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Quenched randomness, thermal fluctuations, and reentrant superconductivity: Application to UTe2
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Reentrant superconductivity has been observed in the candidate spin-triplet superconductor UTe2 as a function
of the magnetic field applied along the hard axis. As resistivity measurements have shown, a broadened super-
conducting transition appears near the minimal Tc, highlighting the importance of superconducting fluctuations
in this regime. We present a phenomenological study assuming a field-driven first-order transition between two
superconducting states. We show that with quenched randomness, inhomogeneity-enhanced superconducting
fluctuations near the transition could naturally account for both the reentrant superconductivity as well as the
broadened superconducting transition.
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I. INTRODUCTION

Magnetic fields are often detrimental to superconductiv-
ity. Spin-singlet superconductors are destroyed by magnetic
fields both by the Zeeman effect and through the orbital
motion of charge carriers. Spin-triplet superconductors can
be more robust since the Zeeman effect does not break
apart triplet pairs for certain field orientations. Nevertheless,
they are not immune to the orbital depairing effects in a
generic three-dimensional system. In striking contrast to these
expectations, field-induced reentrant behavior, where super-
conductivity strengthens and even emerges with a magnetic
field, has been observed in several heavy fermion systems
CeRh2As2 [1], UGe2 [2], URhGe [3], UCoGe [4], and UTe2

[5], and the magic-angle twisted trilayer graphene [6].
In the case of UGe2, URhGe, and UCoGe superconduc-

tivity directly coexists with ferromagnetism and reentrant
behavior is associated with a spin-triplet condensate with
magnetically ordered Cooper pairs. In these systems, the con-
jectured source of reentrance is that the field tunes the system
towards a quantum phase transition [7–9], whose associated
fluctuations enhance the pairing interaction in the spin-triplet
channel and thus result in an increased transition tempera-
ture.1 By contrast, superconductivity does not coexist with
ferromagnetism in UTe2 [10] and the idea that a proximate
quantum phase transition is responsible for reentrance appears
to be less tenable since the observed quantum phase transition
in a field appears to be first order [5,11]. If the enhanced mag-
netic fluctuation is due to a weakly first-order metamagnetic
transition, a superconducting dome is expected, as in URhGe
[3] and UCoGe [4]. The lack of a superconducting dome in
UTe2 and a drastic change in normal state resistivity question
the validity of this possibility.

1Alternatively, the magnetic field tunes the system across a Lifshitz
transition where the Fermi surface topology changes, resulting in
sharp changes to the superconducting transition temperature with
field.

We provide here an alternate mechanism for reentrance in
UTe2 which does not involve quantum critical ferromagnetic
fluctuations. Indeed, predominantly incommensurate antifer-
romagnetic fluctuations have been observed in this system
[12,13]. UTe2 also shows multiple superconducting phases
especially as a function of pressure [14,15]. Further evidence
for multiple phases comes from a recent Kerr effect study
suggesting the interesting possibility of spin-triplet supercon-
ductivity with broken time-reversal symmetry. These studies
suggest that the competition between multiple superconduct-
ing phases is an important underlying feature. We show here
how these multiple phases can give rise to reentrant supercon-
ductivity.

We postulate that in the absence of disorder, the magnetic
field drives the system across a first-order transition sepa-
rating two distinct superconducting ground states (Fig. 1).
In a mean-field approximation, the first-order boundary can
terminate at a bicritical point. With quenched randomness,
thermal fluctuations are enhanced near the bicritical point,
which suppresses the transition temperature in its vicinity. The
reentrance naturally occurs in this scenario as a consequence
of the nonmonotonic magnitude of such thermal fluctuations
as a function of the magnetic field.

Our scenario is inspired by recent experimental studies,
which have revealed the sharpness of the superconducting
transition as a function of the field. These studies conclude
that the resistive transition remains sharp for small and large
fields, but for intermediate fields, the resistive transition is
broadened, indicating enhanced thermal fluctuations. Our sce-
nario naturally leads to reentrance and has several sharp
testable experimental consequences.

II. PROPOSED PHASE DIAGRAM

In this section, we propose a mean-field phase diagram
for the clean system [Fig. 1(a)] and obtain fluctuational
corrections in the presence of quenched randomness. The
crucial assumption is the first-order transition between two
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FIG. 1. (a) Mean-field phase diagram in the clean system.
(b) Phase diagrams under fluctuation with random-Tc disorder. Dou-
ble solid lines are first-order transitions, and single solid lines are
continuous transitions. Dotted lines are crossover. Descriptions of
the transition lines can be found in the main text. Classical Monte
Carlo simulations are applied on the orange points.

superconducting phases A and B at H = H∗, denoted in dou-
ble solid lines. These phases might, for instance, be related
to the multiple superconducting phases observed with ap-
plied pressure, but for the present discussion, their specific
properties are unimportant. A magnetic field applied along
a crystalline y axis suppresses both phases, by orbital de-
pairing, and the superconducting Tc monotonically decreases
as a function of field. To drive the first-order transition, the
magnetic field needs to suppress phase A more strongly than
phase B, which amounts to stating that the superconducting
coherence length of phase B is short compared to that of phase
A. Further details on the magnetic field suppression of the two
phases are provided in Sec. III.

We next include weak quenched randomness and ob-
tain fluctuational corrections to the superconducting Tc. A
schematic phase diagram can be found in Fig. 1(b). A generic
type of disorder is a random Tc, which randomly increases
or decreases the local critical temperature of orders A and B,
therefore affecting the local preference of orders.

Below the mean-field Tc, and far away from the first-order
transition, the system is mainly occupied by the dominant
order. Due to the disorder, the subdominant order can appear
as rare superconducting regions. The superconducting Tc here
is determined primarily by the long-range ordering of the
dominant order, and therefore is similar to the mean-field Tc

in the clean system. The resistive transitions in these regions
would therefore remain sharp, and the effects of fluctuations
weak.

By contrast, closer to the first-order transition, patches
of the subdominant order are more prevalent. Supercon-
ducting fluctuations are enhanced by the resulting spatial
inhomogeneity, resulting in a substantial lowering of Tc (thick
red line) relative to the mean-field value. The mean-field

critical temperature now characterizes the local ordering
within superconducting regions of the dominant order. In
this region, therefore, the resistivity deviates from its normal
state value at this crossover temperature Tonset (black dotted
line), which would appear as a broadened superconducting
transition.

The broadest transition and Tc minimum therefore appear
at the same magnetic field H = H∗. As a function of the
magnetic field, the increase in Tc from its minimum to the
maximum is smaller than or equal to the broadened transition
�T = Tonset − Tc at H = H∗. From the resistivity data, these
two quantities are both around 0.5 K. The possibility of ad-
ditional transitions in this picture within the superconducting
phases will be discussed in the next section.

III. POSSIBLE PHASES FOR A AND B

The discussion above made no explicit reference to a par-
ticular set of phases; our only assumption was the existence
of a first-order transition and a bicritical point separating two
distinct superconducting phases in the absence of disorder.
The effect of disorder then enhances thermal fluctuations near
the bicritical point. In this section, we discuss the possible
choices for phases A and B.

The simplest scenario is one in which the two phases have
different pairing symmetries [Fig. 2(a)]. Such a scenario is
corroborated by recent Kerr effect measurements (at zero Hy),
which have revealed two superconducting transitions below
which a nonzero magnetization along the c axis develops. In
an orthorhombic system, this requires two nearly degener-
ate irreducible representations. These two states in turn still
belong to different irreducible representations with nonzero
Hy. As an example, the two states could be [d1(k), d2(k)] =
(kxẑ, kyẑ) or (kxx̂, kyx̂). The state d1 breaks reflection symme-
try y → −y and preserves the 180◦ rotation along the y axis,
while the state d2 behaves oppositely. It is natural to con-
sider a field-driven transition between these two phases. Since
UTe2 is a three-dimensional (3D) crystal without dramatic
resistivity anisotropy, we would expect that the first-order
transition is preserved under weak random-Tc disorder. In
the superconducting phase, subdominant local patches could
develop long-range ordering, leading to a second transition
to the coexistent phase. In the coexistent phase, the relative
phase between the two orders could be either 0 (“A+B”) or
90◦ (“A+iB”).

A second scenario is one in which phases A and B in the
clean system correspond to distinct vortex lattice structures
[Fig. 2(b)]. With quenched randomness, the vortex lattice
order parameter maps on to the XY model in a random field,
whose lower critical dimension is 4; dislocations always de-
stroy the vortex lattice phase in a three-dimensional system.
Thus, with the disorder, the phases themselves cease to have
long-range order, and the first-order transition separating them
is destroyed. With weak random fields, dislocations are rare
and the majority of the system is uniform. In the limit of
weak random fields, the length scale beyond which long-range
vortex crystalline order is destroyed is large, and short-range
correlations of the crystal will persist. In this case, many of
the conclusions above, namely strong fluctuational corrections
near the now avoided bicritical point, survive. Indeed, the
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FIG. 2. (a) A and B are distinguished by pairing symmetries
under C2h. (b) A and B are distinguished by vortex lattice structures
in the clean system. (c) A and B have the same symmetries. Double
solid lines are first-order transitions, and single solid lines are con-
tinuous transitions. Dotted lines are crossover.

random fields lead to even stronger superconducting inho-
mogeneity near what was the first-order transition, and once
again Tc suppression in this region will result in reentrant
superconductivity. The enhanced inhomogeneity enables the
subdominant order to survive more easily in the vortex cores
of the dominant order.

In the third scenario, the two phases have the same
symmetry [Fig. 2(c)]. In this case, the first-order transition
in the clean limit is precisely analogous to the liquid-gas
transition. With quenched disorder, inhomogeneous super-
conductivity would result in a coexistent region, where both
A and B develop long-range ordering. This implies that the
first-order transition may end at a critical endpoint, followed
by crossover lines. Note that the original bicritical point is in
general not allowed in this scenario.

IV. MAGNETIC SUPPRESSION

We next invoke the fact that the reentrant behavior in
UTe2 occurs as a function of the magnetic field. Since the
magnetic field suppresses pairing both via the Zeeman and
orbital effects, we consider each case separately. Studies of
magnetic field angle dependence [5] have revealed that the
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FIG. 3. Correlation function of the dominant order. Black lines
are at field H ≈ H∗, where disorder destroys long-range ordering.
Red lines are at the same temperature but higher field, where disorder
weakly affects the correlation function. Reentrant superconductivity
therefore appears as magnetic increases.

orbital depairing is more relevant to UTe2, at least for weak
magnetic fields. We therefore concentrate on the orbital effect.
For the sake of completeness, we also provide a discussion of
the case where the Zeeman effect primarily destroys pairing.

If the transition is driven by the orbital effect, we would
require different coherence lengths for phases A and B. For
phase A, it needs to have a smaller critical field, thus a longer
coherence length. For phase B, it needs to have a shorter
coherence length. If the transition is driven by the Pauli ef-
fect, we would require a difference in the orientation of the
d vector. Phase A needs to have a d vector, that is more
parallel to the field. The d vector of phase B needs to be more
perpendicular to the field.

For completeness, both Pauli and orbital-driven transitions
will be described in the next section in the classical Monte
Carlo simulation. For UTe2, orbital suppression is more rel-
evant, since the initial drop in Tc under small magnetic field
is linear in terms of the field strength, while that drop is
quadratic within the Pauli-limited theory.

V. MONTE CARLO SIMULATION

In this section, we will apply classical Monte Carlo simula-
tion to investigate the thermal fluctuations enhanced by spatial
inhomogeneity. For simplicity, and purpose of illustration, we
will first consider the case where the magnetic field couples
solely to the spin of the condensate, resulting in Pauli sup-
pression. We then consider the complementary case where
the field couples via the vector potential and induces orbital
motion of charges.

We would like to compare the correlations of the supercon-
ducting order parameters in the neighborhood of the orange
square and triangle points in the phase diagram in Fig. 1(b).
The square point is taken from the region of enhanced thermal
fluctuations near the original bicritical point. In this region,
correlations are long ranged in the clean limit but decay
exponentially in the presence of disorder, as is clearly seen
in Fig. 3. By contrast, the region marked by the triangle in
Fig. 1(b), which is at a higher magnetic field, but at the same
temperature as the region marked by the square, has long-
ranged correlations both in the clean and disordered cases. By
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comparing these two regions, we clearly see that inhomogene-
ity induces reentrant superconductivity.

In the following Monte Carlo simulations, the fluctuation
effect is purely from phase fluctuation in the A and B patches,
while Tc is governed by Josephson couplings. Fluctuation of
magnetic field, which may be crucial to suppress Tc, is not
included in the calculation.

A. Purely Pauli paramagnetism effect

We first consider the phase transition driven by a purely
Pauli paramagnetism effect. We consider a toy model under
tetragonal symmetry, with (A, B) identified as (py, px ) states.
The analysis for other symmetries is similar. The free-energy
density is [16]

f (r) = −uA(r, H, T )

2
|�A|2 − uB(r, H, T )

2
|�B|2

+ b1(|�A|2 + |�B|2)2 + b2

2

[
�2

A(�∗
B)2 + c.c.

]

+ b3|�A|2|�B|2 + K1

2
(|∂x�B|2 + |∂y�A|2)

+ K2

2
(|∂x�A|2 + |∂y�B|2)

+ K3

2
[(∂x�B)∗(∂y�A) + c.c.]

+ K4

2
[(∂x�A)∗(∂y�B) + c.c.]

+ K5

2
(|∂z�A|2 + |∂z�B|2). (1)

In the Landau theory without the disorder, fluctuation, mag-
netic field, or competition, the quadratic coefficients can be
related to the bare critical temperature of the two order pa-
rameters by u = a(Tc − T ). Under strong competition, the
dominant order needs to have a larger quadratic coefficient.
We now drop the temperature dependence since we are fo-
cusing on the two points at the same temperature. Pauli
paramagnetism effect suppresses orderings by reducing uA

and uB:

uA(r, H, T ) = uA(H ) + δuA(r),

uB(r, H, T ) = uB(H ) + δuB(r). (2)

Random-Tc disorder δux,y(r) is taken from independently uni-
formly distributed interval [−�u,�u].

A Lx × Ly × Lz = 100 × 100 × 2 square lattice with peri-
odic boundary conditions is considered. In order to describe
the long-range ordering, we compute the in-plane correlation
function along the diagonal direction,

CA,B(L) =
∑

r

〈�A,B(r)�∗
A,B(r + (L, L, 0))〉, (3)

where 〈· · · 〉 is the thermal average in the Monte Carlo simu-
lation.

For the square point, we take uA = 3.97 and uB = 4. The
similar value of uA and uB ensures that this point is close to
H = H∗. For the triangle point, we take uA = 2 and uB = 4,
where we assumed that the magnetic field strongly suppresses
order A but not order B. Other parameters are K1 = K2 =
1, K3 = K4 = 0.1, K5 = 0.1, b1 = 1/4, b2 = 0, b3 = 1, and

�u = 2. β ≡ 1/T = 0.37 is used in the Monte Carlo simu-
lation. Here, 5 000 000 sweeps with the Metropolis algorithm
are applied. The system size is already sufficiently large, such
that different disorder realizations have a small difference in
the correlation function.

The results are summarized in Fig. 3. For the square point
(H ≈ H∗, black lines), disorder destroys long-range ordering.
For the triangle point (H > H∗, red lines), the disorder only
weakly reduces the correlation function. Superconductivity
therefore reappears as the magnetic field increases.

B. Purely orbital effect

We now consider the phase transition driven by a purely or-
bital effect. In the Landau gauge 	A = (Hy, 0), the free-energy
density is

f (r) = −uA(r)

2
|�A|2 − uB(r)

2
|�B|2

+ b1(|�A|2 + |�B|2)2 + b3|�A|2|�B|2

+ KA

2
(|(∂x − iAx )�A|2 + |∂y�A|2)

+ KB

2
(|(∂x − iAx )�B|2 + |∂y�B|2). (4)

We consider a toy model on a finite two-dimensional plane.
The presence of the third dimensionality hardly affects our
conclusions and we neglect it below for simplicity. The as-
sumption that phase A occurs at small fields, whereas phase B
occurs at higher fields (i.e., has a higher upper critical field or
shorter correlation length), requires uA > uB, and KA > KB:

uA(r) = uA + δuA(r), uB(r) = uB + δuB(r). (5)

We study a system on a L × L = 100 × 100 square lattice
with periodic boundary conditions. For the square point in
Fig. 1, we take H = 7 × 2π

L . For the triangle point, we take
H = 8 × 2π

L . Note that the periodic boundary condition re-
stricts the choice of the magnetic field strength. In numerical
calculations, a specific gauge may further restrict the choice.
For the Landau gauge, H needs to be a multiple of 2π

L .
Other parameters are uA = 1.444, uB = 1, KA = 3, KB = 1,
b1 = 1/4, b3 = 1, and �u = 0.4. β ≡ 1/T = 40 is used in
the Monte Carlo simulation. A proper value of uA is tuned
such that the square point is close to H = H∗. This tuning
is unnecessary, if one instead wants to scan over multiple
magnetic fields in a much larger system. Here, 2 × 108 sweeps
with the Metropolis algorithm and overrelaxation algorithm
are applied. The result is averaged over 20 disordered samples.

We compute the pair correlation function along the diago-
nal direction:

CA,B(L) =
∑

x,y

|〈�A,B(x, y)�∗
A,B(x + L, y + L)〉|. (6)

Note that the absolute magnitude is taken before adding up
correlators, since correlators are complex when including the
vector potential. The final overline denotes a disorder average.
The results are summarized in Fig. 4. For H ≈ H∗ (black solid
line), the correlation function is small due to imhomogeneity.
By increasing the magnetic field to H > H∗(red solid line),
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FIG. 4. Correlation function of the dominant order (solid lines)
and subdominant order (dashed-dotted lines). Black lines are at field
H ≈ H∗, while red lines are at the same temperature but higher
field. By increasing the magnetic field, the correlation function at
a long distance of the dominant order increases by nearly an order of
magnitude.

the correlation function of the superconducting order param-
eters increases dramatically. The correlation function of the
subdominant order is also included as dashed-dotted lines.

Due to the absolute value in Eq. (6), the resulting correla-
tion function cannot be used to distinguish the ordered and
disordered phase. Instead, we now compute the superfluid
stiffness along the Y direction:

Js
A,B = 1

L2
〈EY 〉 − β

L2

(〈
I2
Y

〉 − 〈IY 〉2
)
,

EY = KA,B

2

∑

x,y

[�∗
A,B(x, y)�A,B(x, y + 1) + c.c.],

IY = KA,B

2

∑

x,y

[i�∗
A,B(x, y)�A,B(x, y + 1) + c.c.]. (7)

For H ≈ H∗, we get Js
A = 0.03 ± 0.05 and Js

B = 0.01 ± 0.02.
For H > H∗, we get Js

A = 0.0002 ± 0.004 and Js
B = 0.11 ±

0.03, which shows the reentrant superconductivity. The aver-
age and standard deviation is computed from 20 disordered
samples.

The spatial dependence of the order parameter can be
found in the Appendix.

VI. DISCUSSION

In this paper, we discussed the effect of inhomogeneity
near a field-driven first-order transition. Inhomogeneity in
UTe2 has been observed in NMR [17] and specific heat exper-
iments [15]. Typically, the recent specific heat measurement
observes different signals from different parts of a sample,
which directly illustrates the importance of inhomogeneity.

In the above sections, we have assumed that the chiral
phase is not relevant near H = H∗. The proposal of a chiral
phase [18] at H = H∗ is supported by two experiments: (1)
the Kerr effect where time-reversal symmetry is found to
be broken, and (2) split transitions in specific heat, which
are strictly required for the chiral phase in the orthorhombic
system. However, the split transitions are observed in some
samples [15,18,19], while other samples show a single tran-
sition [10,15,19–21], which puts the existence of the chiral
phase into question. The proposed chiral phase has an intrinsic

FIG. 5. Mean-field phase diagram in the clean system, if
the chiral phase is relevant. The single line denotes continuous
phase transitions, while the double line denotes first-order phase
transitions.

magnetization along the c axis, which is perpendicular to the
field Hy. Therefore, the chiral phase is always suppressed
by the field. In Landau theory, there are two mechanisms to
suppress the chiral phase. One is through the suppression of
the individual order parameters of A and B, as we analyzed in
the previous sections. The second way is a direct suppression
of the magnetization,

f = αM2
z H2

y = α(i�∗
A�B + c.c.)2H2

y , (8)

with α > 0. In our analysis, we assumed that the suppression
in the chiral phase is strong enough, such that it is irrelevant
for the reentrant superconductivity. This assumption requires
a sufficiently large α. For smaller α, the mean-field phase dia-
gram is shown in the bottom panel. Our analysis on reentrant
superconductivity still applies to the first-order transition line
between the A and B phases (see Fig. 5).

With disorder, we proposed three possible fates for the
field-driven transition. If the two phases belong to the irre-
ducible representations for the chiral phase [Fig. 2(a)], then
there exist two continuous phase transitions at low tempera-
ture. Detecting the two continuous phase transitions (possibly

FIG. 6. Magnitude of order parameters under an orbital-effect-
driven transition. The top two figures are at H ≈ H∗, while the
bottom two are at H > H∗. Increasing magnetic field strongly en-
hances the dominant order. The superfluid stiffness is included in the
titles.
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in the magnetocaloric effect) will further support the proposal
of the chiral phase. The second scenario [change in vortex
lattice structures, Fig. 2(b)] does not have phase transitions
under disorder. But the local vortex lattice structures deep
in the two phases can be distinguished in muon spin spec-
troscopy (μSR) and small-angle neutron scattering. In the last
scenario (same symmetry in the A and B phase), there is only
a first-order phase transition near the superconducting Tc. This
phase transition could involve a sudden change in the position
of the node, which could be observed in the penetration depth.

Our study has potential applications to other supercon-
ducting systems with a first-order transition. For example,
CeRh2As2 [1] is shown to have a first-order phase transition
under magnetic field, between an even-parity superconducting
phase and an odd-parity superconducting phase. Supercon-
ducting Tc is slightly reduced near the phase transition. In the
magic-angle twisted trilayer graphene [6], field-driven reen-
trant superconductivity is also observed. Extra broadening

of the superconducting transition is found near the minimal
superconducting Tc, and the onset Tc is a monotonically de-
creasing function of the magnetic field. These findings match
with our study.
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APPENDIX: SPATIAL RESOLUTION

In this Appendix, we present the spatial dependence of the
order parameters |〈�(x, y, z)〉|, for the orbital-effect-driven
transition, shown in Fig. 6.

[1] S. Khim, J. F. Landaeta, J. Banda, N. Bannor, M. Brando,
P. M. R. Brydon, D. Hafner, R. Küchler, R. Cardoso-Gil, U.
Stockert et al., Science 373, 1012 (2021).

[2] I. Sheikin, A. Huxley, D. Braithwaite, J. P. Brison, S. Watanabe,
K. Miyake, and J. Flouquet, Phys. Rev. B 64, 220503(R) (2001).

[3] F. Lévy, I. Sheikin, B. Grenier, and A. D. Huxley, Science 309,
1343 (2005).

[4] D. Aoki, T. D. Matsuda, V. Taufour, E. Hassinger, G. Knebel,
and J. Flouquet, J. Phys. Soc. Jpn. 78, 113709 (2009).

[5] G. Knebel, W. Knafo, A. Pourret, Q. Niu, M. Vališka, D.
Braithwaite, G. Lapertot, M. Nardone, A. Zitouni, S. Mishra
et al., J. Phys. Soc. Jpn. 88, 063707 (2019).

[6] Y. Cao, J. M. Park, K. Watanabe, T. Taniguchi, and P. Jarillo-
Herrero, Nature (London) 595, 526 (2021).

[7] D. Belitz, T. R. Kirkpatrick, and T. Vojta, Phys. Rev. Lett. 82,
4707 (1999).

[8] A. Miyake, D. Aoki, and J. Flouquet, J. Phys. Soc. Jpn. 78,
063703 (2009).

[9] S. Nakamura, T. Sakakibara, Y. Shimizu, S. Kittaka, Y. Kono,
Y. Haga, J. Pospíšil, and E. Yamamoto, Phys. Rev. B 96, 094411
(2017).

[10] S. Ran, C. Eckberg, Q.-P. Ding, Y. Furukawa, T. Metz, S. R.
Saha, I.-L. Liu, M. Zic, H. Kim, J. Paglione et al., Science 365,
684 (2019).

[11] A. Miyake, Y. Shimizu, Y. J. Sato, D. Li, A. Nakamura, Y.
Homma, F. Honda, J. Flouquet, M. Tokunaga, and D. Aoki,
J. Phys. Soc. Jpn. 88, 063706 (2019).

[12] C. Duan, K. Sasmal, M. B. Maple, A. Podlesnyak, J.-X. Zhu, Q.
Si, and P. Dai, Phys. Rev. Lett. 125, 237003 (2020).

[13] W. Knafo, G. Knebel, P. Steffens, K. Kaneko, A. Rosuel,
J.-P. Brison, J. Flouquet, D. Aoki, G. Lapertot, and S. Raymond,
Phys. Rev. B 104, L100409 (2021).

[14] S. Ran, H. Kim, I.-L. Liu, S. R. Saha, I. Hayes, T. Metz, Y. S.
Eo, J. Paglione, and N. P. Butch, Phys. Rev. B 101, 140503(R)
(2020).

[15] S. M. Thomas, C. Stevens, F. B. Santos, S. S. Fender, E. D.
Bauer, F. Ronning, J. D. Thompson, A. Huxley, and P. F. S.
Rosa, Phys. Rev. B 104, 224501 (2021).

[16] M. Sigrist and K. Ueda, Rev. Mod. Phys. 63, 239
(1991).

[17] G. Nakamine, K. Kinjo, S. Kitagawa, K. Ishida, Y. Tokunaga,
H. Sakai, S. Kambe, A. Nakamura, Y. Shimizu, Y. Homma
et al., J. Phys. Soc. Jpn. 90, 064709 (2021).

[18] I. Hayes, D. Wei, T. Metz, J. Zhang, Y. Eo, S. Ran, S. Saha,
J. Collini, N. Butch, D. Agterberg et al., Science 373, 797
(2021).

[19] P. Rosa, A. Weiland, S. Fender, B. Scott, F. Ronning, J.
Thompson, E. Bauer, and S. Thomas, arXiv:2110.06200.

[20] D. Aoki, A. Nakamura, F. Honda, D. Li, Y. Homma, Y. Shimizu,
Y. J. Sato, G. Knebel, J.-P. Brison, A. Pourret et al., J. Phys. Soc.
Jpn. 88, 043702 (2019).

[21] T. Metz, S. Bae, S. Ran, I.-L. Liu, Y. S. Eo, W. T. Fuhrman,
D. F. Agterberg, S. M. Anlage, N. P. Butch, and J. Paglione,
Phys. Rev. B 100, 220504(R) (2019).

174506-6

https://doi.org/10.1126/science.abe7518
https://doi.org/10.1103/PhysRevB.64.220503
https://doi.org/10.1126/science.1115498
https://doi.org/10.1143/JPSJ.78.113709
https://doi.org/10.7566/JPSJ.88.063707
https://doi.org/10.1038/s41586-021-03685-y
https://doi.org/10.1103/PhysRevLett.82.4707
https://doi.org/10.1143/JPSJ.78.063703
https://doi.org/10.1103/PhysRevB.96.094411
https://doi.org/10.1126/science.aav8645
https://doi.org/10.7566/JPSJ.88.063706
https://doi.org/10.1103/PhysRevLett.125.237003
https://doi.org/10.1103/PhysRevB.104.L100409
https://doi.org/10.1103/PhysRevB.101.140503
https://doi.org/10.1103/PhysRevB.104.224501
https://doi.org/10.1103/RevModPhys.63.239
https://doi.org/10.7566/JPSJ.90.064709
https://doi.org/10.1126/science.abb0272
http://arxiv.org/abs/arXiv:2110.06200
https://doi.org/10.7566/JPSJ.88.043702
https://doi.org/10.1103/PhysRevB.100.220504

