion constant, ε is the en-
ergy, h is the effective exchange field stemming from the
interface, and �̌ = �τ1 is the order parameter. The exchange
field is only finite at the FI/S interface, and we approximate
it as |hint| = hintaδ(z), where hint (x, y) is the exchange field
at the interface, and a is the thickness of an effective layer
over which the exchange interaction is finite [38,42]. After
integration over the z direction, the effective exchange field
is given by h = hinta/d [5]. It is worth noting that the critical
temperature of the S layer decreases with decreasing thick-
ness, such that at low temperatures superconductivity can be
fully suppressed when h > �/

√
2 [43,44]. In this work, we

consider values of the exchange field that are weak enough
such that superconducting ordering and the exchange field co-
exist. The matrices σi (τi), i = 1, 2, 3, in Eq. (1) are the Pauli
matrices in the spin (Nambu) space. The general structure of
ǧ is

ǧ = ĝτ3 + f̂ τ1, (2)

where ĝ and f̂ are the normal and anomalous GF in spin-
space.

The GF satisfies the normalization condition ǧ2 = 1, and
it can be parametrized with the help of the generalized θ -
parametrization [45],

ǧ = (cos θV0 − sin θV · σ)τ3 + (sin θV0 + cos θV · σ)τ1,

(3)
which is described by two scalars θ and V0 and the vector V .
V0 and V satisfy the condition

V 2
0 + V 2 = 1. (4)

V0 and V describe the singlet and triplet correlations, respec-
tively. If h is homogeneous, then V is parallel to it, but in
general, as we show on Sec. V, V is not parallel to the local
exchange field.

In the above parametrization, the Usadel equation reduces
to the following set of equations:

D∇2θ + 2iε sin θV0 − 2i cos θh · V + 2� cos θV0 = 0, (5a)

D(V0∇2V − V∇2V0) + 2iε cos θV − 2i sin θhV0

−2� sin θV = 0. (5b)

It is useful for finding analytical solutions to write a
Lagrangian that leads to Eqs. (5) as the Euler-Lagrange equa-
tions:

L = D

2

∑
μ

(∇Vμ)2 + D

2
(∇θ )2 + 2iε cos θV0

+ 2i sin θh · V − 2� sin θV0, (6)

with μ = 0, 1, 2, 3. This Lagrangian coincides with the form
of the nonlinear σ -model from which the Usadel equation can
also be derived [46,47].

The above equations are valid for arbitrary magnetic tex-
tures. In the following, we focus on the situation of two
semi-infinite magnetic domains with constant magnetization.
The domains are separated by a sharp domain wall at x = 0
with a length much smaller than the superconducting coher-
ence length. We assume that one of the domains (x < 0) is
polarized along the y axis, whereas the magnetization of the
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other domain (x > 0) forms an angle α with the y axis; see
Fig. 1. At distances much larger than the coherence length, the
GF takes its bulk form. The system has translational symmetry
along the y and z directions, so the parameters only depend on
the x coordinate.

On each domain, the Lagrangian (6) does not depend ex-
plicitly on the position r, so the corresponding Hamiltonian is
an integral of motion in each domain. The conserved quantity
is namely given by

E = D

2

∑
μ

(∇Vμ)2 + D

2
(∇θ )2 − 2iε cos θV0

− 2i sin θh · V + 2� sin θV0. (7)

The values of E far away from the domain wall, where the GF
is given by the bulk solution and therefore is constant in space,
can be easily obtained:

E = −2iε cos θ̄V̄0 − 2i sin θ̄h · V̄ + 2� sin θ̄V̄0, (8)

where the bulk values θ̄ and V̄ of the GF are given by the
inverse relations of Eq. (2),

tan θ = f0

g0
, (9a)

V = − g
sin θ

, (9b)

V0 = g0

cos θ
, (9c)

and the bulk GF is given by

ĝ = −i(ε − h · σ )√
�2 − (ε − h · σ)2

, (10a)

f̂ = �√
�2 − (ε − h · σ)2

, (10b)

with ĝ = g0 + g · σ, f̂ = f0 + f · σ. In the following section,
we use these expressions to define integrals of motion that
allow for an analytical solution when the magnetic domains
are collinear.

III. DOMAINS WITH COLLINEAR
MAGNETIZATION

If the magnetization of the two domains is collinear, the
problem can be greatly simplified. First, only the component
of the vector V parallel to the magnetization is nonzero. With-
out any loss of generality, we assume that the magnetizations

lie in the z axis, such that V1 = V2 = 0. In this case, Eq. (5)
reads

Dθ ′′+2iε sin θ cos θ3−2ih cos θ sin θ3+2� cos θ cos θ3 = 0,

(11a)

Dθ ′′
3 +2iε cos θ sin θ3−2ih sin θ cos θ3−2� sin θ sin θ3 = 0,

(11b)
where V3 = sin θ3. One can combine these equations to obtain
two decoupled equations for each spin component:

Dθ ′′
± + 2iε sin θ± ∓ 2ih sin θ± + 2� cos θ± = 0, (12)

where θ± = θ ± θ3, respectively, describe the spin-up and -
down components of the GF.

Since the problem is decoupled in spin space, one can
derive equations in (12) from two independent Lagrangians:

L± = D

2
θ ′
±

2 + 2iε cos θ± ∓ 2ih cos θ± − 2� sin θ±. (13)

Because L± do not depend explicitly on x, the following
quantities are conserved in space:

E± = D

2
θ ′
±

2 − 2iε cos θ± ± 2ih cos θ± + 2� sin θ±. (14)

These expressions can be evaluated at the bulk where the
spatial derivative vanishes and the GF is given by the bulk
solution [see Eq. (10)]. cos θ± and sin θ± are given by the
spin components ĝ and f̂ , respectively, where the ± sign
corresponds to the up/down spin index,

E± = 2
√

�2 − (ε ∓ h)2 = 2�

sin θ̄±
. (15)

Here θ̄± are the values of θ± at the bulk. In the following, we
omit the spin subscript to simplify the notation. Substituting
Eq. (14) into (15) and applying trigonometric identities, we
arrive at

sin θ̄
D

8�
θ ′ 2 = sin2 θ − θ̄

2
. (16)

Equation (16) does not explicitly contain the independent vari-
able x. Taking the square root on both sides of the equation, we
obtain a first-order differential equation that can be integrated
to obtain

tan
θ − θ̄l/r

4
=

{
clex/λl , x � 0,

cre−x/λr , x � 0,
(17)

where λ2
±,l/r = D/[2

√
�2 − (ε ∓ hl/r )2] is chosen such that

Re{λl/r} > 0, and that the exponential functions decay away
from the domain wall. hl/r is the value of the exchange field
in the left (x < 0) and right (x > 0) domains.

From Eq. (17) one can obtain the spatial dependence of
θ (x) by determining the constants cl,r . For this we use the fact
that the GF and its derivative are continuous at the domain
wall. Applying this condition, we obtain the values of the
constants in Eq. (17),

174507-3



HIJANO, GOLOVACH, AND BERGERET PHYSICAL REVIEW B 105, 174507 (2022)

FIG. 2. Local DOS (for spin-up) of the superconductor film for domains with opposite magnetization strength and effective exchange field
h = 0.2�. The line traces of the right panel are taken at x = −ξ0 (blue), x = 0 (red), and x = ξ0 (green). The dashed lines show the BCS
spin-splitting of the DOS deep inside of the domains x → −∞ (blue) and x → ∞ (green).

cl/r = ∓
λl/r

λr/l

(
1 − tan2 �θ

4

) + 1 + tan2 �θ
4 −

√[ λl/r

λr/l

(
1 − tan2 �θ

4

) + 1 + tan2 �θ
4

]2 + 4λ2
l/r

λ2
r/l

tan2 �θ
4

2 λl/r

λr/l
tan �θ

4

, (18)

where �θ = θr − θl , and the upper and lower signs corre-
spond to the left and right domains, respectively. The sign of
the square root on Eq. (18) is chosen such that the DOS is
positive and the solution is physically meaningful. Setting the
order parameter to zero in the right domain and the exchange
fields to zero, we recover the results by Altland et al. [48]
for a singlet S/N junction. Golubov et al. [49] also followed
a similar procedure to study the DOS at ferromagnetic and
normal layers on S(FN) and S(FF) structures.

Equation (17) together with Eq. (18) determine the analyt-
ical solution for the two semi-infinite collinear domains. The
local DOS is related to the GF through the expression

N (ε)

N0
= 1

2
Re{Tr ĝ(ε)}

= 1

2
Re{cos θ+ + cos θ−}. (19)

As a first example, we assume that the magnetizations of the
two domains are opposite in direction but equal in amplitude
(hl = −hr = h). In this case, the DOS at the domain wall (x =
0) has a simple form

N (ε)

N0
= Re

{√
�2 − (ε − h)2 −

√
�2 − (ε + h)2

2ih

}
, (20)

which leads to the red curves in Fig. 2. This analytical result
coincides with the numerical result obtained in Refs. [4,32]
for a narrow domain wall between two collinear domains. In
Fig. 2, we show the spatial dependence of the DOS for spin-up
electrons in the antiparallel magnetization configuration. Far
from the domain wall, the coherent peaks of the DOS are
well-defined (dashed lines). The presence of the domain wall
smears the peak. In Fig. 3(a) we show the spatial dependence
of the full DOS. Specifically, Fig. 3(b) shows the DOS at
the values of x indicated by the colored lines in panel (a).

The magnitude of the exchange field is the same on both
domains so the total DOS is symmetric with respect to x = 0.
For large enough distances away from the domain wall, the
BCS peak is shifted by the exchange field to ε = � ± h. Near
the domain wall, there is a crossover between the position of
the spin-up/spin-down peaks over a length scale of the order
of the superconducting coherence length ξ0 = √

D/�. Notice
that around the domain wall, the inner peak is broader and
lower than the outer peak [see Fig. 3(b)], but the gap edge
remains, as expected, at ε < � − h.

A second interesting example is when the exchange field is
only finite in one of the regions (x < 0). This corresponds to
an S layer only partly covered by the the FI layer. In Fig. 3(c),
we show the local DOS in this case. The spin-split DOS at
x � −ξ0 evolves into the usual BCS DOS at x 	 ξ0, over the
length ξ0 around the domain wall. The splitting of the DOS
peaks does not decrease smoothly, as one would expect in a
system in which the exchange field is suppressed gradually
over a length much larger than ξ0. Namely, the inner peak
is smeared in a similar way to the antiparallel magnetization
case [Fig. 3(b)], such that the DOS has the same “shark-fin”
shape right at x = 0 [red curve in Fig. 3(d)]. All of the above
predictions could be proven by performing local tunneling
spectroscopy measurements.

IV. NONCOLLINEAR MAGNETIZATION

In the previous section, we focused on the collinear mag-
netization case in which it was possible to decouple the
components of the Usadel equation. In that case, we can find
conserved quantities, Eq. (15), and we obtain analytically
expressions for the GF. If the magnetizations are noncollinear,
the system lacks enough symmetries to reduce the number
of coupled equations. Nonetheless, it is possible to solve the
Usadel equation (5) analytically in the weak superconducting
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FIG. 3. Local DOS of the S layer for (a,b) hl = 0.2� and hr = −0.2�, and (c,d) hl = 0.2� and hr = 0. The color lines in the right panels
are taken at x = −ξ0 (blue), x = 0 (red), and x = ξ0 (green).

or weak exchange field limits, as discussed in the next subsec-
tions. Later below, we study the two-domain situation for an
arbitrarily large exchange field numerically [50].

A. Weak superconductivity

If the superconductor is close to the critical temperature
Tc, the Usadel equation (5) can be linearized for a small
order parameter (� � T, h). This limit is very illustrative to
understand the lengthscales involved in the system.

Near Tc the GF can be approximated by ǧ = τ3 + f̂ τ1. The
linearized Usadel equation determines the anomalous GF f̂ ,

D

2
f ′′
0 + iε f0 − ih · f + � = 0, (21a)

D

2
f ′′ + iε f − ih f0 = 0, (21b)

where the spin structure is

f̂ = f0 +
∑
j=1,3

f jσ j, (22)

where f0 is the singlet, and f j , j = 1, 2, 3, are the triplet
components. For the two semi-infinite domain structures con-
sidered in this work, the solution to Eq. (21) is given by

f0 = f 0 + c+e−q+|x| + c−e−q−|x|, (23a)

f = f + ih
∑
j=±

c j

q2
j D/2 + iε

e−q j |x| + de−q|x|, (23b)

where f 0 and f are the asymptotic values at x = ±∞ of
the singlet and triplet components, respectively, and q2

± =
−2i(ε ∓ h)/D, q2 = −2iε/D. The triplet can be written as

the sum of the component parallel to the local exchange field
[second term in Eq. (23b)], and the component orthogonal to
it proportional to the vector d, with h · d = 0. The component
perpendicular to the local exchange field decays away from
the domain wall over the length ξε = Re{q}−1, whereas the
correction to the bulk (parallel) solution is significant at dis-
tances less than ξh = Re{q+}−1 = Re{q−}−1.

B. Weak exchange field

Another analytical limiting case is the case of a weak
exchange field (|h| � �). In this case, one can linearize the
Usadel equation (5) and solve the system for an arbitrary
magnetization texture. In zeroth order in h, only the singlet
component of the GF is finite and it is given by Eqs. (9) and
(10) setting h = 0,

tan θ = �

−iε
, (24a)

V0 = 1. (24b)

To first order in h, both θ and V0 are not corrected, whereas
the triplet vector V is determined by

V ′′ − λ−2V = 2i�

D
√

�2 − ε2
h(x′), (25)

where λ2 = D/(2
√

�2 − ε2) (Re{λ} > 0) is the energy-
dependent coherence length. The solution of this equation can
be written as

V =
∫

dx′G(x, x′)
2i�

D
√

�2 − ε2
h, (26)
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where G(x, x′) is the Green’s function of the differential equa-
tion (25) determined by(

∂2
x − λ−2)G(x, x′) = δ(x − x′). (27)

Solving Eq. (27), we arrive at

V (x) = −i�√
2D(�2 − ε2)3/4

∫
dx′e−|x−x′|/λh(x′). (28)

This result shows explicitly the spatial dependence of the
triplet vector. It is determined by the exchange field averaged
over the length λ. For example, if the spatial variation of the
exchange field h(x) is slower than the length λ, then the vector
V is locally parallel to the exchange field. In particular, in the
case of two magnetic domains separated by a smooth (with
respect to the length λ) domain wall, the vector V is always
aligned with the local field h.

In this work, we are mainly interested in sharp domain
walls, i.e., domain walls with sizes much smaller than λ. If
we model such a situation by a steplike exchange field with
h = hlθ (−x) + hrθ (x), then the triplet vector at the left and
right sides of the domain wall can be obtained from Eq. (28):

V l/r = −i�

2(�2 − ε2)
[2hl/r + (hr/l − hl/r )e−|x|/λ]. (29)

As expected, at distances much larger than λ from the domain
wall, V is parallel to the local exchange field. In contrast, the
transverse component to the field is maximized at the domain
wall and decays over λ away from it. The above analytical
results are obtained for weak exchange fields. In the next
section, we consider an arbitrarily strong exchange field.

C. Arbitrary exchange field

In this section, we consider two domains with an arbitrar-
ily large exchange field and an arbitrary angle between the
domain magnetizations, and we solve numerically the Usadel
equation. For this it is convenient to differentiate twice Eq. (4)
and substitute the result into Eq. (5). We thus arrive at [32,51]

Dθ ′′ + 2iε sin θV0 − 2i cos θh · V + 2� cos θV0 = 0,

(30a)

DV ′′ + DV
(
V ′

0
2 + V ′ 2) + 2i sin θ ((h · V )V − h)

−2(−iε cos θ + � sin θ )V0V = 0,

(30b)

DV ′′
0 + DV0

(
V ′

0
2 + V ′ 2) + 2i sin θh · VV0

+2(−iε cos θ + � sin θ )
(
1 − V 2

0

) = 0.

(30c)

We solve the above equations numerically for an S layer of
finite length L. The domain wall is located at x = 0. The
spectral current vanishes at the boundaries with vacuum. In
the generalized θ -parametrization, this translates into the fol-
lowing boundary conditions for Eq. (30):

θ ′|x=±L/2 = 0, (31a)

V ′|x=±L/2 = 0, (31b)

V ′
0 |x=±L/2 = 0. (31c)

FIG. 4. Density of states at the domain wall for different values
of the angle α between the domains’ magnetizations.

In Fig. 4 we show the computed total DOS at the domain
wall for domains with the same exchange field magnitude
h = 0.1� and different orientations (see Fig. 1). In the α = 0
case, the exchange field is uniform along the sample, so the
DOS is the homogeneous spin-split BCS. Both peaks are
broadened and lowered by increasing α, and the DOS exhibits
the “shark-fin” when the magnetizations are antiparallel. The
spin-splitting is still visible up to values of α ≈ 7π/8.

V. TRIPLET PAIR CORRELATIONS IN FI/S STRUCTURES
AND THEIR DETECTION

In the previous sections, we analyzed the quasiparticle
spectrum. Here we focus on another aspect of the FI/S
structures: the superconducting triplet pair-correlations. These
appear due to the finite interfacial exchange field that converts
a conventional singlet into triplet pairs [35,52].

Within our model, pair correlations are described by the
anomalous component f̂ introduced in Eq. (2), which in the
spin-space has the general structure given by Eq. (22). Be-
cause we consider the strict diffusive limit, all components
of f̂ are isotropic in momentum (s-wave symmetry). From
the Fermi statistics for fermion pairs, it follows that f0 is an
even function of frequency whereas f j are odd [35,53–55].
The following association between the different components
of the condensate and the spin state of electron pairs can be
made [56]:

(↑↓ − ↓↑) ↔ 2 f0, (32)

−(↑↑ − ↓↓) ↔ 2 f1, (33)

(↑↑ + ↓↓) ↔ 2i f2, (34)

(↑↓ + ↓↑) ↔ 2 f3. (35)

In other words, each triplet component of the condensate is
associated with maximally entangled states. In a conventional
BCS superconductor, only the singlet component f0 is finite.
Triplet components are finite in the presence of an exchange
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FIG. 5. The spectral weight of the singlet and triplet components of f̂ at different points in the superconductor: (a) x = −5ξ0, (b) x = 0,
and (c) x = 5ξ0. We have chosen α = π/2, L = 10ξ0, and hl/r = 0.1�.

field. In a homogeneous case, we choose the spin quantization
axis along the magnetization direction, e.g., the z axis. The
only finite components of the condensates are, in this case, f0

and f3. All triplet components may appear in a multidomain
situation with arbitrary magnetization directions.

Here we study the singlet and triplet correlations in a FI/S
bilayer with two noncollinear domains; see Fig. 1. We assume
that α = π/2 such that two components f1, f2 are finite. The
length of S is L = 10ξ0. In Fig. 5 we show the spatial de-
pendence of the singlet and triplet components of f̂ for all
energies, calculated numerically. All condensate components
show peaks at |ε| = � ± h and decay to zero at energies much
larger than the gap. Inside the gap, the amplitude of the singlet
is of the order of 1. In contrast, at ε = 0 the triplet components
are of the order of /�, where  is the Dynes parameter
[57] describing inelastic scattering. They increase linearly at
small energies and become comparable to the singlet com-
ponent within the range |ε| ∈ [� − h,� + h]. Far away from
the domain wall, only the triplet component parallel to the
local exchange field is finite. Both components, f1 and f2,

have the same magnitude at the domain wall, as anticipated
from our analytical result, Eq. (28). In Fig. 6(a), we show the
spatial dependence of the triplet correlations at ε = � − h.
The length over which the triplet components change is of the
order of the coherence length.

A natural question is how to detect the triplet components
in this type of system. This can be achieved, for example,
through spin-polarized spectroscopy [58]. Another way to
detect the triplet components is to place a ferromagnetic layer
(F) on top of a superconductor. The DOS of the F layer is
modified by the superconducting correlations induced via the
proximity effect. Such a modification can be measured by a
normal tunneling probe. In the case of a weak proximity ef-
fect, we can linearize the Usadel equation in the F region. The
DOS in the ferromagnet is then given by (see the Appendix for
details)

N (ε, x, z)

N0
= 1 − 1

4
Re{Tr f̂ 2(ε, x, z)}. (36)

FIG. 6. (a) Spatial dependence of triplet correlations for energy ε = � − h. We show the proposed geometry to detect the triplet
correlations in the inset. An F layer is placed on top of an S layer; if the F layer is thick enough, only the triplet correlations perpendicular to
the magnetization of the F layer will propagate along the ferromagnet. The long-range triplet correlations manifest as a zero-energy peak on
the local DOS, measured through tunnel differential conductance measurements with a normal metal probe (N). (b) The correction to the DOS
of the ferromagnet at the F/I interface, see panel (a), far to the right of the domain wall (solid line). The deviation from the normal DOS is
due to the penetration of the long-range component of the triplet condensate. For comparison, we show the DOS of an N layer in contact with
a conventional singlet superconductor (dashed line). At zero energy, the singlet (triplet) component induced in the N (F) layer is real (purely
imaginary), resulting in a negative (positive) correction to the DOS. The parameters used in the plot are h = 0.3�, γ = 5ξ0, and t = 3ξ0. The
DOS of the F case is normalized by (�/)2 for comparison.
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FIG. 7. Correction to the DOS of the ferromagnet at the F/I interface at different distances from the domain wall. In this setup, the
ferromagnet magnetization is aligned with respect to the magnetization of the FI. The parameters used are h = 0.3�, γ = 5ξ0, and t = 3ξ0.

The second term is the correction to the DOS due to the
proximity effect. Because of the trace over spin, this term has
two contributions: one proportional to the square of the singlet
component, and one to the sum of the squares of the triplet
components. The singlet component is real at low energies, so
its correction to the DOS is negative. This explains that if S is
a singlet superconductor and F is a normal layer (no exchange
and hence no triplet), the DOS is suppressed at ε = 0; see the
dashed line in Fig. 6(b). On the other hand, in the presence of
an exchange field, the triplet component at ε = 0 is purely
imaginary [see Eq. (A3)] and hence its contribution to the
DOS, according to Eq. (36), is positive. Thus, the sign of
the correction of the DOS at ε = 0 is determined by the
competition between singlet and triplet amplitudes [59].

To separate the triplet from the singlet component, we
propose a setup like the one sketched in Fig. 6. Due to
the presence of the FI, triplet pairs are induced in the su-
perconductor, as described above. To filter out the singlet
correlations, an F layer with a magnetization noncollinear to
the FI is placed; see the inset of Fig. 6(a). The singlet com-
ponent and triplet parallel to the F magnetization (short-range
triplet) decay over the magnetic length ∼κ−1

F . In contrast, the
triplet component orthogonal to the magnetization of F (long-
range triplet) decays over the length ∼κ−1

ε (see Appendix).
Thus, by choosing the thickness t of the F layer such that
κ−1

F � t � κ−1
ε , the DOS of F at the tunneling barrier will

only be corrected by the long-range triplet component. This
situation can be realized by using F layers with a strong
exchange field, such as Co or Fe.

In Appendix, we compute the correction to the density of
states in the ferromagnet. In the two-domain situation studied
above, when the F layer is placed above the right domain far
from the domain wall [see Fig. 6(a)], the triplet component in
F at zero energy is purely imaginary [Eq. (A3)], so according
to Eq. (A4) there is a positive correction to the DOS,

N (0,∞, t )

N0
= 1 + ε2

bh2�2

2(�2 − h2)3
, (37)

where εb = D/(2γ t ) is an energy scale related to the interface
transparency, and γ is a parameter describing the interface
resistance. The solid line in Fig. 6(b) shows the DOS of the
F layer at the tunneling barrier computed for all energies.

One sees a local maximum at ε = 0, and also maxima at
|ε| = � ± h related to the triplet peaks shown in Fig. 5. In
this way, the existence of triplets generated in the spin-split
superconductor can be demonstrated by performing tunneling
spectroscopy, with the normal electrode probe; see Fig. 6(a).

Finally, we consider an F layer consisting of two domains
that are collinear to the adjacent FI domains (see Fig. 7). This
situation may correspond to the case in which the magnetic
coupling of the F and FI leads to local collinear magnetiza-
tions. According to our previous analysis, triplet correlations
of both kinds are present in the S near the domain wall. In
other words, long-range triplet correlations will be present in
certain positions of the F/I interface and affect the local DOS.
In Fig. 7, we show the correction to the DOS at different points
of the F/I interface. The zero-energy peak appears at regions
close to the domain wall. The peak vanishes when moving
away from the domain wall. Such measurements could be
done with the help of the STM technique and may reveal
the magnetic texture of the system. Another possible setup to
isolate the odd-frequency correlations at zero energy are S/N
bilayers with a spin-active interface [60,61].

VI. CONCLUSION

In this work, we have studied the spectral properties of
superconductor-ferromagnetic insulator bilayers in the pres-
ence of a domain wall separating two magnetic domains. In
the first part, we focus on the quasiparticle spectrum, and
we analyze how the density of states of the superconduc-
tor is affected by the magnetic configuration. In the case of
two semi-infinite domains with collinear magnetization and
a sharp domain wall between them, it is possible to find two
integrals of motion that allow for an analytical solution of the
Usadel equation. With the help of this solution, we determine
the local DOS of the superconductor for different magnitudes
of the exchange field. At the domain wall, the DOS exhibits
a “shark-fin” shape. This feature appears when the domain
magnetizations are antiparallel or when one of the domains
has a negligible small exchange field. We have also studied
FI layers with noncollinear magnetization direction. We show
that near the domain wall, the spin-splitting is quite robust
with respect to the relative angle α between the magnetiza-
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tions, but the heights of the coherent peaks are significantly
affected by it. All these predictions can be verified by local
tunnel spectroscopy experiments, which will reveal informa-
tion about the local magnetic configuration of the FI.

In the second part, we have analyzed the spectral properties
of the singlet and triplet components of the superconducting
condensate in the S layer. We have found an analytical expres-
sion for the quasiclassical Green’s function in the presence of
an arbitrary magnetic texture in the FI in the case of a weak
exchange field. Our expression reveals how the local exchange
field spatially determines the triplet components induced in
the superconductor. For arbitrary strength of the exchange
interaction, we have determined the singlet and triplet com-
ponents numerically in the presence of a sharp domain wall.
We propose different ways of detecting the triplet correlations
using a FI/S/F junction, where F is a ferromagnetic metal
and a tunneling probe at the outer F interface. The presence of
the triplet component manifests itself as a zero bias maximum
in the tunneling differential conductance. The proposed setup
can then be used as a source of spin-triplet pairs, whose
entanglement can be proven in experiments using quantum
dots as pair splitters [62].
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APPENDIX: CORRECTION TO THE TUNNELING
DIFFERENTIAL CONDUCTANCE IN THE

FERROMAGNET

In this Appendix, we show how the tunneling differential
conductance measured on top of the F layer [see Fig. 6(a)]
is affected by the leakage of the superconducting condensate
into the ferromagnet.

The GF on a diffusive ferromagnet satisfies the Usadel
equation (1) with � = 0. If the transmission coefficient of the
S/F interface is very low, the proximity effect in the F layer is
weak and the Usadel equation can be linearized as

∂2
zz f0 + iκ2

ε f0 − iκ2
F f2 = 0, (A1a)

∂2
zz f + iκ2

ε f − iκ2
F f0ŷ = 0, (A1b)

where κ2
ε = 2ε/D, κ2

F = 2hF /D, and hF is the field of the
ferromagnet. Here we have assumed that the magnetization
direction of the F layer lies on the y axis.

The S/F interface is described by the linearized Kuprianov-
Lukichev condition [63],

γ ∂z f0|z=0 = − fS,0, (A2a)

γ ∂z f |z=0 = − f S. (A2b)

Here, γ = σFRb is the parameter describing the barrier
strength, where Rb is the normal-state tunneling resistance per
unit area, and σF is the conductivity of the ferromagnet. The
anomalous GF on the S layer is given by f̂S = fS,0 + f S · σ.

We assume that the thickness t of the F layer is much longer
than the coherence length in the ferromagnetic layer κFt 	 1.
In the long-junction regime, the condensate function is me-
diated primarily by the long-range triplet superconducting
correlations [35,64,65], whereas the singlet and short-range
triplet correlations decay over the length κ−1

F . At the outer
interface of the F layer, the condensate function is given by
the only long-range component f1. Solving the Usadel equa-
tion (A1b), we obtain

f1(ε, x, t ) = fS,1(ε, x)
1−i√

2
κεγ sinh

(
1−i√

2
κεt

) . (A3)

In the case of the weak proximity effect, the DOS of the
ferromagnet is given by Eq. (36). Using Eq. (A3), we arrive at

N (ε, x, t )

N0
= 1 − 1

2
Re

{
i fS,1(ε, x)2

γ 2κ2
ε sinh2

(
1−i√

2
κεt

)
}

, (A4)

where the anomalous GF of the superconductor fS,1(ε, x) is
obtained by solving Eqs. (30) and (31). If the S layer is a
homogeneous superconductor with an exchange field along
the x direction, the DOS is given by Eq. (37).
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