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Curvilinear manipulation of polarized spin waves
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Polarization, the precession direction with respect to the background magnetization, is an intrinsic degree of
freedom of spin wave. Introducing symmetry-breaking mechanisms lies in the heart of lifting the degeneracy
between polarized spin-wave modes and is essential in constructing polarization-based magnonic devices. Here
we show that polarized spin waves can be naturally harnessed in a curved antiferromagnetic wire via tuning its
curvature and torsion. Specifically, we investigate evolution of polarized spin wave in a spin-wave rotator and a
spin-wave interferometer based on magnetic circular helices and correlate these curvilinear effects to the Berry

phase accumulated along the wire.
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I. INTRODUCTION

Spin wave, the collective precession of ordered magneti-
zations, is one of the basic excitations in magnetic systems.
As an alternative angular momentum carrier beside spin-
polarized electron [1,2], spin wave is of crucial importance
for both fundamental physics and industrial applications. And
since the propagation of the spin wave does not involve phys-
ical motion of underlying electrons, magnonics as a field
devoted to spin-wave manipulation has attracted remarkable
interests in recent years [3-9].

Polarization, denoting the oscillation direction, is an intrin-
sic property for all waves, including electromagnetic, acoustic
as well as spin waves [10-12]. Theoretically, polarization has
emerged as a key ingredient in spin-wave field-effect tran-
sistor [11], spin-wave polarizer and retarder [12], spin-wave
double refraction [13], magnonic spin Nernst effect [14,15],
as well as using the spin wave to drive magnetic texture
motion [16-20]. In the meantime, recent rapid technical
improvements enable the detection of the polarized spin
wave in various experiments, including antiferromagnetic spin
pumping [21-23], inelastic neutron scattering [24,25], antifer-
romagnetic resonance [26], and spin signal transmission [27].

Multiple approaches have been proposed to harness the
polarized spin wave, e.g., applying an external magnetic
field [10], introducing the Dzyaloshinskii-Moriya interaction
(DMI) [11], depositing magnetic textures [12,13,19], and
streaming electrical current [28]. However, the applicability
and efficiencies of these approaches are frequently limited by
the magnetic properties and configurations available in realis-
tic materials. A convenient scheme to lift the restrictions is to
use curvilinearity embedded in bent wires or curved surfaces,
which are ready to prepare in state of art experiments [29-34].
Despite this unique yet powerful scheme in modifying the
magnetic properties [35-39], possibilities of using curvilin-
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ear effects to harness the polarized spin wave are not fully
explored.

In this paper, we investigate the dynamics of polarized
spin wave along a curved antiferromagnetic wire, using the
language of curvature and torsion. We show that for a mag-
netic circular helix shifts the phase between left/right circular
spin-wave modes due to the emergent Dzyaloshinskii-Moriya
interaction. We further propose that a spin-wave rotation
based on a single cicular helix, and a spin-wave interfer-
ometer based two oppositely wound circular helices. Using
curvilinear effects for polarization manipulation offers a new
paradigm in constructing magnonic logic devices.

The rest of paper is organized as follows. The mag-
netic dynamics in curved wire is formulated by establishing
the connections between curvilinear effect to an emergent
Dzyaloshinskii-Moriya interaction in Sec. II. The phase
shift of the spin wave experienced in circular helices, the
functionalities of the spin-wave rotator and the spin-wave
interferometer are studied in Sec. III. Discussions about the
connection between torsion and Berry phase as well as a short
conclusion are given in Sec. IV.

II. BASIC MODEL

A. Magnetic dynamics in a curved antiferromagnetic wire

Consider a curved antiferromagnetic wire embedded in
three-dimensional (3D) space as shown in Fig. 1(a), which is
described by the parameterized position r(s) with the parame-
ter s being the arc length of the wire. To describe the dynamics
in a curved wire, it is convenient to introduce local curvilinear
bases in the Frenet-Serret frame [36,37],

/

o>

é =r, é2=|é,|, & =28 x &, (D
1

where 1’ = dr/ds denotes the derivative with respect to the
arc length s, ;5,3 are the tangent, normal and binormal vec-
tors of the curve r(s) respectively.
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FIG. 1. Schematics of curved magnetic wires. (a) Magnetizations
in a curved magnetic wire. The gray line is the curved magnetic wire,
the red/blue arrows are the magnetizations in two sublattices, and the
three green arrows are the curvilinear bases. (b) Magnetizations in
a magnetic Bloch sphere. The anticlockwise/clockwise winding with
helicity x = =£1 are shown in red/blue color. (¢) and (d) Space curves
of left/right wound circular helices. Dashed lines are straight wires in
smooth connection with the circular helix.

We denote the magnetization directions of two sublattices
in the curved antiferromagnetic wire by unit vectors mj
as depicted by red/blue arrows in Fig. 1(a). The magnetiza-
tions are alternatively described by the staggered Néel order
magnetization n = (m; — my)/(Jm; — my|) and the net mag-
netization as m = m; + my. Under the orthogonal constraint
n-m = 0, the dynamics of the staggered order n is then
governed by [18,40-44]

nxn=—yJnx (yh—an), 2)

and m = (nxn)/yJ is a slave quantity, where i = Btzn, n=
o, y is the gyromagnetic constant, and « is the Gilbert
damping constant. Here h = —(1/uoM;A)8U /Sn is the ef-
fective field acting on staggered magnetization n, where p is
the vacuum permeability, M; is the saturation magnetization,
and A is the cross-sectional area of the magnetic wire. The
magnetic energy of interest in this paperis U = A [ uds with
the energy line density u described by

u(m, m) = up + ug + up,

_ MOMV 2 _ . a.)2 ‘1 2
= [A(Vn) K(n &)+ 3/m| ] 3)

where A and J are the inter/intra-sublattice exchange-coupling
constants, K > 0 is the (single-ion type [45]) easy-axis
anisotropy along the tangential direction &, of the wire. In this
paper, the long-range dipolar interaction is neglected due to
the interweaving sublattices with almost opposite magnetiza-
tions in the antiferromagnetic environment.

B. Emergent Dzyaloshinskii-Moriya interaction and anisotropy

Continuous variations of the curvilinear bases €;,5/3 in
Eq. (1) render the physical properties of a curved wire distinct
from a straight wire. The differential properties of a curved
wire is characterized by the Frenet-Serret formula &, = k&,
&, = —k& + 1&3;, and & = —7&,, where « and T are the
curvature and torsion of the curved wire [46], respectively.
The curvature x measures the bending of the wire within a
plane, while the torsion T measures the twist of the wire out
of a specific plane. In vector form, the Frenet-Serret formula
reads

& =d x &, “

where d = (7€; + «€3) is the curvilinear vector induced by
the spatial variation of the curvilinear basis {€g}, B = 1-3.
The chiral nature of Eq. (4) implies that the magnetic system
in a curved wire resides in a local rotating frame with respect
to vector d [47].

Invoking the Frenet-Serret formula in Eq. (4), the deriva-
tive of the staggered magnetization n = ) s Np€p then takes
the following co-derivative form

, _dn
n=—=(+dx)n, Q)
ds

where d;n = ) 5(0snp)€g denotes the partial derivative solely
acting on the magnetization component rng. Including the co-
derivative in Eq. (5), the exchange coupling energy ua in
Eq. (3) then divides into the following three parts [48],

Up = ﬁA =+ i:iD + ﬁK
M,
= MOZ “[A(®n)* +2Ad - (n x dn) — A -n)’], (6)

where an effective DMI in vector D = 2Ad as well as an
effective easy-axis anisotropy of strength A with respect to
vector d, arise besides the normal exchange coupling in terms
of d,n [33,36,37]. The above DMI energy is of homogeneous
type, and is different from the DMI energy of inhomogenous
type [17,49] in the form D - (nxm), which is the origin of the
weak ferromagnetism in antiferromagnets.
In Eq. (6), the DM vector is explicitly written as

D = 2Até, + 2Ak&;, 7

indicating that the torsion t and curvature k determine the
DM strength with respect to the tangential/binormal directions
€,,3, respectively. The strength of emergent DMI in Eq. (6)
is proportional to the exchange-coupling constant A, similar
to the DMI caused by the spin-orbit coupling in heavy-metal
materials or the heterostructure interface [50]. In addition, the
DMI caused by curvilinear effects here also shares much sim-
ilarity with the geodesic effects due to geometric space-time
distortion in general relativity [51]. In this sense, modifying
the effective space-time metric for magnetic dynamics via
strain or magnon-phonon interaction is expected to alter this
emergent DMI [49,52].

On the other hand, from Eqgs. (3) and (4), the overall energy
density of magnetic anisotropy is described by

MUMS

ug + iixg = — [Kn% +A(tn + Kn3)2], 8)
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where the torsion 7 leads to an enhanced easy-axis anisotropy
K — K + At?, whereas the curvature « causes a small tilting
of the magnetic easy axis toward the binomial direction &;.

In experimental practice, the wire is supposed to bend only
slowly in comparison the characteristic length of the magnetic
system: «,t < 1/W with W = /JA/K, hence, the relation
Ak? < K gives rise to negligible tilting of the magnetic easy
axis. In the meantime, the anisotropy also dominates the emer-
gent DMI, therefore, homogeneous magnetizations along the
magnetic easy-axis nyp = €; maintain to be the ground state in
the curved wire. Inhomogeneous magnetic textures, such as
the domain wall may also arise upon curved magnetic wire,
but are beyond the scope of this paper and thus omitted. It
is noteworthy that the physical settings here are distinct from
Ref. [48] where the intrinsic anisotropy is negligible K ~ 0,
and bending is remarkable «, T &~ 1/W. As a result, the mag-
netization strongly tilts, and even the ground magnetization
configuration may turn from homogenous to periodic.

C. Dynamics of the spin wave in a curved
antiferromagnetic wire

When time evolution is involved, the total staggered mag-
netization n(¢) naturally separates into the static background
ny and the fast precessing spin wave én: n = ng + én. Due to
unity constraint |m| = 1, the spin wave is orthogonal to the
background magnetization with ng - §n = 0 satisfied every-
where. Upon the homogenous magnetization ny = €; along
the tangential direction, the spin wave is written as én =
n,&, + n3€;, i.e., the spin wave oscillates in the normal and
binormal directions of the wire. In an equivalent form, the spin
wave is denoted by the complex field ¥, = n, — ionz with the
chirality 0 = =1 the left/right circularly polarized spin waves,
respectively. Adopting the small amplitude limit |n,/3] < 1,
the spin-wave dynamics in the curved wire is recast from
Eq. (2) to

—Vs = YA + 0T + KIVs +ayJys,  (9)

where the degeneracy of two circular polarizations are lifted
by the torsion 7. The curvature x does not participate into
Eq. (9) since the DMI orthogonal to the static magnetization
direction does not affect the spin-wave dynamics in the linear
regime [53].

The spin-wave dispersion corresponding to Eq. (9) is

a2J? iayd
4 2

where w, and k, with o = 1 are the spin-wave frequency
and wave vector for left/right circular modes, respectively. In
comparison, for a straight wire with vanishing torsion t = 0,
the dispersion reduces to wy = yVJ(AkZ + K) — (@>J?)/4 —
iayJ/2. Therefore, in reference to the straight wire with fixed
spin-wave frequency w, the wave vector of the spin wave in a
curved wire is shifted by [11]

Wy = y\/J[A(kg —o1) +K] - (10)

Ak=k, —ko=o0T, (11

i.e., the wave vector of the left/right circular modes with
o = F1 are shifted in opposite directions by the same amount
of |r|. It is noteworthy that the wave-vector shift Ak is

independent of the spin-wave frequency w and the detailed
magnetic parameters A, K, and J in Eq. (3).

III. POLARIZED SPIN WAVE ALONG
CIRCULAR HELICES

A. Basic properties of a circular helix

The simplest wire with finite curvature and torsion is a
circular helix [54], which is virtually wound upon a cylinder
as schematically shown in Figs. 1(c) and 1(d). The 3D space
curve of a circular helix is parametrized by

r(s) = |:,0 cos(;),xp sin (;) b—:} (12)

where p is the radius, b is the reduced pitch, r = \/p2 + b?* is
the parametric radius, and x = F1 is the helicity for left/right-
handed helices. The tangent vector of a circular helix is
described by & = [—p sin(s/r), x p cos(s/r), b]/r, which has
a periodicity of 2rrr, and all tangent vectors form a constant
polar angle 8 = arccos(&; - Z) = arccos(b/r) with respect to
the Z direction. Therefore, a collection of magnetizations lying
in tangent vectors of circular helix forms a cone in a magnetic
Bloch sphere with apex semiangle 6 as shown in Fig. 1(b).

From Eq. (12), the curvature and torsion of a helix are

constants with

K = %, 7= ’;—f, (13)
where the curvature « is controlled by the radius p, whereas
the torsion t is related to the reduced pitch b as well as the
helicity x. The curvature and torsion are intimately connected
with the polar angle 6 via the relation kr = sinf and tr =
X cos 0, hence the curvature « (torsion 7) increases/decreases
as the polar angle 6 increases.

According to Egs. (11) and (13), when a circular spin wave
with chirality o = %1 travels along the circular helix with
helicity x = =1, the phase shift accumulated in one coil of
length 277 is then

2mr
Ap = / Akds =2mnrot = 2mwo x coso, (14)
0

which is simultaneously controlled by both spin-wave chi-
rality o and the winding helicity x. By flipping either the
spin-wave chirality o or the winding helicity yx, the phase-
shift A¢ is flipped; or alternatively speaking, the phase
difference between the two opposite chirality or the helicity is
2|A¢| = 4m cos 6. With this additional phase A¢, we proceed
to investigate the evolution of polarized spin wave advancing
along magnetic circular helices.

B. Spin-wave rotator with a single circular helix

Consider a linearly polarized spin wave, which consists
of equal components of both circular polarizations, propa-
gates along a magnetic circular helix. According to Eq. (14),
the left/right circular components experience opposite phase
shifts +|A¢|, leading to a rotation of the polarization direction
for the linear spin wave [7,11,28,55], i.e., spin-wave Faraday
effect arises in a magnetic circular helix. The rotation angle
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FIG. 2. Micromagnetic simulations of spin-wave rotation based
on a magnetic circular helix. (a) Spatial profiles of spin wave across a
magnetic helix with x = %1 in upper/lower panels. Two spin-wave
components 7,3 are in plotted green/orange lines, and the arrows
denote the polarization direction in two sides. (b) Spatial evolutions
of polarization angle ¢ as a function of arc length s for three different
frequencies f = 10, 15, and 20 GHz. (c) Spatial profiles of polar-
ization angle ¢ for different reduced pitch b. (d) The overall rotation
angle Ag as a function of reduced pitch b for 1 (2) coils of magnetic
helices. For (b)—(d), the dots are extracted from micromagnetic sim-
ulations, the lines are theoretical calculations based on Eq. (15), and
the red/blue lines are for magnetic helix with helicity x = £1. The
default size of the circular helix is with the radius p = 0.5 um and
the reduced pitch b = 0.1 pum.

of the linear spin wave, which takes half of the phase differ-

ence between its left and right circular components, is then
described by

A@ = 2wy cosb, (15)

where the rotation angle A¢ flips its sign for oppositely
wound helices with x = £1. The rotation angle is directly
proportional to the polar angle 6 of the helix, highlighting the
critical role of torsion (or the emergent DMI) in spin-wave
rotation.

The evolutions of a linearly polarized spin wave across a
circular helix between two straight wires as extracted from
micromagnetic simulations, are plotted in Fig. 2(a). As a
linear spin wave with purely n, component passes across the
right/left wound helix with helicity y = %1, the spin wave
gradually acquires an out-of-phase (in-phase) n3 component.
Consequently, in Fig. 2(b), the polarization angles ¢ in-
creases/decreases steadily within the right/left wound circular
helix of helicity y = %1, and level off in straight wires. The
linear spin wave finally acquires a anticlockwise/clockwise
rotation angle of about 0.47, in good agreement with the
theoretical value of Ap = 0.3927 calculated from Eq. (15). In
addition, the spatial profiles for three different spin-wave fre-
quencies f = 10, 15, and 20 GHz overlap with each other,
confirming the frequency-independent feature of spin-wave
rotation in a circular helix. By increasing the reduced pitch b
from 0.1 to 0.2 um (0.3 um), the rotation angle also roughly
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FIG. 3. Micromagnetic simulations of the spin-wave interference
upon two oppositely wound helices. (a) Schematics of a spin-wave
interferometer based on circular helices. The gray blocks are the
input/output ports, the red/blue curves denote two arms upon cir-
cular helices of helicity x = =1, the darkness encodes the height
information, and the arrows mark the flow directions. (b) The output
efficiency 7 as a function of reduced pitch b. The dots are extracted
from micromagnetic simulations, and the solid line is theoretically
calculated from Eq. (16). In (b), an intensity reduction by a ratio of
about 0.34, caused by signal reflections in imperfect injunctions, is
preexcluded in the estimation of the output efficiency.

multiplies by about 1.9 (2.6) times in Fig. 2(c); and the rota-
tion angles double for a circular helix of N = 2 coils as shown
in Fig. 2(d). All above behaviors highlight the critical role of
the torsion in rotating the polarization direction of a linear spin
wave.

C. Spin-wave interferometer with two oppositely
wound circular helices

Consider a Mach-Zehnder type spin-wave interferometer
in Fig. 3(a), which uses a left/right-handed magnetic helices as
its two arms. Due to symmetry of its two arms, the polarized
spin wave is split equally into two arms, and merged again
in the output port. According to Eq. (14), the phase shifts of
circular spin waves in these two arms are opposite, leading
to an overall phase difference of 2|A¢|. Consequently, the
interference of spin waves in two arms leads to

n = cos’(A¢p) = cos> (2 cos b)), (16)

where 1 is the output efficiency measuring the ratio of the
output intensity relative to the input intensity. Despite that
Eq. (16) is originally derived for circular spin waves, it nat-
urally extends to arbitrarily polarized spin wave, for which
the intensity is simply the summation of its two circular com-
ponents [56].

The output efficiency n extracted from micromagnetic sim-
ulations as a function of reduced pitch b for a fixed helix radius
p = 0.5 um are overlaid well with theoretical lines explicitly

given by n = cos’(2wb//p* + b*) from Eq. (16). Whereas
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the modulation becomes slightly inefficient as b increases
due to the accompanying increment of parametric radius r,
two complete destruction points with n = 0 are established
at b~ 0.13 and b ~ 0.57 um. Similar to the spin-wave ro-
tation in Fig. 2(b), the intensity modulation is the same for
three spin-wave frequencies f = 10, 15, and 20 GHz, and
we have additionally checked that the intensity modulations
are roughly the same for circularly, linearly, and elliptically
polarized spin waves.

IV. DISCUSSION AND CONCLUSION

The phase difference A¢ in Eq. (14), which is solely
connected to the polar angle 6 but irrelevant to detailed mag-
netic parameters, is intimately correlated to the Berry phase
acquired along the helix [57-59]. The circular spin wave
[ (ng, o)) has its chiral operator 6 always parallel to the
background magnetization ng, which is governed by

ny - 6y [ng(s), o) = ol [ng(s), o), a7

where the chiral operator ¢ is modulated by an effective
magnetic field in ng. After traveling along one coil of the
circular helix, the staggered magnetization ng restores its orig-
inal direction, whereas the spin wave | (ny(s), o) acquires
an additional phase factor exp(—io 2), where Q2 is the solid
angle subtended by the static magnetization ny in the Bloch
sphere [57,60]. The total solid angle for the cone in Fig. 1(b)
is  =2mx(1 —cosf), which differs from Eq. (14) only
by a trivial value of 2. In this sense, the torsion 7 in the
curvilinear wire acts as a local Berry curvature as spin wave
propagates along a curved wire.

In conclusion, we demonstrate that the curvilinear effects
of magnetic wires provide extrinsic yet universal means to ma-
nipulate the polarized spin wave. Specifically, the spin-wave
rotator and interferometer upon magnetic helices are proposed
due to the additional phase caused by the interplay between
the wire winding helicity and the spin-wave chirality. Based
on close relations between curvilinearity and magnetism, con-
trolling magnetic functionalities via mechanical means is also
envisioned.
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APPENDIX A: MICROMAGNETIC SIMULATIONS

The micromagnetic simulations are based on a synthetic
antiferromagntic wire, which consists of two coupled antifer-
romagnetically ferromagnetic yttrium iron garnet Ys;FesO,
wires [12,18,61]. The dynamics of the synthetic antiferromag-
net wire is governed by two coupled Landau-Lifshitz-Gilbert
(LLG) equations,

m; = —ym; x h; + am; x m;, (A1)

where i = 1,2 denotes two sublattices residing in two fer-
romagnetic wires, re_spectiv_ely. Here h; = AV?m; + K(m; -
€1)e; +2Jm; (with 1 =2,2 =1) is the effective magnetic

field on sublattice magnetization m;, where A is the exchange-
coupling constant within each sublattice, K is the easy-axis
anisotropy along the tangential direction &;, and J is the
exchange-coupling constant between two sublattices.

The micromagnetic simulations are performed in COM-
SOL MULTIPHYSICS [62] where the LLG equation (Al) is
transformed to a weak form. The simulations in Fig. 2
are based on the structures in Figs. 1(c) and 1(d), the
simulations in Fig. 3(b) are based on the structure shown
in Fig. 3(a), and all structures are directly constructed
using the embedded parametric functions in COMSOL MULTI-
PHYSICS. The magnetic parameters adopted in the simulations
are as follows: the intralayer exchange-coupling constant
A =3.28x10""" Am, the interlayer coupling constant J =
5x10° A/m, the anisotropy K = 3.88x10* A/m, and the
damping constant @ = 1x 1074,

In Fig. 2, the spin wave én in simulations is obtained by
subtracting the current magnetization n by the static mag-
netization ny at ¢t = 0: én = n — ng. Then using the local
curvilinear directions &;,5,3 calculated from the paramet-
ric functions, the spin-wave components 75,3 = én - &3 are
extracted. The polarization angle ¢ is obtained using the rela-
tion ¢ = arccos(ny /v n% + n%) for the linearly polarized spin
wave.

In Fig. 3, the spin wave is continuously excited with a
fixed intensity J;, in the input port, and then the spin-wave
intensity Iy is monitored at the fixed point in the output
port, after enough waiting time. The output intensity I,y is
recorded for each simulation with only the reduced pitch b
is varied. The output efficiency 5 is then calculated using
n = Lu /I, where 103 &~ 0.341;, is the maximum intensity

out
among all possible values of reduced pitch b.

APPENDIX B: TRANSFORMATION TO DYNAMICS
OF STAGGERED MAGNETIZATION

The dynamics of sublattice magnetization in Eq. (A1) can
be transformed to the dynamics of staggered magnetization in
Eq. (2) with the aid of Lagrangian theory [40-42,44,49].

The Lagrangian corresponding to Eq. (A1) is [44,49]

S . .
L= 3 f [a;(my) - my + ax(my) - mp]ds — U(my, my),
(BI)
where S = uoM;A is the magnetic flux, a(m) = (2xm)/

(1 + £xm) is the vector potential for a monopole with ar-
bitrary direction 2, and

S
Ui, my) =23 /[A(Vm,-)2 —K(m; - &)

i=1,2

+ 2Jm; - m;]ds (B2)

is the total magnetic energy. Besides, the Rayleigh dissipation
function is
aS . .
R= 5 [l + P (83)

For transformation, we use the relations n = (m; — m;)/2
and m = m; + m;, and furthermore, we set a;(m) = a(m)
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and a; = a(—m). Then the Lagrangian in Eq. (B1) is trans-
formed to

S
=3,
where only the first order of m is retained for the kinetic term.
Furthermore, the magnetic energy is transformed to

Um,m)=Un) + U(m)

L / [n-(mxm)lds —Um, m), (B4)

— ; / [A(Vn)> — K(n - &)*]ds

S
+ Z/J|m|2ds, (B5)

where only the term in |m|? retained for U (m), and all cross
terms in n and m are neglected. From Eq. (B4), the dynamics
of m is then governed by

m = ﬁfl X n, (B6)

and the Lagrangian purely for n is recast from Eq. (B4) to

— S 2270 —
L= 2yzjf|n| ds — U(n). (B7)

Similarly, the Rayleigh dissipation function is recast from
Eq. (B3) to

s
R = “—/ a[2ds, (B8)
2y

where cross terms between n and m as well terms purely
in m are again neglected. The Euler-Lagrangian variation of
Egs. (B7) and (B8) with respect to n under the constraint
[n| = 1 then yields Eq. (2) in the main text.
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