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Interplay of magnetic field and trigonal distortion in the honeycomb � model:
Occurrence of a spin-flop phase
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In candidate Kitaev materials, the off-diagonal � and �′ interactions are identified to come from the spin-orbit
coupling and trigonal distortion, respectively. They have generated intense research efforts because of their
intimate relation to the field-induced magnetically disordered state reported in α-RuCl3. Theoretically, while a
plethora of field-induced phases has been proposed in the honeycomb lattice, a stable intermediate phase that
can survive in a wide parameter region regardless of the underlying phases is still lacking. Here we focus on
the interplay of an out-of-plane magnetic field and a symmetry-allowed �′ term due to trigonal distortion in
the dominant antiferromagnetic � region. By using multifaceted approaches ranging from classical Monte Carlo
and semiclassical spin-wave theory to density-matrix renormalization group, we identify an intriguing spin-flop
phase in the presence of magnetic field and antiferromagnetic �′ interaction, before it eventually enters into
a fully polarized state. As the �′ interaction approaches the size of � one, the �-�′ model maps to the easy-
axis XXZ antiferromagnet, where the spin-flop phase can be understood as a superfluid phase in the extended
Bose-Hubbard model. Our finding thus demonstrates an exciting path from the honeycomb � model towards a
U (1)-symmetric XXZ antiferromagnet in a magnetic field.

DOI: 10.1103/PhysRevB.105.174435

I. INTRODUCTION

In the pursuit of exotic quantum ground states such as
quantum spin liquid (QSL), a large family of spin-orbit cou-
pled effective spin-1/2 Mott insulators on a honeycomb lattice
has been the focus of massive research efforts (for reviews,
see Refs. [1,2]). This interest is triggered by a seminal work
by Kitaev, who proposed an exactly solvable honeycomb
model consisting of bond-directional Ising couplings, and
demonstrated that it hosts QSLs with fractionalized excita-
tions of itinerant Majorana fermions and Z2 gauge fluxes
[3]. Jackeli and Khaliullin subsequently showed that the Ki-
taev (K) interaction could be realized in alkali iridates [4].
However, almost all existing Kitaev materials are found to
exhibit long-range magnetic orderings at ambient pressure and
zero magnetic field. For example, the well-studied Na2IrO3

[5,6] and α-RuCl3 [7–9] have the zigzag magnetic order
at low temperatures, while the Li2IrO3 family displays an
incommensurate counterrotating magnetic spiral [10–12]. A
newly synthesized compound YbCl3 with 4 f electron con-
figuration, which is proposed as a possible realization of the
Kitaev interaction, shows an antiferromagnetic (AFM) order
with a Néel temperature TN = 0.60 K [13–16]. The existence
of long-range magnetic orders in these compounds is natu-
rally understood as a consequence of non-Kitaev interactions,
which contaminate the fragile Kitaev QSL. The non-Kitaev
interactions include the Heisenberg (J) interaction, and also
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the symmetric off-diagonal � and �′ interactions, which
mainly come from the spin-orbit coupling [17], and trigonal
distortion [18], respectively.

Hitherto, α-RuCl3 has drawn immense attention for the
existence of fingerprints of fractionalized excitations [19–21].
Also of note is that an in-plane magnetic field of roughly 8 T
can suppress the underlying magnetic order, leading to an in-
termediate phase (IP), which could survive in a finite interval
of magnetic field [22–27]. However, the precise nature of this
IP is still a contentious question, with a possibility of either
Majorana fermionic excitations or conventional multiparticle
magnetic excitations [28,29]. Noteworthily, the former sce-
nario is in line with the tempting observation of a half-integer
quantized thermal Hall effect [30]. In addition, a convictive
model, which harbors such an IP on top of the zigzag ordering
is still absent, although there is a consensus regarding the
minimal K-� model [31,32]. On the other hand, when an out-
of-plane magnetic field is applied, a metamagnetic transition
due to the possible spin-flop process is also reported but with
a large critical magnetic field [33]. The fact that the discrep-
ancy between the in-plane and out-of-plane Landé g factors
is modest implies a significant role played by the symmetric
off-diagonal � interaction. Meanwhile, a small �′ interac-
tion stemming from the inevitable trigonal distortion should
also be involved [18]. This term is essential for explaining
the zigzag ordering in α-RuCl3 [34,35], and could enhance
the mass gap of Majorana fermions generated by external
magnetic fields [36,37]. Until now, many theoretical models
such as J-K model [38], K-�-�′ model [39,40], and K-�-J3

model [41], have been adopted to embrace the field-induced
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FIG. 1. (a) Honeycomb lattice with a YC structure. The unit cell defined by primitive vectors n1,2 = (±√
3/2, 3/2) contains two (open and

filled) sites. δx (
√

3/2, 1/2), δy (−√
3/2, 1/2), and δz (0, −1) are the unit vectors along the X (red), Y (green), Z (blue) bonds, respectively.

(b) Layout of the honeycomb plane spanned by a [112̄] and b [1̄10]. c [111] represents the out-of-plane direction, which is perpendicular to the
honeycomb plane. (c) and (d) show the in-plane spin structures of the 120◦-I and 120◦-II phases, respectively. Here, ϕA and ϕB are the referring
angles of A and B sublattices with respect to the a direction. They satisfy the relation ϕA + ϕB = 0 (or 2π ) for 120◦-I phase and ϕA + ϕB = π

(or 3π ) for 120◦-II phase. (e) Classical phase diagram of the �-�′ model with � = cos ψ and �′ = sin ψ , which includes the AFMc phase, the
FMc phase, and the 120◦ phases. (f) The classical ground-state energy εcl versus ψ .

IPs that may relate to the experimental phenomena observed
in α-RuCl3.

To study the intriguing IPs in the presence of a magnetic
field, we start from a �-�′ model with a dominant AFM �

interaction. Here, the ground state is known to host two exotic
phases dubbed � spin liquid (�SL, named after the ground
state of the honeycomb � model [42–44]) and chiral-spin
ordering stabilized by a small AFM �′ interaction [45]. The
model is equivalent to a U (1)-symmetric XXZ model when
�′ = �, and the ground state turns out to be an AFMc state
whose magnetic moment is along the c [111] direction. A
natural question in mind is whether an IP could appear over
the disordered phases or AFMc states in the presence of an
external magnetic field. We recall that the uniaxial Heisen-
berg antiferromagnet undergoes a spin-flop transition when
a magnetic field is applied parallel to the easy-axis direction
[46,47]. In the spin-flop region, the spins exhibit considerable
components that are normal to the field direction, albeit with
somewhat canting toward the applied field [48]. To this end,
we apply a [111] magnetic field in the �-�′ model, and a
spin-flop phase is found to set in above the �SL, the chiral-
spin ordering, and the AFMc phase, before entering into the
paramagnetic phase at large field. Notably, the spin-flop phase
in the parameter region with �′ = � could be interpreted as
a superfluid phase in the hard-core extended Bose-Hubbard
model [49,50].

The rest of the paper is organized as follows. In Sec. II, we
introduce the generic JK��′ model on the honeycomb lattice,
followed by a brief mention of our numerical and theoretical

methods. In Sec. III, we perform both classical and semiclas-
sical studies of the zero-field �-�′ model, in connection to
a previous quantum study [45]. Section IV presents a field-
induced quantum phase diagram, with an emphasis on the
�SL and chiral spin state. In Sec. V, a thorough analysis of the
field-induced spin-flop phase is shown. Finally, conclusions
are presented in Sec. VI.

II. MODEL AND METHODS

In the multitudinous Kitaev materials with spin-orbit cou-
pled pseudospin-1/2 degrees of freedom, the paradigmatic
model takes the general JK��′ form on a honeycomb lattice
[17,18],

H =
∑
〈i j〉‖γ

[
JSi · S j + KSγ

i Sγ

j + �
(
Sα

i Sβ
j + Sβ

i Sα
j

)]
+ �′ ∑

〈i j〉‖γ

[(
Sα

i + Sβ
i

)
Sγ

j + Sγ

i

(
Sα

j + Sβ
j

)]
−

∑
i

ĥ · Si, (1)

where Sγ
i (γ = x, y, and z) is the γ component of spin-1/2

operator at site i. On z bonds (α, β, γ ) = (x, y, z), with cyclic
permutation for x and y bonds [see Fig. 1(a)]. J and K are
the diagonal Heisenberg and Kitaev interactions, respectively,
while � and �′ are the symmetry-allowed off-diagonal ex-
changes. The last term in Eq. (1) specifies a uniform external
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magnetic field h = |̂h| in the [111] direction, which is perpen-
dicular to the honeycomb lattice as illustrated in Fig. 1(b). On
account of the possible microscopic Hamiltonian of α-RuCl3,
the model (1) has been studied previously with K , � being
treated as leading interactions [39,40,51]. From a theoretical
point of view, the AFM Kitaev model in a [111] magnetic
field has been studied extensively and a QSL is found in an
intermediate field despite that its nature is still under study
(see Ref. [52] and references therein). On the other hand, near
the dominant AFM � region, the �SL and the chiral spin
phase are identified by tuning the �′ term [45].

In the subsequent sections, we will perform a hierarchical
study of the �-�′ model in a [111] magnetic field where the
Heisenberg (J) interaction and the Kitaev (K) interaction are
switched off. The classical Luttinger-Tisza method is used to
map out the zero-field phase diagram [53,54], while the classi-
cal Monte Carlo (MC) simulation is performed in the presence
of a finite magnetic field [55]. The simulations are executed
in a low-temperature range with dozens of replicas. For each
given temperature, we use the heat-bath algorithm to target
the lowest energy with a MC step of 5 × 106. In addition, the
thermal replicas where configurations swap between different
temperatures are allowed with a probability according to a
detailed balance condition [56]. When considering the effect
of quantum fluctuations, we calculate the spin-wave energy,
dispersion relations, and the Chern number with the help of
linear spin-wave theory (LSWT) [57].

Apart from the classical and semiclassical treatments, this
model is studied massively by the density-matrix renormaliza-
tion group (DMRG) method on two distinct cluster geometries
[58–60]. The DMRG is initially invented as a powerful ap-
proach aiming to solve problems in one dimension, and
stands out as a competitive method for dealing with two-
dimensional problems. In the latter case, one needs to map
the physical two-dimensional lattice to the one-dimensional
chain properly. This process will inevitably involve long-
range correlation and entanglement [60]. However, these
issues are not very severe if the number of sites is not too
large or the width of the cylinder is not too big, and could
be reduced essentially by increasing the block states and per-
forming finite-size scaling. We focus primarily on a 24-site
C6-symmetric hexagonal cluster under full periodic boundary
condition, and the method to map it to a one-dimensional
chain is shown in the Supplemental Material [61]. In addition,
we also consider the Lx × Ly YC cluster under cylindrical
boundary condition with total sites N = LxLy [cf. Fig. 1(a)].
During the calculation, the truncation error will change as we
scan the superblock and it also decreases with the increase
of the block state. Therefore, we keep as many as m = 3000
block states and perform up to 12 sweeps until the worst
truncation error is smaller than 10−6.

III. CLASSICAL AND SEMICLASSICAL STUDY
OF THE �-�′ MODEL

A. Lutinger-Tisza analysis

Before presenting the quantum study of the �-�′ model, it
is helpful to have a look at the classical phase diagram. The
Luttinger-Tisza method has been demonstrated to be powerful

for the determination of magnetic ground states in various
classical spin models [53,54]. In these models, the classical
spins are treated as O(3) vectors, which satisfy the condition
|Si|2 = S2. In the spirit of the Luttinger-Tisza method, this
hard constraint is replaced by a soft constraint

∑
i |Si|2 = NS2

tentatively, and the authentic ground state is selected from
those solutions derived under the soft constraint that addition-
ally meets the hard constraint. Successful applications of the
Luttinger-Tisza method to the spin-orbit coupled model (1) in
some special cases are shown previously [62,63].

We choose the primitive vectors of the honeycomb lattice
as n1,2 = (±√

3/2, 3/2) [see Fig. 1(a)], and the sites are
represented as (R, υ), where R marks the position of the
unit cell and υ (= 1, 2) is the sublattice index. Transform-
ing the spin operators via �SR,υ = ∑

q eiq·R �Sq,υ with �Sq,υ =
(Sx

q,υ , Sy
q,υ , Sz

q,υ )T , we cast the entire Hamiltonian in the re-
ciprocal space as

H/N = 1

4

∑
q

(�ST
−q,1, �ST

−q,2

) · �q ·
(�Sq,1

�Sq,2

)
, (2)

where the 6 × 6 interaction matrix �q is an antidiagonal block
matrix

�q =
( �0 �q

�∗
q

�0
)

.

Here,

�q =
⎛⎝K(ς1) T (1) T (ς2)
T (1) K(ς2) T (ς1)
T (ς2) T (ς1) K(1)

⎞⎠,

with K(ς ) = Jγk + ςK and T (ς ) = �′γk + ς (� − �′). The
momentum-dependent arguments read as

ς1,2 = e−ıqn1,2 = e−ı(±√
3qx+3qy )/2

and

γq = 1 + ς1 + ς2 = 1 + 2 cos

√
3qx

2
e−ı3qy/2.

According to the Luttinger-Tisza minimization, the lowest
eigenvalue of �q in the entire Brillouin zone provides a lower
bound of the classical energy. Noticing that Dq = �∗

q�q =
�†

q�q, we find that

E/(NS2) � −
√

λmax

2
, (3)

where λmax is the maximal eigenvalue of Dq at the correspond-
ing ordering wave vector Q. The magnetic moment direction
�m can be obtained afterwards by checking the spin-length
constraint.

We have applied the Luttinger-Tisza method to the �-�′
model, and the corresponding classical phase diagram is found
to include an AFMc phase when �′ > 0 and a ferromagnetic
(FMc) phase when �′ < 0. Here, the subscript c represents
that magnetic moment direction is along the c [111] direction.
The energy of the AFMc phase is εcl = −(� + 2�′), while it
is � + 2�′ for FMc phase. The classical phase diagram also
contains two 120◦ phases but with different relative angles
[see Figs. 1(c) and 1(d)]. For the 120◦ phases, all spins lie
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in the ab plane and are divided into two interpenetrating parts
on A and B sublattices of honeycomb lattice, where on each
sublattice the spins on the corner of an equilateral triangle are
mutually oriented to each other with 120 angles. Assuming
that ϕA and ϕB are the in-plane angles of A and B sublattices
with respect to the a direction, then the classical energy per
site is given by

ε120◦
cl = −(� − �′) cos(ϕA + ϕB − π ). (4)

The optimal angles of ϕA and ϕB depend on the sign of
� − �′, where a negative sign denotes ϕA + ϕB = 0 or 2π

[see Fig. 1(c)], while a positive sign represents ϕA + ϕB = π

or 3π [see Fig. 1(d)]. There is no extra restriction on the
values of ϕA and ϕB, implying an emergent U (1) symmetry
in the ab plane. In both cases, we have the classical energy as
ε120◦

cl = −|� − �′|.
In addition, we also parametrize � = cos ψ and

�′ = sin ψ , and show the classical phase diagram in
Fig. 1(e). It can be found that the AFMc phase is preferred
when ψ ∈ (0, ψ0) with ψ0 = π − tan−1(2) ≈ 0.6476π and
occupies nearly one third of the whole ψ circle. Remarkably,
when ψ = π/4 (i.e., � = �′), the �-�′ model can be reduced
to

H =�
∑
〈i j〉

[
− 1

2
(S̃+

i S̃−
j + S̃−

i S̃+
j ) + 2S̃z

i S̃z
j

]
, (5)

which is nothing but an easy-axis XXZ model with a
Z2 � U (1) symmetry. The AFMc phase and the FMc

phase are smoothly connected to the hidden SU (2) Heisen-
berg model at (J, �, �′) = (1/3, 1/3, 1/3) and (J, �, �′) =
(1/3,−2/3,−2/3) [62], respectively. Besides, from the pin-
nacles of the energy curve shown in Fig. 1(f) we can tell that
all the classical phase transitions are of first order. In what
follows, we take � = 1 as the energy unit.

B. Linear spin-wave theory

Classically, there is a direct 120◦-AFMc transition in the
vicinity of the AFM � limit as �′ is varied. The quantum fluc-
tuation manifests its effect by altering the underlying phases at
least in two aspects [45]. One is that the 120◦ phase is replaced
by the zigzag phase when �′ is negative. The other is that, for
small but positive �′ interaction, there are two exotic phases,
which are intervened between the magnetically ordered states.
Here we show that the LSWT is amenable to illuminate the ef-
fect of quantum fluctuation. Within the framework of LSWT,
the quadratic Hamiltonian in the momentum space reads [57]

H = NS(S + 1)εcl + S

2

∑
q

x̂†
qĤqx̂q, (6)

where x̂†
q = (a†

1,q, a†
2,q, · · · , a1,−q, b2,−q, · · · ) is the Nambu

spinor and Ĥq is a 2 × 2 block matrix termed Bogliubov-de
Gennes (BdG) Hamiltonian. The length of Nambu spinor
should be 2ns where ns is the number of sites in one unit
cell. The bosonic BdG Hamiltonian is diagonalized via a
para-unitary matrix T q,

T †
qĤqT q =

(
�q 0
0 �−q

)
, (7)

FIG. 2. The spin-wave energy εsw for the zigzag phase (red cir-
cle), 120◦ phase (green triangle), and AFMc phase (blue square) in
the �-�′ model. The classical (black line) and quantum (pink dia-
mond) energy per site with S = 1/2 are also shown for comparison.

where �q = diag(ωq1, ωq2, · · · , ωqns ) whose diagonal ele-
ments are the magnon dispersions ωqυ (υ = 1, 2, · · · , ns).
The para-unitary matrix T q satisfies the boson relation

T †
q�T q = T q�T †

q = �, (8)

where � = diag(+1̂,−1̂). In other words, the magnon disper-
sions ωqυ can also be determined by diagonalizing �Ĥq. The
spin-wave energy is then given by

εsw = S(S + 1)εcl + S

2ns

∑
{υ}∈ns

∫
d2q

(2π )2
ωqυ. (9)

Figure 2 shows the spin-wave energy εsw for the zigzag
phase, 120◦ phase, and AFMc phase in the window of −0.5 �
�′/� � 0.5. When �′ < 0, energy of the zigzag phase is
considerably smaller than that of the 120◦ phase, showing that
the quantum fluctuation would provoke the zigzag ordering
as the true ground state. In the neighboring of the AFM �

limit, magnon gap � of the zigzag phase decreases gradually
and vanishes when �′/� = 0 (not shown). This phenomenon
is called the magnon instability and is a signature of phase
transition [64]. Hence, the zigzag phase can not surpass the
line of �′/� = 0 and thus cannot survive in the presence of
an AFM �′ term. Whereas the AFMc phase is favored for
modest positive �′ interaction, there is a noteworthy energy
jump between the zigzag phase and the AFMc phase near
�′/� = 0. Our spin-wave result implies that an intermediate
region should exist as a consequence of competing interac-
tions. The classical (black line) and quantum (pink diamond)
energy per site are also shown in Fig. 2 for comparison. It is
observed that the spin-wave energy is lower than the classical
energy, but is higher than the quantum case.

IV. MAGNETIC FIELD-INDUCED QUANTUM
PHASE DIAGRAM

In a previous study of the �-�′ model by the authors [45],
it is shown that there is indeed an intermediate region between
the zigzag phase and the AFMc phase at the quantum level. In
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FIG. 3. (a) Quantum phase diagram of the �-�′ model in a [111]
magnetic field. The DMRG calculation is performed on a 24-site
hexagonal cluster. The phase diagram contains a zigzag phase, a
�SL, a chiral spin state (marked by the symbol χ ), and an AFMc

phase at zero field. A spin-flop phase and a paramagnetic phase are
induced upon increasing the magnetic field. We note that the precise
phase boundary between the zigzag phase and the paramagnetic
phase is smeared due to the unavoidable multistep magnetization
before entering into the totally polarized region. The vertical cuts
along the lines of �′/� = 0.0 (red dash-dotted line) and �′/� = 0.3
(blue dotted line) are the main focuses of the following study. The
study of other cuts are shown in the Supplemental Material [61].
(b) Quantum phase transitions along the line of �′/� = 1. The low-
field transition at ht1 = 2.115(3) is first order, while the high-field
transition at ht2 ≈ 4.50 seems to be continuous.

the range of −0.015 � �′/� � 0.095, there is a gapless �SL,
which is characterized by a hidden plaquette correlation [42].
Besides, a chiral-spin ordered state with spontaneously time-
reversal symmetry breaking appears when 0.095 � �′/� �
0.185. Here, we go beyond that study by applying an out-
of-plane magnetic field, and the resulting phase diagram is
shown in Fig. 3. The DMRG computation is mainly executed
in the 24-site hexagonal cluster. We have also checked the
phase diagram on the YC6 cylinder of 12 × 6, which ba-
sically remains unchanged despite a tiny shift of the phase
boundaries.

Throughout the phase diagram, there are six distinct phases
and two of them only exist in the presence of a finite magnetic
field. One is a conventional paramagnetic phase, while the
other is a spin-flop phase, which also exhibits an in-plane
magnetization when compared with the paramagnetic phase.
Starting from the magnetically ordered states at zero field,
transition between the zigzag phase and the paramagnetic
phase is first order, as reflected by the jump in the magnetic
order parameter. By contrast, the spin-flop phase is sand-
wiched between the AFMc phase and the paramagnetic phase.
We note that the spin-flop phase has an intimate relation to
the superfluid phase identified in the extended Bose-Hubbard
model [49,50]. In addition, the regions of �SL and chiral spin
state are enlarged but are terminated before entering into the
paramagnetic phase. In what follows we will concentrate on
the �SL and chiral spin state, while leaving the discussion on
the spin-flop phase to the next section.

FIG. 4. (a) Behavior of the entanglement entropy S as a function
of magnetic field h in the �-�′ model with �′/� = 0. The underlying
geometry is a 24-site hexagonal cluster. Inset: The first-order deriva-
tive of S with respect to h. (b) Magnetic order parameters MN (Q)
for the zigzag order and paramagnetic phase with Q = M and �,
respectively. The geometries are a 24-site hexagonal cluster and a
12 × 6 YC cylinder. (c)–(e) show the static structure factor at a field
of (c) h = 0.2 (�SL), (d) h = 1.0 (zigzag phase), and (e) h = 2.0
(paramagnetic phase), respectively.

A. �SL in the magnetic field

We start from the �SL and investigate its fate in the pres-
ence of a magnetic field. The von Neumann entanglement
entropy is a reliable quantity to capture the phase transitions
between the phases with unique ground states. It is defined
as S = −tr(ρs ln ρs) where ρs is the reduced density matrix
of one-half of the system [65]. S displays a jump at the
transition point if the transition is first order, otherwise it
varies smoothly with the driving parameter. Figure 4(a) shows
the behavior of entanglement entropy S on the 24-site cluster.
When we apply a small magnetic field, entanglement entropy
is maintained around 3.5, followed by a sustaining decrease
with a steepest drop at ht1 ≈ 0.45(5) (see inset). The en-
tanglement entropy does not experience a big change until
an abrupt reduction around ht2 ≈ 1.40(5). The consecutive
release of entropy therein may imply a multistep alignment of
the spins towards a more parallel structure in the paramagnetic
phase. We expect the interval of this metastate shrinks with the
increase of the system size.

To figure out the nature of the intermediate region,
we resort to the static structure factor (SSF) SN,τ (q) =∑

αβ δαβS
αβ
N,τ (q) where

Sαβ
N,τ = 1

N

∑
i j

(〈
Sα

i Sβ
j

〉 − τ
〈
Sα

i

〉〈
Sβ

j

〉)
eiq·(Ri−R j ). (10)
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Here, Ri is the position of site i and q is the wave vector
in the reciprocal space. The symbol τ could be either 0 or
1, and it indicates that the effect of magnetic field is either
kept or deducted, respectively. We note that when τ = 1,
only the intensity around the very center (i.e., � point) in the
Brillouin zone is reduced. Figures 4(c), 4(d) and 4(e), show
the snapshots of SSF SN,τ (Q) in a field of h = 0.1 (τ = 1), 1.0
(τ = 1), and 2.0 (τ = 0), respectively. In Fig. 4(c), intensity in
the reciprocal space is very diffusive, albeit with a soft peak
at M point that may relate to the adjacent zigzag ordering.
By contrast, a sharp peak at M point could be spotted in
the intermediate region as shown in Fig. 4(d). Upon apply-
ing a higher magnetic field, there is a paramagnetic phase,
which displays a visible peak at � point [see Fig. 4(e)]. We
define the order parameter MN,τ (Q) = √

SN,τ=0(Q)/N with
Q being the ordering wave vector. In Fig. 4(b) we show the
order parameters MN (Q) of the zigzag phase (Q = M) and
paramagnetic phase (Q = �) on a 24-site hexagonal cluster
and a 12 × 6 YC cylinder. When h < ht,1, the order parameter
MN (M) exhibits a considerable reduction with the increase of
the system size. Although we do not make an extrapolation
of this order parameter for the lack of large clusters, the
magnetic order is likely to vanish as N increases, and the
low-field region should be identical to the �SL identified in
the zero-field study [42]. On the other hand, the ground state
at h > ht,2 is a paramagnetic phase with an almost saturated
magnetic moment. However, the most inspiring observation is
that there is a zigzag ordering, which is smoothly connected
to the zigzag phase induced by the FM �′ interaction, in the
intermediate region of ht,1 < h < ht,2. The zigzag phase is
unusual in that it only has a unique ground state with a small
excitation gap.

Similar to the Kitaev honeycomb model, in the �-�′ model
we also calculate the hexagonal plaquette operator [3]

Ŵp = 26Sx
1Sy

2Sz
3Sx

4Sy
5Sz

6, (11)

where the sites 1–6 form a hexagon plaquette labeled by p [see
Fig. 1(a)]. Without loss of generality, we define the fluxlike
density W p = ∑

p〈Ŵp〉/Np where Np = N/2 is the number

of plaquette. Figure 5(a) shows the fluxlike density W p with
respect to the magnetic field. In the �SL region the net flux
W p is −0.25(2) at zero field, followed by a steady ascent
as the field increases. The fluxlike density finally becomes
positive and reach its maximal value of 0.10(1) at ht,2. After
that one enters into the paramagnetic phase accompanied by
a sudden drop of W p. It is interesting to note that the fluxlike
density in the paramagnetic phase does not has a monotonous
behavior; instead, it first declines with the field and then
increases again, reaching a saturated value ultimately. For
large enough magnetic field along the [111] direction, all the
spins Si = σ i/2 are totally polarized with the same magnitude,
〈σ x

i 〉 = 〈σ y
i 〉 = 〈σ z

i 〉 = 1/
√

3. Thus, the expectation value
of hexagonal plaquette operator at large enough magnetic
field is

〈Ŵp〉 =
(

1√
3

)6

= 1

27
≈ 0.037037 · · · . (12)

As can be seen from the inset of Fig. 5(a), W p indeed ap-
proaches to 1/27 with the increase of magnetic field.

FIG. 5. (a) Fluxlike density 〈W p〉 and (b) plaquette order param-
eter P (Q) on the 24-site hexagonal cluster (red circle) and the YC
cylinders of 8 × 4 (green triangle) and 12 × 6 (blue square). The
inset of (a) shows 〈W p〉 at large field, which tends to approach 1/27
as field increases.

We continue the discussion of hexagonal plaquette operator
by calculating the plaquette-plaquette correlation 〈Wp · Wq〉.
The plaquette structure factor is defined as [66]

WNp (q) = 1

Np

∑
pq

〈ŴpŴq〉eiq·(Rp−Rq ), (13)

where Rp is the central position of each plaquette, which
forms a triangular lattice with a lattice constant of

√
3. In the

totally polarized phase, 〈Ŵp · Ŵq〉 can only take three different
values, depending on their relative positions. If Ŵp and Ŵq are
identical or totally irrelevant without any shared edge, then
〈Ŵp · Ŵq〉 is 1 and 1/36, respectively. Otherwise, Ŵp and Ŵq

have a sole shared edge and 〈Ŵp · Ŵq〉 = 1/35. Taken together,
we have

WNp (�) =
(

1 + 11

36

)
+ Np

36
. (14)

Typically, the first term in the right-hand side is dominant
when N � 100. To reduce the strong finite-size effect, we
introduce the following plaquette order parameter:

PNp =
√
WNp (Q)

Np
− 1√

Np
. (15)

Figure 5(b) shows the plaquette order parameter P (Q) with
the high-symmetry point Q = � being the center of the Bril-
louin zone. In the �SL and the zigzag phase, P (�) is nonzero
as the spins are noncollinear. Furthermore, P (�) is more
pronounced in the �SL, highlighting the unusual spin pattern
due to the intrinsic frustration.
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FIG. 6. (a) Chiral distribution of 〈χ [s]
i jk〉 as a function of site index s on a 24-site hexagonal cluster with �′/� = 0.15 and h = 0.2. Here,

s is the center site of the equilateral triangle formed by (i, j, k). When s is 2, 4, 6,... (red circle), (i, j, k) should be odd and belongs to the A
sublattice with the chiral order parameter 〈χA〉 = |〈χ [s]〉| (s is even). Otherwise, when s is 1, 3, 5,. . . (blue square), (i, j, k) belongs to the B
sublattice with the chiral order parameter 〈χB〉 = |〈χ [s]〉| (s is odd). (b) Behaviors of 〈χA〉 (red circle) and 〈χB〉 (blue square) as functions of
�′/� with fixed h = 0.2. (c) Behaviors of 〈χA〉 (red circle) and 〈χB〉 (blue square) as functions of h with fixed �′/� = 0.15.

B. Chiral spin state

As pointed out in Ref. [45], the chiral-spin ordered state
could be stabilized by a small AFM �′ interaction that is one
order of magnitude smaller than the dominated � interaction.
It is known to break time-reversal symmetry spontaneously
and thus exhibits a finite scalar spin chirality defined as

χ̂
�
i jk = Ŝi · (Ŝ j × Ŝk ), (16)

where (i, j, k) label lattice sites of either A or B sublattice,
forming an equilateral triangle � in the clockwise direction,
see inset of Fig. 6(a). We find that the chiral spin state could
still survive up to a small magnetic field, before entering into
a partially polarized phase. Following the analysis in Ref.
[45], we focus on a point at (�′ = 0.15, h = 0.2) in the �-�′
model, and the distribution of chirality χ̂ within the 24-site
cluster is shown in Fig. 6(a). It is clearly seen that the scalar
spin chirality is uniformly distributed in each sublattice and
possesses an opposing sign in the A and B sublattices. In
addition, magnitudes of the chirality in the A and B sublattices,
whose absolute values are 〈χA〉 ≈ 0.0264 and 〈χB〉 ≈ 0.0333,
are no longer the same due to the existence of the magnetic
field.

Figure 6(b) presents the chiral order parameters 〈χA〉 and
〈χB〉 as functions of �′. The chiral order parameters are very
robust in the window of 0.095 � �′/� � 0.185 and undergo
drastic jumps on the brink of phase boundaries. We also show
the evolutions of chiral order parameters with respect to the
magnetic field in Fig. 6(c). It is found that 〈χB〉 is slightly
elevated with the increase of magnetic field and displays a
maximum when h ≈ 0.3. By contrast, 〈χA〉 decreases almost
linearly from 0.0333 (at h = 0.0) to 0.0195 (at ht ≈ 0.53).
Again, the chiral order parameters experience jumps to a
small but finite value at h > ht , and the system enters into the
spin-flop phase where the discrepancy between 〈χA〉 and 〈χB〉
disappears.

According to our previous work, the chiral spin state is
known as a magnetically disordered state without long-range
magnetic ordering [45]. In that study, we proposed that it
could be either a gapless chiral spin liquid because of the

continuous feature of the dynamic structure factor in the low
frequency region, or a symmetry-protected phase with short-
range entanglement based on the modular matrix. However, a
decisive conclusion could hardly be made due to the low sym-
metry of the Hamiltonian and the capacity of the numerical
calculation. Hence, determining the nature of the chiral spin
state is a tempting open question to be explored.

V. FIELD-INDUCED SPIN-FLOP PHASE

A. Overview of the classical analysis

In this section, we investigate the evolution of the AFMc

phase under the [111] magnetic field in the region of
�,�′ > 0. Since the applied magnetic field is parallel to the
direction of the classical magnetic moment, the energy of the
AFMc phase remains unchanged in the presence of a weak
magnetic field. By contrast, a strong enough field will induce
a totally polarized phase where all the spins align along the
magnetic field direction. To quantify the value of the critical
field ht , we define the spin Si for arbitrary i as

Si = S(sin ϑ cos ϕâ + sin ϑ sin ϕb̂ + cos ϑ ĉ), (17)

where â[112̄], b̂[1̄10], and ĉ[111] are the crystallographic
axes, ϑ and ϕ are the polar angle relative to the c axis and
azimuthal angle in the ab plane, respectively. We note that
this ansatz is certainly suitable for the paramagnetic phase, but
may break down for the unpolarized phases and thus should
be checked by other methods in the intermediate region.
By using of Eq. (17), the entire variational classical energy
eg = Eg/NS2 is given by

eg = � + 2�′

4
(1 + 3 cos 2ϑ ) − h

S
cos ϑ. (18)

Strikingly, the energy is irrelevant of ϕ and thus the polar an-
gle ϑ is the sole variational parameter [67]. The optimal value
ϑo is determined by the conditional equations ∂eg/∂ϑ = 0 and
∂e2

g/∂ϑ2 > 0, and from which we obtain that

ϑo =
{

0, h � ht

cos−1
(
h/ht

)
, h < ht

, (19)
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FIG. 7. Classical MC calculation of the ground-state energy εcl

as a function of magnetic field h/� (S = 1/2) in the �-�′ model
with �′/� = 0.3. Two distinct clusters, 2 × 12 × 8 (open circle) and
2 × 24 × 16 (open square), are used in the simulation. The exact
energy of the AFMc phase (blue line, left), spin-flop phase (green
line, middle), and paramagnetic phase (red line, right) are shown for
comparison. The cartoon patterns of these phases are shown in the
inset.

where ht = 3S(� + 2�′) is the critical magnetic field. Equa-
tion (19) indicates that just below the critical magnetic field ht ,
the spins deviate from the axial direction by a given angle ϑo

and exhibit a nonzero in-plane magnetization (see the inset of
Fig. 7). With the decrease of the magnetic field, the energy of
the intermediate phase grows, and it is replaced by the AFMc

phase when h < ht/
√

3. By substituting Eq. (19) into Eq. (18)
and with the energy of the AFMc phase in mind, we have the
classical energy of the three phases

eg =

⎧⎪⎨⎪⎩
− 3h−ht

3S , h � ht

− 3h2+h2
t

6Sht
, ht/

√
3 < h < ht

− ht
3S , h � ht/

√
3

. (20)

One could notice that all the three phases have two-site unit
cells, see the cartoon patterns shown in Fig. 7.

Having discussed the consecutive transitions along the
magnetic field, we now perform the parallel tempering MC
simulation to study the intermediate region in detail. After
identifications of the possible classical ground states, we then
perform the simulation on two cylinders of 2 × 12 × 8 (open
circle) and 2 × 24 × 16 (open square). The calculated energy
of the AFMc phase (blue line) and the paramagnetic phase (red
line) match nicely with the exact solutions shown in Eq. (20),
see Fig. 7. In the intermediate region, there are several large-
unit-cell orderings and the selected configurations are shown
in the Supplemental Material [61]. These results are at odds
with Eq. (17), which assumes that all the spins have the same
polar angle. We note that, while the spin-flop phase (green
line) is not the genuine ground state in the intermediate region,
its energy is very close to and yet slightly higher than the
MC result. This leaves the possibility open to legitimate the
spin-flop phase at the quantum level.

B. Spin-wave dispersions, topological magnons,
and order-by-disorder mechanism

In this section, we resort to the LSWT to study the magnon
excitations of the underlying phases in the [111] magnetic
field. We start from the AFMc phase at the low-field region
and its BdG Hamiltonian in Eq. (6) takes the form of

�̂H =

⎛⎜⎜⎝
ε+

0 λ0(q) 0 λ1(q)
λ∗

0(q) ε−
0 λ1(−q) 0

0 λ∗
1(−q) ε+

0 λ∗
0(−q)

λ∗
1(q) 0 λ0(−q) ε−

0

⎞⎟⎟⎠. (21)

The momentum-dependent coupling expressions are

ε±
0 = 2(� + 2�′) ± h/S, (22)

λ0(q) = 2(� − �′)γ1,q, (23)

λ1(q) = −(� + 2�′)γ0,q. (24)

For convenience, we introduce three auxiliary functions

γ0,q = 1
3 (eıqδx + eıqδy + eıqδz ), (25)

γ1,q = 1
3 (ω−1eıqδx + ωeıqδy + eıqδz ), (26)

γ2,q = 1
3 (ωeıqδx + ω−1eıqδy + eıqδz ), (27)

which satisfy the relations γ ∗
0,q = γ0,−q, γ ∗

1,q = γ2,−q, and
γ ∗

2,q = γ1,−q. The Berry curvature Fυ (q) associated with each
magnon band is given by

Fυ (q) = ∂A(υ )
y (q)

∂qx
− ∂A(υ )

x (q)

∂qy
, (28)

where A(υ )
γ (q) = ıTr[Pυ�T †

q�(∂qγ
T q)] (γ = x, y) is the

Berry potential. Here, Pυ is a diagonal matrix taking +1 for
the υth diagonal component and zero otherwise. Alternatively,
the Berry curvature can be rewritten as [68]

Fυ (q) = −2Im

[∑
μ 
=υ

σμυ

〈T υ |∂qx
�̂H |Tμ〉〈Tμ|∂qy

�̂H |T υ〉
(ωqμ − ωqυ )2

]
(29)

with σμυ = �μμ�υυ . The Chern number of the υth branch is
obtained as the sum of the Berry curvature in the Brillouin
zone,

Cυ = 1

2π

∫
BZ

Fυ (q)d2q. (30)

Figure 8(a) shows two magnon branches along the high-
symmetry points in the Brillouin zone in the zero-field limit,
and the intensity of the lower branch in the reciprocal space
is shown in Fig. 8(b). The K and K′ points are inequivalent,
which is reminiscent of the time-reversal symmetry breaking.
The magnon bands are gapped and the lowest excitation gap
comes from the K point with the value of

�K = 2(� + 2�′) −
√

(h/S)2 + 4(� − �′)2. (31)

Apparently, the zero-field magnon gap �K = 6�′ = 1.8, con-
sistent with the data shown in Fig. 8(a). However, one finds
that depending on the relative magnitude of the magnetic field
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FIG. 8. Magnon dispersions ωq1 (blue) and ωq2 (red) of the AFMc phase or the paramagnetic phase in the S = 1/2 �-�′ model with
�′/� = 0.3. (a) and (b) show the magnon dispersions and the intensity of the lowest magnon branch in the AFMc phase with h = 0.0,
respectively. The black arrow in (a) marks the position of the minimal excitation gap, and the path in the reciprocal space is depicted in (b).
(c), and (d) show the same quantities as these of (a) and (b) in the case of AFMc phase with h = 1.2. The green dotted horizontal line in (c) is a
guide for the eye. (e) and (f) show the same quantities as these of (a) and (b) in the case of paramagnetic phase with h = 3.0. The green dotted
horizontal line in (e) is a guide for the eye. In this paramagnetic phase, the Chern number C1 of the lowest magnon branch is −1.

there could be a soft mode around the ordering wave vectors
of �/�′ points. Hence, the lowest excitation gap is given
by

��′ =
√

3(� + 2�′) − h/S, (32)

which decreases linearly with the increase of magnetic field.
In Fig. 8(c), we show the magnon dispersions at a field of
h = 1.2, together with a lower magnon branch in Fig. 8(d).
It is observed that excitation gap at �′ point is slightly
smaller than that of the K point. Since the melting of the
AFMc ordering is accompanied by the closure of excitation
gap at �′ point, the lower transition point is estimated as
ht1 = √

3S(� + 2�′).
We also calculate the Chern numbers and find that they

are zero for both branches. The reason may be that the
two branches touch each other at some points and thus the
Chern number is not well defined. We note that the same
conclusion was drawn in a relevant study [69]. However, it
is demonstrated that magnons in the paramagnetic phase is
topologically nontrivial for the existence of nonzero Chern
number [70–72]. To this end, we proceed with the analysis
of the paramagnetic phase at large enough magnetic field.

Similarly, the BdG Hamiltonian of the paramagnetic phase
takes the form of

ε±
0 = −2(� + 2�′) + h/S, (33)

λ0(q) = −(� + 2�′)γ0,q, (34)

λ1(q) = 2(� − �′)γ1,q. (35)

The magnon spectrum at the � point is

�� = h/S − 3(� + 2�′), (36)

which increases linearly with the magnetic field when h is
larger than the upper transition point ht2 = 3S(� + 2�′). Fig-
ure 8(e) shows the dispersion of the paramagnetic phase where
h = 3.0 is taken as an example. It can be verified that the
magnon gap at � is 1.2, which is in accordance with the
theoretical value revealed in Eq. (36). More importantly, our
result suggests that the Chern numbers of the two branches
in the paramagnetic phase are −1 and +1, respectively, see
Fig. 8(f).

The LSWT analysis shows clearly that there should be an
intermediate region in the window of h ∈ (ht1, ht2), which
happens to be the same interval inferred from the classical
study [see Eq. (20)]. For the spin-flop phase, the classical
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FIG. 9. Energy barrier δĒb between the spin-flop phase of differ-
ent orientations along the line of h = 9(� + 2�′)/8. Inset: Spin-wave
energy correction �E (ϕ) at the parameter point (�′/�, h) =
(0.3, 1.8) vs azimuthal angle ϕ, which is suited at the â-b̂ plane.

moment direction Si(ϑ, ϕ) is shown in Eq. (17) where ϑ is
given by Eq. (19). According to Eq. (9) we calculate the
spin-wave energy εsw at a magnetic field of h = 1.8, and
the energy reduction �E (ϕ) = εsw − S2εcl with respect to the
azimuthal angle ϕ is shown in the inset of Fig. 9. It is shown
that �E (ϕ) exhibits a period of 2π/3 in the in-plane manifold
and the angles at ϕ = 0, 2π/3, and 4π/3 are more energeti-
cally favorable than the others. Hence, the emergent classical
U (1) manifold is lifted by quantum fluctuations, generating a
discrete C3 rotational symmetry. We also introduce the energy
barrier δĒb as Eg(ϕ = π ) − Eg(ϕ = 0), which is 0.0338 when
(�′/�, h) = (0.3, 1.8) (marked by a hexagram in Fig. 9). In
the main panel of Fig. 9, we present the energy barrier δĒb

along the line of h = 9(� + 2�′)/8. The value of δĒb grad-
ually raises with the increase of �′/� up to �′/� ≈ 0.27.
Afterwards, it drops rapidly and vanishes at �′/� = 1 where
the system possesses a hidden U (1) symmetry.

C. DMRG calculation

In Sec. V B, we predict that a spin-flop phase can occur in a
wide field region before entering into the paramagnetic phase.
Here, we confirm the existence of such phase by the DMRG
method. Figure 10(a) shows the first 15 low-lying excitation
gaps �υ = Eυ − E0 in the �-�′ model with �′/� = 0.3 fixed.
The method to target the first few low-lying energy levels
simultaneously is shown in Ref. [42]. With the increase of the
magnetic field, the excitation gap �2 of the AFMc phase goes
down gradually and is vanishingly small at ht1 = 0.88(2).
Beyond the transition point, excitation gaps are small and the
spectrum is very dense in a large interval, indicative of a gap-
less region. Exceeding ht2 = 2.38(2), excitation gap �1 opens
linearly with the magnetic field. We note in passing that the
transition points are fairly consistent with those obtained by
cylinder DMRG calculation [61]. In addition, magnetic order
parameters of the AFMc phase and the paramagnetic phase
are shown in Fig. 10(b). For the AFMc phase, the SSF peaks
at the �′ point, and the order parameter M(�′) has a sharp
jump at ht1, signifying a first-order transition thereof. In the
intermediate phase, the spins are only partially polarized as

FIG. 10. (a) The first 15 excitation gaps �υ (υ = 1 − 15) as
functions of magnetic field h/� in the �-�′ model with �′/� = 0.3.
(b) Magnetic order parameters MN (Q) for the AFMc phase and
paramagnetic phase with Q = �′ (blue square) and � (red circle),
respectively. The intermediate spin-flop phase has a finite in-plane
magnetization (green triangles).

opposed to the paramagnetic phase when ht > ht2. However,
a nontrivial observation is that it also has a uniform in-plane
correlation that is perpendicular to the external field. For ex-
ample, magnetization along â and b̂ are of equal strength and
are overlapped in the plot [see Fig. 10(c)]. Consequently, the
intermediate phase is recognized as a gapless spin-flop phase
with a temporarily emergent U (1) symmetry. The finite-size
scaling of the order parameters and the SSF of the spin-flop
phase are shown in the Supplemental Material [61].

However, the in-plane component of the spin-flop phase is
likely unstable against extra perturbation. The emergent U (1)
symmetry is then broken down to C3 rotational symmetry,
accompanied by the appearance of gapless Goldstone modes.
To this end, we apply a tilted magnetic field h = h(ϑ, ϕ),
which enjoys the same form of Eq. (17). Here, the intensity
of the field h = 1.8 and the tilted angle ϑ relative to the c axis
is specified as 2◦, 5◦, and 8◦. Figure 11 shows the behaviors
of the shifted ground-state energy �Eg, which is defined as
Eg − Ēg with Ēg = 1

2π

∫ 2π

0 dϕEg(ϕ), with respect to the in-
plane azimuthal angle ϕ ∈ [0, 2π ) [73]. It can be observed
that the variation of the energy is one order of magnitude
smaller than that of the semiclassical situation. However, in
both cases there is a breaking of the continuous U (1) sym-
metry to the discrete C3 rotational symmetry, giving rise to
three local minima when ϕ = 0, 2π/3, and 4π/3. In addition,
the energy barrier δĒb = �Eg(ϕ = π ) − �Eg(ϕ = 0) obeys
approximately the fitting formula δĒb ≈ 10−3 · 7.1ϑ

9.6+ϑ
, show-

ing that the energy barrier δĒb will be less sensitive to the
tilted angle ϑ as ϑ increases. To conclude, there is a two-step
symmetry changing in the spin-flop phase. The first step is
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FIG. 11. Behaviors of the shifted ground-state energy �Eg in the
range of ϕ ∈ [0, 2π ) for three different tilted angle ϑ = 2◦ (pink),
5◦ (green), and 8◦ (blue) in the �-�′ model under a c-axis magnetic
field. Here, the DMRG calculation is performed on a 24-site cluster
with (�′/�, h) = (0.3, 1.8). The energy valleys at ϕ = 0, 2π/3, and
4π/3 are reminiscent of the order-by-disorder phenomenon.

from the discrete symmetry to the emergent U (1) symmetry,
while the second step is from U (1) symmetry to the broken
C3 rotational symmetry. We note that a similar phenomenon
is also reported in the classical honeycomb � model in a
magnetic field [48].

As shown in Fig. 3(b), the spin-flop phase could survive
for at least �′/� = 1, at which the model is equivalent to the
spin-1/2 XXZ model in a longitudinal magnetic field with
an easy-axis anisotropy �a = 2. Accidentally, the spin-flop
phase could also be interpreted as the superfluid phase in
the extended Bose-Hubbard model whose Hamiltonian reads
[49,50]

HBH = − t
∑
〈i j〉

(b†
i b j + bib

†
j ) + V

∑
〈i j〉

nin j − μ
∑

i

ni

+ U

2

∑
i

ni(ni − 1), (37)

where b†
i (bi) is the creation (annihilation) operator at site

i and ni = b†
i bi is the corresponding occupation number.

Here, t is the nearest-neighbor hopping parameter, μ is the
chemical potential, and U and V represent the on-site and
nearest-neighbor repulsive interactions, respectively. In the
hard-core limit where U/t → ∞, there is one boson at most
on each site. By virtue of the mapping b†

i = S+
i , bi = S−

i , and
ni = Sz

i + 1/2, Eq. (37) can be mapped onto the spin-1/2
XXZ model under a longitudinal magnetic field,

H = 2t
[∑

〈i j〉

[ − (Sx
i Sx

j + Sy
i Sy

j ) + �aSz
i Sz

j

] − h
∑

i

Sz
i

]
+ E0,

(38)

where �a = V/2t is the anisotropy of the spin-spin interac-
tion, h = 1

2t (μ − zV/2) = �(μ/V − z/2) is the longitudinal
magnetic field, and E0 = −NV

2 (μ/V − z/4) is an energy con-
stant arising from the mapping between the spins and bosons
operators. Considering the case t/V = 1/4 (inversely, we

have �a = V/2t = 2) and μ/V > z/2 = 1.5 in the origi-
nal extended Bose-Hubbard model, the ground state is a
solid with density ρ = 1/2 when μ/V is sightly increased, a
ρ = 1 Mott insulator at large enough μ/V , and a superfluid
at moderate μ/V . In view of the relation μt/V = (ht + z)/2
with ht,1 = 2.115(3) and ht,2 = 4.5, our result suggests the
first transitions occurs at μt,1/V = 2.558(2) and μt,2/V =
3.75, which is fairly consistent with quantum Monte Carlo
simulations (for illustration, see Refs. [49,50] and also Sup-
plemental Material [61]).

VI. CONCLUSION

In this paper we focus on the interplay of magnetic field
and trigonal distortion [18] in honeycomb � model. For this
purpose, we have studied a �-�′ model in a [111] magnetic
field in the vicinity of a dominated AFM � region. In the
absence of magnetic field, a 120◦ phase and an AFMc phase
can be selected immediately from the infinitely degenerate
ground state of the classical � model, depending on the sign
of �′ interaction. The classical 120◦ phase is unstable against
quantum fluctuations, giving away to the neighboring zigzag
ordering. At the quantum level, two exotic phases are found to
exist in the intermediate region between the zigzag phase and
the AFMc phase. One is a �SL stemming from the ground
state of honeycomb � model, while the other is a chiral spin
state, which spontaneously breaks the time-reversal symme-
try. Upon applying a magnetic field, regions of the �SL and
chiral spin state are enlarged but are terminated before enter-
ing the paramagnetic phase at large field.

A nontrivial observation of this work is that there is a field-
induced spin-flop phase as long as a modest magnetic field
is applied over the AFMc phase. The spins in the spin-flop
phase are tilted away from the field direction and are free to
rotate in the honeycomb plane, indicative of an emergent U (1)
symmetry. Due to the quantum fluctuation in the frustrated
magnet, such a continuous symmetry is broken down to the
C3 rotational symmetry where the spins are perpendicular to
any of the three types of bonds. When �′/� = 1, the model is
reduced to an easy-axis spin-1/2 XXZ antiferromagnet sub-
jected to a longitudinal magnetic field. In this circumstance, it
is equivalent to a hard-core extended Bose-Hubbard model. In
that sense, the spin-flop phase is merely the superfluid phase.
In doing so, we manifest an unusual route from the � region
to the XXZ magnet.

In closing, we comment that there are several ways to
achieve such a dominated � interaction in experiments. In
α-RuCl3, for example, the spin interactions are revealed to
be sensitive to the layer stacking and octahedral distortion,
and the overwhelming � regime with a desired AFM �′ in-
teraction could be achieved upon applying compression [74].
On the other hand, by virtue of the circularly polarized light,
the Heisenberg interaction in α-RuCl3 can be made much
smaller than the anisotropic exchange interactions K and �

[75], and the tailored light pulse can further weaken the Ki-
taev interaction by a proper adjustment of its amplitude and
frequency [76,77]. Therefore, these procedures allow us to
drive the material into a regime where the � interaction is
prominent [78].
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