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Strong magnetoelastic coupling in Mn3X (X = Ge, Sn)
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We measure the full elastic tensors of Mn3Ge and Mn3Sn as a function of temperature through their respective
antiferromagnetic phase transitions. Large discontinuities in the bulk moduli at the Néel transitions indicate
strong magnetoelastic coupling in both compounds. Strikingly, the discontinuities are nearly a factor of 10 larger
in Mn3Ge than in Mn3Sn. We use the magnitudes of the discontinuities to calculate the pressure derivatives
of the Néel temperature, which are 39 K/GPa 14.3 K/GPa for Mn3Ge and Mn3Sn, respectively. We measured
the in-plane shear modulus c66, which couples strongly to the magnetic order, in magnetic fields up to 18 T
and found quantitatively similar behavior in both compounds. Recent measurements have demonstrated strong
piezomagnetism in Mn3Sn : Our results suggest that Mn3Ge may be an even better candidate for this effect.
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I. INTRODUCTION

Elastic strains offer a fast, local, and reversible way to
manipulate the magnetic properties of solids. On a micro-
scopic level, strains alter bond distances and the angles
between magnetic ions, leading to changes in magnetic
exchange coupling and magnetic anisotropy [1]. On a phe-
nomenological level, these effects can lead to a strain
dependence of the critical temperature and of the total mag-
netic moment. In the most extreme case, externally applied
strains can break the crystal symmetry and drive magnetic
phase transitions. The strain-dependence of the magnetization
most commonly comes in the form of magnetostriction, piezo-
magnetism, or flexomagnetism. All of these effects find useful
applications in the recently-emerging field of straintronics
[2,3]. This necessitates the search for materials with large
magnetoelastic coupling.

In this regard, the noncollinear antiferromagnets Mn3X
(X = Ge, Sn) are promising candidates. 120◦ triangular
magnetic order forms in these compounds well above room
temperature. This magnetic order is the source of several
anomalous transport properties including giant anomalous
Hall, Nernst, and thermal Hall effects [4–11]. These quan-
tities were recently shown to be strongly strain dependent.
For example, dos Reis et al. [12] demonstrated the ability
to change the sign of the Hall angle in Mn3Ge by applying
hydrostatic pressure, and Ikhlas et al. [13] switched the sign
of the Hall coefficient in Mn3Sn by applying uniaxial strain.
Additional evidence for large magnetoelastic coupling has
been found in neutron diffraction studies [14], as well as
in spontaneous magnetostriction at TN [15] in Mn3Ge. Most
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recently, Mn3Sn was found to exhibit an extraordinarily large
piezomagnetic effect [13]. These findings reveal an intimate
connection between magnetism, anomalous transport proper-
ties, and elastic strain in Mn3X , making it a prime candidate
for applications in straintronics.

While many anomalous transport coefficients have been
documented in Mn3X , the fundamental quantity relating stress
and strain—the elastic tensor—has not been measured. From
a practical standpoint, the elastic moduli are needed to convert
stress—the quantity typically known in an experiment—to
strain. From a fundamental standpoint, elastic moduli are a
powerful thermodynamic probe into the symmetry breaking
at the magnetic phase transition.

We directly measure the full elastic tensors of Mn3Ge and
Mn3Sn through the respective phase transitions. We study the
elastic moduli using resonant ultrasound spectroscopy (RUS)
and pulse-echo ultrasound. We find large discontinuities at
TN in the compressional elastic moduli and, using Ehrenfest
relations, relate them to large derivatives of the Néel tem-
perature with respect to hydrostatic pressure. We calculate
dTN/dP to be roughly 39 K/GPa in Mn3Ge and 14.3 K/GPa
in Mn3Sn —some of the largest values ever reported for itiner-
ant antiferromagnets. We measure c66—corresponding to the
strain that switches the sign of the anomalous Hall coefficient
[13]—in magnetic fields up to 18 tesla. We find that, while the
elastic moduli of Mn3Ge and Mn3Sn exhibit large quantitative
differences in zero field, their magnetic field dependencies are
quite similar.

This paper is structured as follows: In Sec. II we describe
our pulse-echo and RUS measurements and how our data is
analyzed. In Sec. III we describe the measured elastic moduli
and their temperature dependencies. We analyze the temper-
ature dependencies quantitatively in Sec. IV. We analyze the
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FIG. 1. Crystal structure and irreducible strains of Mn3X .
(a) Mn3X crystal structure. A hexagonal unit cell consists of AB-
stacked Kagome planes of Mn atoms. Different shades of green
indicate A and B planes, respectively. (b) View of one Mn Kagome
layer, with purple arrows that illustrate one possible ordered-state
spin configuration. (c) Visualization of the irreducible representa-
tions of strain. The definition of irreducible strains are given in terms
of εi j , alongside the symmetry representations and the corresponding
elastic moduli.

magnetic field dependence of c66 in Sec. V. Finally, we sum-
marize our conclusions in Sec. VI.

II. METHODS

Mn3X (X = Ge, Sn) crystallizes with a hexagonal unit cell
[point group D6h Fig. 1(a)], with lattice parameters a = 5.3 Å
and c = 4.3 Å for Mn3Ge [16], and a = 5.7 Å and c = 4.5 Å
for Mn3Sn [17]. Mn atoms form a Kagome lattice in the
A-B plane, and local moments on the Mn sites order in a
chiral antiferromagnetic structure [Fig. 1(b)] [18,19], with a
small in-plane magnetic moment due to spin canting [20].
Neutron diffraction studies find a magnetic order parameter
of the E1g representation in the D6h point group [19,21]. The
Néel temperature (TN ) for Mn3Ge is 370 K. For Mn3Sn, TN

depends strongly on the exact stoichiometry: Here we investi-
gated Mn3.019Sn0.981 with a critical temperature of 415 K. This
composition of Mn3Sn features an additional phase transition
to spiral spin order below about 270 K [22,23]. For simplicity,
we will refer to Mn3.019Sn0.981 as Mn3Sn for the remainder of
this paper.

The strain tensor in D6h consists of four independent
elements. Linear combinations of these form irreducible

representations [irreps, Fig. 1(c)]. The irreps are divided into
two one-component compressional strains that transform as
the A1g irrep, and two two-component shear strains trans-
forming as the E1g (out-of-plane shear) and E2g (in-plane
shear) irreps. The elastic moduli corresponding to each ir-
rep are defined according to c� = ∂2F/∂ε2

� , where F is the
free energy and � labels the irreps. The resulting elastic
moduli are cA1g,1 = (c11 + c12)/2, cA1g,2 = c33, cE1g = c44,
and cE2g = c66 = (c11 − c12)/2. An additional, fifth elastic
modulus, cA1g,3 = c13, couples the in-plane and out-of-plane
compressional strains. Figure 1(c) illustrates these irreducible
strains, provides their definitions in terms of the strains εi j ,
and gives the corresponding elastic moduli.

We measured the temperature dependence of the full elastic
tensor using resonant ultrasound spectroscopy (RUS). In RUS,
a sample is placed on its corners in weak mechanical contact
between two piezoelectric transducers to provide nearly-free
elastic boundary conditions. One transducer is driven at a
fixed frequency and the resulting charge generated at the other
transducer is detected using a custom-built charge amplifier
and digital lock-in (the amplifier and lock-in are described
in Balakirev et al. [24]). By sweeping the drive frequency in
the range of 0.1 to 5 MHz, we can measure the lowest me-
chanical resonance frequencies of a three-dimensional solid.
From these resonance frequencies, we then determine the elas-
tic moduli by inverse-solving the elastic wave equation (see
[25,27] for details on technique and data analysis). In contrast
to the conventional pulse-echo ultrasound technique, where
only one elastic modulus is measured at a time, RUS allows
the extraction of the temperature dependence of the full elastic
tensor with one experiment.

To access the relatively high Néel temperatures of Mn3X ,
we built an RUS apparatus inside an insulated box on a
hotplate (see Supplemental Material [26] for pictures of the
measurement setup). The temperature was monitored with
a Lakeshore PT100 platinum resistance thermometer and
recorded with a Cryocon Model 22C temperature controller.
For the fits of the elastic tensor, we used the lowest resonance
frequencies up to 4 MHz in both compounds. This included 84
resonances for Mn3Ge and 68 for Mn3Sn. Our fits converged
with root mean square errors of 0.18% (387 K) and 0.42%
(300 K) for Mn3Ge, and 0.23% (438 K) and 0.48% (300 K)
for Mn3Sn. More details, including a full list of experimental
and calculated resonances, can be found in the Supplemental
Material [26].

The requirement of weak mechanical contact between
transducers and the sample makes it difficult to reliably per-
form RUS in magnetic fields. To measure the c66 elastic
modulus as a function of magnetic field, we employed the
pulse-echo ultrasound technique [28]. Ultrasound waves were
generated by 41◦ X-cut LiNbO3 shear transducers with a
fundamental frequency of 40 MHz, purchased from Boston
Piezo-Optics Inc. The transducers were driven at 199 MHz
for Mn3Ge and at 175 MHz for Mn3Sn. The transducers were
glued to polished surfaces of the sample, perpendicular to the
c axis, using AngströmBond AB9110LV from Fiber Optic
Center Inc. Short (80 ns) bursts of ultrasound were generated
from the transducer using a Tektronix TSG 4106A RF gen-
erator and amplified with a Mini-Circuits ZHL-42W+ power
amplifier. The ultrasonic echoes are detected using the same
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TABLE I. Elastic properties of Mn3X . All quantities are reported at 387 K for Mn3Ge and at 438 K for Mn3Sn, where each compound is
in the paramagnetic state, as well as at room temperature. Elastic moduli, as well as the bulk modulus, are given in GPa. The Poisson’s ratios
νxy and νzx are also given. The definitions of these Poisson’s ratios in terms of elastic moduli are given in the Supplemental Material [26]. In
a hexagonal crystal, c66 = c11−c12

2 . We show full temperature dependencies of the Poisson’s ratios and the bulk moduli in the Supplemental
Material [26].

Temperature Elastic moduli (GPa) Bulk modulus Poisson’s ratios

Compound (K) c11+c12
2 c13 c33 c44

c11−c12
2 B (GPa) νxy νzx

Mn3Ge 300 87.0 (5) 12.5 (15) 201.5 (16) 48.4 (1) 43.0 (5) 65.9 (7) 0.334 (6) 0.041 (5)
387 90.4 (2) 14.6 (6) 194.6 (5) 45.09 (5) 48.1 (2) 67.9 (3) 0.300 (2) 0.053 (2)

Mn3Sn 300 85.8 (5) 18.1 (14) 165.3 (11) 52.0 (2) 50.8 (5) 64.5 (7) 0.246 (7) 0.083 (7)
438 79.7 (2) 17.0 (6) 151.3 (5) 48.11 (8) 51.2 (2) 59.7 (3) 0.206 (3) 0.089 (3)

transducer, amplified with a Mini-Circuits ZX60-3018G-S+
amplifier and captured on a Tektronix MSO64 oscilloscope. A
software lock-in is used to track phase changes in the echoes
as a function of temperature and magnetic field, allowing
relative changes in the sound velocity �v/v to be measured
with a precision of better than one part in 106. In this configu-
ration, we measure changes in v66, which are converted to the
associated elastic modulus change by �c66/c66 = 2�v66/v66.

The pulse-echo measurements were performed with a cus-
tom high-temperature probe in an Oxford Instruments variable
temperature insert (VTI) in an Oxford Instruments 20 tesla
superconducting magnet system. The sample space of the
VTI was pumped continuously throughout the experiment to
ensure high vacuum. We performed these measurements with
an in-plane magnetic field applied parallel to the polarization
vector of the sound wave (and perpendicular to the direction
of sound propagation).

III. DATA

Table I lists the elastic moduli of Mn3Ge and Mn3Sn at
room temperature and at high temperatures—above their re-
spective antiferromagnetic phase transitions—as well as their
bulk moduli and Poisson’s ratios. In their respective paramag-
netic states, the compressional elastic moduli, (c11 + c12)/2
and c33, are 13% and 28% larger in Mn3Ge than in Mn3Sn.
This implies tighter bonding in Mn3Ge, which is also con-
sistent with its smaller unit cell. The value of the in-plane
Poisson ratio νxy is consistent with what is found in most con-
ventional metals [29]. νzx on the other hand, is anomalously
small, even compared to other layered materials like Sr2RuO4

(νzx = 0.16 [27]), URu2Si2 (νzx = 0.20 [30]), CeIrIn5 (νzx =
0.32 [31]), and La2CuO4 (νzx = 0.21 [32]), implying ex-
tremely weak elastic coupling between different planes in the
hexagonal crystal structure of Mn3X .

To investigate the coupling between magnetism and elas-
ticity in Mn3X , we first measured the elastic moduli as a
function of temperature through their respective Néel temper-
atures TN (see Fig. 2).

We first discuss the temperature dependence of the com-
pressional elastic moduli (upper panels of Fig. 2). Starting
well above TN , all three compressional moduli in Mn3Ge de-
crease smoothly upon cooling towards the phase transition.
This anomalous softening is in contrast to the conventional
stiffening of elastic moduli when the temperature is lowered
[33], and implies sizable antiferromagnetic fluctuations well

above TN . Anomalous softening of the elastic moduli ap-
proaching TN also suggest a non-mean-field phase transition
in Mn3Ge. The softening of the compressional moduli above
TN is followed by a step-like feature at the phase transition.

Qualitatively similar behavior is seen in Mn3Sn, but with
quantitative differences. In Mn3Sn, c13 and (c11 + c12)/2
are almost temperature independent well above TN , and c33

increases upon cooling. All compressional elastic moduli
eventually soften above TN , but much more weakly than in
Mn3Ge. Additionally, the absolute sizes of the steps at TN are
nearly a factor of 10 smaller in Mn3Sn than in Mn3Ge. Both
the smaller precursor softening and the smaller steps at TN

suggest that the coupling between magnetism and the lattice
is significantly stronger in Mn3Ge than in Mn3Sn.

We now turn to the shear moduli (lower panels in Fig. 2).
The behavior of c44 is relatively conventional, with no pre-
cursor softening and only a change in slope at TN . c66, on the
other hand, softens towards the Néel temperature upon cool-
ing, similar to the compressional modes. The much stronger
signature in Mn3Ge than in Mn3Sn again indicates stronger
magnetoelastic coupling in the former compound. While a
step in c66 at TN is allowed by symmetry for the chiral order
in Mn3X [13,34,35], no feature that is comparable in width
to the steps in the compressional moduli is seen in c66 (see
Supplemental Material [26] for a derivation of which moduli
can show discontinuous jumps at the phase transition). Note
that the E2g strain associated with c66 is the same strain that
is responsible for the piezomagnetic effect and the switching
of the anomalous Hall effect. The precursor softening in this
channel again indicates the non-mean-field nature of the mag-
netic phase transition in Mn3X , and will be the subject of a
future study.

IV. DISCONTINUITIES IN COMPRESSIONAL
ELASTIC MODULI AT TN

The discontinuities in the compressional moduli at TN are
indicative of a second-order phase transition and are remi-
niscent of a heat capacity anomaly [36]. Indeed, Ehrenfest
relations require that the changes in the heat capacity and in
the compressional moduli across TN are proportional to each
other, and the coefficient of proportionality is the square of the
derivative of TN with respect to hydrostatic pressure Phydro.
Using the measured heat capacity and our measurements of
the compressional moduli, we can calculate dTN/dPhydro.
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FIG. 2. Change in elastic moduli as a function of temperature for Mn3Ge (left) and Mn3Sn (right). Upper and lower panels show changes
compressional and shear elastic moduli, respectively. The change is defined as �c(T ) = c(T ) − c(387K ) for Mn3Ge and �c(T ) = c(T ) −
c(438K ) for Mn3Sn. The Néel temperatures are indicated by vertical-dashed lines.

The Ehrenfest relation between the bulk modulus and heat
capacity discontinuities is [27]

(
dTN

dPhydro

)2

= −�B

B2

(
�C

TN

)−1

, (1)

where �B and �C are the discontinuities in the bulk modulus
and specific heat, respectively, and B is the absolute bulk
modulus at TN .

To extract the derivative of the Néel temperature with hy-
drostatic pressure from our data, we plot the bulk modulus
B/B(TN )2 on the same scale as the specific heat scaled by
dTN/dPhydro, i.e. −�C/TN (dTN/dPhydro)2 (see Fig. 3 and foot-
note [37]). This analysis for Mn3Ge, along with the specific
heat data for Mn3Ge from Chen et al. [19], is shown in the
main panel of Fig. 3. We extract a derivative of TN with respect
to pressure of dTN/dPhydro = 39 ± 3 K/GPa.

Specific heat data are not available for Mn3Sn through
its high temperature phase transition. However, using the
specific heat data for Mn3Ge, we estimate dTN/dPhydro ≈
(14.3 ± 2) K/GPa for Mn3Sn (see inset of Fig. 3). This value
is about a factor of three smaller than for Mn3Ge. It is possible
that the true heat capacity of Mn3Sn is a factor of 9 larger
than in Mn3Ge. Either way—whether it is due to a factor
of 9 difference in heat capacity or a factor of 3 difference
in dTN/dPhydro—this observation is puzzling given that the
two compounds share similar values of TN , the same room-
temperature magnetic structure, and the same crystal structure
with only marginally different unit-cell parameters.

Table II compares the size of dTN/dPhydro between sev-
eral metallic antiferromagnets. Mn3Ge and Mn3Sn stand out
with some of the largest pressure derivatives of their respec-
tive Néel temperatures. Only the alloy Mn3Pt and elemental

chromium have transition temperatures more sensitive to pres-
sure than Mn3Ge. Note that these compounds and Mn3X are
also the only materials with transitions above room temper-
ature. These features, as well as their metallic conductivity,
make Mn3Ge and Mn3Sn two of only a few materials excep-
tionally well suited for applications in straintronics.

FIG. 3. Ehrenfest scaling for the bulk moduli and specific heat
of Mn3X . Blue points are the specific heat of Mn3Ge taken from
[19] divided by the Néel temperature TN and scaled by a factor
with units of (kelvin/GPa)2. The bulk modulus of Mn3Ge, divided
by B2

TN
—the square of the value of the bulk modulus at TN —is

shown as black points in the main panel. Both data sets are given
in units of 1/GPa. The scaling factor used here corresponds to a
value of dTN/dP = 39 K/GPa, and the shaded region corresponds
to deviations of ±3 K/GPa. In the inset, this analysis is repeated
for the bulk modulus of Mn3Sn. It reflects a value of dTN/dP ≈
(14.3 ± 2) K/GPa.
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TABLE II. The derivative of the Néel temperature with respect
to hydrostatic pressure for selected metallic antiferromagnets.

dTN
dPhydro

TN

Compound (K/GPa) (K) Reference

Mn3Ge 39 370 This paper
Mn3Sn 14.3 415 This paper
Mn3Pt 70 475 [38]
Cr 51 312 [39]
α-Mn 17 95 [40]
UN 9.3 53 [41]
CuMnSb 4.7 50 [42]
MnPd3 2.0 195 [43]
UPtGa5 1.5 26 [41]
CrB2 1.0 87 [44]
TiAu 0.6 33 [45]
UIrGe 0.11 16.5 [46]

V. c66 IN MAGNETIC FIELD

The in-plane shear strain εE2g = {εxx − εyy, 2εxy} plays a
special role in the coupling between magnetism and strain
in Mn3X . Unlike most shear strains in magnetic systems,
εE2g can couple to the magnetic order parameter η = {ηx, ηy}
as ((εxx − εyy)(η2

x − η2
y ) + 4εxyηxηy) within a Landau free

energy. This type of coupling—linear in shear strain and
quadratic in order parameter—can reorient the magnetic mo-
ments on the Kagome lattice and align domains [13,34]. Ikhlas
et al. [13] used εE2g strain to change the sign of the Hall coeffi-
cient and to find a large piezomagnetic effect in Mn3Sn. This
motivates a measurement of the associated elastic modulus,
c66, in external magnetic fields.

The inset to Fig. 4 shows the change in c66 as a func-
tion of temperature in zero magnetic field for Mn3Ge and
Mn3Sn, measured with pulse-echo ultrasound. The main panel
of Fig. 4 shows this temperature dependence at different

FIG. 4. The field dependence of c66 in Mn3X . The changes in c66

for Mn3Ge (solid lines) and Mn3Sn (dashed lines) at different fields
with respect to the zero-field elastic moduli are shown as a function
of the reduced temperature. The data were taken at 1, 2, 5, 9, and
15 T for Mn3Ge and at 1, 2.7, 5, 10, 14, and 18 T for Mn3Sn. The
inset shows the zero-field data for both compounds.

magnetic fields with the zero-field data subtracted from each
curve. The data are shown as a function of the reduced tem-
perature (T − TN )/TN above their respective phase transitions.
The data end at (or just before) TN because the ultrasonic
attenuation becomes too large to resolve a clear signal in the
ordered phase.

As noted earlier, the temperature dependence of c66 in
zero field shows much stronger precursor fluctuations in
Mn3Ge than in Mn3Sn. However, once we account for this dif-
ference in the zero-field temperature dependence, the change
with magnetic field is quite similar for the two compounds.
With increasing magnetic field, the softening towards TN

becomes more pronounced. This behavior is reminiscent of
ferromagnetic transitions and is indicative of the trilinear cou-
pling allowed by symmetry between shear strain, magnetic
order parameter, and the external field in Mn3X (see SI for
a description of this coupling).

VI. DISCUSSION

In summary, we used resonant ultrasound spectroscopy
and pulse-echo ultrasound to measure the elastic moduli of
Mn3Ge and Mn3Sn. In addition to the full elastic tensor, we
also provide the bulk moduli and Poisson’s ratios. We find
an anomalously small out-of-plane Poisson’s ratio νzx, in both
materials, implying weak elastic coupling between different
layers of the hexagonal crystal structure. By scaling the bulk
modulus anomalies to match the heat capacity anomaly at
TN , we extract large derivatives of the Néel temperatures with
respect to hydrostatic pressure: (39 ± 3) K/GPa and (14.3 ±
2.0) K/GPa in Mn3Ge and Mn3Sn, respectively. Finally, al-
though the zero-field magneto-elastic coupling appears to be
much larger in Mn3Ge than in Mn3Sn, we find that the field
dependence of the in-plane shear modulus—associated with
the strain that couples strongly to the magnetism in Mn3X —is
similar in the two compounds.

The Mn3X family hold promise for straintronic appli-
cations because it combines metallic conductivity, robust
room-temperature magnetism, a large anomalous Hall effect
whose sign can be switched with strain, and strong piezomag-
netism. The latter two properties—piezomagnetism and strain
dependence of anomalous transport properties [13]—have
only been performed on Mn3Sn. Our measurements suggest
that these effect may be even more dramatic in Mn3Ge.
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FIG. 5. Custom-built high temperature RUS setup. Panel (a) shows the entire setup covered by insulating firebricks. In panel (b), one of
the firebricks has been removed to give a better view of the copper mount. Panel (c) shows a sample being mounted on its corners between two
piezoelectric transducers.

APPENDIX A: RESONANT ULTRASOUND
SPECTROSCOPY (RUS)

To access temperatures above the Néel temperatures of
Mn3X , our RUS experiments were performed in a custom-
built experimental setup (see Fig. 5). It consists of a large
copper mount placed on a hotplate and insulated with fire-
bricks. Ultrasound was created by two compressional-mode
lithium niobate transducers glued to stainless steel rods with
ceramic epoxy. These transducer rods were placed in the cop-
per mount such such that free vertical motion was allowed
for the top transducer. The single crystal sample was mounted
on its corners between the transducers to ensure nearly-free
elastic boundary conditions for the sample.

We use the output of a custom-built lock-in amplifier to
excite one transducer at a fixed frequency and detect the
quadrature response of the other transducer. We measure both
in-phase (X) and out-of-phase (Y) components of the re-
sponse. We achieve a full frequency sweep by stepping the
drive frequency from about 100 kHz to 5 MHz. More details
on the technique can be found in [25,47].

Figure 6 shows the amplitude (X2 + Y2) of an exemplary
frequency sweep. We can identify mechanical resonances of

the sample as frequencies at which maximum transmission
between the drive and receive transducers occurs. From the
position of these resonances we determine the full elastic ten-
sor by inverse solving the elastic wave equation [25,47]. Lists
of all experimental resonances included in the fit, alongside
the calculated resonances and their differences, are shown in
the Supplemental Material [26].

Each resonance is a function of the density and dimensions
of the sample, as well as all elastic moduli. We quantify
the composition αi,μ of each resonance fi by the logarithmic
derivative with respect to the elastic moduli cμ:

αi,μ = ∂
(

ln f 2
i

)
∂ (ln cμ)

, (A1)

with
∑

μ αi,μ = 1. These α coefficients are essentially geo-
metric factors and depend only weakly on temperature. The
temperature dependence of the resonance frequencies is there-
fore entirely determined by the temperature dependence of the
elastic moduli and we can write

2� fi(T )

f 0
i

=
∑

μ

αi,μ
�cμ

c0
μ

. (A2)

FIG. 6. Raw RUS signal. Amplitude of the response of the receiving transducer in the RUS measurement of Mn3Sn at room temperature.
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FIG. 7. Poisson ratios. Poisson ratios νxy (left panel) and νzx for
Mn3Ge (purple) and Mn3Sn (red) as a function of reduced tempera-
ture (T − TN )/TN . In a hexagonal crystal νzx = νzy.

f 0
i and c0

μ are the values of resonance frequencies and elastic
moduli at a reference temperature: 387 K for Mn3Ge and
438 K for Mn3Sn, respectively. We compute these α-
coefficients by taking logarithmic derivatives of the calculated
resonance frequencies at the elastic moduli returned by our
fit. Specific values for all measured resonance frequencies are
shown in the Supplemental Material [26]. With this analysis
and Eq. (A2), we determined the temperature dependence
of all elastic moduli. See Ref. [25] for more details on the
algorithm.

APPENDIX B: SAMPLES USED IN MEASUREMENTS

All samples used in our measurements were cut from one
large Mn3Ge and one Mn3Sn crystal. Final samples were
polished to the shape of parallel prisms, with edges oriented
along high symmetry directions. Dimensions of the samples
are given below in the format (a × b × c), where a and b are
in-plane directions and c is parallel to the c axis. For Mn3Ge,
we cut one (915 × 2575 × 3080) μm piece for our pulse echo
ultrasound measurements and one (911 × 1020 × 1305) μm
piece for our resonant ultrasound spectroscopy (RUS) mea-
surements. This RUS sample was used for our fit at 387 K and
to measure the temperature dependence of the elastic moduli.
For the fit at room temperature, this sample was further pol-
ished to (869 × 1010 × 1193) μm. All RUS measurements

FIG. 8. Bulk moduli. Bulk moduli for Mn3Ge (purple) and
Mn3Sn (red) as a function of reduced temperature (T − TN )/TN .

on Mn3Sn were performed on a (743 × 836 × 1.136) μm
piece cut out of the original crystal.

APPENDIX C: POISSON RATIOS AND BULK MODULUS

The full temperature dependence of the Poisson ratios νxy

and νzx are shown in Fig. 7, and the bulk moduli are shown in
Fig. 8.

APPENDIX D: LANDAU FREE ENERGY

Elastic moduli are thermodynamic quantities defined as the
second derivative of the free energy with respect to strain.
The precursor fluctuations above TN in Mn3X indicate that
there are substantial, non-mean-field corrections to the ther-
modynamics near the phase transition. However, defining a
Landau free energy is still useful to illustrate the symmetry of
the coupling terms and the expected behavior of the moduli
“not too close” to the phase transition.

The free energy F relevant to our measurements can be
divided into an elastic part fel , the free energy for the order
parameter fOP, a term considering the coupling between order
parameter and strain fcoupling, a Zeeman-term fZeeman, and
fpiezo—a term trilinear in order parameter, magnetic field, and
E2g strain. The total free energy is then

F = fel + fOP + fcoupling + fZeeman + fpiezo. (D1)

These parts will be discussed separately in the following sub-
sections.

1. Elastic Free Energy and Poisson’s ratio

The elastic tensor only has five independent elements in
D6h. In Voigt notation, it reads

c =

⎛
⎜⎜⎜⎜⎜⎝

c11 c12 c13 0 0 0
c12 c11 c13 0 0 0
c13 c13 c33 0 0 0
0 0 0 c44 0 0
0 0 0 0 c44 0
0 0 0 0 0 c11−c12

2

⎞
⎟⎟⎟⎟⎟⎠

.

With a strain vector defined as ε =
{εxx, εyy, εzz, 2εyz, 2εxz, 2εxy}, the elastic free energy in
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D6h is

fel = 1

2
εici jε j (D2)

= 1

2

[
2c12

( − ε2
xy + εxxεyy

)
+ c11

(
ε2

xx + 2ε2
xy + ε2

yy

) + 4c44
(
ε2

xz + ε2
yz

)
+ 2c13(εxx + εyy)εzz + c33ε

2
zz

]
(D3)

= 1

2

[
c11 − c12

2
(εxx + εyy)2 + c33ε

2
zz

+ 2c13εzz(εxx + εyy) + 4c44
(
ε2

xz + ε2
yz

)

+ c11−c12
2

(
(εxx − εyy)2 + 4ε2

xy

)]
(D4)

= 1

2

(
cA1g,1ε

2
A1g,1 + cA1g,2ε

2
A1g,2

+ 2cA1g,3εA1g,1εA1g,2 + cE1g|εE1g|2 + cE2g|εE2g|2
)
. (D5)

Here, the irreducible strains ε� are defined as

εA1g,1 = εxx + εyy, (D6)

εA1g,2 = εzz, (D7)

εE1g = {2εxz, 2εyz}, (D8)

εE2g = {εxx − εyy, 2εxy}. (D9)

These strains are linear combinations of elements of the strain
tensor εi j and are the physically relevant quantities as they
transform as irreducible representations � with respect to the
D6h point group. The elastic moduli c� corresponding to these
strains are

cA1g,1 = c11 + c12

2
, (D10)

cA1g,2 = c33, (D11)

cA1g,3 = c13, (D12)

cE1g = c44, (D13)

cE2g = c11 − c12

2
. (D14)

In a hexagonal crystal, in-plane and out-of-plane Poisson’s
ratios are given by

νxy = c2
13 − c12c33

c2
13 − c11c33

, (D15)

νzx = νzy = (c11 − c12)c13

−c2
13 + c11c33

. (D16)

The bulk modulus is defined in terms of elastic moduli as

B =
c11+c12

2 c33 − c2
13

c11+c12
2 + c33 − 2c13

. (D17)

2. Order Parameter Free Energy

The order parameter that forms in both Mn3Sn and
Mn3Ge at the high-temperature TN studied here is of the E1g

representation [19,21]. It is therefore a two-component order
parameter that can be written as η = {ηx, ηy}. Up to fourth
order in η, the Landau free energy is

fOP = α(T − TN )|η|2 + β1|η|4 + β2
(
η2

x − η2
y

) + β3η
2
xη

2
y .

(D18)

Hexagonal crystal symmetry requires b3 = 4b2, which simpli-
fies the free energy to

fOP = α(T − TN )η2 + βη4, (D19)

with b = b1 + b2, and where we have parametrized the or-
der parameter as η = η{cos(φη ), sin(φη )}. Note that this free
energy is isotropic—sixth-order is the lowest order at which
anisotropy appears.

3. Coupling of Order Parameter and Strain in the Free Energy

The order parameter has to appear in even powers because
it breaks time reversal symmetry. The allowed couplings be-
tween strain and order parameter are

fcoupling =
3∑

i=1

γA1g,iεA1g,i|η2| + γE1g

∣∣ε2
E1g

∣∣|η2|

+ γE2g( εE2g,x
(
η2

x − η2
y

) + 2εE2g,yηxηy) (D20)

=
3∑

i=1

γA1g,iεA1g,iη
2 + γE1g|ε2

E1g|η2

+ γE2gη
2εE2g cos(2(φε − φη )), (D21)

where we have used the parametrization of the order parame-
ter given above, as well as εE2g = εE2g{cos(2φε ), sin(2φε )}.

4. Zeeman Energy

At zero applied strain, the total magnetization M is propor-
tional to the order parameter:

M = δη, (D22)

where δ is a coefficient. The Zeeman term in the free en-
ergy in the presence of an in-plane magnetic field, H =
h{cos(φh), sin(φh)}, is given by

fZeeman = −δηH (D23)

= −δηh cos (φη − φh). (D24)

5. Piezomagnetic Term

Both the order parameter and an in-plane magnetic field
break time-reversal symmetry and transform as the E1g rep-
resentation. Thus, a term in the free energy which is trilinear
in order parameter, magnetic field, and A1g or E2g strain is
allowed by symmetry. Forming all A1g products of order pa-
rameter, field, and strain, we find

fpiezo =
2∑

i=1

λA1g,iεA1g,iηh cos (φη − φh)

+ λεE2gηh cos (φη + φh − 2φε ), (D25)

using the same polar coordinates as above.
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6. Full Free Energy

Combining all the term discussed above, the full free en-
ergy is given by

F = 1

2

(
cA1g,1ε

2
A1g,1 + cA1g,2ε

2
A1g,2

+ 2cA1g,3εA1g,1εA1g,2 + cE1g|εE1g|2 + cE2g|εE2g|2
)

+ α(T − TN )η2 + βη4

+
3∑

i=1

γA1g,iεA1g,iη
2 + γE1g

∣∣ε2
E1g

∣∣η2

+ γE2gη
2εE2g cos(2(φε − φη ))

− δηh cos(φη − φh)

−
2∑

i=1

λA1g,iεA1g,iηh cos(φη − φh)

− λεE2gηh cos(φη + φh − 2φε ). (D26)

APPENDIX E: ELASTIC CONSTANTS
AT THE PHASE TRANSITION

To estimate the behavior of the elastic moduli through the
phase transition, we consider the free energy at zero field, and
constant angles φh, φη, and φε, which are the constraints of our
ultrasound measurements. In this case, the free energy given

by Eq. (D26) simplifies to

F = 1

2

(
cA1g,1ε

2
A1g,1 + cA1g,2ε

2
A1g,2

+2cA1g,3εA1g,1εA1g,2 + cE1g|εE1g|2 + cE2g|εE2g|2
)

+ α(T − TN )η2 + βη4 +
3∑

i=1

γA1g,iεA1g,iη
2

+ γE1g

∣∣ε2
E1g

∣∣η2 + γE2gη
2εE2g

−
2∑

i=1

λA1g,iεA1g,iηh − λεE2gηh, (E1)

where the cosine terms from Eq. (D26) are absorbed into the
expansion coefficients. We find the equilibrium order param-
eter ηeq through (dF/dη)|ηeq = 0, and the elastic moduli c�

are defined through (∂2F/∂ε2
� )|ηeq .

For εA1g and εE2g strains, which couple linearly to the
square of the order parameter as ε�η2, we find a step disconti-
nuity in the temperature dependence of their respective elastic
moduli at the phase transition

�c� = (c� (T > TN ) − c� (T < TN ))T →TN
= 2γ 2

�

β
. (E2)

However, for cE1g whose corresponding strain couples to the
order parameter as |εE1g|2η2 to lowest order, this mean-field
analysis yields

�cE1g = [cE1g(T > TN ) − cE1g(T < TN )]T →TN
= 0. (E3)

We therefore expect to see only a change in slope in the
temperature dependence of cE1g at TN .

[1] C. Song, Y. You, X. Chen, X. Zhou, Y. Wang, and F.
Pan, How to manipulate magnetic states of antiferromagnets,
Nanotechnology 29, 112001 (2018).

[2] F. Miao, S.-J. Liang, and B. Cheng, Straintronics with van der
Waals materials, npj Quantum Mater. 6, 59 (2021).

[3] A. A. Bukharaev, A. K. Zvezdin, A. P. Pyatakov, and Y. K.
Fetisov, Straintronics: A new trend in micro- and nanoelectron-
ics and materials science, Phys. Usp. 61, 1175 (2018).

[4] N. Kiyohara, T. Tomita, and S. Nakatsuji, Giant anomalous Hall
effect in the chiral antiferromagnet Mn3Ge, Phys. Rev. Appl. 5,
064009 (2016).

[5] A. K. Nayak, J. E. Fischer, Y. Sun, B. Yan, J. Karel, A. C.
Komarek, C. Shekhar, N. Kumar, W. Schnelle, J. Kübler, C.
Felser, and S. S. Parkin, Large anomalous Hall effect driven
by a nonvanishing Berry curvature in the noncolinear antiferro-
magnet Mn3Ge, Sci. Adv. 2, e1501870 (2016).

[6] M. Ikhlas, T. Tomita, T. Koretsune, M. T. Suzuki, D. Nishio-
Hamane, R. Arita, Y. Otani, and S. Nakatsuji, Large anomalous
Nernst effect at room temperature in a chiral antiferromagnet,
Nat. Phys. 13, 1085 (2017).

[7] G. Y. Guo and T. C. Wang, Large anomalous Nernst and spin
Nernst effects in the noncollinear antiferromagnets Mn3X (X =
Sn,Ge,Ga), Phys. Rev. B 96, 224415 (2017).

[8] C. Wuttke, F. Caglieris, S. Sykora, F. Scaravaggi, A. U. B.
Wolter, K. Manna, V. Süss, C. Shekhar, C. Felser, B. Büchner,

and C. Hess, Berry curvature unravelled by the anoma-
lous Nernst effect in Mn3Ge, Phys. Rev. B 100, 085111
(2019).

[9] S. Nakatsuji, N. Kiyohara, and T. Higo, Large anomalous Hall
effect in a non-collinear antiferromagnet at room temperature,
Nature (London) 527, 212 (2015).

[10] N. H. Sung, F. Ronning, J. D. Thompson, and E. D. Bauer,
Magnetic phase dependence of the anomalous Hall effect
in Mn3Sn single crystals, Appl. Phys. Lett. 112, 132406
(2018).

[11] X. Li, L. Xu, L. Ding, J. Wang, M. Shen, X. Lu, Z. Zhu,
and K. Behnia, Anomalous Nernst and Righi-Leduc Effects in
Mn3Sn: Berry Curvature and Entropy Flow, Phys. Rev. Lett.
119, 056601 (2017).

[12] R. D. dos Reis, M. Ghorbani Zavareh, M. O. Ajeesh, L. O.
Kutelak, A. S. Sukhanov, S. Singh, J. Noky, Y. Sun, J. E.
Fischer, K. Manna, C. Felser, and M. Nicklas, Pressure tun-
ing of the anomalous Hall effect in the chiral antiferromagnet
Mn3Ge, Phys. Rev. Materials 4, 051401(R) (2020).

[13] M. Ikhlas, S. Dasgupta, F. Theuss, T. Higo, B. J. Ramshaw, O.
Tchernyshyov, C. W. Hicks, and S. Nakatsuji, Piezomagnetic
switching of anomalous Hall effect in an antiferromagnet at
room temperature, [Nat. Phys. (to be published) (2022)].

[14] A. S. Sukhanov, M. S. Pavlovskii, P. Bourges, H. C. Walker,
K. Manna, C. Felser, and D. S. Inosov, Magnon-polaron

174430-9

https://doi.org/10.1088/1361-6528/aaa812
https://doi.org/10.1038/s41535-021-00360-3
https://doi.org/10.3367/UFNe.2018.01.038279
https://doi.org/10.1103/PhysRevApplied.5.064009
https://doi.org/10.1126/sciadv.1501870
https://doi.org/10.1038/nphys4181
https://doi.org/10.1103/PhysRevB.96.224415
https://doi.org/10.1103/PhysRevB.100.085111
https://doi.org/10.1038/nature15723
https://doi.org/10.1063/1.5021133
https://doi.org/10.1103/PhysRevLett.119.056601
https://doi.org/10.1103/PhysRevMaterials.4.051401


FLORIAN THEUSS et al. PHYSICAL REVIEW B 105, 174430 (2022)

excitations in the noncollinear antiferromagnet Mn3Ge, Phys.
Rev. B 99, 214445 (2019).

[15] A. S. Sukhanov, S. Singh, L. Caron, T. Hansen, A. Hoser, V.
Kumar, H. Borrmann, A. Fitch, P. Devi, K. Manna, C. Felser,
and D. S. Inosov, Gradual pressure-induced change in the
magnetic structure of the noncollinear antiferromagnet Mn3Ge,
Phys. Rev. B 97, 214402 (2018).

[16] J. F. Qian, A. K. Nayak, G. Kreiner, W. Schnelle, and C. Felser,
Exchange bias up to room temperature in antiferromagnetic
hexagonal Mn3Ge, J. Phys. D 47, 305001 (2014).

[17] A. Markou, J. M. Taylor, A. Kalache, P. Werner, S. S. P. Parkin,
and C. Felser, Noncollinear antiferromagnetic Mn3Sn films,
Phys. Rev. Materials 2, 051001(R) (2018).

[18] T. Nagamiya, S. Tomiyoshi, and Y. Yamaguchi, Triangular spin
configuration and weak ferromagnetism of Mn3Sn and Mn3Ge,
Solid State Commun. 42, 385 (1982).

[19] Y. Chen, J. Gaudet, S. Dasgupta, G. G. Marcus, J. Lin, T. Chen,
T. Tomita, M. Ikhlas, Y. Zhao, W. C. Chen, M. B. Stone, O.
Tchernyshyov, S. Nakatsuji, and C. Broholm, Antichiral spin
order, its soft modes, and their hybridization with phonons in
the topological semimetal Mn3Ge, Phys. Rev. B 102, 054403
(2020).

[20] S. Tomiyoshi, Y. Yamaguchi, and T. Nagamiya, Triangular spin
configuration and weak ferromagnetism of Mn3Ge, J. Magn.
Magn. Mater. 31-34, 629 (1983).

[21] J. R. Soh, F. de Juan, N. Qureshi, H. Jacobsen, H. Y. Wang, Y. F.
Guo, and A. T. Boothroyd, Ground-state magnetic structure of
Mn3Ge, Phys. Rev. B 101, 140411(R) (2020).

[22] E. Kren, J. Paitz, G. Zimmer, and E. Zsoldos, Study of the
magnetic phase transformation in the Mn3Sn phase, Physica
B+C 80, 226 (1975).

[23] J. Cable, N. Wakabayashi, and P. Radhakrishna, A neutron
study of the magnetic structure of Mn3Sn, Solid State Commun.
88, 161 (1993).

[24] F. F. Balakirev, S. M. Ennaceur, R. J. Migliori, B. Maiorov, and
A. Migliori, Resonant ultrasound spectroscopy: The essential
toolbox, Rev. Sci. Instrum. 90, 121401 (2019).

[25] B. J. Ramshaw, A. Shekhter, R. D. McDonald, J. B. Betts, J. N.
Mitchell, P. H. Tobash, C. H. Mielke, E. D. Bauer, A. Migliori,
and correct this Info, Avoided valence transition in a plutonium
superconductor, Proc. Nat. Acad. Sci. USA 112, 3285 (2015).

[26] See Supplemental Material at http://link.aps.org/supplemental/
10.1103/PhysRevB.105.174430 for full lists of resonance fre-
quencies and fit results.

[27] S. Ghosh, A. Shekhter, F. Jerzembeck, N. Kikugawa, D. A.
Sokolov, M. Brando, A. P. Mackenzie, C. W. Hicks, and B. J.
Ramshaw, Thermodynamic evidence for a two-component su-
perconducting order parameter in Sr2RuO4, Nat. Phys. 17, 199
(2021).

[28] B. Lüthi, Physical Acoustics in the Solid State, Springer Series
in Solid State Sciences No. 148 (Springer, New York, 2005).

[29] J. R. Davis, Metals Handbook Desk Edition, 2nd Edition (ASM
International, Materials Parks, OH, 1998).

[30] S. Ghosh, M. Matty, R. Baumbach, E. Bauer, K. Modic, S.
Arkady, J. A. Mydosh, E. A. Kim, and B. J. Ramshaw, One-
component order parameter in URu2Si2 uncovered by resonant
ultrasound spectroscopy and machine learning, Sci. Adv. 6,
eaaz4074 (2020).

[31] M. D. Bachmann, G. M. Ferguson, F. Theuss, T. Meng, C.
Putzke, T. Helm, K. R. Shirer, Y.-S. Li, K. A. Modic, M. Nicklas
et al., Spatial control of heavy-fermion superconductivity in
CeIrIn5, Science 366, 221 (2019).

[32] A. Migliori, W. M. Visscher, S. E. Brown, Z. Fisk, S.-W.
Cheong, B. Alten, E. T. Ahrens, K. A. Kubat-Martin, J. D.
Maynard, Y. Huang, D. R. Kirk, K. A. Gillis, H. K. Kim, and
M. H. W. Chan, Elastic constants and specific-heat measure-
ments on single crystals of La2CuO4, Phys. Rev. B 41, 2098
(1990).

[33] Y. P. Varshni, Temperature dependence of the elastic constants,
Phys. Rev. B 2, 3952 (1970).

[34] S. Dasgupta and O. Tchernyshyov, Theory of spin waves in a
hexagonal antiferromagnet, Phys. Rev. B 102, 144417 (2020).

[35] S. Dasgupta and O. A. Tretiakov, Tuning the Hall response
of a non-collinear antiferromagnet with spin-transfer torques,
arXiv:2202.06882.

[36] W. Rehwald, The study of structural phase transitions by means
of ultrasonic experiments, Adv. Phys. 22, 721 (1973).

[37] For mean-field like transitions, the discontinuities in thermo-
dynamic coefficients are easily defined as the difference in the
coefficient immediately above and below the transition. In the
case of Mn3X , the transition does not appear mean-field like.
We therefore use this scaling procedure to avoid ambiguity
in the definition of the discontinuity, as the non-mean field
“rounding” is approximately the same in the specific heat and
the bulk modulus.

[38] H. Yasui, T. Kaneko, H. Yoshida, S. Abe, K. Kamigaki, and
N. Mori, Pressure dependence of magnetic transition tempera-
tures and lattice parameter in an antiferromagnetic ordered alloy
Mn3Pt, J. Phys. Soc. Jpn. 56, 4532 (1987).

[39] D. B. McWhan and T. M. Rice, Pressure Dependence of Itiner-
ant Antiferromagnetism in Chromium, Phys. Rev. Lett. 19, 846
(1967).

[40] N. Môri and T. Mitsui, Effect of hydrostatic pressure on the
Neel temperature and the electrical residual resistivity of alpha-
manganese, Phys. Lett. A 39, 413 (1972).

[41] M. Nakashima, Y. Haga, E. Yamamoto, Y. Tokiwa, M. Hedo,
Y. Uwatoko, R. Settai, and Y. Onuki, The high-pressure effect
of an electronic state in uranium compounds: UPtGa5 and UN,
J. Phys.: Condens. Matter 15, S2007 (2003).

[42] P. Malavi, J. Song, W. Bi, A. Regnat, L. Zhu, A. Bauer,
A. Senyshyn, L. Yang, C. Pfleiderer, and J. S. Schilling,
High-pressure investigations on the semi-Heusler compound
CuMnSb, Phys. Rev. B 98, 054431 (2018).

[43] H. Yasui, T. Kaneko, S. Abe, H. Yoshida, and K. Kamigaki,
Pressure dependence of the Neel temperature and lattice param-
eter of an ordered alloy MnPd3, J. Phys. (Colloques) 49, C8-177
(1988).

[44] G. E. Grechnev, A. S. Panfilov, A. V. Fedorchenko, V. B.
Filippov, A. B. Lyashchenko, and A. N. Vasiliev, Effect of
pressure on the magnetic properties of CrB2, Low Temp. Phys.
35, 531 (2009).

[45] C. T. Wolowiec, Y. Fang, C. A. McElroy, J. R. Jeffries, R. L.
Stillwell, E. Svanidze, J. M. Santiago, E. Morosan, S. T. Weir,
Y. K. Vohra, and M. B. Maple, Pressure effects in the itin-
erant antiferromagnetic metal TiAu, Phys. Rev. B 95, 214403
(2017).

174430-10

https://doi.org/10.1103/PhysRevB.99.214445
https://doi.org/10.1103/PhysRevB.97.214402
https://doi.org/10.1088/0022-3727/47/30/305001
https://doi.org/10.1103/PhysRevMaterials.2.051001
https://doi.org/10.1016/0038-1098(82)90159-4
https://doi.org/10.1103/PhysRevB.102.054403
https://doi.org/10.1016/0304-8853(83)90610-8
https://doi.org/10.1103/PhysRevB.101.140411
https://doi.org/10.1016/0378-4363(75)90066-2
https://doi.org/10.1016/0038-1098(93)90400-H
https://doi.org/10.1063/1.5123165
https://doi.org/10.1073/pnas.1421174112
http://link.aps.org/supplemental/10.1103/PhysRevB.105.174430
https://doi.org/10.1038/s41567-020-1032-4
https://doi.org/10.1126/sciadv.aaz4074
https://doi.org/10.1126/science.aao6640
https://doi.org/10.1103/PhysRevB.41.2098
https://doi.org/10.1103/PhysRevB.2.3952
https://doi.org/10.1103/PhysRevB.102.144417
http://arxiv.org/abs/arXiv:2202.06882
https://doi.org/10.1080/00018737300101379
https://doi.org/10.1143/JPSJ.56.4532
https://doi.org/10.1103/PhysRevLett.19.846
https://doi.org/10.1016/0375-9601(72)90119-3
https://doi.org/10.1088/0953-8984/15/28/315
https://doi.org/10.1103/PhysRevB.98.054431
https://doi.org/10.1051/jphyscol:1988875
https://doi.org/10.1063/1.3168639
https://doi.org/10.1103/PhysRevB.95.214403


STRONG MAGNETOELASTIC COUPLING IN Mn3X … PHYSICAL REVIEW B 105, 174430 (2022)

[46] J. Pospíšil, J. Gouchi, Y. Haga, F. Honda, Y. Uwatoko, N.
Tateiwa, S. Kambe, S. Nagasaki, Y. Homma, and E. Yamamoto,
Effect of pressure on Magnetism of UIrGe, J. Phys. Soc. Jpn.
86, 044709 (2017).

[47] A. Shekhter, B. J. Ramshaw, R. Liang, W. N. Hardy, D. A.
Bonn, F. F. Balakirev, R. D. McDonald, J. B. Betts, S. C. Riggs,

and A. Migliori, Bounding the pseudogap with a line of phase
transitions in YBa2Cu3O6+δ , Nature (London) 498, 75 (2013).

Correction: The second compound in the first column of
Table I was set incorrectly during the production cycle and
has been set right.

174430-11

https://doi.org/10.7566/JPSJ.86.044709
https://doi.org/10.1038/nature12165

